
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

PopFetcher: Towards Accelerated Mixture-of-
Experts Training Via Popularity Based

Expert-Wise Prefetch
Junyi Zhang, Chuanhu Ma, Xiong Wang, and Yuntao Nie, Huazhong University

of Science and Technology; Yuqing Li, Wuhan University; Yuedong Xu, Fudan
University; Xiaofei Liao, Huazhong University of Science and Technology; Bo Li,
Hong Kong University of Science and Technology; Hai Jin, Huazhong University

of Science and Technology
https://www.usenix.org/conference/atc25/presentation/zhang-junyi

PopFetcher: Towards Accelerated Mixture-of-Experts Training Via Popularity
Based Expert-Wise Prefetch

Junyi Zhang1, Chuanhu Ma1, Xiong Wang1∗, Yuntao Nie1, Yuqing Li2,
Yuedong Xu3, Xiaofei Liao1, Bo Li4, and Hai Jin1

1National Engineering Research Center for Big Data Technology and System,
Service Computing Technology and System Lab/Cluster and Grid Computing Lab,

School of Computer Science and Technology, Huazhong University of Science and Technology
2School of Cyber Science and Engineering, Wuhan University

3School of Information Science and Engineering, Fudan University
4Department of Computer Science and Engineering, Hong Kong University of Science and Technology

Abstract
Scaling laws indicate that increasing model size enhances
performance. The Mixture-of-Experts (MoE) architecture en-
ables scaling model parameters to trillions while requiring
only a sub-linear increase in training computations. How-
ever, the sparse activation of experts within MoE leads to
substantial All-to-All communications and imbalanced com-
putation workloads, which in turn can severely degrade train-
ing efficiency. In this paper, we develop PopFetcher, a scal-
able MoE training system with popularity-aided expert-wise
prefetching, to address these communication and computa-
tion bottlenecks. Specifically, PopFetcher uncovers skewed
and correlated patterns in expert selection, and implements a
lightweight sliding-window technique to accurately predict
the popularity of experts. As a result, PopFetcher facilitates
dynamic identification of high-demand experts and prefetches
them in the next layer during the execution of current non-
MoE computations, thereby exploiting the idle network links
to reduce dispatched tokens in upcoming All-to-All commu-
nications. PopFetcher rigorously formulates the end-to-end
training latency and develops a tailored pruning strategy to
derive the globally optimal prefetching scheme, which can
restore both communication and computation balances based
on the underlying network infrastructure. By prioritizing All-
to-All data stream during the backward pass, PopFetcher sig-
nificantly alleviates the communication blockage. Extensive
experiments conducted on GPU clusters demonstrate that
PopFetcher outperforms existing state-of-the-art systems, re-
ducing training time by 15%-94.5%.

1 Introduction

In recent years, Transformer-based pre-trained language mod-
els (PLMs), such as BERT [8], GPT [5,29], and Llama [36,37],
have achieved enormous success across various domains,
including natural language processing [12], computer vi-
sion [9, 25], and machine translation [3]. The scaling law

∗Corresponding author: Xiong Wang (xiongwang@hust.edu.cn)

for PLMs demonstrates an empirical relationship between
model size and performance [20], proliferating gigantic PLMs
with up to trillions of parameters to enhance service quality.
However, large-scale PLMs come at the cost of sharply in-
creasing computational demands, often hitting the training-
ability wall [12]. In response to these challenges, the Mixture-
of-Experts (MoE) architecture has garnered more and more
interest [31]. MoE model, like DeepSeek [7], Qwen [35]
and Phi [2], expands numerous sub-models or experts within
Transformer framework, which are sparsely activated by a
gate network, thus allowing for scaling model capacity while
ensuring only a sub-linear increase in training computations.
Substantial evidence also corroborates the potential of MoE in
delivering performance on par with its dense counterparts [4].

Despite the benefits of MoE, its sparsely activated structure
also presents unique challenges in model training [30]. As
the number of experts grows, the memory requirement for
MoE model also scales, often demanding hundreds of GB
or even TB, far beyond the capacity of a single GPU (typi-
cally tens of GB). As such, expert parallelism (EP) has been
proposed to train large-scale MoE models by placing various
experts to different GPU workers for parallel processing [21].
Within each MoE layer, input tokens are dynamically routed
to certain experts, who may reside on remote workers, in-
curring frequent cross-machine data transfers. Specifically,
this process necessitates two All-to-All communication prim-
itives on the critical path: first All-to-All operation dispatches
input tokens to selected experts and the second collects the
computation results back, as depicted in Figure 1. Since All-
to-All communication is time-consuming, the MoE training,
especially for large models, is often severely prolonged [40].

Considerable efforts have been devoted to addressing the
communication bottleneck and enhancing MoE training effi-
ciency [17, 22]. Common strategies include designing a bal-
anced gate network to alleviate uneven expert workloads [44]
or pipelining the All-to-All operation through token sub-
division of communication tasks [32]. While these approaches
can improve training performance, the volume of communica-
tion for token dispatching and collection remains substantial.

USENIX Association 2025 USENIX Annual Technical Conference 1053

Worker 0

Worker 1

Worker

Attention
Expert 1

Gate Attention

Attention Gate Attention

Attention Gate Attention

C
om

bi
ne

 A
ll-

to
-A

ll

D
is

pa
tc

h
A

ll-
to

-A
ll

...

Expert 2

Expert 3

Expert 4

Expert

Expert
0.0

0.2

0.4

0.6

0.8

1.0
Expert popularity

Figure 1: All-to-All communications during MoE training.

To minimize transferred tokens, FasterMoE [16] introduces
a strategy to “shadow” partial experts to all GPU workers,
which allows specific tokens to be processed locally, alleviat-
ing the need for external transmission. However, the periodic
broadcasting of expert parameters can undermine the benefits
of decreased token transmission due to potential communica-
tion cost and interference. Alternatively, Janus [24] attempts
to optimize whether to fetch experts for tokens or send to-
kens to experts before the training starts, conditioned on their
relative overheads. Yet, it struggles when the size of expert
parameters or token data consistently exceeds the other. Cur-
rently, expert scheduling is mostly conducted concurrently
with All-to-All communication, which may mitigate token
transfers but also introduces additional communication over-
heads for expert scheduling. This raises a critical question:
Can we stagger expert scheduling with token dispatching to
eliminate the interruption of expert scheduling and more ef-
fectively address the All-to-All communication bottleneck? To
answer the question, we face the following challenges.

First, to minimize the interference of expert scheduling
on token dispatching, it is essential to retrieve the necessary
experts before the training progresses to the current MoE
layer. This requires advanced knowledge of expert statistics
to facilitate timely expert retrieval. However, acquiring such
information is challenging due to the dynamic training nature.
Second, experts within the same layer often receive tokens
that vary greatly in volume, which leads to considerable dif-
ferences in performance gains when fetching different experts.
Optimally deciding which experts to fetch from which worker
involves modeling the training latency, yet the net effect of ex-
pert scheduling and token transmission is difficult to quantify.
Third, All-Reduce operations among gradient aggregation
can compete for limited network bandwidth with All-to-All
communications, consequently delaying the backward com-
putations. To enhance training efficiency, it is essential to
schedule different network streams independently.

In this paper, we propose PopFetcher, an efficient MoE
training system featured with popularity based expert-wise
prefetching, to address the communication bottleneck and en-
sure balanced workloads. Specifically, PopFetcher employs a
lightweight prediction to acquire the popularity of experts in
each MoE layer, which effectively assists the expert prefetch-
ing design and remains uninterrupted to normal training.

Building on this statistics, PopFetcher enables each worker to
preemptively pull popular experts from neighboring workers
in idle periods or to push local tokens to remote workers when
fetching corresponding experts is costlier. This hybrid pull-
push mechanism unleashes the potentials of processing tokens
both locally and remotely. PopFetcher rigorously formulates
the end-to-end training latency, incorporating both computa-
tion and communication costs, to optimize the prefetching of
experts for each worker. As a result, PopFetcher can substan-
tially reduce the volume of token dispatching in EP, while in-
curring negligible interference with All-to-All communication
since experts are retrieved in advance. Moreover, PopFetcher
prioritizes the All-to-All stream during the backward pass,
which further alleviates the communication blockage. In sum-
mary, this paper makes the following contributions.
• We discover the correlation between expert selections

across consecutive MoE layers, and further develop a
lightweight sliding-window based prediction scheme to pre-
cisely access the popularity of experts. With these insights,
we design PopFetcher, an efficient MoE training system
with popularity-aided expert-wise prefetching, which en-
ables a preliminary expert scheduling to address the All-to-
All communication bottleneck.

• PopFetcher devises a hybrid paradigm of expert pull and
token push for EP-based MoE training. Through a thorough
analysis of end-to-end training latency, PopFetcher enables
the identification of the optimal experts to be prefetched
for each worker while also respecting their memory con-
straints. By coupling with the underlying network architec-
ture, PopFetcher fully utilizes high-speed links for expert
retrieval, which greatly mitigates prefetching time.

• PopFetcher prioritizes All-to-All communication stream
over All-Reduce operation among prefetched experts. By
effectively pipelining non-MoE All-Reduce tasks with MoE
backward computations, PopFetcher significantly mitigates
network contention and reduces communication blockages.

• Extensive experiments on real-world datasets show the su-
periority of PopFetcher in training throughput and latency.
In particular, PopFetcher reduces training time by 15%-
94.5% than state-of-the-art systems.

2 Background and Motivation

We first introduce the preliminary of distributed training of
MoE models, then present our motivation, as well as the op-
portunities and challenges of PopFetcher.

2.1 Background
2.1.1 Transformer-Based PLM

Transformer model [38] has been recognized as the fundamen-
tal architecture in sequence processing. A typical Transformer
block includes an Attention layer and a multi-layer percep-

1054 2025 USENIX Annual Technical Conference USENIX Association

Gate

Expert 1

Expert 2

Expert 3

Expert

...

C
om

bi
ne

MoE Block

Attention

...
1 2 3 E

D
is

pa
tc

h

Sequences
of tokens

MLP BlockAttention

KVQ

KVQ

...

...

...

...

(b) MoE Layer

(a) Transformer Layer

Figure 2: Structure of MoE block.
tron (MLP), generally comprising two fully-connected (FC)
layers with a ReLU activation in between. Attention network
transforms input tokens into query, key and value matrices,
which then undergo processing via scaled dot-product atten-
tion, with outcomes being further channeled into the MLP.
Output from MLP will be added to the block’s input and
normalized through a layer normalization. This standard con-
figuration allows for stacking multiple identical Transformers
to build powerful PLMs, like BERT [8] and GPT [5, 29].

2.1.2 MoE Architecture and Model Training

Despite the success of Transformer architecture, scaling PLM
capacity remains challenging due to increasing computation
demands for training. MoE model [31], illustrated in Figure 2,
tackles this by dividing the dense MLP into multiple smaller,
sparse experts, thereby exploiting the inherent sparsity of
Transformer to scale model size with only a sub-linear in-
crease in computation cost. During training, each input token
is routed by a gate to one or more experts, typically employ-
ing top-k expert selection where k is often 1 or 2. Token
dispatching to experts and the subsequent return of results are
managed via All-to-All communication primitives.

Large-scale MoE models often far exceed the capacity of a
single GPU. To facilitate the training of MoE, EP is adopted
to distribute various experts from each MoE layer across
different GPU workers [21]. Typically, the model layers that
reside between MoE layers (e.g., Attention layer), referred to
as non-MoE layers, are replicated on each worker, following
a principle similar to that of data parallelism [19].

2.2 Motivation
Skewed expert activation leads to hot expert. In MoE archi-
tecture, the gate module’s variability in routing input tokens
often leads to an imbalanced workload among experts. As
in Figure 3, which shows the expert selection distribution
within a layer of MoE-GPT model [41], the pattern of token
dispatching evolves considerably early in training but soon ex-
hibits a trend towards localized activity, with minor variations
between adjacent iterations. Despite attempts at balanced
gating strategies, such as imposing capacity limits on each
expert [21], certain experts consistently receive more tokens,
placing heavier computations on GPUs hosting these hot ex-

0 5000

4

8

12

16

3000 3500 6000 6500 9000 9500 10000
Training iteration

To

ke
ns

 /
k

Figure 3: Skewed expert selection within a MoE layer (k on
the y-axis represents units of 1000).

Table 1: Time consumption within a MoE layer.

Layers Batch size # Experts A2A Ratio

12 16 16 56.44 %
24 16 16 57.57 %
24 32 16 57.20 %
12 16 32 56.13 %
12 16 64 56.34 %

perts. Such load imbalance is particularly pronounced in the
frontier layers of the MoE architecture, whereas in deep lay-
ers, the load tends to stabilize and changes less dramatically.
Emergence of hot experts requires an effective management
of load distribution to avoid overburdening GPU workers.
All-to-All communication bottlenecks in MoE training.
During the training of MoE models, each token undergoes
All-to-All communication twice per MoE layer, including to-
ken dispatching and subsequent output collection, which often
leads to significant delays. Table 1 indicates that All-to-All
communication can account for 50%-60% of the total time
when training MoE-GPT across eight workers. The primary
communication bottleneck arises from the mandatory data
synchronizations in each MoE layer, where the commence-
ment of expert execution and subsequent computations is
delayed until all requisite tokens and their processed outputs
are received. This synchronization is particularly problematic
when hot experts are present, as their increased load further
intensifies the network contentions. Therefore, a meticulously
designed EP is critical to address synchronous execution chal-
lenge and reduce communication overhead.
Coarse-grained expert scheduling is insufficient. To en-
hance MoE training efficiency, replicating partial experts
across multiple GPUs is adopted to alleviate the skewed com-
putations on overloaded workers, allowing specific tokens to
be processed locally by shadowed experts rather than being
dispatched remotely [16]. While effective, broadcasting the
expert parameters to all GPUs can introduce inadvertent de-
lays due to data synchronizations. An alternative approach
attempts to pull necessary expert parameters to the local GPU,
which can decrease the need for pushing tokens to remote ex-
perts [24]. However, this method encounters significant limita-
tions when expert parameters are substantially larger than in-
put tokens, making pulling experts even more communication-
intensive. Despite these efforts, existing coarse-grained MoE
schemes still struggle with imbalanced computation loads and
persistent All-to-All communication bottlenecks.

USENIX Association 2025 USENIX Annual Technical Conference 1055

Naive

Fetch

Prefetch

Timeline

...

...

...

Non-MoE (Attention) Gating Module All-to-All

Expert Calculation Fetch Parameters Prefetch Parameters

best performance !

Figure 4: Execution timeline of different expert schedules.

2.3 Opportunities and Challenges

Addressing communication bottleneck while restoring compu-
tation balance is crucial for improving the efficiency of MoE
model training. We next explore the opportunity to achieve
this objective and highlight the potential challenges.

2.3.1 Opportunities

Efforts to promote MoE efficiency have typically pursued two
orthogonal directions.
Model design. Literature reveals attempts to refine the MoE
model architecture itself. For instance, GShard [21] incor-
porates a load balance loss to evenly distribute workloads
across different GPU workers. Similarly, expert routing strate-
gies [42] have been redefined to allow the gate module to
select the top-k best-matching tokens, enhancing load balanc-
ing. While these methods aid in achieving more equitable
workload distribution, they also risk compromising model
accuracy, and the communication bottleneck persists.
System design. System-oriented approaches like Faster-
MoE [16] and FlexMoE [28] alleviate the adverse impact
of load imbalance by shadowing or replicating popular ex-
perts. However, they can introduce additional overhead for
parameter synchronization or system adjustment, potentially
offsetting the benefits of improved workload distribution.

Despite these challenges, non-MoE components between
MoE layers open up optimization opportunities. Figure 4
shows the data flow within a MoE layer, implying that during
the computation in non-MoE sections, like the Attention layer,
a worker utilizes only local input data, leaving network links
underutilized. As training progresses, expert load variations
tend to stabilize, offering a chance to use historical token
distribution for expert prefetching. That is, we can proactively
pull popular experts in next MoE layer from remote GPUs to
a local worker in anticipation of their forthcoming selections,
thus diminishing future All-to-All communication demands
by using currently idle links.

2.3.2 Challenges

Prefetching hot experts during non-MoE computation phases
is promising to minimize communication overhead and bal-
ance GPU workloads. However, it also presents unique chal-
lenges that need to be addressed.

How to accurately predict popular experts in next MoE
layer? As training progresses, the load distribution across ex-
perts changes dynamically. For effective expert scheduling, it
is crucial to develop a lightweight method that can accurately
predict which experts will be in high demand in subsequent
layers, yet challenging for their dynamic nature.
How to prefetch appropriate experts subject to worker ca-
pacity? Given the limited memory capacity of GPU workers,
and the presence of multiple experts already on the local GPU,
deciding which and how many experts to prefetch presents a
dilemma. This decision must balance the benefits of expert
prefetching against available memory resources.
How to manage additional cost associated with expert
prefetching? While prefetching can be scheduled to overlap
with non-MoE computations, it must adhere to the data de-
pendencies of the MoE workflow. Ensuring that prefetched
experts are prepared before the computation of the next layer
begins can introduce additional synchronization overhead.
Furthermore, the All-Reduce operation among prefetched
experts may compete with All-to-All communication, poten-
tially obstructing gradient computations in backward pass.

3 PopFetcher Overview

In this paper, we present PopFetcher, an advanced MoE train-
ing system with popularity based expert-wise prefetching, to
decrease All-to-All communication overhead and ensure bal-
anced GPU workload. PopFetcher maintains an expert pool
on each worker to store both local expert parameters and those
prefetched from remote workers. Figure 5 exhibits the system
architecture of PopFetcher, which is primarily composed of
three key modules: routing information collector, prefetching
decision-maker, and asynchronous scheduling executor.

3.1 Routing Information Collector
Each worker node in PopFetcher is outfitted with a routing in-
formation collector to track and monitor the runtime popular-
ity of experts. Specifically, this module records the gate selec-
tion details for each token across every MoE layer and updates
the distribution of tokens routed to each expert. Based on this
data, the collector renews the expert popularity within each
MoE layer, as well as relaying to the prefetching decision-
maker for more informed expert retrieval. Expert popular-
ity compiled by each worker is promptly synchronized via
torch.distributed.all_reduce to maintain consistency across all
workers. Since the popularity vector is small, the synchroniza-
tion overhead is negligible.

3.2 Prefetching Decision-Maker
The prefetching module periodically aggregates data from the
routing information collector across all workers to discern
the popularity of each expert. Considering that each GPU

1056 2025 USENIX Annual Technical Conference USENIX Association

GateAttn Sync GateAttn Sync GateAttn Sync

Local Expert

Remote Expert

...

...

layer layer layer

GateAttn Sync GateAttn Sync GateAttn Sync

layer layer layer

PopFetcher

...

 Prefetching
Decision-Maker

 Asynchronous
Scheduling Executor

...

Worker 1

Worker N

 Routing
 Information Collector

PopFetcher Prefetching
Decision-Maker

 Asynchronous
Scheduling Executor

 Routing
 Information Collector

Time

...

...

Figure 5: System architecture of PopFetcher.

E1 E2 E3 E4
Previous Layer

E4

E3

E2

E1

C
ur

re
nt

 L
ay

er

0.221 0.101 0.112 0.113

0.352 0.529 0.337 0.331

0.213 0.189 0.345 0.179

0.214 0.181 0.206 0.377

0.2

0.3

0.4

0.5
Probability

Figure 6: Expert correlation between MoE
layers within an iteration (training MoE-GPT
with four experts per layer).

worker already hosts local experts and corresponding activa-
tions from the forward pass, fetching all remaining experts is
impractical due to memory constraints. Informed by the up-
dated popularity statistics, the decision-maker crafts a tailored
prefetching strategy for each worker within the confines of
limited GPU memory. PopFetcher carefully orchestrates the
decision-making process to avoid disrupting regular training
activities, as routing information can be analyzed on the CPU
concurrently with ongoing GPU-based training operations.
Furthermore, PopFetcher decides on expert prefetching for
the upcoming MoE layer to minimize the end-to-end training
latency as the current layer progresses.

3.3 Asynchronous Scheduling Executor

The scheduling executor aims to utilize idle network links
during MoE training by preemptively and asynchronously
fetching experts from the next layer that are originally lo-
cated on remote workers. This strategy reduces the volume of
transferred tokens during All-to-All communications, thereby
effectively addressing the communication bottleneck. Ideally,
expert scheduling should coincide with the computations of
current Transformer’s non-MoE sections, i.e., the Attention
layer, which ensures minimal overhead and avoids interfer-
ence with the execution of the current MoE layer.

In general, the executor intelligently schedules experts for
each worker by prioritizing hot experts from the global pool
based on directives from the prefetching decision-maker. Con-
sequently, PopFetcher not only alleviates the All-to-All com-
munication volume but also ensures a balanced GPU work-
load. Considering that multiple experts can exist across dif-
ferent workers due to expert prefetching, PopFetcher concur-
rently performs All-Reduce operations for non-MoE layers
and gradient computations for experts during the backward
pass to reduce communication overhead. To further minimize
the impact on backward All-to-All communication and avoid
the computation blockage, we also prioritize the All-to-All
data flows over the All-Reduce stream.

4 Lightweight Popularity Prediction

In this section, we will delve into a dynamic prediction for
expert popularity, which is deemed to be both lightweight
and accurate to enhance expert prefetching. Basically, expert
activation is dynamically predetermined by the gate network
in standard scenarios, which may limit the opportunities for
system-level optimization.

4.1 Expert Correlation between MoE Layers
As mentioned earlier, the selection of experts by input tokens
exhibits discernible regularity. Within a MoE layer, certain
experts consistently attract more tokens, indicating their pop-
ularity, while others are chosen less frequently. Observations
from Figure 3 also imply that experts who are popular at one
point tend to maintain their popularity temporally.

Beyond individual MoE layers, there is also a correlation
in expert selection across consecutive layers. Let us consider
an expert index selected by a token in the i-th MoE layer
as x, and in the subsequent (i+ 1)-th layer as x′. The tuple
(x,x′) then represents a set of correlated selections. Figure 6
illustrates the conditional probability of selecting expert x′ in
the current layer, given the selection of expert x in the previous
layer. Outcomes reveal a distinct trend of expert selection
between adjacent MoE layers, with certain correlations more
prevalent than others. In essence, hot experts of the upcoming
layer can often be predicted based on expert preferences in
the preceding layer.

Although the popularity of experts and their correlations
continue to evolve as training progresses, these changes tend
to be gradual over time, which supports the effectiveness of
early expert prefetching during non-MoE computations.

4.2 Expert Popularity Prediction
Achieving optimal computation and communication balance
among workers hinges on accurately predicting expert popu-
larity, a task complicated by its dynamic nature. To address

USENIX Association 2025 USENIX Annual Technical Conference 1057

Table 2: Main notations.
Notation Definition

N # workers
K # experts per layer on each worker
E i

w i-th expert on worker w
Pw Computation throughput of worker w

Wn,w Network bandwidth of link between workers n,w
Iw # input tokens of worker w
Bw # tokens received by worker w
Bi

w # tokens sent to E i
w

pi
w Popularity of E i

w
H Hidden size (length of embedding vectors)
α Fraction of intermediate embedding in MLP

δi
n,w 1 if E i

n is prefetched by worker w, else 0

this while minimally interfering with normal training, we
propose a sliding-window based prediction to pinpoint hot
experts [6]. Specifically, the routing information collector rou-
tinely gathers runtime selection data from the gate network
during the forward pass, which is then analyzed to update our
current understanding of expert popularity.

Initially, we analyze the distribution of tokens over recent
iterations, up to the current MoE layer:

pseq =
tokens allocated in the past s iterations
tokens processed in the past s iterations

(1)

Here s represents the size of the sliding window, which, based
on our testing, is optimally set at 10 iterations. Our goal is to
accurately predict expert popularity for the upcoming MoE
layer, which involves incorporating the expert correlations,
as illustrated in Figure 6. Let M signify the total number of
tokens, with each token expressed by Tm,m ∈ {1,2, · · · ,M}.
Also, we denote the i-th expert on the j-th layer (i.e., Trans-
former block) as E i, j, where each layer contains K′ experts
in total. Then, the correlation between any experts E i, j and
Eh, j+1 can be evaluated by their conditional probability:

Pr
(
Eh, j+1|E i, j)= 1

M

M

∑
m=1

Pr
(
Eh, j+1|E i, j,Tm

)
(2)

The expert popularity based on the correlation is given by:

p
(
Eh, j+1)= K′

∑
i=1

Pr
(
Eh, j+1|E i, j)pi, j

seq (3)

Eq. (3) enables an accurate, lightweight popularity predic-
tion of experts in the subsequent layer by leveraging timely
updated selection data from the preceding layer. As a result,
our PopFetcher can dynamically adapt to changes in expert
demand without overburdening the system.

5 Expert-Wise Prefetching and Scheduling

This section details our strategy for expert prefetching and
scheduling given limited GPU memory. To aid our later pre-

G
at

e
G

at
e

Expert 0

Expert 1

G
at

e
G

at
e

Expert 0

Expert 1

Expert 0

Expert 1

G
at

e
G

at
e

Expert 0

Expert 0

Expert 1

(a) Expert-centric (b) Data-centric (c) Hybrid-paradigm

Figure 7: Hybrid push-pull paradigm.
sentation, we summarize the main notations in Table 2.

5.1 Hybrid Push-Pull Paradigm
Imbalances in communication and computation due to skewed
expert selection substantially prolong MoE training. Previous
attempts address this by either sending (pushing) tokens to
experts (expert-centric) [12, 16, 21] or pulling experts to local
GPUs (data-centric) [24], which, however, proves insufficient
in managing the uneven token dispatching inherent in MoE
architecture, as illustrated in Figure 7. Since these methods
exclusively send tokens or pull experts, they fail to handle
blockages during large data transmissions, as all data chunks
are treated equally and scheduled simultaneously. To clarify,
each expert module typically comprises a FeedForward Net-
work with two Linear layers, featuring matrix dimensions of
H ×αH and αH ×H, respectively, with α commonly set to 2.
Then, the parameter count for a single expert layer is 4H2. Us-
ing a float32 data type with H = 1024, the parameter reaches
16MB. Besides, cross-machine data transfer per token dur-
ing two All-to-All communications is 2H. Hence, we deduce
that pulling an expert becomes more viable when the token
transfer exceeds 2048 tokens. Otherwise, the conventional
approach of sending tokens offers lower overhead.

We introduce a new hybrid push-pull strategy for tokens
and experts, which combines the strengths of both expert-
centric and data-centric frameworks. According to Figure 7,
after tokens pass through the gate module, their dispatching
to different workers varies significantly. By adopting a hybrid
paradigm that concurrently pushes tokens and pulls experts,
we can optimize data transfer based on the current token
distribution among experts. Specifically, when the volume
of tokens exceeds that of expert parameters, we opt to fetch
experts towards the data; otherwise, we default to send tokens
as expert parameters are less burdensome.

Our hybrid approach also includes expert prefetching to en-
able an advanced retrieval of remote experts. For this purpose,
we need to accommodate two MoE computation patterns:
local computation and prefetching computation. In local com-
putation, tokens are sent to their specific experts for process-
ing, with results returned to the originating node. Prefetching
computation involves experts that are prefetched and avail-
able locally, eliminating the need to send out tokens over the
network. However, prefetching computation introduces an
extra step to ensure the logical integrity of model updates.
That is, during backward pass, gradients of replicated experts
must be sent back to the worker hosting the primary expert for
global reduction. Gradient synchronization, while essential,

1058 2025 USENIX Annual Technical Conference USENIX Association

inevitably consumes network bandwidth and must be factored
into prefetching decisions.

5.2 Problem Formulation
Our objective is to devise an optimal scheduling strategy that
includes expert prefetching to minimize the training latency
of each MoE layer. In this context, both communication and
computation delays are predominantly determined by the
performance of the slowest worker.

5.2.1 Training Latency without Prefetching

First, we consider the conventional case where expert prefetch-
ing is excluded, which can guide later analysis of our
PopFetcher. Let Bw denote the number of tokens received
by worker w, then we have Bw = ∑

N
n=1 Tn,w, where Tn,w =

In ∑
K
i=1 pi

w accounts for In tokens from worker n based on
expert popularity predictions pi

w, i ∈ {1,2, · · · ,K}. For each
MoE layer within a Transformer, token processing by an ex-
pert entails one GeMM operation during forward pass, and
two in backward as gradients need to be computed for both
the inputs and expert parameters. Moreover, the size of inter-
mediate embedding vector between the FC layers is αH with
H being the embedding size of each token. Thus, the total
operations for two FC layers in MLP are 4BwαH2. Assuming
data type in float32, each GeMM requires 4BwαH2

Pw
, leading to a

computation latency of 3× 4BwαH2

Pw
. Furthermore, forward and

backward pass encompass a total of four rounds of All-to-All
communications, with the communication latency given by

4H ∑
N
n=1 ∑

K
i=1

Bi
n,w

Wn,w
, where Bi

n,w denotes the number of tokens

sent by worker n to expert E i
w.

Therefore, the training latency of worker w is attained:

Latorigin
w = 3× 4BwαH2

Pw
+4H

N

∑
n=1

K

∑
i=1

Bi
n,w

Wn,w
(4)

Since the overall latency depends on the slowest worker, the
end-to-end training time of a MoE layer becomes

Latorigin = max
w

{
Latorigin

w
}
,w ∈ {1,2, · · · ,N} (5)

5.2.2 Training Latency with Prefetching

Building on the derivation of Eq. (5), we continue to ex-
plore the impact of prefetching hot experts on training latency.
Specifically, expert prefetching incurs two types of delays.
• Prefetched expert computation: this delay arises from fetch-

ing expert parameters from remote worker to local node for
computation, which is influenced by the expert popularity
and how many local tokens supposed to be routed to it.

• Model gradient reduction: the time required to reduce gra-
dients of prefetched experts with primary experts.
We derive the training latency when experts are prefetched.

• Forward pass. (1) Computation time: the computa-
tion time for local tokens is Compf

l = 4BwαH2

Pw
, while

that for prefetched expert is given by Compf
p =

4αH2

Pw
∑

N
n=1 ∑

K
i=1 Bi

n,wδi
n,w, where the indicator δi

n,w signi-
fies whether expert E i

n is prefetched by worker w. (2)
Communication time: the token transfer time amounts to
Commf

t = 2H ∑
N
n=1 ∑

K
i=1

Bi
n,w(1−δi

n,w)

Wn,w
.

• Backward pass. (1) Computation time: in the backward
pass, local token computation time doubles to Compb

l = 2×
4BwαH2

Pw
, and prefetched expert computation needs Compb

p =

2× 4αH2

Pw
∑

N
n=1 ∑

K
i=1 Bi

n,wδi
n,w. (2) Communication time: the

token transfer Commb
t mirrors that of the forward pass

Commf
t , and the time for gradient reduction is Commb

r =

2αH2
∑

N
n=1 ∑

K
i=1

δi
n,w

Wn,w
.

Including the times Compf
l ,Compf

p,Commf
t in forward pass

and those Compb
l ,Compb

p, Commb
t ,Commb

r in backward pass,
we characterize the latency for worker w:

Latprefetch
w = 3× 4BwαH2

Pw
+3× 4αH2

Pw

N

∑
n=1

K

∑
i=1

Bi
n,wδ

i
n,w

+4H
N

∑
n=1

K

∑
i=1

Bi
n,w(1−δi

n,w)

Wn,w
+2αH2

N

∑
n=1

K

∑
i=1

δi
n,w

Wn,w

(6)

Recall our goal is to minimize the end-to-end latency, i.e.,

Latprefetch = minmax
w

{
Latprefetch

w
}
,w ∈ {1,2, · · · ,N} (7)

Given the extensive number of global experts, such as 256
GPUs on Azure with 128 experts on each worker [30], the
overhead of deciding whether to prefetch an expert is substan-
tial, which needs further optimization.

5.3 Expert Prefetching Decision
Our objective now turns to solving the problem outlined in
Eq. (7), focusing on optimizing the assignment {δi

n,w} of
prefetched experts to GPU workers in an efficient manner.

5.3.1 Expert Prefetch Pruning

The primary challenge in designing expert prefetching is the
vast search space associated with deciding experts for the next
layer. To overcome the problem, we narrow down the search
space through expert pruning, which effectively reduces the
number of experts that need to be considered to at most k×N,
with k denoting the top-k expert selection of gate module.
• GPU memory limitation. Since each GPU has already

hosted local expert parameters and intermediate activations,
the aggregate size of experts that can be prefetched must
not exceed its available memory. Then,

2αH2
N

∑
n=1

K

∑
i=1

δ
i
n,w ≤ Memfree

w (8)

USENIX Association 2025 USENIX Annual Technical Conference 1059

• Transfer time constraint. Prefetching should ideally over-
lap with non-MoE layer computations, implying that the
time taken to fetch expert needs to fulfill

2αH2
N

∑
n=1

K

∑
i=1

δi
n,w

Wn,w
≤ Timenon-MoE (9)

These constraints establish an upper bound rw for the number
of experts that can be feasibly prefetched:

N

∑
n=1

K

∑
i=1

δ
i
n,w ≤ rw (10)

Moreover, expert prefetching for any worker is supposed to
reduce end-to-end training latency. Consistent with Eqs. (4)
and (6), it implies the following difference is greater than 0:

Latorigin
w −Latprefetch

w = 4H
N

∑
n=1

K

∑
i=1

Bi
n,w

Wn,w

−2αH2
N

∑
n=1

K

∑
i=1

δi
n,w

Wn,w
− 12αH2

Pw

N

∑
n=1

K

∑
i=1

Bi
n,wδ

i
n,w

(11)

Specifically, Latorigin
w > Latprefetch

w when the condition below
holds true:

2(ε−3αH)Bi
n,w > εαH (12)

Here, we use ε as shorthand for the compute-to-bandwidth
ratio Pw

Wn,w
for conciseness. Prefetching is observed to en-

hance training efficiency only when ε exceeds 3αH, indi-
cating a scenario with limited inter-worker bandwidth but po-
tent GPU computing capability. For instance, NVIDIA DGX
B200 is equipped with computing capacity of 72 petaFLOPS
and NVLink connection with 400 Gb/s. Given a typical em-
bedding size H ∈ {768,1024,2048,4096}, it is clear that
ε > 3αH, namely expert prefetching is viable. In such cases,
the tokens received by expert E i

n, if prefetched, must satisfy

Bi
n,w >

εαH
2(ε−3αH)

(13)

By combining Eq. (10) and Eq. (13), we prioritize prefetch-
ing experts based on their popularity until the GPU mem-
ory is fully utilized. The net time reduction achieved by

prefetching a single expert is calculated as 4H ∑
N
n=1

Bi
n,w

Wn,w
−

2αH2
∑

N
n=1

δi
n,w

Wn,w
− 12αH2

Pw
∑

N
n=1 Bi

n,wδi
n,w. As aforementioned

in Figure 3, expert popularity tends to stabilize as training
progresses. Therefore, in the mid-to-late stages of MoE train-
ing, it may not be necessary to assess each expert’s prefetching
needs in every iteration. Instead, a fixed prefetching strategy
could be adopted, or the frequency of expert replanning is
reduced, to further cut down on operational overhead.
Overview of PopFetcher mechanics. In summary, we illus-
trate the operational mechanics of PopFetcher. Conditioned
on the end-to-end latency in Eq. (6), we aim to minimize

CPU0
Mem

(a) PCIe-only topology

GPU0

CPU1
Mem

NIC

GPU1

GPU2

GPU3

GPU4

GPU5

GPU6

GPU7

QPI

CPU0
Mem

(b) NVLink-based topology

GPU0

CPU1
Mem

NIC

GPU2

GPU1

GPU3

QPI

GPU4

GPU6

GPU5

GPU7

NVLink

Figure 8: Different types of GPU machine topology.

the latency by searching the optimal expert prefetching so-
lution. Given the exponentially growing complexity of the
search space with increases in the number of machines and
GPUs, we implement two key constraints to manage this com-
plexity: GPU memory limitations as defined in Eq. (10) and
constraints on expert transfer time as specified in Eq. (13).
These constraints effectively prune the search space, allowing
us to formulate a comprehensive global expert prefetching
strategy. Specifically, for each set δi

n,w identified in our strat-
egy, we execute prefetching of the i-th expert E i

n on worker n
to worker w during non-MoE layer computations.

5.3.2 Internal Expert Sharing among Local GPUs

In GPU clusters, links connecting various components of-
ten occupy heterogeneous bandwidths, as exemplified in Fig-
ure 8 which depicts the topology of a typical machine. Gener-
ally, GPUs within the same machine communicate through
NVLink, with bandwidths reaching up to 1800GB/s, while
those interconnected with the machine’s main CPU via PCIe
share a bandwidth of 64GB/s. For inter-server communica-
tion, machines are often linked through GDR NICs, with their
bandwidths reaching 400Gb/s, where experts must be first
pulled to local CPU memory via the NICs and then moved
to the GPU memory through PCIe. Given this diverse net-
work fabric, when a worker prefers to fetching experts from
others, coupling with the heterogeneous connections can ap-
parently enhance bandwidth utilization. Specifically, workers
will prioritize sources connected by higher bandwidth links
for retrieving their needed expert parameters.

Additionally, internal experts can be shared across all local
workers using CPU memory. Once an expert is available on
the same machine, PopFetcher bypasses the need for external
fetching, i.e., workers directly access the expert from local
CPU memory, to mitigate the overhead of expert prefetch-
ing. To achieve this, we maintain a cache manager for each
server, which is responsible for sharing remote expert param-
eters among local workers and utilizes CPU memory as an
intermediary to expedite the prefetching process.

In general, our scheduling scheme is designed to optimally

1060 2025 USENIX Annual Technical Conference USENIX Association

AttnComp. stream

A2A stream

Reduce stream

Expert backward

A2A

AR

Gate

PR

Gate Attn Attn ...

...

non-MoE All-Reduce Prefetched expert Reduce

A2A A2A A2A ...

AR

PR

PR

Figure 9: Pipeline scheduling of streams in backward pass.

retrieve experts through the fastest available links, regard-
less of the specific intra and inter-machine bandwidths. By
leveraging the CPU memory, PopFetcher effectively circum-
vents the redundant transmission of expert parameters, thus
enhancing the overall efficiency of MoE training system.

6 Stream Scheduling in Backward Pass

Due to expert prefetching, multiple copies of an expert may
exist across different workers, requiring an additional All-
Reduce operation during the backward pass. Typically, All-
to-All communication for EP, All-Reduce gradient aggrega-
tion for non-MoE layers, and All-Reduce among prefetched
experts are handled in separate process groups, which will
initiate three distinct CUDA streams running concurrently.
Without proper scheduling, these streams may compete for
limited network bandwidth and GPU resources, potentially
disrupting the normal flow of backward computation.

Ideally, strict priority should be assigned to All-to-All com-
munication to minimize bandwidth contention. This strategy
involves launching All-Reduce tasks as soon as they are ready
to prevent delays, while also allowing All-to-All tasks to pre-
emptively claim GPU resources upon initiation. However,
implementing such precise stream scheduling is not feasible
with highly optimized multi-GPU communication libraries
like NCCL, which lock communication primitives into CUDA
streams at the point of invocation. As a result, transmissions
must be determined upfront, precluding any real-time adjust-
ments in the use of core and bandwidth resources in conjunc-
tion with other operations.

To overcome these challenges, we propose decomposing
both All-Reduce and All-to-All communications into micro-
operations, which are executed in a pipelined fashion. In prac-
tice, expert prefetching leads to a reduced volume of All-to-
All token transfers during the backward pass, diminishing
their overlap with the computation of expert gradients. By
strategically interleaving the micro-operations of All-Reduce
and All-to-All communications, as vividly illustrated in Fig-
ure 9, we can fully capitalize on network idle periods when
GPU workers are otherwise engaged.

7 Implementation

We have developed PopFetcher atop PyTorch, using Python,
C++ and CUDA to construct the MoE training framework,
which encompasses over 8,000 lines of code. The routing
information collector, implemented using Python, aggregates

Table 3: Configuration of different MoE models.
Model ααα Hidden Layer Batch Expert Worker Cluster

MoE-GPT 2 1024 12 32 32 8 A
64 64 32 B

MoE-BERT 2 1024 12 32 32 8 A
64 64 32 B

runtime data via the All-Gather operator. Besides, the ex-
pert scheduling executor module utilizes the communication
capabilities of torch.distributed, with the core logic for ex-
pert prefetching crafted in C++ and CUDA. Additionally,
the executor facilitates parallel processing of computation
and communication tasks through torch.cuda.Stream, and it
manages a dedicated prefetching stream within the training
system’s prefetching interface.

For user convenience, PopFetcher is implemented as a Py-
Torch plugin that can function independently or be integrated
into the Megatron-LM framework [34]. PopFetcher employs
the torch.autograd.Function class, which allows for the cus-
tomization of both forward and backward behaviors of the
MoE operator, to ensuring its seamless integration into the
MoE computational graph. All computation, communication,
and prefetching activities are encapsulated within this custom
MoE operator. Moreover, the pipeline scheduling of computa-
tion and communication streams is implemented in C++ and
CUDA to optimize performance.

8 Evaluation

In this section, we evaluate the performance of PopFetcher in
terms of token throughput and per-iteration time for different
MoE models on real-world datasets.

8.1 Evaluation Setup

8.1.1 Hardware Setup

We evaluate PopFetcher on two GPU clusters.

• Cluster A. This GPU cluster comprises two machines, each
outfitted with four NVIDIA RTX 4090 GPUs that have
24GB of memory per GPU. The GPU nodes are connected
through a 100Gbps Mellanox ConnectX-5 InfiniBand adap-
tor for communication.

• Cluster B. The cluster includes eight machines, each
equipped with four NVIDIA A10 GPUs, totaling 32 GPUs,
with each GPU also featuring 24GB of memory. The inter-
node communication operates over link with a maximum
speed of 32Gbps bandwidth.

Besides, PyTorch version is 2.3 and CUDA version is 12.4.
The communication backend is based on NCCL.

USENIX Association 2025 USENIX Annual Technical Conference 1061

8.1.2 Datasets and Models

We test PopFetcher on two typical MoE models: (1) MoE-
GPT [41], (2) MoE-BERT [16], which serve as representa-
tives of PLMs that utilize Transformer decoder or encoder
architecture. More details about model configurations are
listed in Table 3. Both MoE-GPT and MoE-BERT are initially
trained on the OpenWebText dataset [15]. Additionally, MoE-
BERT undergoes further training on the significantly larger
PILE dataset [14], which comprises approximately 600GB
of data. We also conduct comparative experiments using the
OSCAR-2201 dataset [1] to further assess the performance
of PopFetcher under varying data conditions.

8.1.3 Baselines

We compare our PopFetcher with the following frameworks.
• DeepSpeed [30]: a high-performance system that supports

massive scale MoE models.
• FasterMoE [16]: an easy-to-use and efficient MoE train-

ing system which simplifies the management of experts by
shadowing them across GPU workers.

• Megablocks [13]: a lightweight library for MoE training,
featuring a block-sparse GPU kernel that handles dynamic
token routing and avoids token dropping without sacrificing
the hardware efficiency.

• Tutel [17]: an optimized MoE system which achieves adap-
tive expert execution and adaptive pipelining for dispatch
and combine operations in MoE layers.

• Janus [24]: a data-centric MoE training system which en-
ables pulling experts to tokens. We replicated its function-
ality by prefetching all experts in our experiments, as the
source code is not publicly available.
All baselines can be integrated into Megatron-LM [27, 34],

and we conduct our comparisons using the same hardware
and software environments to ensure fairness.

8.1.4 Metrics

For a comprehensive evaluation of performance, we employ
two key metrics, i.e., token throughput and per-iteration time.
In particular, token throughput characterizes the number of
tokens processed by the training system in each iteration,
reflecting the overall training efficiency. Per-iteration time
quantifies the total time required to complete one forward and
backward pass, with shorter iteration time indicating faster
training speed and higher resource utilization.

8.2 Statistical Training Equivalence
PopFetcher significantly reduces the per-iteration time re-
quired for MoE training by prefetching popular experts,
thereby accelerating the overall training process. To main-
tain training equivalence with traditional MoE methods, we
conduct an additional reduction operation that synchronizes

0 5000 10000 15000
Iterations

4.0
5.0

7.5

10.0

Tr
ai

ni
ng

 lo
ss

FasterMoE (Naive top-k)

0 5000 10000 15000
Iterations

4.0
5.0

7.5

10.0

Tr
ai

ni
ng

 lo
ss

FasterMoE (GShard)

0 5000 10000 15000
Iterations

4.0
5.0

7.5

10.0

Tr
ai

ni
ng

 lo
ss

PopFetcher (Naive top-k)

0 5000 10000 15000
Iterations

4.0
5.0

7.5

10.0

Tr
ai

ni
ng

 lo
ss

PopFetcher (GShard)

Figure 10: Loss value over training iterations.

the gradient updates between the prefetched experts and the
original experts. To substantiate this approach, we perform
training sessions for MoE-GPT on Cluster A using both the
conventional FasterMoE and our PopFetcher enhancement.

The loss curves for both the naive top-k and GShard ex-
pert routing mechanisms are illustrated in Figure 10. The
upper section of the figure depicts the original FasterMoE
training scheme, whereas the lower section represents the
enhancements made by PopFetcher. It is evident that re-
gardless of the gating mechanism employed, be it naive or
GShard, PopFetcher maintains the integrity of the expert se-
lection process and does not introduce any additional steps in
the convergence process. Consequently, all loss trajectories
align perfectly across training iterations, demonstrating that
PopFetcher achieves statistical equivalence with the standard
training framework without compromising model accuracy.

8.3 Overall End-to-End Performance

Initially, we evaluate the end-to-end performance, focusing on
the training time per iteration of our PopFetcher and various
baselines. All results are obtained using GShard gating, given
its broader application.

Figure 11 shows PopFetcher’s overall speedup relative to
baselines across different GPU clusters, calculated against the
slowest system in each setup. We observe that PopFetcher
boosts training speed by 1.28-2.4× and 1.18-18.3× in the
two clusters, respectively. These gains stem from its expert
prefetching design and network stream prioritization, which
concurrently fetches popular expert parameters during non-
MoE layer computations without blocking the backward pass.
Since Janus employs a solution that pulls all expert param-
eters, it imposes extremely high demands on GPU memory
capacity. Given the settings described, Janus often results in
OOM errors and is therefore excluded from Figure 11.

PopFetcher consistently achieves robust training speeds,
even in low inter-machine network bandwidth environments
like Cluster B. In contrast, frameworks such as Megablocks,

1062 2025 USENIX Annual Technical Conference USENIX Association

10

20

4.9
7.8

5.1
8.4

10.6

15.514.6
18.3

DeepSpeed Tutel Megablocks FasterMoE PopFetcher

MoE-GPT-A MoE-GPT-B MoE-BERT-A MoE-BERT-B0

1

2

3

1.0 1.1
1.2

1.1
1.4

1.0 1.0 1.0
1.2

1.6
1.8

2.4

Sp
ee

du
p

ra
tio

Figure 11: Speedups over baselines.

MoE-GPT-A1 MoE-GPT-A2 MoE-BERT-A1 MoE-BERT-A2
600

800

1000

1200

1400

Av
er

ag
e

ite
ra

tio
n

tim
e

(m
s)

1052.3

1230.4

965.7

1161.4

807.2

1200.3

768.2

1114.8

718.5

1068.3

699.1

1003.3

Random w/o stream scheduling PopFetcher

Figure 12: Expert and stream scheduling.

MoE-GPT-A MoE-BERT-A
80

85

90

95

100

Pe
rc

en
ta

ge
 o

f t
ra

ns
fe

rr
ed

 to
ke

ns

100 100

85.15
86.54

w/o prefetching PopFetcher

Figure 13: Token transfers.

heavily reliant on the inter-machine communication, can ex-
perience significant efficiency losses under similar conditions,
resulting in slower training speeds. This contrast highlights
PopFetcher’s suitability for bandwidth-constrained hardware
environments, such as those using consumer-grade GPUs. In
these scenarios, with a high compute-to-bandwidth ratio ε,
PopFetcher is able to effectively utilize the idle links during
non-MoE layer computations.

8.4 Ablation Study
8.4.1 Expert Popularity and Stream Scheduling

We continue evaluating the benefits of expert popularity
prediction and backward stream scheduling. We compare
PopFetcher with baseline MoE training approaches that rely
on random expert prefetching or built-in stream strategy,
which ignore variations in expert selection or stream priorities,
respectively. Our evaluations employ MoE-GPT and MoE-
BERT models in Cluster A, varying the number of experts per
layer for a comprehensive analysis: MoE-GPT-A1 includes
16 experts, MoE-GPT-A2 has 8, with similar setups for the
MoE-BERT model.

Figure 12 shows the average per-iteration time. In particu-
lar, our popularity-based expert scheduling yields significant
speedup enhancements, achieving 1.30× and 1.26× faster
training for MoE-GPT and MoE-BERT models, respectively,
compared to random prefetching. Additionally, PopFetcher
cuts the average iteration time by 10.9% for MoE-GPT and
10% for MoE-BERT, highlighting substantial efficiency gains
from incorporating pipelined stream scheduling during the
backward pass, thus avoiding network contention and remov-
ing computation blockage.

8.4.2 Token Transfer within Expert Prefetching

Expert prefetching in PopFetcher reduces token transfers in
All-to-All communications, thus cutting the communication
time. As shown in Figure 13, implementing our prefetching
strategy globally decreases tokens transmitted by 14.85% for
MoE-GPT and 13.46% for MoE-BERT in Cluster A.

Furthermore, we assess the prefetching status of experts
in MoE-GPT and MoE-BERT models (16 experts per layer),
as depicted in Figure 14. The vertical axis shows the global

index of experts, and the horizontal axis represents iterations.
Darker cell colors indicate more frequent prefetching. Re-
sults illustrate that strategic prefetching of certain experts can
speed up training, with these experts consistently requested
by multiple workers across consecutive training iterations.
That is, expert popularity exhibits “locality” (discussed in
Section 2.2), which is seen as long, dark bands in the figure.
These popular experts vary per layer, but consistently, at least
one such hot expert appears in every layer, highlighting a
focused prefetching strategy to boost model performance.

8.5 Hybrid Push-Pull Analysis
PopFetcher integrates the advantages of both traditional data-
centric and expert-centric MoE training by adopting a hybrid
approach that involves sending tokens and pulling experts. To
demonstrate the superiority of PopFetcher, we compare its
training throughput and per-iteration time with those of data-
centric (Janus) and expert-centric systems (w/o prefetching).

As depicted in Figure 15, in experiments conducted
on Cluster A using MoE-GPT and MoE-BERT models,
PopFetcher surpasses both the expert-centric and data-centric
paradigms in training throughput and per-iteration time. This
outcome underscores the efficacy of our hybrid communi-
cation method which combines sending tokens and pulling
experts, optimizing data transmission volumes in All-to-All
communications. Our strategy fine-tunes the balance of load
and addresses the granularity issues associated with load im-
balances in All-to-All communications, thereby enhancing
overall MoE training efficiency.

“Bad prefetching” arises when prefetched experts receive
fewer tokens than alternatives, reducing All-to-All commu-
nication savings. However, PopFetcher effectively mitigates
this issue by accurately prefetching popular experts using
a sliding window and inter-layer correlation. Should “bad
prefetching” occur, PopFetcher simply reverts to the conven-
tional training mode without incurring additional overhead,
as prefetch operations overlap with non-MoE computations.

8.6 Parameter Sensitivity Analysis
The performance of PopFetcher is closely linked to the predic-
tion accuracy of expert popularity, which is influenced by the
sliding window size s. A larger s does not necessarily lead to

USENIX Association 2025 USENIX Annual Technical Conference 1063

2000 2200 2400 2600 2800 3000
0

15
Expert Selection of Layer 2

2000 2200 2400 2600 2800 3000
0

15
Expert Selection of Layer 5

2000 2200 2400 2600 2800 3000
0

15
Expert Selection of Layer 8

2000 2200 2400 2600 2800 3000
0

15
Expert Selection of Layer 11

(a) MoE-GPT-A

2000 2200 2400 2600 2800 3000
0

15
Expert Selection of Layer 2

2000 2200 2400 2600 2800 3000
0

15
Expert Selection of Layer 5

2000 2200 2400 2600 2800 3000
0

15
Expert Selection of Layer 8

2000 2200 2400 2600 2800 3000
0

15
Expert Selection of Layer 11

(b) MoE-BERT-A

Figure 14: Demonstrations of prefetched experts in PopFetcher over training iterations.

MoE-GPT-A1 MoE-BERT-A1 MoE-GPT-A2 MoE-BERT-A2
2500

3000

3500

4000

4500

To
ke

ns
 p

er
 se

co
nd

3409.5

3633.5

3379.5

3634.8

3061.1
3194.8

3032.7
3118.1

3835.9

4074.4

3791.9

4082.5

w/o prefetching Janus PopFetcher

(a) Training throughput

MoE-GPT-A1 MoE-BERT-A1 MoE-GPT-A2 MoE-BERT-A2
900

1000

1100

1200

1300

1400
Av

er
ag

e
ite

ra
tio

n
tim

e
(m

s)

1201.3

1127.3

1212

1126.9

1338.1

1282.1

1350.6
1313.6

1067.8

1005.3

1080.2

1003.3

w/o prefetching Janus PopFetcher

(b) Iteration time

Figure 15: Effect of PopFetcher’s hybrid token send and expert pull.

Table 4: Prediction accuracy over sliding window size.

Gate

Acc. Value
5 10 15 20 25 50 100

Naive top-k 77.46% 77.04% 76.77% 76.37% 76.25% 75.69% 75.31%
GShard 68.13% 69.62% 57.26% 53.66% 51.19% 46.49% 45.30%

better accuracy, but it does require maintaining an extensive
history of past records, resulting in inefficient resource utiliza-
tion without significant improvements in prediction accuracy.

Given the number of experts prefetched per layer is typi-
cally no more than four due to GPU memory constraint, we
focus on measuring the accuracy of predicted top-5 popular
experts against the actual top-5 hot experts. This evaluation is
further averaged across all MoE layers. As depicted in Table 4,
after assessing the prediction accuracy under various config-
urations, we select a sliding window size of 10 for runtime
operations to achieve an optimal balance between prediction
performance and memory consumption.

8.7 Balanced GPU Workload

By prefetching popular experts, PopFetcher ensures a more
balanced workload distribution across workers, since the loads
of hot experts are shared among multiple workers. As illus-

3000 3002 3004 3006 3008
Iterations

5000

10000

15000

20000

25000

30000

To
ke

n
G

ap

w/o prefetching PopFetcher

(a) MoE-GPT-A

3000 3002 3004 3006 3008
Iterations

30000

40000

50000
To

ke
n

G
ap

w/o prefetching PopFetcher

(b) MoE-BERT-A

Figure 16: Difference in received number of tokens between
lightest and heaviest loaded workers (16 experts per layer).

trated in Figure 16, it significantly reduces the disparity in
token distribution between the least and most loaded work-
ers: 43.1% for MoE-GPT and 57.1% for MoE-BERT. This
uniform workload distribution during training prevents the
communication blockages common in traditional MoE sys-
tems, where biased expert selections often cause workload
imbalances and network congestion.

8.8 GPU Memory Consumption

Through hybrid token dispatch and expert retrieval,
PopFetcher achieves more efficient utilization of limited
GPU memory. To illustrate, we compare the accommodated

1064 2025 USENIX Annual Technical Conference USENIX Association

Table 5: Maximum accommodated model size.

Method

Size Model
MoE-GPT MoE-BERT

FasterMoE 1.844B 1.884B
Janus 1.390B 1.430B

PopFetcher 2.071B 2.262B

parameter size of PopFetcher with those of FasterMoE and
Janus by adjusting the number of experts in each MoE
layer. Table 5 presents the maximum configurations and
parameter scales that the MoE-GPT and MoE-BERT models
can train on Cluster A. Compared to FasterMoE, PopFetcher
demonstrates improvements of 12.3% and 20.1% in model
size on the MoE-GPT and MoE-BERT models, respectively.
Similarly, compared to Janus, PopFetcher achieves enhance-
ments of 49.0% and 58.2% on the MoE-GPT and MoE-BERT
models, respectively. These results underscore that the hybrid
push-pull paradigm can effectively exploit GPU memory.

8.9 Runtime Overhead

PopFetcher introduces minimal runtime overhead, largely
because the expert popularity prediction and the search for
prefetching solutions are performed asynchronously on the
CPU. These tasks run in the background without disrupting
the main training process. Moreover, our pruning strategy
significantly reduces the search space, rendering the compu-
tational cost negligible. In practical tests, the overhead for
popularity prediction is less than 100ms, which is readily ab-
sorbed within the total training time. Given that the benefits of
prefetching popular experts far outweigh this slight overhead,
PopFetcher efficiently accelerates the training process while
minimizing its negative impact.

9 Related Work

Sparse MoE model. Large-scale models have excelled in
computer vision [39] and natural language processing [11],
thanks to extensive parameters. MoE architectures, introduced
in a 1991 paper [18], further boost parameter scales and ca-
pabilities while maintaining computational efficiency [26].
Shazeer et al. expands MoE to LSTMs with 137 billion pa-
rameters and 131,072 experts [31]. GShard adapts MoE for
transformer models, achieving 12.5 to 600 billion parame-
ters [21]. Switch Transformers enhances the T5 model by
replacing Feed-Forward layers with MoE layers and opti-
mizing routing strategy [12]. ST-MoE further develops an
encoder-decoder MoE architecture with 269 billion parame-
ters, 32 billion active at any time [43]. GLaM introduces a
decoder-only model with a record 1.2 trillion size [10].

MoE model training. Switch Transformers pioneer EP by
distributing individual experts across GPUs within the same
MoE layer [12]. Tutel on the other hand emphasizes MoE’s
dynamic nature by optimizing token-expert allocation for data,
model, and expert parallelism [17]. To enhance MoE training,
Janus modifies the traditional All-to-All communication in
EP by routing experts to where tokens are located [24]. Be-
sides, Lina prioritizes All-to-All communication over typical
All-Reduce operations while adoting data parallelism [23].
FasterMoE introduces dynamic load balancing through expert
replication and a flexible pipeline scheduling strategy [16].
ScheMoE further develops a scheduling framework that man-
ages communication and computation tasks, integrating an
advanced All-to-All communication primitive to maximize
bandwidth use [33]. These works significantly enhance the ef-
ficiency, scalability, and performance of MoE training systems
through optimizing expert-token interactions and improving
load balancing in large-scale distributed setups.

10 Conclusion

In this paper, we propose PopFetcher, an effective and scal-
able MoE training framework that incorporates popularity
based expert-wise prefetching, to mitigate the All-to-All com-
munication bottleneck in MoE training. PopFetcher identifies
skewed and correlated patterns in expert selection and em-
ploys a sliding-window based prediction to determine the
popularity of experts in upcoming layers. Building on this
statistics, PopFetcher meticulously analyzes the end-to-end
training latency of each MoE layer, and establishes an optimal
mapping of prefetched experts to GPU workers. By doing
so, PopFetcher not only minimizes communication time but
also ensures a balanced workload distribution among work-
ers. Additionally, PopFetcher exploits network idle periods
to pipeline All-Reduce streams and non-MoE computation,
thereby expediting the backward pass process. Experimen-
tal evaluations on real-world datasets show that PopFetcher
outperforms state-of-the-art MoE training systems, as we can
mitigate the training time by 15%-94.5%.

Acknowledgement

This work was supported in part by NSFC-RGC under
Grant 62461160333, Wuhan Natural Science Foundation
Exploratory Program (Chenguang Program) under Grant
2024040801020210, National Natural Science Foundation
of China under Grants 62202185, an RGC RIF grant under
contract R6021-20, and an RGC TRS grant under contract
T43-513/23N-2.

USENIX Association 2025 USENIX Annual Technical Conference 1065

References

[1] Julien Abadji, Pedro Javier Ortiz Suárez, Laurent Ro-
mary, and Benoît Sagot. Towards a cleaner document-
oriented multilingual crawled corpus. In Proceedings
of the Thirteenth Language Resources and Evaluation
Conference, pages 4344–4355, 2022.

[2] Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl,
Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien
Bubeck, Martin Cai, Caio César Teodoro Mendes,
Weizhu Chen, Vishrav Chaudhary, Parul Chopra, Al-
lie Del Giorno, Gustavo de Rosa, Matthew Dixon, Ro-
nen Eldan, Dan Iter, Amit Garg, Abhishek Goswami,
Suriya Gunasekar, Emman Haider, Junheng Hao, Rus-
sell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin
Jin, Piero Kauffmann, Nikos Karampatziakis, Dong-
woo Kim, Mahoud Khademi, Lev Kurilenko, James R.
Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang, Weishung
Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra,
Hardik Modi, Anh Nguyen, Brandon Norick, Barun Pa-
tra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant,
Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha
Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil
Salim, Michael Santacroce, Shital Shah, Ning Shang,
Hiteshi Sharma, Xia Song, Masahiro Tanaka, Xin Wang,
Rachel Ward, Guanhua Wang, Philipp A. Witte, Michael
Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang,
Ziyi Yang, Donghan Yu, Chengruidong Zhang, Cyril
Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue
Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 technical
report: A highly capable language model locally on your
phone. CoRR, abs/2404.14219, 2024.

[3] Roee Aharoni, Melvin Johnson, and Orhan Firat. Mas-
sively multilingual neural machine translation. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Long and Short
Papers), volume 1, pages 3874–3884, 2019.

[4] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Xi Victoria Lin, Jingfei
Du, Srinivasan Iyer, Ramakanth Pasunuru, Giridharan
Anantharaman, Xian Li, Shuohui Chen, Halil Akin, Man-
deep Baines, Louis Martin, Xing Zhou, Punit Singh
Koura, Brian O’Horo, Jeffrey Wang, Luke Zettlemoyer,
Mona T. Diab, Zornitsa Kozareva, and Veselin Stoyanov.
Efficient large scale language modeling with mixtures
of experts. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 11699–11732, 2022.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot
learners. In Advances in Neural Information Processing
Systems, volume 33, pages 1877–1901, 2020.

[6] Peizhuang Cong, Aomufei Yuan, Shimao Chen, Yuxuan
Tian, Bowen Ye, and Tong Yang. Prediction is all moe
needs: Expert load distribution goes from fluctuating to
stabilizing. CoRR, abs/2404.16914, 2024.

[7] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai,
Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang
Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Han-
wei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu,
Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao,
Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang,
Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li,
Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang,
Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du,
R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe
Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen,
S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang
Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shi-
rong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shun-
feng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei,
Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-
v3 technical report. CoRR, abs/2412.19437, 2024.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Long and Short
Papers), volume 1, pages 4171–4186, 2019.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and

1066 2025 USENIX Annual Technical Conference USENIX Association

Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In 9th
International Conference on Learning Representations,
2021.

[10] Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi
Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam
Fedus, Maarten P. Bosma, Zongwei Zhou, Tao Wang,
Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin
Robinson, Kathleen S. Meier-Hellstern, Toju Duke,
Lucas Dixon, Kun Zhang, Quoc V. Le, Yonghui Wu,
Zhifeng Chen, and Claire Cui. Glam: Efficient scaling
of language models with mixture-of-experts. In Interna-
tional Conference on Machine Learning, volume 162,
pages 5547–5569, 2022.

[11] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi
Mitra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurélien Rodriguez,
Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte
Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chun-
yang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus
Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle
Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire
Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra,
Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana
Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee,
Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu,
Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe,
Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Up-
asani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, and et al. The llama 3 herd of models. CoRR,
abs/2407.21783, 2024.

[12] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine Learn-
ing Research, 23(120):1–39, 2022.

[13] Trevor Gale, Deepak Narayanan, Cliff Young, and Matei
Zaharia. Megablocks: Efficient sparse training with

mixture-of-experts. In Proceedings of the Sixth Con-
ference on Machine Learning and Systems, volume 5,
pages 288–304, 2023.

[14] Leo Gao, Stella Biderman, Sid Black, Laurence Golding,
Travis Hoppe, Charles Foster, Jason Phang, Horace He,
Anish Thite, Noa Nabeshima, Shawn Presser, and Con-
nor Leahy. The pile: An 800gb dataset of diverse text
for language modeling. CoRR, abs/2101.00027, 2021.

[15] Aaron Gokaslan and Vanya Cohen. Openweb-
text corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

[16] Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang,
Fuwen Luo, Shangfeng Shi, and Qin Li. Fastermoe:
modeling and optimizing training of large-scale dy-
namic pre-trained models. In Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 120–134, 2022.

[17] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang,
Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin Jose,
Prabhat Ram, HoYuen Chau, Peng Cheng, Fan Yang,
Mao Yang, and Yongqiang Xiong. Tutel: Adaptive
mixture-of-experts at scale. In Proceedings of the Sixth
Conference on Machine Learning and Systems, vol-
ume 5, pages 269–287, 2023.

[18] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. Adaptive mixtures of local
experts. Neural computation, 3(1):79–87, 1991.

[19] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 463–479, 2020.

[20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws
for neural language models. CoRR, abs/2001.08361,
2020.

[21] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. In 9th International Conference on Learning
Representations, 2021.

[22] Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman
Goyal, and Luke Zettlemoyer. BASE layers: Simpli-
fying training of large, sparse models. In Proceedings of
the 38th International Conference on Machine Learning,
volume 139, pages 6265–6274, 2021.

USENIX Association 2025 USENIX Annual Technical Conference 1067

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

[23] Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and
Hong Xu. Accelerating distributed moe training and
inference with lina. In Proceedings of the 2023 USENIX
Annual Technical Conference, pages 945–959, 2023.

[24] Juncai Liu, Jessie Hui Wang, and Yimin Jiang. Janus:
A unified distributed training framework for sparse
mixture-of-experts models. In Proceedings of the ACM
SIGCOMM 2023 Conference, pages 486–498, 2023.

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 10012–
10022, 2021.

[26] Saeed Masoudnia and Reza Ebrahimpour. Mixture of ex-
perts: a literature survey. Artificial Intelligence Review,
42(2):275–293, 2014.

[27] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on GPU
clusters using megatron-lm. In International Conference
for High Performance Computing, Networking, Storage
and Analysis, page 58, 2021.

[28] Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang,
Jilong Xue, Lingxiao Ma, Gang Cao, and Bin Cui. Flex-
moe: Scaling large-scale sparse pre-trained model train-
ing via dynamic device placement. Proceedings of the
ACM on Management of Data, 1(1):1–19, 2023.

[29] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAI blog,
1(8):9, 2019.

[30] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia
Zhang, Reza Yazdani Aminabadi, Ammar Ahmad Awan,
Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advanc-
ing mixture-of-experts inference and training to power
next-generation AI scale. In International Conference
on Machine Learning, volume 162, pages 18332–18346,
2022.

[31] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer. In 5th International
Conference on Learning Representations, 2017.

[32] Shaohuai Shi, Xinglin Pan, Xiaowen Chu, and Bo Li.
Pipemoe: Accelerating mixture-of-experts through adap-
tive pipelining. In IEEE INFOCOM 2023 - IEEE Confer-
ence on Computer Communications, pages 1–10, 2023.

[33] Shaohuai Shi, Xinglin Pan, Qiang Wang, Chengjian Liu,
Xiaozhe Ren, Zhongzhe Hu, Yu Yang, Bo Li, and Xi-
aowen Chu. Schemoe: An extensible mixture-of-experts
distributed training system with tasks scheduling. In
Proceedings of the Nineteenth European Conference on
Computer Systems, pages 236–249, 2024.

[34] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019.

[35] Qwen Team. Qwen1.5-moe: Matching 7b model perfor-
mance with 1/3 activated parameters", February 2024.

[36] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
Aurélien Rodriguez, Armand Joulin, Edouard Grave,
and Guillaume Lample. Llama: Open and efficient foun-
dation language models. CoRR, abs/2302.13971, 2023.

[37] Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale,
Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu,
Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie
Kambadur, Sharan Narang, Aurélien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. Llama
2: Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288, 2023.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems,
volume 30, pages 5998–6008, 2017.

1068 2025 USENIX Annual Technical Conference USENIX Association

[39] Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu,
Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu, Jie Zhou,
Yu Qiao, and Jifeng Dai. Visionllm: Large language
model is also an open-ended decoder for vision-centric
tasks. In Advances in Neural Information Processing
Systems, volume 36, pages 61501–61513, 2023.

[40] Zhiyuan Zeng and Deyi Xiong. Scomoe: Efficient mix-
tures of experts with structured communication. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

[41] Zheng Zhang, Yaqi Xia, Hulin Wang, Donglin Yang,
Chuang Hu, Xiaobo Zhou, and Dazhao Cheng. Mp-
moe: Memory efficient moe for pre-trained models with
adaptive pipeline parallelism. IEEE Trans. Parallel Dis-
tributed Syst., 35(6):843–856, 2024.

[42] Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Y. Zhao, Andrew M. Dai, Zhifeng Chen,
Quoc V. Le, and James Laudon. Mixture-of-experts with
expert choice routing. In Advances in Neural Informa-
tion Processing Systems, volume 35, pages 7103–7114,
2022.

[43] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yan-
ping Huang, Jeff Dean, Noam Shazeer, and William Fe-
dus. St-moe: Designing stable and transferable sparse
expert models. CoRR, abs/2202.08906, 2022.

[44] Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim,
Hany Hassan, Ruofei Zhang, Jianfeng Gao, and Tuo
Zhao. Taming sparsely activated transformer with
stochastic experts. In The Tenth International Confer-
ence on Learning Representations, 2022.

USENIX Association 2025 USENIX Annual Technical Conference 1069

	Introduction
	Background and Motivation
	Background
	Transformer-Based PLM
	MoE Architecture and Model Training

	Motivation
	Opportunities and Challenges
	Opportunities
	Challenges

	PopFetcher Overview
	Routing Information Collector
	Prefetching Decision-Maker
	Asynchronous Scheduling Executor

	Lightweight Popularity Prediction
	Expert Correlation between MoE Layers
	Expert Popularity Prediction

	Expert-Wise Prefetching and Scheduling
	Hybrid Push-Pull Paradigm
	Problem Formulation
	Training Latency without Prefetching
	Training Latency with Prefetching

	Expert Prefetching Decision
	Expert Prefetch Pruning
	Internal Expert Sharing among Local GPUs

	Stream Scheduling in Backward Pass
	Implementation
	Evaluation
	Evaluation Setup
	Hardware Setup
	Datasets and Models
	Baselines
	Metrics

	Statistical Training Equivalence
	Overall End-to-End Performance
	Ablation Study
	Expert Popularity and Stream Scheduling
	Token Transfer within Expert Prefetching

	Hybrid Push-Pull Analysis
	Parameter Sensitivity Analysis
	Balanced GPU Workload
	GPU Memory Consumption
	Runtime Overhead

	Related Work
	Conclusion

