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Abstract
Federated Learning (FL) provides a promising way to fine-
tune Large Language Models (LLMs) to downstream mobile
tasks while preserving data privacy. However, the intensive
memory footprint prevents large amount of edge devices from
contributing to the fine-tuning process with their own private
data.

To this end, we introduce AssyLLM, an innovative frame-
work that conducts fine-tuning in a memory-efficient man-
ner through directly assembling the pre-trained transformer
blocks. The core idea of AssyLLM is to decompose a pre-
trained LLM into discrete blocks. These blocks are iteratively
selected based on the local corpus distributed across various
devices, and subsequently assembled to form a novel LLM
tailored for downstream tasks. In this way, high fine-tuning
efficiency can be achieved through avoiding the backpropa-
gation process adopted in traditional fine-tuning approaches.
Specifically, AssyLLM features four core components: 1)
Block Comparator, 2) Elastic Adapter, 3) Block Quanter, and
4) Block Swapper. Block Comparator is designed to assess
the compatibility between two blocks, facilitating the selec-
tion of appropriate blocks for assembling. After that, Elastic
Adapter creates customized adapter configurations that ad-
dress the specific structural differences between the blocks for
seamless concatenation between the selected blocks. Mean-
while, Block Quanter is proposed to adjust precision of related
weights based on the block output activation in order to reduce
the extra memory overhead caused by retaining the candidate
blocks while preserving the performance of the assembled
model. Moreover, in order to further increase the scalability
of the candidate blocks for better fine-tuning performance
while guaranteeing fine-tuning progress, Block Swapper is
designed to optimize the swapping pipeline by incorporating
block correlation metrics. AssyLLM is comprehensively eval-
uated on multiple benchmark datasets of varying complexity.
Compared to traditional methods, AssyLLM improves accu-
racy by up to 18.26%, achieves up to 30.04× speedup, and
significantly reduces memory consumption by up to 92%.
∗Corresponding author: Li Li (llili@um.edu.mo)

1 Introduction

Recently, Large Language Models (LLMs) have demonstrated
remarkable proficiency in language understanding and gen-
eration and are promising to widely support different mobile
applications [17, 32]. Fine-tuning pre-trained LLMs using
specialized domain-specific corpus has been proven to effec-
tively enhance their applicability to downstream tasks [43].
However, those data are often located across various edge
devices, leading to privacy concerns during the collection
process. Federated Learning (FL) provides a promising way
to fine-tune the LLM while guaranteeing data privacy, e.g.
FedLLM [4, 5, 33, 40, 44]. Instead of collecting the data to
the central server, FedLLM coordinates the participants to
fine-tune the LLM locally on their private data and share only
the updated model parameters with the server for aggregation.

Despite its benefits, the high memory footprint of local fine-
tuning prevents resource-limited devices from contributing
private data in real-world scenarios. For example, full fine-
tuning a pre-trained Llama-7B model [39] with a batch size
of 16 requires over 40GB of memory, whereas edge devices
typically have memory capacities ranging from 4 to 16GB [1].
Even with mainstream parameter-efficient fine-tuning (PEFT)
methods like LoRA [14] and adapter-based approaches [28],
fine-tuning Llama-7B still requires over 15GB of memory,
which still cannot be afforded by most edge devices. The
significant disparity between the memory demands of model
fine-tuning and the limited memory capacities of edge de-
vices results in a substantial number of low-end devices being
excluded from the fine-tuning process. Consequently, these
devices are unable to contribute their locally stored data, di-
minishing the diversity and richness of the fine-tuning dataset.
This, in turn, negatively impacts the performance of the LLM.

Limitation of Prior Arts. In order to reduce the memory
footprint during the fine-tuning process, several approaches
have been proposed which can be mainly divided into the
following categories. The first category of work applies quan-
tization to PEFT [8, 14] or adopts adapter tuning with layer
freezing [4] to further reduce the resource consumption of
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PEFT. Although these methods reduce model size and mem-
ory usage, incomplete model updating often degrades perfor-
mance, and higher compression results in greater accuracy
loss. The second category employs zeroth-order optimiza-
tion [29], or forward gradient [42] to reduce the memory foot-
print caused by backpropagation (BP-free). However, these
methods can lead to unstable model performance due to re-
liance solely on forward gradient estimation. The third cate-
gory tackles the memory issue from the system perspective.
For instance, gradient recomputation [6, 16, 19] and swap-
ping [15, 30, 31, 38] have been introduced to manage memory
usage by dynamically trading off computation and I/O over-
head. While both recomputation and swapping effectively
reduce memory consumption, they incur higher training time
and computational overhead, which ultimately diminishes
overall training efficiency. Hence, a new fine-tuning paradigm
is urgently required to surmount the memory constraints while
guaranteeing the fine-tuning performance and efficiency for
the deployment of FedLLM in real-world cases.

Our Design. To tackle these challenges, this paper pro-
poses AssyLLM, an innovative framework that addresses
memory constraints in federated fine-tuning by leveraging
a pool of pre-trained LLMs instead of relying on a single
model. The main idea of AssyLLM is to break down multi-
ple pre-trained LLMs into smaller blocks and select the most
appropriate block segments for the downstream tasks. By sys-
tematically combining these blocks from various pre-trained
LLMs, we create a custom-assembled model that draws on the
unique strengths of each block. Specifically, it coordinates the
participating clients to select optimal blocks using inference
operations, with the help of block compatibility analysis. On
the server side, these selected blocks are aggregated to form
a global LLM. By dynamically selecting and assembling the
most relevant blocks for each task, AssyLLM eliminates the
need of repetitive finetuning, thereby accelerating the adap-
tation of LLMs to diverse applications. Moreover, through
avoiding the BP process, this block-wise strategy significantly
lowers memory demands during fine-tuning, enabling more
devices to participate in the fine-tuning process.

Challenges and Techniques. However, designing such a
new learning paradigm is non-trivial and presents several key
challenges.
1) How to compare the compatibility between blocks? For
effective assembling, it is crucial to select a compatible coun-
terpart from the block pool. A higher compatibility between
the selected blocks leads to improved performance of the
resulting assembled model. We propose Block Comparator
to evaluate the compatibility between blocks using meticu-
lously designed metrics, enabling the selection of the most
suitable blocks for concatenation and thereby improving the
performance of the assembled model.
2) How to ensure the appropriate assembly of two blocks
while guaranteeing the model performance and fine-
tuning efficiency? Blocks from different pre-trained models

vary in structure, features, and dimensions, rendering sim-
ple concatenation ineffective and potentially harmful. To ad-
dress this challenge, we introduce Elastic Adapter, an adaptive
lightweight fine-tuning approach with adapter that resolves
mismatches by aligning the inputs and outputs of blocks from
heterogeneous models, ensuring cohesive functionality in the
assembled model.
3) How to reduce the excessive memory footprint of the
block pool? Compared to a single LLM, constructing a block
pool from multiple LLMs incurs substantial memory over-
head, adding additional pressure on devices. Hence, we intro-
duce Block Quanter, a mixed-precision quantization method
applied at the block level. Since block selection depends on
the output activation from each block’s inference pass (see
Section 3.1), our method applies varying precision levels
based on impact of weight inside the block on the output.
We prioritize higher precision for critical weights and lower
precision for less impactful ones by analyzing the correlation
between weights and output activations.

Although Block Quanter effectively reduces the block pool
size, it remains too large for deployment on edge devices when
handling billion-scale LLMs (e.g., the Llama series). Addi-
tionally, incorporating more pre-trained LLMs into a larger
block pool improves adaptability and performance across
downstream tasks, but also increases related memory costs.
Further compression could degrade model performance, mak-
ing it insufficient for edge deployment. To address these chal-
lenges, we introduce Block Swapper, a block-based swapping
method that reduces memory usage by dynamically swap-
ping blocks between internal and external storage. Traditional
swapping methods face significant I/O latency. In contrast,
Block Swapper utilizes a block correlation-aware pipeline
strategy, along with pre-loading and pre-swapping mecha-
nisms, which substantially reduce latency during the swap-
ping process.

To the best of our knowledge, we are the first to address
fine-tuning memory optimization in FL by leveraging mul-
tiple pre-trained LLMs and inference passes. Our approach
significantly reduces BP-related overhead, lowering memory
cost, energy consumption, and data requirements. This al-
lows resource-constrained clients to participate while achiev-
ing performance comparable to state-of-the-art methods. The
main contributions are summarized as follows:

• We propose AssyLLM, an FL framework that employs a
new LLM generation method, splitting pre-trained mod-
els into blocks and assembling them together for down-
stream tasks.

• We design and implement the four core components,
Block Comparator, Elastic Adapter, Block Quanter, and
Block Swapper to interact with each other and guide the
whole block selection process.

• Extensive experiments evaluate the effectiveness of As-
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Figure 1: The memory wall in FedLLM; llama denotes Llama-
7B, opt denotes OPT-6.7B.

syLLM on accuracy improvement, generation speedup,
and cost reduction for energy and memory. The code
of AssyLLM is available at: https://github.com/
zhanshichen/AssyLLM.

2 Background and Motivation

2.1 The Memory Wall of FedLLM

One important question required to be explored is: how does
the memory wall impact the federated fine-tuning process
of LLM? In order to make the investigation, we conduct the
following experiments. To emulate the federated fine-tuning
environment, we set 200 clients and split them into five groups
with different memory budgets, as 10% (64GB), 15% (32GB),
15% (16GB), 30% (8GB), and 30% (4GB). We perform fine-
tuning for Llama-7B [35] and OPT-6.7B on BoolQ [7] and
OpenBookQA (OBQA) [9] datasets. Specifically, BoolQ is
a binary question-answering dataset and OBQA focuses on
multiple-choice reasoning questions. For data distribution, we
follow [41], using a Dirichlet distribution [12] with concentra-
tion parameter α = 1 to allocate fine-tuning samples for each
client. The oracle baseline assumes all clients have sufficient
memory for full local fine-tuning, while practical reflects ex-
periments under memory constraints. As shown in Figure
1, memory limitations cause accuracy drops of up to 14.7%
for Llama-7B and 19.1% for OPT-6.7B, as their fine-tuning
requires over 45GB and 32GB of memory, respectively. This
leaves 85% of Llama-7B clients and 60% of OPT-6.7B clients
unable to participate, reducing data diversity and resulting in
underperformed fine-tuning results.

2.2 Exploring Existing Techniques in FedLLM

In this section, we explore several techniques that are com-
monly used in LLM fine-tuning for memory saving.

2.2.1 Parameter-efficient Fine-Tuning.

Parameter-efficient fine-tuning (PEFT) techniques like LoRA
[8, 14] and Adapters [4] enable task-specific adaptation of
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Figure 2: Performance comparison with existing works (left)
accuracy and convergence time; (right) minimum memory
budget for participation devices and participation rate on
BoolQ and OBQA. Model: Llama-7B.

Oracle

Practical

LoRA

QLoRA

FedAdapter

FwdLLM

(a) BoolQ. (b) OBQA.
Figure 3: Performance comparison for existing works. Model:
Llama-7B.

LLMs with minimal retraining. LoRA injects trainable low-
rank matrices into attention and feed-forward layers, reduc-
ing the number of updated parameters. Adapters introduce
task-specific modules between transformer layers, keeping
the main model frozen while fine-tuning only these adapter
layers.

Using the same experimental settings, we evaluate LoRA,
QLoRA [8] (extending LoRA with quantization), FedAdapter
[4], and FwdLLM [42] (will be introduced later) in an FL
scenario with Llama-7B. As shown in Figures 2 and 3, for
example, QLoRA reduces at most 79% memory consump-
tion, decreases the aggregation time by 67%, and increases
the participation rate to 70%, but it still comes with a 5.3%
accuracy drop compared to oracle scenario. Similarly, other
baselines also experience varying degrees of performance
drop. This decline is due to two key factors. Firstly, incom-
plete model updates often lead to performance degradation,
with higher compression levels causing greater accuracy loss.
Secondly, while PEFT reduces memory usage compared to
full fine-tuning, it still requires storing and updating low-rank
matrices or adapters, and a portion of resource-constraints
clients still remain unable to participate in the fine-tuning
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Figure 4: Memory overhead of different fine-tuning technolo-
gies and inference.
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Figure 5: Memory breakdown. Model: Llama-7B. FT denotes
fine-tuning.

process, resulting in fewer data contributions to the global
model and further impacting overall performance.

2.2.2 Backpropagation-free Fine-tuning.

As shown in Figure 4, LoRA and Adapter effectively reduce
the memory overhead of Llama-7B by 62.1% and 53.9%, re-
spectively. However, they still require more than 15GB of
memory, which remains insufficient to deploy certain large
models on real edge devices. Figure 5 shows the breakdown
of memory footprint and analyzes the reason: these activa-
tions generated during forward pass account for most of the
memory usage, and existing PEFT methods cannot eliminate
this overhead. To address this, BP-free fine-tuning methods,
such as zero-order optimization [2], have gained attention.
BAFFLE [10] and FedZeN [25] apply BP-free training in FL
but are not designed for LLMs. FwdLLM [42] is a recent
BP-free method tailored for LLMs, requiring only “perturbed
inferences” instead of full fine-tuning. By updating parame-
ters directly from gradients computed during the forward pass,
FwdLLM reduces memory consumption, making it more suit-
able for resource-constrained FL environments. From Figure
2, FwdLLM reduces fine-tuning memory requirements from
45~58GB to 3.8GB, enabling 100% client participation. How-
ever, this comes with an approximate 5.8% performance drop
compared to the oracle baseline.

The decline mainly stems from the inherent limitations of
forward gradient estimation, which sacrifices fine-tuning accu-
racy for computational efficiency. Unlike BP, which provides
precise error-correcting feedback through gradients, forward
gradient estimation relies on approximate updates, making pa-
rameter adjustments less accurate. This imprecision tends to
accumulate over time, especially across multiple fine-tuning
rounds. Without the precise gradient flow that backpropaga-

(a) Performance comparison
with memory budget 4GB.
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Figure 6: System-level memory saving techniques analysis.
Model: Llama-7B; Dataset: BoolQ.

tion provides, small errors introduced in each update step may
compound, resulting in cumulative error that degrades the
overall model performance. In non-IID scenarios, this issue
becomes more pronounced because non-IID data, which re-
quire more precise model adaptation to account for diverse
patterns.

2.2.3 System-level Memory Saving Techniques.

System-level memory optimization techniques are widely
used to enable model fine-tuning on memory-constrained
devices. Recomputation [6, 16] (or gradient checkpointing)
reduces memory usage by discarding intermediate activa-
tions and recomputing them during BP pass. While effec-
tive for memory savings, it incurs additional recomputation
overhead, prolonging training time and reducing efficiency.
Swapping [15, 30, 31] transfers model components or acti-
vations between memory and storage. Though it minimizes
in-memory usage, swapping introduces significant I/O over-
head, slowing down training due to frequent memory-to-disk
transfers. As shown in Figure 6a, both techniques achieve
accuracy near the oracle baseline, but the fine-tuning time in-
creases from 8.73 hours to 27.6 hours. This can be attributed
to their ability to achieve the same client participation rate as
the oracle by efficiently reducing memory overhead, but at the
expense of substantial additional I/O operations and computa-
tional costs. From Figure 6b, as the memory budget decreases,
the required additional time increases from 1.78× to 3.17×
due to the need for more recomputation and swapping.
Summary. Although existing techniques effectively reduce

the memory overhead of fine-tuning, they either compromise
accuracy or introduce additional computational costs, extend-
ing the aggregation time. This highlights the necessity of a
method that achieves a balanced trade-off across three criti-
cal dimensions: reducing memory usage, maintaining model
performance, and ensuring process efficiency.

2.3 Opportunity
To address these limitations, we propose a new perspective
by leveraging multiple pre-trained LLMs to construct a task-
specific model through block-level assembly. Leveraging mul-
tiple models with distinct architectures provides better expres-
sive capabilities for different downstream tasks, enabling im-
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proved performance for task-specific objectives. First, we di-
vide multiple LLMs into modular transformer blocks, forming
a block pool. Then, based on local data characteristics, each
client dynamically selects relevant blocks from the shared
block pool and assembles them into a task-specific model.
This process is accomplished through simple inference opera-
tions without the need for BP.

The proposed learning paradigm builds on two key insights:
1) using pre-trained models as modular building blocks
and 2) enabling dynamic block assembly for task flexibil-
ity. By selecting blocks based on local data and resources,
it tailors model generation to diverse tasks. The block-level
optimization reduces memory usage, allowing even low-end
devices to participate in FL.

3 AssyLLM Design

3.1 The Fine-tuning Paradigm
Figure 7 represents the overall fine-tuning paradigm of As-
syLLM, which can be mainly divided into the following steps.
1⃝ Initialization: Pre-trained LLMs are manually split into
blocks categorized as starting blocks (embedding layer), in-
termediate blocks (groups of transformer layers), and termi-
nating blocks (output layers). These pre-trained models and
candidate block pools are distributed to participating clients.
2⃝Model Downloading: In each round, participants receive a

candidate assembled model. 3⃝ Local Block Selection: Given
the current model Ns, each client searches the block pool for
compatible blocks. For a candidate block Bnl , derived from
a pre-trained LLM n up to layer l, clients assemble Ns with
Bnl and perform two inference passes with the same batch of
local data: one on the new assembled model and another on
the originating LLM up to layer l. The resulting activations
X and Y are compared to compute the compatibility score
for Bnl . This process is repeated for all candidate blocks. 4⃝

Block Uploading: Each client selects the K blocks with the
highest compatibility scores and uploads. 5⃝ Server-Side Ag-
gregation: The server aggregates the uploaded blocks using a
weighted voting mechanism (similar to FedAvg). The voting
process is based on compatibility scores. A higher score indi-
cates better adaptability to the current assembled model. The
K selected blocks with the highest votes, whose parameters
are averaged across relevant clients, are sequentially stacked
onto the current model Ns to construct the candidate model
for the next round. The process continues until a terminating
block is selected, the model depth limit is reached, or all paths
are explored. The block selection process requires only in-
ference on a small data batch, significantly reducing the data
needed.

However, deploying this paradigm in real-world environ-
ments presents several challenges that warrant further investi-
gation.

• Q1: How to compare the compatibility between two
blocks? For a given block, selecting a compatible coun-
terpart from the block pool is essential for effective con-
catenation in downstream tasks. Higher compatibility
between the selected blocks enhances the performance
of the resulting assembled model.

• Q2: How to assemble two different blocks together?
Blocks derived from different pre-trained LLMs exhibit
varying features and structures. Directly combining them
without careful consideration can negatively impact over-
all performance, necessitating a more deliberate integra-
tion strategy.

• Q3: How to reduce the additional memory overhead
caused by multiple LLMs. As the block pool comprises
multiple LLMs, maintaining it in memory during the
block selection process introduces additional memory
overhead.

3.2 System Overview
To tackle these challenges, we introduce AssyLLM, an FL
system for deploying LLMs that optimizes memory and
performance. Furthermore, we design four core techniques:
Block Comparator (Section 3.3), Elastic Adapter (Section
3.4), Block Quanter (Section 3.5), and Block Swapper (Sec-
tion 3.6), as shown in Figure 8. For Q1: 1) Block Comparator
introduces a well-defined metric to assess block compatibility,
facilitating the selection of appropriate blocks for concate-
nation. For Q2: 2) Elastic Adapter addresses model hetero-
geneity by integrating blocks from different pre-trained LLMs
using lightweight adapters, ensuring seamless assembly with
minimal information loss. For Q3, we design two compo-
nents to optimize the memory overhead of block pool: 3)
Block Quanter applies mixed-precision quantization at the
block level to block pool, balancing resource allocation by
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Figure 9: Feature differences visualization using t-SNE [36].

assigning lower precision to less critical weights and higher
precision to key components; 4) Block Swapper further opti-
mizes the swapping pipeline by leveraging the correlation be-
tween blocks. Additionally, its pre-loading and pre-swapping
mechanisms reduce I/O delays, enabling efficient model as-
sembly on low-resource devices. Together, these techniques
enable AssyLLM to overcome memory, fine-tuning efficiency,
and computational challenges in FL, enabling real-world FL
applications of state-of-the-art billion-scale LLMs.

3.3 Block Comparator
Block compatibility is critical when assembling a model from
block pool. To guide block selection, robust comparison met-
rics are necessary. Centered Kernel Alignment (CKA) [18]
is a widely used method for measuring the similarity be-
tween activation sets, commonly applied to analyze layer
representations in neural models. We extend CKA to LLMs
by comparing activations from different transformer blocks,
providing insights into feature evolution across layers and
models. In this work, CKA serves as a key metric to evalu-
ate block compatibility. Specifically, we compute the CKA
score using activations K and L from the candidate assembled
LLM and corresponding pre-trained LLM (detailed in Section
3.1). A higher CKA score indicates better alignment, aiding
in selecting the most compatible blocks to optimize model
performance. The CKA score is calculated as follows:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
(1)

where HSIC is Hilbert-Schmidt Independence Criterion [13].
For the linear kernels, HSIC is:

HSIC(K,L) = ||cov(XT X ,Y TY )||2F (2)

(a) cka=0.78, cor=0.61,
acc=0.74.

(b) cka=0.81, cor=0.49,
acc=0.71.

(c) cka=0.63, cor=0.41,
acc=0.65.

(d) cka=0.72, cor=0.53,
acc=0.69.

Figure 10: CKA Heatmaps for four various candidate blocks;
pmodel denotes pre-trained LLM where the block originates
from; cor denotes layer-correlation metrics; acc denotes final
assembled model performance; Dataset: BoolQ.

CKA helps evaluate block compatibility but focuses only
on final activations of block, overlooking intermediate layer
differences in LLMs, which can lead to suboptimal block se-
lection and reduced model performance. To explore these dif-
ferences, we conducted an experiment on BoolQ by feeding
the same input to various LLMs and extracting their inter-
mediate features. We visualized them using t-SNE [36], as
shown in Figure 9. The results highlight that, despite identical
inputs, different architectures produce distinct intermediate
feature distributions. To address CKA’s limitation, we pro-
pose layer-correlation (COR), a new metric that compares
activation distribution similarities across layers using KL di-
vergence [20]. Given two activation distributions P and Q for
a specific layer, KL divergence is defined as:

DKL(P ∥ Q) = ∑
i

P(i) log
(

P(i)
Q(i)

)
(3)

Where P(i) denotes the probability of activation i in the first
distribution, and Q(i) denotes the probability of activation i
in the second distribution.

To calculate COR, we sum the KL divergence between cor-
responding layers within two blocks. This is done once during
initialization. To validate the effectiveness of these metrics,
we conduct experiments on BoolQ using the LLMs described
in Section 2.3. Given an assembled LLM composed of four
blocks, we set four different candidate blocks to assemble and
record corresponding CKA, COR scores, and accuracy of the
generated assembled model. Figure 10 shows the heatmap
for CKA distributions, revealing key insights: 1) Blocks with
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high CKA and COR achieve better performance (e.g., Block
1 vs Block 3); 2) High CKA alone doesn’t ensure optimal
selection (e.g., Block 1 vs Block 2); 3) High COR alone is
also insufficient (e.g., Block 2 vs Block 4). These findings
motivate us to integrate CKA and COR to block compatibility
score for reliable block selection in each round to identify the
best candidate (e.g., Block 1) that maximizes accuracy.

3.4 Elastic Adapter
Assembling blocks from different pre-trained LLMs is non-
trivial due to structural and semantic mismatches, which can
significantly degrade performance. Specifically, there are
three primary types of mismatches in LLMs: dimensional
misalignment, semantic inconsistency, and attention mecha-
nism differences. We introduce Elastic Adapter, an adaptive
adapter fine-tuning approach that addresses these mismatches
by introducing adapters that align the outputs and inputs of
blocks from heterogeneous models. 1) Dimensional Misalign-
ment: This issue arises when the output of one block does not
match the input dimensions of the next. To overcome this, we
introduce lightweight linear transformations to project outputs
into the correct dimensional space. 2) Semantic Inconsistency:
Even when block structures align, the features they extract
may differ semantically, causing further mismatches. To ad-
dress this, we implement a cross-attention mechanism that
uses one block’s output as the query and the next block’s out-
put as the key and value. This process aligns semantic content
between blocks, reducing feature mismatches and ensuring
smoother block integration. The cross-attention alignment
process is defined as:

Ocross = so f tmax
(

QK⊤√
dk

)
V, (4)

where Q = WQHout1 is the query matrix derived from the out-
put of the first block Hout1, K = WKHout2 and V = WV Hout2
are the key and value matrices derived from the output of the
second block Hout2. Here, WQ, WK , and WV are learnable
projection matrices, and dk is the attention dimension used to
scale the dot-product for numerical stability.

Optionally, a linear transformation can be applied to ensure
dimensional consistency for subsequent processing:

Haligned = WoutOcross, (5)

where Wout is a learnable projection matrix.

Table 1: Assembled model performance and memory over-
head of the block pool with different quantization methods
comparison. BP denotes the block pool. Dataset: BoolQ.
Block pool: Llama-7B, OPT-6.7B, Vicuna-7B, BERT-base,
and RoBERT-large.

Precision BP Overhead Model Accuracy (%)

FP16 42.2GB 75.8 ± 2.5
INT8 21.1GB 73.1 ± 4.7
INT4 11.5GB 67.3 ± 8.9

3) Attention Mechanism Differences: the last challenge
is handling different attention mechanisms, such as multi-
head versus single-head attention. We address this by design-
ing adapters that pool or expand attention outputs based on
block configurations, ensuring compatibility without alter-
ing model structures. We apply lightweight fine-tuning by
freezing most model parameters and training only adapters
with local client data. Notably, not all block assemblies re-
quire trainable adapters. In most cases, the mismatch between
blocks primarily falls into the first category of challenge (Di-
mensional Misalignment), where a simple projection matrix
is often sufficient to address it without introducing additional
complexity. Furthermore, trainable adapters are used only for
significant mismatches, primarily in the final blocks. As a
result, most intermediate activations can be discarded during
forward propagation, reducing memory overhead. Figure 11
illustrates the Elastic Adapter workflow.

3.5 Block Quanter

For Q3, the block pool size equals the combined size of multi-
ple pre-trained LLMs and need to remain in memory through-
out the block selection process, leading to substantial memory
overhead. Quantization [11, 22] is a common technique to
reduce memory usage, but excessive compression can harm
accuracy. As shown in Table 1, FP16 precision results in
over 40GB of memory usage, far exceeding edge device lim-
its. INT8 reduces memory to 21GB with minor performance
loss, while INT4 significantly degrades accuracy, resulting
in a 5.8% accuracy drop with an 8.9% fluctuation. On the
other hand, mixed-precision techniques [22,37] apply varying
precision levels at the layer level, requiring layer-wise sensi-
tivity analysis to assess the impact of precision changes. This
process involves additional forward passes or statistical mea-
surements, resulting in significant computational overhead
during model preparation and fine-tuning.

To address this, we propose Block Quanter, a block-wise
mixed-precision quantization method. Unlike prior work
[22, 37], which typically applies layer-wise precision adjust-
ments, our approach focuses solely on the impact of internal
weights on block output activations, which directly affects
block compatibility and selection. By evaluating the sensitiv-
ity of weight to the entire block’s output rather than individual
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Algorithm 1 Block Quanter
Input: Pre-trained LLM M, block pool B = {b1,b2, ...,bn},
block activation Ab, sparsity threshold τs, sensitivity thresh-
old τa.
Output: Weight importance scores
Sw.

1: // Weight Sparsity Analysis
2: for each block b ∈ B do
3: for each weight w ∈ b do
4: Ss(w)← SparsityMetric(w)
5: if Ss(w)< τs then
6: Mark w as unimportant
7: end if
8: end for
9: end for

10: // Activation Sensitivity Analysis
11: for each block b ∈ B do
12: for each remaining weight w ∈ b do
13: ∆Ab← RandomPerturbation(w) or Masking(w)
14: Sa(w)← ActivationImpact(∆Ab)
15: if Sa(w)< τa then
16: Mark w as unimportant
17: end if
18: end for
19: end for
20: // Bottom-Up Sensitivity Analysis
21: for each block b ∈ B do
22: L← Number of layers in block b
23: for l = L down to 1 do
24: for each remaining weight w ∈ layer l do
25: C(w,Ab)← Correlation(w,Ab)
26: Sw(w)←C(w,Ab)
27: end for
28: end for
29: end for
30: return Sw

layers, Block Quanter avoids the need for layer-level precision
tuning across multiple Transformer layers. This block-wise
granularity significantly reduces the computational overhead
compared to layer-wise methods, as it requires fewer forward
passes and sensitivity analyses, making it more efficient and
practical for resource-constrained devices. Block Quanter per-
forms offline multi-step quantization by first analyzing weight
sparsity in block and then evaluating activation sensitivity
through random perturbations and masking to identify criti-
cal weights for higher precision allocation. For the random
perturbation method:

Sa(w) =
∥Ab(w)−Ab(w+∆w)∥2

∥Ab(w)∥2
, ∆w∼N (0,σ2), (6)

where Ab(w) represents the block’s original output activation,
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Figure 12: Different pipeline strategies for block swapping.

Ab(w+∆w) is the activation after adding random perturbation
∆w, and ∥ · ∥2 denotes the L2 norm.

For the weight masking method:

Sa(w) = ∥Ab(w)−Ab(w = 0)∥2, (7)

where Ab(w= 0) is the output activation after masking weight
w to zero.

Based on the results, insignificant weights are discarded.
A bottom-up sensitivity analysis then re-evaluates the corre-
lation between the remaining weights and the output, start-
ing from the block’s output layer to its input layers. This
refined analysis ensures that critical weights are retained at
high precision, while less important ones are quantized to
lower precision. The entire process is performed offline, en-
suring minimal additional resource consumption during the
block selection phase and significantly reducing memory us-
age of block pool without compromising performance. The
complete process is outlined in Algorithm 1.

3.6 Block Swapper
While BlockQuanter reduces block pool memory usage, it
remains insufficient. As shown in Table 1, a block pool com-
posed of five pre-trained LLMs still requires over 11GB of
memory, even with INT4 compression, exceeding the typical
capacity of edge devices (4~8GB). Furthermore, incorporat-
ing additional LLMs improves adaptability across diverse
downstream tasks and enhances the assembled model’s per-
formance, but it also significantly increases the block pool
size, resulting in higher memory costs. To address this, we
propose Block Swapper, a system-level solution to further
optimize memory usage. The Block Swapper design begins
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Algorithm 2 Block Swapper.
Input: Block Pool B , Memory Budget Mmax, Current
assembled LLM Massembled .

1: // Step 1: Initialize Memory Budget
2: Mused ← 0
3: for each block b ∈ B do
4: // Step 2: Check if block b is in memory
5: if b ∈Memory then
6: Continue with assembly
7: else
8: // Step 3: Perform Swap-In
9: if Mused + size(b)≤Mmax then

10: Pre-loading b from external storage
11: Mused ←Mused + size(b)
12: else
13: // Step 4: Perform Swap-Out
14: bout ← BlockCorrelation(b,B)
15: Pre-swapping out bout to external storage
16: Mused ←Mused− size(bout)
17: Load b from external storage
18: Mused ←Mused + size(b)
19: end if
20: end if
21: // Step 5: Assemble Model
22: Assemble block b into Massembled
23: BlockCompatibilityCalculation(b,Massembled)
24: end for

by setting a memory budget for each device, determining how
many blocks can be stored in memory. When a required block
is missing, a swap-in operation is initiated. If memory is full,
a swap-out unloads less relevant blocks to storage. Block
correlation. The block swapping decision combines a Least
Recently Used (LRU) strategy with block correlation metrics.
The relevance of blocks is determined by their feature correla-
tion, previously analyzed in Section 3.3 and directly applied
here. Blocks with lower correlation to the current model are
prioritized for swapping out.

To mitigate I/O overhead from frequent swaps (Figure 12a),
we further introduce a pre-loading mechanism, pre-loading
blocks into memory to ensure smoother execution (Figure
12b). Additionally, a memory-aware pre-swapping strategy
estimates upcoming memory needs and performs swap-out op-
erations in advance to reduce I/O waiting times (Figure 12c).
In summary, Block Swapper optimizes the pipeline by leverag-
ing block correlations and further reduces delays through pre-
loading and pre-swapping, enabling efficient memory man-
agement. Algorithm 2 outlines the process.

Table 2: Specifications of tested devices.
Device Mem GPU CPU

Nvidia Jetson TX2 8G 256 CUDA Cores (Pascal) A57 (6C)
Nvidia Jetson Nano 4G 128 CUDA Cores (Maxwell) A57 (4C)

4 Evaluation

4.1 Experimental Setup
LLMs, Block Pool, and Datasets. We select five pre-trained
LLMs: Llama-7B, OPT-6.7B, BERT-base, Vicuna-7B, and
RoBERTa-large from Huggingface [39], which are chosen
for their widespread adoption and distinct characteristics on
edge devices, covering diverse architectures, parameter sizes,
and training objectives. Table 3 presents the model sizes of
the tested LLMs. To optimize block-based assembly, we use
an adaptive segmentation strategy. Shallow and deep layers,
which have minimal semantic differences, are grouped into
larger blocks (e.g., 6–8 layers per block) to reduce complex-
ity while maintaining functionality. Conversely, middle lay-
ers with more significant semantic variation are divided into
smaller blocks (e.g., 2–4 layers per block) to improve flexi-
bility and minimize mismatch during assembly. As a result,
Llama-7B, OPT-6.7B, BERT-base, Vicuna-7B, and RoBERTa-
large consist of 6, 6, 4, 6, and 6 blocks, respectively, forming
a block pool with 28 blocks.

We evaluate our approach on three benchmark datasets:
BoolQ [7], PIQA [3], and OpenbookQA (OBQA) [9]. BoolQ
is a question-answering dataset focused on yes/no questions
based on a passage. PIQA involves physical reasoning tasks,
challenging the model’s ability to predict plausible solutions
for real-world scenarios. OBQA tests commonsense knowl-
edge and reasoning, requiring answers based on general sci-
ence facts. These datasets were selected for their diversity
in task types—reading comprehension, physical reasoning,
and commonsense knowledge—ensuring a comprehensive
evaluation of our method’s adaptability.
Baselines. We evaluate our method against two groups of
baselines to demonstrate its effectiveness across both algo-
rithmic and system-level aspects. Algorithm-level baselines
include FT-oracle, representing full-parameter fine-tuning
under ideal memory conditions as the upper bound; FT-
practical, which accounts for memory limitations; LoRA
[14], a widely used PEFT technique; QLoRA [8], which
extends LoRA with quantization; FedAdapter [4], an FL
approach utilizing adapter tuning with layer freezing; and
FwdLLM [42], the SOTA BP-free method for memory con-
straints in FL. System-level baselines include Recomputa-
tion [6, 19], which reduces memory usage by recomputing
activations during BP, and Swapping [15,30], which offloads
computations or parameters to external storage to save GPU
memory. These baselines offer a comprehensive comparison
of AssyLLM’s performance in terms of both algorithmic flex-
ibility and system-level efficiency.
Implementation Details. We implement AssyLLM on a hy-
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Table 3: Model size (FP16).

Model Size

Llama-7B 14GB
OPT-6.7B 13.4GB
BERT-base 220MB
Vicuna-7B 14GB

RoBERT-large 710MB
4GB 8GB 16GB 32GB 64GB
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Figure 14: Statistics for generated assembled models on
BoolQ.

brid platform combining simulation and hardware. Simula-
tion experiments are conducted on two Nvidia A100 GPUs to
emulate clients with high memory budgets, while on-device
experiments are performed on Nvidia Jetson TX2 and Nano,
representing memory-constrained edge devices. Device spec-
ifications are provided in Table 2. We use Hugging Face
Transformers [39] and PyTorch [27] for on-device fine-tuning
and inference, monitoring memory usage with htop. For FL,
we follow the setup in Section 2.1, with 200 users split into 4
groups based on memory budgets, as shown in Figure 13. Ag-
gregation uses FedAVG [26]; the maximum sequence length
of 512 for OBQA and 256 for others. A minimum 4GB mem-
ory budget is allocated for Swapping, Recomputation, and
AssyLLM to ensure client participation. Baseline fine-tuning
needs 5 local epochs with a batch size of 16 and 500 global
epochs. For AssyLLM, the process of selecting the next block
for the current candidate model is repeated for 5 rounds, with
3 blocks evaluated per round. It is important to note that block
type does not directly influence the aggregation outcome, as
all blocks are evaluated using the same compatibility metric.
In practice, assembling blocks of different types naturally
tends to produce lower compatibility scores due to larger fea-
ture distribution mismatches, making them less likely to be
selected. We use a learning rate of 0.01, which is higher than
the standard (e.g., 5e-5) used for full-model fine-tuning. This
is intentional and empirically justified, as only lightweight
adapters are trained while the backbone remains frozen. The
higher rate accelerates convergence and mitigates underfitting
due to limited adapter capacity. Sensitivity analysis confirms
this setup achieves efficient training with minimal impact on
accuracy. The batch size for CKA computation is 32. The as-
sembly process typically requires fewer than 100 epochs, with
each epoch taking less time than baseline methods. For Block
Quanter, we use the INT8/INT4 combination for mixed-typed
quantization with GPTQ [11].

4.2 Overall Performance

Throughout the assembling process, 21 assembled LLMs are
generated, with statistics shown in Figure 14, demonstrating
the diversity of models created from various block combi-
nations. All generated models are stored on the server, and
each client receives one model per round for block selection,
minimizing additional memory overhead for edge devices.
After model generation, we select models with high block
compatibility, as it typically leads to better accuracy and en-
sures top-performing models are chosen. We use llama-7B as
the LLM for baseline methods, applying INT8 quantization
with GPTQ. Table 4 and Figure 15 present the comparison
results with algorithm-level baselines and Table 5 and Figure
16 for the system-level baselines.
Superior Accuracy. From Table 4 and Figure 15, compared
to full fine-tuning, AssyLLM achieves 16.75%, 17.16%, and
18.26% absolute improvements across three datasets due to
reducing memory requirements and enabling contributions
from users previously constrained by memory limitations. For
parameter-efficient fine-tuning baselines like LoRA, QLoRA,
and FedAdapter, AssyLLM shows improvements of up to
8.24%, 13.09%, and 11.57%, as these methods reduce weight
precision or limit fine-tuning, causing performance degrada-
tion. Compared to BP-free methods like FwdLLM, AssyLLM
improves by 6.14%, 8.88%, and 7.58%, as FwdLLM’s re-
liance on inference perturbations leads to instability during
aggregation. AssyLLM’s concatenation method avoids these
issues while maintaining superior performance. From Table
5 and Figure 16, AssyLLM outperforms existing memory-
saving techniques by up to 3.77%, 5.26%, and 6.18%. This
is due to constructing a block pool with multiple LLMs of
diverse structures, enriching the model pool, and enhancing
the adaptability and expressiveness of the generated models
for downstream tasks.
Speedier Convergence. From Table 4, for algorithm base-
lines, AssyLLM achieves up to 12.92×, 14.67×, and 10.97×
speedup across three datasets, thanks to the elimination of BP-
related computations, which drastically reduces fine-tuning
time. From Table 5, for system-level baselines, the speedup is
even more significant, reaching up to 30.04×, 28.71×, and
26.75×. This improvement is due to the substantial additional
time introduced by I/O exchanges or activation recomputa-
tions, which greatly extend the overall aggregation process.
Robustness to non-IID data. We evaluated performance
under various non-IID settings and conducted multiple exper-
iments with different initialization settings. AssyLLM and
baselines both utilized the FedAvg aggregation algorithm,
with results shown in Figure 17. As depicted, as the local data
distribution becomes more skewed, the baseline experiences
varying degrees of performance degradation, with accuracy
drops of up to 14% and increased bias. In contrast, while
AssyLLM also faces some impact (a 4.6% absolute accu-
racy drop), it still demonstrates up to a 27.2% improvement
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Table 4: Test results (top-1 accuracy and speedup) of algorithm-level memory saving schemes on BoolQ, PIQA, OBQA in
non-IID scenario. FT-oracle represents the experiment conducted without memory limitation, denotes as the upper bound.

Dataset FT-practical FT-oracle LoRA QLoRA FedAdapter FwdLLM AssyLLM
Speedup Acc Speedup Acc Speedup Acc Speedup Acc Speedup Acc Speedup Acc Speedup Acc

BoolQ 1× 61.37 1.45× 75.11 3.72× 71.32 4.83× 69.88 6.32× 72.96 9.83× 71.98 12.92× 78.12
PIQA 1× 66.23 1.37× 79.22 4.10× 74.14 4.99× 70.3 6.87× 75.81 10.21× 74.51 14.67× 83.39

OBQA 1× 44.21 1.47× 57.29 3.43× 53.55 4.31× 50.90 6.02× 54.78 9.15× 54.89 10.97× 62.47

Oracle

Practical

LoRA

QLoRA

FedAdapter

FwdLLM

AssyLLM

(a) BoolQ. (b) OBQA. (c) PIQA.
Figure 15: Efficiency comparison with algorithm-level baselines. Model: Llama-7B.

Table 5: Test results (top-1 accuracy and speedup) with
system-level memory saving baselines on BoolQ, PIQA,
OBQA in non-IID scenario. See Table 4 for further reference.

Dataset Recomputation Swapping AssyLLM
Speedup Acc Speedup Acc Speedup Acc

BoolQ 0.65× 74.91 0.43× 74.35 12.92× 78.12
PIQA 0.68× 78.96 0.51× 78.13 14.67× 83.39

OBQA 0.51× 56.88 0.41× 56.19 10.97× 62.47

over the baseline, offering more stable performance. This
improvement stems from the fact that, in our method, local
data only guides block selection and fine-tunes lightweight
adapters, without altering the blocks themselves. As a result,
the generated LLM is less affected by the local data distri-
bution compared to baselines. Furthermore, our approach is
orthogonal to other methods that address non-IID issues, like
Harmony [34] and Oort [21], and can be seamlessly integrated
with them for further optimization.

4.3 System Cost

Memory overhead reduction. As shown in Figure 18, As-
syLLM reduces memory consumption by 92% compared to
full fine-tuning and 63.6% compared to PEFT baselines. This
is due to AssyLLM’s design, which limits operations to the
forward pass, reducing memory cost to only the block pool
and lightweight adapter fine-tuning. In contrast, while other
system-level and BP-free methods reduce memory usage and
also achieve 100% client participation, they often sacrifice
accuracy or prolong training time, limiting their real-world
efficiency. Moreover, mainstream inference optimization tech-
niques [23, 24] can be integrated with our approach to further
reduce memory overhead.

Energy and communication cost reduction. As shown in
Figure 19, AssyLLM reduces energy consumption by 95.01%
and inter-device communication overhead by 99.1% com-
pared to full fine-tuning. Our method is also highly efficient
relative to PEFT or BP-free methods, achieving up to 88.1%
energy reduction and 94.2% decrease in communication over-
head. This reduction is due to the fact that, unlike traditional
training methods, our approach only requires clients to up-
load block selection results and a lightweight adapter each
round. Since the block pool is shared between the server
and clients, the block selection results are transmitted as an
index, typically requiring only a few bytes. In contrast to tra-
ditional methods, which require uploading entire or partial
model weights or updates, our method significantly reduces
communication overhead.

4.4 Effectiveness of Each Component

Impact of Block Comparator. We compared the impact
of using two individual metrics (CKA and COR) for block
selection on the final performance. As shown in the Figure 10,
neither metric alone can identify the optimal blocks, resulting
in a 9.1% and 3.4% performance drop.
Impact of Block Quanter. We compare Block Quanter with
different precision schemes. As shown in Figure 20a, com-
pared to FP16, AssyLLM reduces memory consumption by
70.2% with only a 1.1% accuracy loss. For INT4, our method
increases memory overhead by 10.1% but improves accu-
racy by 8.1%. This shows that Block Quanter effectively re-
duces block pool memory overhead while preserving accuracy
through block-specific mixed-precision quantization.
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Oracle Swapping Recomputation AssyLLM

(a) BoolQ. (b) OBQA. (c) PIQA.
Figure 16: Efficiency comparison with system-level baselines. Model: Llama-7B.
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Figure 17: Performance comparison under various non-IID
settings in BoolQ. α denotes the concentration parameter in
Dirichlet distribution.
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the corresponding methods.

Impact of Elastic Adapter. We compare AssyLLM with
a baseline approach that uses a simple dimensional trans-
formation matrix to connect blocks. As shown in Figure
20b, adding the assembling adapter improves performance
by 3.02%, 3.19%, and 5.17% on datasets. The improvement
demonstrates the effectiveness of our method in facilitating
seamless block integration and enhancing performance.
Impact of Block Swapper. To verify the effectiveness of
Block Swapper, we evaluated two pipeline management strate-
gies: one without pre-loading and pre-swapping (system de-
fault), and another without pre-swapping, as shown in Figure

0

5

10

15

20

N
or

m
al

iz
ed

 E
n
er

gy

(a) Total energy cost.

100

101

102

103

N
o
rm

al
iz

ed
 

 N
et

w
or

k
 U

sa
ge

(b) Total network cost.
Figure 19: Resource cost of AssyLLM and baselines. Dataset:
BoolQ.
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Figure 20: Ablation study for Block Quanter and Elastic
Adapter.

12. The results in Figure 21 show that as the number of block
swaps increases, incorporating pre-loading reduces local time
by up to 30.21% compared to the default pipeline. Addition-
ally, adding pre-swapping on top of pre-loading further re-
duces total time by 68.12%. This significantly minimizes the
additional latency from block swapping, improving overall
system efficiency.

Component-wise Contribution Summary. Each component
in AssyLLM contributes to overall performance. Block Com-
parator selects compatible blocks using CKA and COR scores.
Elastic Adapter integrates mismatched blocks by activating
adapters only when significant semantic divergence is de-
tected. Block Quanter reduces memory via mixed-precision
quantization; INT8/INT4 yields ~70% savings with ~1.1%
accuracy loss, while maintaining robust compatibility met-
rics. Block Swapper improves memory efficiency through
correlation-aware prefetching and pre-swapping. Together,
these modules enhance accuracy, memory usage, and conver-
gence, as confirmed by our ablation results.
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Figure 21: Ablation study for Block Swapper.

5 Discussion

Criteria for selecting pre-trained models. While AssyLLM
shows promising results, selecting the appropriate combina-
tion of pre-trained LLMs for the block pool remains a non-
trivial task. We prioritize architectural diversity to ensure the
assembled model captures a broad spectrum of representa-
tional patterns, incorporating both decoder-only models (e.g.,
LLaMA, OPT, Vicuna) and encoder-only models (e.g., BERT,
RoBERTa). Empirical results indicate that such heterogeneity
improves generalization across downstream tasks. However,
expanding the block pool increases memory and computation
overhead, and not all combinations yield consistent perfor-
mance. Our experiments reveal fluctuations across different
LLM sets, highlighting the need for a more principled strategy
to guide model selection. In future work, we plan to explore
adaptive construction methods based on task embeddings,
domain-aligned pretraining, or proxy task performance to op-
timize block pool composition.
System Robustness and Scalability. While AssyLLM con-
sists of four interacting components—Block Comparator,
Elastic Adapter, Block Quanter, and Block Swapper—each
is implemented as an independent and lightweight module
(300~600 lines in Python), coordinated through shared inter-
faces without tight coupling. For example, the Comparator
and Quanter operate purely on forward activations, while
the Adapter is only triggered when structural mismatches
occur. This modularity enhances robustness against architec-
tural variations and supports easy reuse across different LLM
workflows.

In terms of scalability, while the current design targets edge
devices, AssyLLM can be extended to larger LLMs (e.g.,
LLaMA-13B or 30B) with minimal architectural changes.
The primary challenges lie in the memory overhead due to in-
creased block pool size and potential I/O pressure during
block swapping. These can be addressed via hierarchical
block indexing, storage prefetching, or streaming-based ex-
ecution, which we leave as promising directions for future
work.
Why block-level assembly works better? Traditional fine-
tuning incurs high memory overhead, restricting participation
to high-resource devices and reducing data diversity in FL.
In contrast, our method removes most BP-related memory
costs, enabling participation from low-resource devices. By

assembling blocks from diverse pre-trained LLMs, our frame-
work captures a broader range of representational patterns.
Moreover, the inherent redundancy in LLMs allows them
to tolerate moderate structural or semantic inconsistencies,
so the assembled model can still perform effectively even if
individual blocks are not perfectly aligned.

6 Conclusions

In this paper, we propose AssyLLM, a memory-efficient fed-
erated fine-tuning framework using pre-trained LLMs block
assembly, effectively reducing BP-related overhead. The
four key components—Block Comparator, Elastic Adapter,
Block Quanter, and Block Swapper—effectively enhance the
method’s efficiency by addressing block compatibility, mis-
matches and reducing the memory footprint of block pool.
Experiments demonstrate that AssyLLM reduces memory
requirements, enhances model accuracy, and accelerates train-
ing compared to conventional FedLLM methods.
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