
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

Revealing Floating-Point Accumulation Orders in
Software/Hardware Implementations

Peichen Xie, Yanjie Gao, Yang Wang, and Jilong Xue, Microsoft Research
https://www.usenix.org/conference/atc25/presentation/xie

Revealing Floating-Point Accumulation Orders in Software/Hardware
Implementations

Peichen Xie
Microsoft Research

Yanjie Gao
Microsoft Research

Yang Wang
Microsoft Research

Jilong Xue
Microsoft Research

Abstract
Accumulation-based operations, such as summation and ma-
trix multiplication, are fundamental to numerous computa-
tional domains. However, their accumulation orders are often
undocumented in existing software and hardware implemen-
tations, making it difficult for developers to ensure consistent
results across systems. To address this issue, we introduce
FPRev, a diagnostic tool designed to reveal the accumulation
order in the software and hardware implementations through
numerical testing. With FPRev, developers can identify and
compare accumulation orders, enabling developers to create
reproducible software and verify implementation equivalence.

FPRev is a testing-based tool that non-intrusively reveals
the accumulation order by analyzing the outputs of the tested
implementation for distinct specially designed inputs. Em-
ploying FPRev, we showcase the accumulation orders of popu-
lar libraries (such as NumPy and PyTorch) on CPUs and GPUs
(including GPUs with specialized matrix accelerators such
as Tensor Cores). We also validate the efficiency of FPRev
through extensive experiments. FPRev exhibits a lower time
complexity compared to the basic solution. FPRev is open-
sourced at https://github.com/peichenxie/FPRev.

1 Introduction

Today, floating-point computations are ubiquitous, with
accumulation-based operations (AccumOps) such as sum-
mation, dot products, matrix-vector multiplications, and ma-
trix multiplications playing fundamental roles in various do-
mains. However, no general specification dictates the accu-
mulation orders of AccumOps. Without well-defined require-
ments, AccumOps are implemented differently across soft-
ware and hardware, leading to inconsistencies due to the non-
associativity of floating-point addition [35]. For example, the
half-precision (float16) sum of 0.5, 512, and 512.5 depends on
the accumulation order: (0.5+ 512)+ 512.5 = 1025, while
0.5 + (512 + 512.5) = 1024. Consequently, varying Accu-
mOp implementations yield different results, complicating
reproducibility in software development.

Numerical reproducibility is critical in scientific comput-
ing [12, 28, 33], high-performance computing [35], database
management system [22], deep learning [4, 31], etc. Particu-
larly, software without verified numerical reproducibility is
deemed risky or disqualified when applied to safety-critical
or rigorous scenarios like aerospace or banking, where even
minor inconsistencies in data are unacceptable. Unfortunately,
with the rapid evolution of heterogeneous hardware and the
fast iteration of diverse software stacks, reproducibility of
AccumOps has become increasingly challenging. Existing
implementations rarely disclose their accumulation orders,
hindering reproducible AccumOp development.

We propose FPRev, a diagnostic tool to help developers
identify how AccumOps are implemented in software and
hardware. FPRev reveals the accumulation order of an Accu-
mOp implementation (AccumImpl) through numerical testing.
This enables developers to reproduce an AccumImpl on a new
system by using the revealed accumulation order as a specifi-
cation and verify equivalence between two implementations
by comparing their accumulation orders.

As a case study, we use FPRev to analyze popular numer-
ical libraries on diverse hardware, uncovering their undocu-
mented and undisclosed accumulation orders. On different
CPUs, we apply FPRev to the NumPy library [11]. On differ-
ent GPUs, we apply FPRev to the PyTorch library [27]. The
results indicate that NumPy’s summation functions are im-
plemented equivalently across CPUs, and the same holds for
PyTorch’s summation functions across GPUs. However, other
AccumOps relying on BLAS (Basic Linear Algebra Subpro-
grams) backends like Intel MKL [15], OpenBLAS [26], and
NVIDIA cuBLAS [24] exhibit non-reproducible behavior.

FPRev also visualizes the order with the summation tree,
i.e., a full binary tree representing how an AccumImpl per-
forms summation, to guide develeopment. For example, Fig-
ure 1 illustrates NumPy’s summation of 32 single-precision
(float32) numbers. It divides the 32 numbers into 8 ways, ac-
cumulates the summands with a stride of 8 on each way, and
sums up the 8 ways together using pairwise summation. This
8-way accumulation order is friendly to CPU’s SIMD instruc-

USENIX Association 2025 USENIX Annual Technical Conference 1425

https://github.com/peichenxie/FPRev

#0

+

#8

+

#16

+

#24

+

#1

+

#9

+

#17

+

#25

+

#2

+

#10

+

#18

+

#26

+

#3

+

#11

+

#19

+

#27

+

#4

+

#12

+

#20

+

#28

+

#5

+

#13

+

#21

+

#29

+

#6

+

#14

+

#22

+

#30

+

#7

+

#15

+

#23

+

#31

Figure 1: Visualizing the accumulation order of Numpy’s summation function for n = 32 single-precision numbers with a
summation tree. The numbers on the leaf nodes denote the indexes in the input.

tions. With this information, it is easy to replicate NumPy’s
numerical behavior in a new implementation.

Design overview. Determining the accumulation order of
an AccumImpl is a challenging task. Static methods, such as
analyzing the source code, are cumbersome and inapplica-
ble to black-box implementations and compiler optimization.
Dynamic methods, like scrutinizing the runtime traces, lack
an automatic tool to analyze the traces. In addition, many
software or hardware implementations are parallel, making
the analysis more challenging.

We address these challenges through non-intrusive testing.
Recall the example where (0.5+ 512)+ 512.5 = 1025 and
0.5+(512+ 512.5) = 1024 in half precision. Different ac-
cumulation orders yield distinct results, making it possible
to deduce the order from numerical outputs. However, the
number of all possible accumulation orders is exponential,
making the time complexity of the naive brute-force solution
(NaiveSol) impractical.

To achieve practical time complexity, we propose a ba-
sic solution called BasicFPRev that uses specially designed
inputs to facilitate the distinguishing process. We take the
summation function for example. First, BasicFPRev set all n
summands to 1.0. Then, two of the summands are replaced by
a very large number (denoted by M) and its negative (−M),
where M satisfies (n−2)+M = M. The summation output
corresponds to an integer between 0 and n−2, depending on
when M or −M cancel each other during the accumulation.
Specifically, when ±M is added to other numbers, it remains
±M; when M is added to −M, it results in 0; after that, the
remaining summands are accumulated without rounding er-
rors because they are all 1.0. Therefore, the output equals the
number of summands accumulated after M+(−M).

BasicFPRev leverages this information to construct the
summation tree. Using i and j to denote the indexes of M

or −M in the input, we note that the operation M +(−M)
corresponds to the lowest common ancestor (LCA) of node
#i and # j in the summation tree, and the number of leaf nodes
under the LCA equals n minus the summation output. Based
on this finding, BasicFPRev enumerates i and j, collects the
output for the corresponding input, and infers the size of
subtree rooted at the LCA of node #i and # j. BasicFPRev
then constructs the summation tree bottom-up, starting with
subtrees of two leaf nodes and progressively building larger
subtrees until the entire tree is generated.

Based on BasicFPRev, FPRev further reduces time com-
plexity by eliminating redundancy, and adds support for ma-
trix accelerators such as Tensor Cores on recent NVIDIA
GPUs [19]. Matrix accelerators are specialized hardware units
on GPUs for high-performance matrix multiplication, but
they perform non-standard multi-term fused summations [9].
FPRev models their accumulation orders using a multiway
tree, where a node with multiple children represents a multi-
term fused summation for a group of summands. The sum-
mands are aligned and truncated before they are accumulated,
as if they are added in finite-precision fixed-point arithmetic.

FPRev has a time complexity of Ω(nt(n)) and O(n2t(n)),
where t(n) is the time complexity of the tested AccumImpl.
This shows a significant improvement over the O(4n/n3/2 ·
t(n)) complexity of NaiveSol and the Θ(n2t(n)) complex-
ity of BasicFPRev. Experimental results confirm FPRev’s
efficiency and scalability across diverse AccumOp implemen-
tations on three CPUs and three GPUs with distinct architec-
tures.

In summary, the contributions of this paper include:
1. Design and development of FPRev: we introduce FPRev,

a diagnostic tool that non-intrusively reveals the accu-
mulation order of accumulation-based operations im-
plemented in different software and hardware, enabling

1426 2025 USENIX Annual Technical Conference USENIX Association

developers to verify equivalence and maintain numerical
reproducibility between implementations.

2. Empirical analysis of popular implementations: We
demonstrate FPRev’s capabilities by analyzing accumu-
lation orders in popular libraries (e.g., NumPy and Py-
Torch) across CPUs and GPUs, providing reproducibility
insights in backend implementations.

3. Algorithmic innovation: we describe the algorithm of
FPRev for revealing accumulation orders and construct-
ing summation trees, refine the algorithm to reduce time
complexity, and extend it to handle modern GPU ma-
trix accelerators (e.g., NVIDIA Tensor Cores), modeling
their multi-term fused summation using multiway trees.

4. Performance evaluation: we evaluate FPRev’s efficiency
through comprehensive experiments, test diverse Accu-
mOps implementations on various CPUs and GPUs, and
demonstrate significant performance improvements over
naive and basic solutions.

2 Related work

2.1 AccumOp implementations

2.1.1 On canonical CPUs and GPUs

Accumulation-based operations (AccumOps) are imple-
mented diversely on modern systems. On most CPUs and
GPUs, implementations use standard IEEE-754 addition or
fused multiply-add (FMA) arithmetic [14] to accumulate
floating-point numbers. However, they may perform accu-
mulations in different orders without explicitly disclosing
those orders.

First, there is diverse numerical software, including BLAS
libraries such as Intel MKL [15] and NVIDIA cuBLAS [24],
Python libraries such as NumPy [11] and PyTorch [27], and
domain-specific compilers such as Numba [17] and Triton
[34]. These libraries are developed without a unified specifica-
tion, making it difficult to guarantee consistent accumulation
orders.

Second, the same software may behave differently across
different hardware. Different CPUs and GPUs vary in archi-
tecture, number of cores, SIMD width, cache size, etc. Conse-
quently, for performance optimization, software may adjust
the accumulation order based on the specific hardware char-
acteristic. Specifically, library developers implement various
techniques (e.g., different configurations of loop unrolling,
block partitioning, cache optimization, and vectorization) for
performance tuning, resulting in different accumulation or-
ders. Additionally, auto-tuners (e.g., Triton [34] and TVM [5])
are often used to search for optimal configurations, given the
complexity of performance factors such as instruction pipelin-
ing and dynamic frequency scaling.

Although order-independent algorithms have been pro-
posed [6–8], which ensure consistent results regardless of

the accumulation order, they are highly inefficient and thus
rarely used in industry.

Our tool FPRev supports the AccumOp implementations
on canonical CPUs and GPUs and can reveal their undisclosed
accumulation orders.

2.1.2 On matrix accelerators

Matrix accelerators [19, 29] are specialized hardware compo-
nents in modern GPUs designed for high-performance matrix
multiplication. Developers can implement matrix multiplica-
tions using the APIs of matrix accelerators [23]. However, the
numerical behavior and accumulation order of the APIs are
undocumented and inconsistent across different GPUs.

FPRev supports the AccumOp implementations based on
matrix accelerators and can reveal their undisclosed accumu-
lation orders.

2.2 Revelation of numerical behaviors

FPRev achieves non-intrusive revelation of accumulation or-
ders through numerical testing. Prior works [9, 18] have also
employed numerical testing to study the numerical behavior
of matrix accelerators. They design “corner cases” as test in-
puts and analyze the numerical behavior based on the outputs.
They find that for float64 on NVIDIA Tensor Cores and AMD
Matrix Cores, the matrix multiplication instruction is based
on a chain of standard FMA arithmetic. In contrast, other in-
structions use a non-standard arithmetic where multiple terms
(the exact number depends on the hardware) are accumulated
after alignment and truncation.

FPRev is a general tool that applies to AccumOp implemen-
tations, including those based on matrix accelerators, while
prior works focus exclusively on specific hardware.

2.3 Numerical reproducibility engineering

The inconsistent AccumOp implementations pose significant
issues in numerical reproducibility [2, 35]. To help develop-
ers debug the issues, several testing-based tools have been
proposed. For example, Varity [16] uses randomized testing
to verify equivalence between implementations. Tools like
pLiner [10] and its follow-up [20] employ differential testing
to pinpoint non-reproducible parts of a program. In contrast,
FPRev uses a deterministic testing method to identify the
accumulation order of AccumOps.

Early works [12, 33] have emphasized the importance of
reproducible AccumOps for ensuring numerical stability but
lack practical solutions. A preliminary approach [1] adopts
the aforementioned order-independent algorithm [7] to ensure
reproducibility, but suffers from its inefficiency. In contrast,
FPRev offers a more practical solution: replicating the accu-
mulation order of existing efficient implementations.

USENIX Association 2025 USENIX Annual Technical Conference 1427

3 Problem statement

3.1 Motivation

Accumulation-based operations (AccumOps) are fundamental
in floating-point computing, but most implementations do not
specify their accumulation orders. This lack of transparency
motivates us to design a tool for revealing the accumulation
order.

An example application of the tool is in developing repro-
ducible AccumOps, which are key to software reproducibility
and service consistency [12, 25, 33]. Developers must ensure
that the accumulation order remains consistent across systems
to maintain the reproducibility of AccumOps. If developers
can determine the accumulation order, they can use it as a
specification to guide their development process. In addition,
when porting software to a new system, developers need a
rigorous way to verify the equivalence of AccumOps between
two systems. This can be achieved by comparing the accumu-
lation orders of the AccumOps implemented on two systems.

3.2 Problem definition

For an AccumOp implementation (AccumImpl), we aim to
design a diagnostic tool to reveal its accumulation order. For
brevity, we focus on the summation function in the following
discussion, since other AccumOps can be abstracted as calls to
the summation function with the intermediate results as inputs.
For example, dot product x ·y can be treated as ∑

n−1
i=0 xiyi.

Thus, solutions for the summation function can be naturally
applied to other AccumOps.

We formulate the summation operation as follows. The
floating-point addition is performed n−1 times in a predeter-
mined order to calculate the sum of n floating-point numbers.
We assume that the accumulation order is unknown but is
uniquely determined by the given implementation on specific
hardware. Therefore, randomized implementations and those
where the order depends on the values of the summands are
out of scope1.

The problem is how to reveal the accumulation order in an
summation implementation, denoted by SUMIMPL. Specifi-
cally, the input of our revelation algorithm is SUMIMPL and
the number of summands n. The output of the algorithm is
the accumulation order of SUMIMPL.

Strictly speaking, the accumulation order is represented
by a computational graph called the summation tree, which
is a rooted full binary tree with n leaf nodes and n−1 inner
nodes. Each addition operation corresponds to an inner node,
which represents the sum of this operation. The two children
of the node represent the two summands of this operation. For

1While randomized or input-dependent summation algorithms are possi-
ble, they tend to be inefficient. Similarly, algorithms using AtomicAdd are
affected by thread scheduling, but we did not find popular libraries imple-
menting such algorithms.

example, Figure 1 depicts the accumulation order of Numpy’s
summation function for n = 32 single-precision numbers.

3.3 Inefficiency of the naive solution

We now introduce a naive solution (NaiveSol) to the problem,
which is based on brute-force search. We design a recursive
algorithm to enumerate every possible accumulation orders.
For each order, we verify its correctness through randomized
testing. Specifically, we generate multiple random inputs,
compute the sums in the current order, and compare the results
with those from SUMIMPL. If the results match, we accept
the order.

The time complexity of NaiveSol is O(4n/n3/2 · t(n)), as
the number of all possible orders is the (n− 1)-th Catalan
number Cn−1 =

(2n−2)!
n!(n−1)! = O(4n/n3/2). Here, t(n) represents

the time complexity of SUMIMPL. In addition to being ineffi-
cient, NaiveSol is not fully reliable because different orders
can produce the same output for certain inputs. Although the
probability is low and reliability can be improved by increas-
ing the number of test inputs, a deterministic solution with
full reliability is preferable, as we will achieve next.

4 Basic polynomial-time solution

The exponential complexity of the naive solution is highly
impractical. To address the issue, we present our basic solu-
tion called BasicFPRev for revealing the accumulation order,
which reduces the time complexity to polynomial. We de-
sign an algorithm to determine the accumulation order from
the numerical results of the tested summation implementa-
tion (SUMIMPL) for specially designed testing inputs. The
following parts detail the three steps of the algorithm.

4.1 Step 1: designing testing inputs

To facilitate distinguishing the accumulation order, we lever-
age the swamping phenomenon of floating-point addition [13].
When two floating-point numbers differing by many orders
of magnitude are added, the smaller number is swamped and
makes no contribution to the sum. For example, 224+1 equals
224 in single-precision (float32) arithmetic.

To induce and utilize this phenomenon, we construct var-
ious “masked all-one arrays" as testing inputs. Specifically,
let n denote the number of summands, and let SUMIMPL
represent an summation implementation with a predeter-
mined but unknown accumulation order. Let M be a very
large floating-point number that readily induces the swamp-
ing phenomenon. For example, we set M = 2127 for float32
or M = 21023 for float64. Then, we define a masked all-one

1428 2025 USENIX Annual Technical Conference USENIX Association

array Ai, j as Ai, j = (Ai, j
0 ,Ai, j

1 , ...,Ai, j
n−1) such that

Ai, j
k =

M if k = i
−M if k = j
1.0 otherwise

where i and j denote the indexes of M and −M in the array.
In Ai, j, there exist exactly one M and one −M, with all other
elements being 1.0.

We use ±M as masks. Specifically, M + σ = M and
−M+σ =−M hold for 0≤ σ≤ n−2 in floating-point arith-
metic, if n≪M. Therefore, in SUMIMPL(Ai, j), adding any
summand or intermediate sum (except M and−M themselves)
to ±M yields ±M. In other words, M and −M can mask the
summands or intermediate sums added to them.

As a result, the output of SUMIMPL(Ai, j) depends on the
accumulation order and we can distinguish the accumula-
tion order from the output. For example, given n = 3 and
A0,1 = (M,−M,1), sequential summation M+(−M)+1 cor-
responds to 1, stride summation M+1+(−M) corresponds
to 0, and reverse summation 1+(−M)+M corresponds to
0. If the output equals 1, then we can infer the accumulation
order is sequential summation. If the output equals 0, we can
determine the exact accumulation order by further testing with
A0,2 as the input.

4.2 Step 2: analyzing the accumulation order
from the outputs

To analyze the accumulation order, we call SUMIMPL with
n(n− 1)/2 inputs, i.e., Ai, j for 0 ≤ i < j < n. Each output
reveals information about the accumulation order. Specifi-
cally, since ±M mask the summands or intermediate sums
added to them, these numbers make no contribution to the
sum. In contrast, only those summands not masked by ±M
contribute to the sum. Therefore, the output equals the sum
of these summands. Since each of the summands equals 1.0,
the output equals the number of the summands not masked
by ±M:

ni, j
not masked = SUMIMPL(Ai, j).

Then, we can also obtain the number of the summands masked
by ±M by calculating ni, j

masked = n−2−ni, j
not masked.

How does this information relate to the order, or specif-
ically, the summation tree? Recall that i and j denote the
positions of the masks, represented by node #i and # j in the
summation tree. We note that the neutralization of the two
masks (i.e., the addition operation M+(−M) = 0) corre-
sponds to the lowest common ancestor (LCA) of node #i
and # j . Then, observing the subtree rooted at the LCA, we
find that all the summands masked by ±M are in the sub-
tree, and all the summands not masked by ±M are out of the
subtree. Therefore, the number of leaf nodes in the subtree
(representing the size of the subtree) equals n− ni, j

not masked,

denoted by

li, j = n−ni, j
not masked = n−SUMIMPL(Ai, j).

For brevity, we use li, j to denote “the number of leaf nodes in
the subtree rooted at the LCA of node #i and # j ” in the rest
of the paper.

Take Algorithm 1 as an example SUMIMPL, whose accu-
mulation order is depicted in Figure 2.2 If i= 2 and j = 4, then
the array A2,4 is (1,1,M,1,−M,1,1,1). Computing the sum
of A2,4 with the example SUMIMPL, the 3rd summand and the
intermediate sum of the 0th and 1st summands are masked by
M (the 2nd summand); the 5th summand is masked by −M
(the 4th summand). Therefore, in total, n2,4

masked = 4. In con-
trast, the 6th and 7th summands and their intermediate sum are
not added to M or −M, so n2,4

not masked = SUMIMPL(A2,4) = 2.

Algorithm 1 An example summation implementation.

f l o a t sum = 0 ;
f o r (i n t i =0 ; i <8 ; i +=2)

sum += a [i] + a [i + 1] ;

#0

+

#1

+

#2

+

#3

+

#4

+

#5

+

#6

+

#7

Figure 2: The summation tree of Algorithm 1. The numbers
on the leaf nodes denote the indexes in the input.

The LCA of node #2 and #4 is the grandparent node of node
#4, as shown in 2. It corresponds to the neutralization of the
2nd summand M and the 4th summand−M, i.e., M+(−M) =
0. Within the subtree rooted there, there are node #0, #1, #2,
#3, #4, and #5 (6 leaf nodes in total), corresponding to the
two masks and the summands masked by them. In contrast,
node #6 and #7 (2 leaf nodes in total), which correspond to
the summands not masked, are out of the subtree. Therefore,
l2,4 = 8−2 = 6. Table 1 shows more examples of the output
of SUMIMPL(Ai, j) and li, j for Algorithm 1.

2We compile it with different compiler versions and optimization flags,
and note that they do not change the accumulation order, even if they might
in theory. We suspect such changes can be found on more complex math
expressions instead of summations.

USENIX Association 2025 USENIX Annual Technical Conference 1429

Table 1: The order-related information li, j inferred from the
outputs of Algorithm 1 with different masked all-one arrays
Ai, j as inputs.

i j Input: Ai, j Output li, j

0 1 (M,−M,1,1,1,1,1,1) 6 2
0 2 (M,1,−M,1,1,1,1,1) 4 4
0 3 (M,1,1,−M,1,1,1,1) 4 4
0 4 (M,1,1,1,−M,1,1,1) 2 6
0 5 (M,1,1,1,1,−M,1,1) 2 6
0 6 (M,1,1,1,1,1,−M,1) 0 8
0 7 (M,1,1,1,1,1,1,−M) 0 8

...
2 3 (1,1,M,−M,1,1,1,1) 6 2
2 4 (1,1,M,1,−M,1,1,1) 2 6

...

4.3 Step 3: generating the summation tree

With the information L= {(li, j, i, j)} derived from the outputs,
where li, j represents the size of the subtree rooted at the LCA
of node #i and # j, generating the summation tree from L is a
tree algorithm problem.

Our solution employs a bottom-up approach to construct
the tree. First, we sort L in ascending order. For each li, j,
we locate the root of the existing subtree containing node
#i and the root of the existing subtree containing node # j,
and merge them by creating a new parent node for them. By
repeating this process, we construct the entire summation tree,
progressing from small subtrees to larger ones.

For example, consider the order-related information L =
{(li, j, i, j)} shown in Table 1. To generate the summation
tree, we start by initializing the tree with eight disjoint nodes
labeled 0 to 7. Then, examining the smallest value in L, we
have l0,1 = 2. This implies that the subtree rooted at the LCA
of node #0 and #1 should have 2 leaf nodes. Since the sum-
mation tree is a full binary tree, node #0 and #1 are exactly
the two children of the root of this subtree. Therefore, we add
a new node to the tree, label it with n plus the label of its left
child (i.e., n+0 in this example), and add two edges from the
two leaf nodes to the new node.

For l2,3 = l4,5 = l6,7 = 2, similarly, we can construct the
subtree containing node #2 and #3, the subtree containing
node #4 and #5, and the subtree containing node #6 and #7.
Now, we have four subtrees of size 2, where the size of a
subtree is represented by the number of leaf nodes in it.

Next, the smallest unexamined value in L is l0,2 = 4. This
implies that the subtree rooted at the LCA of node #0 and #2
should have 4 leaf nodes. We note that node #0 and #2 are
currently in two different subtrees (each has 2 leaf nodes),
so we should merge the two subtrees. Therefore, we find
the current roots of the subtrees containing node #0 and #2
respectively, i.e., node #i′ and # j′ where i′ = n+0 and j′ =
n+2. Subsequently, we add a new node as the parent of node

#i′ and # j′, label it with n plus the label of its left child, i.e.,
n+ i′ = 2n+0, and add two edges from node #i′ and # j′ to
the new node.

For l0,3 = 4, we find that node #0 and #3 are already in the
same subtree with 4 leaf nodes, so we just skip it. The same
process is applied to l1,2 = l1,3 = 4. Now, we have a subtree
with 4 leaf nodes and two subtrees with 2.

The next smallest unexamined value in L is l0,4 = 6, which
implies that the subtree rooted at the LCA of node #0 and #4
should have 6 leaf nodes. Similarly, node #0 and #4 are cur-
rently in two different subtrees (one has 4 leaf nodes and the
other has 2), so we should merge the two subtrees. Therefore,
following the similar process, we find the current roots of the
trees containing node #0 and #4 respectively, i.e., node #i′

and # j′ where i′ = 2n+0 and j′ = n+4. Subsequently, we
create a new node as their parent (labelled as n+ i′ = 3n+0),
and add two edges from node #i′ and # j′ to it.

For l0,5 = 6, we find that node #0 and #5 are already in
the same subtree with 6 leaf nodes, so we skip it. The same
process is applied to i ∈ {1,2,3} and j ∈ {4,5}. Now, we
have a subtree of with 6 leaf nodes and a subtree of with 2.

Finally, in the similar way, the next smallest unexamined
value in L is l0,6 = 8, which implies that the subtree rooted at
the LCA of node #0 and #6 should have8 leaf nodes. Since
node #0 and #6 are currently in two different subtrees (one
has 6 leaf nodes and the other has 2), we should merge the two
subtrees. After we add the parent node of the current roots of
the two subtrees and add the corresponding edges, the entire
summation tree is generated.

To generalize and formulate the algorithm, we present Ba-
sicFPRev in Algorithm 2, where the GENERATETREE func-
tion encapsulates Step 3. It first initializes T with n disjoint
nodes and no edges. Then, for each li, j, it finds the roots of
the existing subtrees containing node #i and # j . If they are
identical, then the i-node #i and # j are already in the same
subtree. Otherwise, it combines them. The FindRoot function
can be implemented by the disjoint-set data structure, result-
ing in an amortized time complexity of O(α(n)) [32], where
α(n) is the inverse Ackermann function.

4.4 Time complexity and correctness analysis
Let t(n) denote the time complexity of SUMIMPL. The com-
putation of L has a time complexity of Θ(n2t(n)). In GEN-
ERATETREE, the time complexity of sorting n(n− 1)/2 el-
ements is Θ(n2 logn2) = Θ(n2 logn). Therefore, the time
complexity of GENERATETREE is Θ(n2 logn+ n2α(n)) =
Θ(n2 logn). Thus, the overall time complexity of BasicFPRev
is Θ(n2t(n))+Θ(n2 logn) = Θ(n2t(n)).

The correctness of BasicFPRev is inherent in its design and
can be proven as follows. For a given implementation SUM-
IMPL and n, we use T to denote the real summation tree and
define T ′ = BASICFPREV(SUMIMPL,n). Assuming T ̸= T ′,
there must exist i and j such that li, j

T ̸= li, j
T ′ . Now we con-

1430 2025 USENIX Annual Technical Conference USENIX Association

Algorithm 2 BasicFPRev: our basic solution for revealing
the accumulation order.
Require: Implementation SUMIMPL and the number of sum-

mands n
Ensure: Summation tree of SUMIMPL

function BASICFPREV(SUMIMPL, n)
L←∅
for i← 0 to n−1 do

for j← i+1 to n−1 do
Ai, j← (1,1, ...,1); Ai, j

i ←M; Ai, j
j ←−M

li, j← n−SUMIMPL(Ai, j)
L← L∪{(li, j, i, j)}

function GENERATETREE(L)
T ←∅
for (li, j, i, j) ∈ L in ascending order do

i′← T.FindRoot(i)
j′← T.FindRoot(j)
if i′ ̸= j′ then

k← i′+n ▷ assign a new label
T ← T ∪{(i′,k),(j′,k)}

return T
return GENERATETREE(L)

struct Ai, j and compute its sum in the order T and T ′ respec-
tively, resulting in s and s′. Then, s = n− li, j

T ̸= s′ = n− li, j
T ′ .

However, since s = SUMIMPL(Ai, j), then li, j
T ′ = n− s′ ̸=

n− s = n− SUMIMPL(Ai, j). This contradicts the statement
li, j← n−SUMIMPL(Ai, j) in Algorithm 2. Therefore, the as-
sumption T ̸= T ′ is false, so T = T ′.

5 Algorithm improvement in FPRev

This section introduces the full version of our tool FPRev,
which is evolved from our basic solution BasicFPRev detailed
in Section 4. First, we refine the algorithm to reduce its time
complexity. Second, based on the refined algorithm, we add
support for multi-term fused summation, which is used by
matrix accelerators, and finalize FPRev.

5.1 Reducing time complexity

5.1.1 Removing redundancy

By analyzing BasicFPRev, we observe that Algorithm 2 re-
quires n(n−1)/2 different (li, j, i, j) tuples, even though many
values of li, j are identical. However, only n− 1 new nodes
and 2(n− 1) new edges are constructed. Since computing
multiple li, j by calling SUMIMPL is the primary source of
the method’s time complexity, reducing redundancy in li, j

(i.e., the cases corresponding to i′ = j′ in Algorithm 2) can
significantly improve efficiency.

To achieve this, we calculate li, j on demand. Specifically,
we do not calculate all li, j ahead of the tree generation. In-
stead, we directly start to generate the summation tree, and
calculate li, j when needed. Following the bottom-up idea, we
still construct subtrees from leaf to root.

Step 1. We use the set I = {0,1, ...,n− 1} to denote the
labels of the leaf nodes for which we are going to construct a
summation tree. Let i represent the leaf node with the smallest
label in I. The sibling node of node #i is either a leaf node or
an inner node. If it is a leaf node, there exists a unique j such
that li, j = 2. Otherwise, if it is an inner node, then li, j > 2 for
all j such that j ̸= i. Therefore, to distinguish the two cases,
we need to calculate li, j for all other js, denoted by the set
Li = {li, j : j ∈ I−{i}}. We examine the minimum value in
Li, which is denoted by l = min(Li).

If l equals 2, let j be the one that satisfies li, j = 2. Then,
node # j is the sibling node of node #i, so we add a new node
to the tree, and add two edges from node #i and # j to the new
node. Now, the currently constructed subtree has 2 leaf nodes.

Otherwise, if l is larger than 2, the sibling node of node #i
must be an inner node. The subtree rooted at this inner node
must have l−1 leaf nodes. Let Jl = { j : j ∈ I−{i}∧ li, j =
l}. Then, the number of members of Jl must be l− 1, and
the members of Jl are exactly the leaf nodes of this subtree.
This can be proven by contradiction. Now, constructing this
subtree is a subproblem for the set Jl . Suppose that we have
constructed this subtree by a recursive algorithm. We shall
add a new node to the tree, and add edges from node #i and the
root node of this subtree to the new node. Now, the currently
constructed subtree has l leaf nodes.

Summarizing the two cases, we can treat both cases as
the same pattern: finding Jl = { j : j ∈ I−{i}∧ li, j = l} and
solving the subproblem for Jl . The first case (|Jl | = 1) just
leads to the stop condition of the recursion (|I|= 1).

Step 2. Now we have constructed a subtree with l leaf
nodes. Let r be the root of this subtree. Similarly, to find
the sibling node of r, we examine the minimum value in
the rest of Li, which is denoted by l′ here. Then, we solve
the subproblem for Jl′ = { j : j ∈ I−{i}∧ li, j = l′}, and get
a subtree whose leaf nodes are Jl′ . The root of the subtree,
whether a leaf node or an inner node, is the sibling node of r.
Therefore, we shall add a new node to the tree, and add edges
from r and the root node of the subtree to the new node. Now,
the currently constructed subtree has l′ leaf nodes.

Remaining steps. We repeat the above step until all values
in Li are examined and the entire tree is constructed. We
implement this method with a recursive algorithm, as shown
in Algorithm 3.

5.1.2 Demonstration with example

Consider the example SUMIMPL in Algorithm 1, whose sum-
mation tree is illustrated in Figure 2. We call Algorithm 3
with this SUMIMPL and n = 8. First, the set of leaf nodes is

USENIX Association 2025 USENIX Annual Technical Conference 1431

Algorithm 3 Refinement of BasicFPRev (Algorithm 2).

Require: Implementation SUMIMPL and the number of sum-
mands n

Ensure: Summation tree of SUMIMPL
function BASICFPREVREFINED(SUMIMPL, n)

function BUILDSUBTREE(I)
T ←∅
if |I|= 1 then ▷ stop condition

return T
i←min(I); Li←∅
for j ∈ I−{i} do ▷ calculate li, j on demand

Ai, j← (1,1, ...,1); Ai, j
i ←M; Ai, j

j ←−M
li, j← n−SUMIMPL(Ai, j)
Li← Li∪{li, j}

r← i ▷ current root of the subtree
for l ∈ Li in ascending order do

Jl ←{ j : j ∈ I−{i}∧ li, j = l}
T ′← BUILDSUBTREE(Jl)
T ← T ∪T ′

T ← T ∪{(r,r+n),(GetRoot(T ′),r+n)}
r← r+n

return T
return BUILDSUBTREE({0,1, ...,n−1})

I = {0,1, ...,7}, where the smallest label is i = 0. Next, the
set Li = {li, j : j ∈ I−{i}}= {2,4,4,6,6,8,8}= {2,4,6,8}
is computed. Examining the smallest value in Li, we have
l = 2 and Jl = { j : j ∈ I−{i}∧ li, j = l} = {1}. Therefore,
BUILDSUBTREE({1}) is called, reaching the stop condition.
Then, the subtree with node #0 and #1 as its leaf nodes is
constructed. The root of this subtree is denoted by r.

Next, examining the smallest value in the rest of Li, we have
l = 4 and Jl = { j : j ∈ I−{i}∧ li, j = l}= {2,3}. Therefore,
BUILDSUBTREE({2,3}) is called, where we have I = {2,3},
i = 2, and Li = {2}, and BUILDSUBTREE({3}) is called there.
BUILDSUBTREE({2,3}) returns the subtree with node #2 and
#3 as its leaf nodes. We then designate its root as the sibling
node of r, and construct the parent node of this root and r.
Then, the subtree with node #0, #1, #2, and #3 as its leaf nodes
is constructed. r is updated by the root of this subtree.

The next smallest value is l = 6. We have Jl = {4,5}. Sim-
ilarly, BUILDSUBTREE({4,5}) is called, and it returns the
subtree with node #4 and #5 as its leaf nodes. We merge its
root with r, and construct the subtree with node #0, #1, #2,
#3, #4, and #5 as its leaf nodes. r is updated by the root of
this subtree.

Finally, l = 8 and Jl = {6,7}. BUILDSUBTREE({6,7}) is
called, and it returns the subtree with node #6 and #7 as its
leaf nodes. We merge its root with r. Then the entire tree is
constructed.

5.1.3 Time complexity

The time complexity of Algorithm 3 is O(n2t(n)) and
Ω(nt(n)). The worst-case scenario occurs when adding n
summands in the right-to-left order. In this case, BUILDSUB-
TREE will be invoked with all suffixes of {0,1, ...,n−1}, and
li, j for all 0 ≤ i < j < n will be calculated. The worst-case
time complexity is Θ(n2t(n)). In practice, this order is cache-
unfriendly, and thus no library uses it.

The best-case scenario corresponds to the sequential sum-
mation, where the summation tree will be constructed in one
pass, and only l0, j for all 0 < j < n will be calculated. The
best-case time complexity is Θ(nt(n)). In practice, many li-
braries use similar orders, because these orders are cache-
friendly and efficient.

5.2 Adding support for matrix accelerators
5.2.1 Multi-term fused summation

Matrix accelerators such as NVIDIA Tensor Cores are spe-
cialized hardware components in modern GPUs. Matrix
accelerators enable assembly instructions that take a ma-
trix A = (ai j)M×K , a matrix B = (bi j)K×N , and a matrix
C = (ci j)M×N as input, and produce a matrix D = (di j)M×N
such that D = A×B+C. The data types of A and B are iden-
tical. The data types of C and D are also identical, and their
precision is no lower than the precision of A and B.

The numerical behavior of these assembly instructions re-
mains undisclosed. Specifically, the computation of di j = ci j+

∑
K−1
k=0 aikbk j is executed in an undocumented way. Through

delicate numerical experiments, prior works [9,18] have found
that for double-precision input, the computation is executed
in a chain of standard FMAs; for low-precision input (specif-
ically, when the precision of A and B is lower than float32),
the computation of di j = ci j +∑

K−1
k=0 aikbk j is executed based

on multi-term fused summation:
• The products are computed exactly, and the results are

maintained in full precision without rounding after the
multiplication.

• The summation of a group of summands is performed in
a fixed-point manner. Specifically, the significands are
aligned to the largest exponent of the summands, and
then truncated to 24+ bits (i.e., no less than the precision
of float32). The number of bits and the truncation method
vary depending on the GPU architecture.

• Then, the sum is converted to the floating-point number
in the output data type of the instruction.

Note that the size of the group w, the width of the accu-
mulator, and the detailed conversion method vary depending
on the GPU architecture. In addition, previous works do not
target the high-level APIs and libraries, so the accumulation
orders of them remains unknown.

Our proposed solutions can work for standard FMAs. How-
ever, multi-term fused summation requires a new method, be-

1432 2025 USENIX Annual Technical Conference USENIX Association

cause it is executed in a non-standard, IEEE-754-incompliant
way. Specifically, in multi-term fused summation, w sum-
mands (e.g., x0 = c, and xi = ai−1bi−1 for 1 ≤ i < w) are
summed in a fixed-point manner, thus making the result inde-
pendent of the summation order. To represent this operation
in the summation tree, we should use a node with w children
instead of a node with two children. Therefore, the summation
tree should be an w-way tree.

5.2.2 Constructing the multiway summation tree

To adapt to the multiway tree, we first revisit BasicFPRev in
Section 4. The first two steps still work because we find that
the key equation li, j = n− SUMIMPL(Ai, j) remains valid in
multi-term fused summation. Thus, the values of li, j can be
obtained in the same way, and we only need to redesign the
tree construction algorithm in the third step.

Then, we revisit the tree construction algorithm in Algo-
rithm 3. In BUILDSUBTREE(I), we calculate li, j for a fixed i
and all j ∈ I−{i}, enumerate them in ascending order, and
maintain r as the root of the largest constructed subtree con-
taining node #i. For some l ∈ Li = {li, j : j ∈ I−{i}} and
Jl = { j : j ∈ I−{i}∧ li, j = l}, the return value of BUILD-
SUBTREE(Jl) is the subtree with Jl as its leaf nodes. The root
of this subtree must be the sibling node of r, so we can create
a new node as their parent node and update r. However, this
relation is not always true for the multiway tree.

In addition to being sibling node, the root of the subtree
may also be the parent node of r in the multiway tree. For ex-
ample, suppose a 5-way tree with leaf nodes I = {0,1,2,3,4}
as the children of the root. Then, when r = 0, l = 5, and
Jl = {1,2,3,4}, solving the subproblem for Jl should return
a partial subtree with Jl as its leaves. The root node of the
subtree is the parent node of r.

To distinguish the two cases, we observe the return value of
BUILDSUBTREE(Jl), denoted by T ′, and the complete subtree
rooted at the root of T ′, denoted by Tc. In the first case, the
root of T ′ should be the sibling of r, and T ′ = Tc. In the sec-
ond case, the root of T ′ should be the parent of r, and T ′ ⊂ Tc.
Therefore, we can compare the size of T ′ (denoted by nT ′

leaves)
with the size of Tc (denoted by nTc

leaves). We note that nT ′
leaves =

|Jl |, and nTc
leaves = max{l j,k : j,k ∈ Jl}= max(Lmin(Jl)). There-

fore, if max(Lmin(Jl)) = |Jl |, then the root of T ′ should be the
sibling of r, so we should create a new node as their parent
node and update r with the index of this new node. Otherwise,
max(Lmin(Jl))> |Jl |, so the root of T ′ should be the parent of
r, and thus we should add an edge from r to the root of T ′,
and update r with the root.

Through this modification, the multiway tree can be cor-
rectly constructed. We elaborate on the above process in Al-
gorithm 4, i.e., the algorithm of FPRev. It has the same time
complexity as Algorithm 3 (note that Algorithm 3 just corre-
sponds to the case where max(Lmin(Jl)) = |Jl |), and supports
multi-term fused summation.

Algorithm 4 The algorithm of FPRev.

Require: Implementation SUMIMPL and the number of sum-
mands n

Ensure: Summation tree of SUMIMPL
function FPREV(SUMIMPL,n)

function BUILDSUBTREE(I)
T ←∅
if |I|= 1 then ▷ stop condition

return (T,1)
i←min(I); Li←∅
for j ∈ I−{i} do ▷ calculate li, j on demand

Ai, j← (1,1, ...,1); Ai, j
i ←M; Ai, j

j ←−M
li, j← n−SUMIMPL(Ai, j)
Li← Li∪{li, j}

r← i ▷ current root of the subtree
for l ∈ Li in ascending order do

Jl ←{ j : j ∈ I−{i}∧ li, j = l}
(T ′,nTc

leaves)← BUILDSUBTREE(J)
T ← T ∪T ′

if |Jl |= nTc
leaves then ▷ T ′ = Tc

T ← T ∪{(r,r+n),(GetRoot(T ′),r+n)}
r← r+n

else ▷ T ′ ⊂ Tc
T ← T ∪{(r,GetRoot(T ′))}
r← GetRoot(T ′)

return (T,max(Li))

(T,nTc
leaves)← BUILDSUBTREE({0,1, ...,n−1})

return T

5.3 Time complexity and correctness
Following the same analysis in Section 5.1.3, the time com-
plexity of FPRev is O(n2t(n)) and Ω(nt(n)), and the prob-
ability of the worst-case time complexity O(n2t(n)) is low.
The correctness of it is also guaranteed by design and can be
proven following the same process in Section 4.4.

6 Case study

In this section, we apply FPRev to two prevalent numerical
libraries: NumPy [11], the most popular Python library for
numerical computing on CPUs, and PyTorch [27], a very pop-
ular Python library for numerical computing on GPUs. We
successfully identify and analyze the undocumented accumu-
lation orders in these libraries.

6.1 NumPy’s implementation on CPUs
We use FPRev to test NumPy (version 1.26) on three CPUs:

• CPU-1: Intel Xeon E5-2690 v4 (24 v-cores)
• CPU-2: AMD EPYC 7V13 (24 v-cores)
• CPU-3: Intel Xeon Silver 4210 (40 v-cores)

USENIX Association 2025 USENIX Annual Technical Conference 1433

Summation. On these CPUs, we find that NumPy imple-
ments identical accumulation order for the summation func-
tion in single precision. Therefore, Numpy’s summation is
verified to be reproducible across these systems, and can be
used in software requiring numerical reproducibility.

The accumulation order is sequential for n < 8. For 8 ≤
n≤ 128, NumPy implements an eight-way summation. Each
way i sums up ai,ai+8,ai+16, ... sequentially, and the sums of
eight ways are summed using pairwise summation. For exam-
ple, Figure 1 shows the accumulation order for n = 32. This
accumulation order implies that developers can leverage the
eight-way SIMD instructions in the CPU to accelerate com-
putation. For n > 128, NumPy increases the number of ways,
thus leveraging multi-threading for large-scale summation.

Other AccumOps. We also test NumPy’s dot product,
matrix-vector multiplication, and matrix multiplication func-
tions in single precision. We observe discrepancies in the
accumulation order across the tested CPUs. For example,
Figure 3 shows the accumulation orders of Numpy’s n× n
matrix-vector multiplication for n = 8 on the CPUs. We note
that on CPU-1 and CPU-2, the 32 products of each output
element are accumulated using 2-way summation, whereas
on CPU-3, which has more cores than CPU-1 and CPU-2, the
products are accumulated sequentially.

#0

+

#2

+

#4

+

#6

+

#1

+

#3

+

#5

+

#7

(a) On Intel Xeon E5-2690 v4 and AMD
EPYC 7V13 (24 v-cores).

#0

+

#1

+

#2

+

#3

+

#4

+

#5

+

#6

+

#7

(b) On Intel Xeon Silver
4210 (40 v-cores).

Figure 3: The accumulation orders of NumPy’s 8×8 matrix-
vector multiplication on different CPUs.

In summary, NumPy’s summation function is safe for de-
veloping reproducible software for these CPUs, while other
AccumOps of NumPy should not be used in software requir-
ing numerical reproducibility.

6.2 PyTorch’s implementation on GPUs
We use FPRev to test PyTorch (version 2.3) on three GPUs:

• GPU-1: NVIDIA V100 (5120 CUDA cores)
• GPU-2: NVIDIA A100 (6912 CUDA cores)
• GPU-3: NVIDIA H100 (16896 CUDA cores)

On these GPUs, we observe findings similar to those for
NumPy: PyTorch implements identical accumulation orders
for the summation function in single precision but not for the
BLAS operations. Therefore, PyTorch’s summation function
is safe for developing reproducible software for these GPUs,
while other AccumOps of PyTorch should not be used in
software requiring numerical reproducibility.

Matrix multiplication on Tensor Cores. To enable Tensor
Core computation, we apply FPRev to half-precision matrix
multiplication in PyTorch, which is implemented using the
cuBLAS backend. The results show that the summation tree is
a 5-way tree on NVIDIA V100, a 9-way tree on A100, and a
17-way tree on H100, corroborating the conclusion in [9, 18],
which states that the Tensor Cores on NVIDIA Volta, Ampere,
and Hopper architectures use (4+1)-, (8+1)-, and (16+1)-term
fused summation respectively. For example, Figure 4 shows
the summation trees for n = 32 on these devices.

#0

+

#1 #2 #3

+

#4 #5 #6 #7

+

#8 #9 #10 #11

+

#12 #13 #14 #15

+

#16 #17 #18 #19

+

#20 #21 #22 #23

+

#24 #25 #26 #27

+

#28 #29 #30 #31

(a) On NVIDIA V100.
#0

+

#1 #2 #3 #4 #5 #6 #7

+

#8 #9 #10 #11 #12 #13 #14 #15

+

#16 #17 #18 #19 #20 #21 #22 #23

+

#24 #25 #26 #27 #28 #29 #30 #31

(b) On NVIDIA A100.
#0

+

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

+

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31

(c) On NVIDIA H100.

Figure 4: The accumulation orders of PyTorch’s half-
precision 32×32×32 matrix multiplication on Tensor Cores.

We also examine the SASS assembly instructions they use,
and observe that V100 uses the HMMA.884 instruction, and
both A100 and H100 use the HMMA.16816 instruction. Inter-
estingly, an HMMA.16816 instruction on A100 indicates
the shape of the inputs where the accumulation dimension
K = 16, but it is implemented through (8+1)-term fused
summation by the A100 Tensor Core hardware.

1434 2025 USENIX Annual Technical Conference USENIX Association

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

4 16 64 256 1024 4096

JAX

NaiveSol
BasicFPRev
FPRev

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

4 16 64 256 1024 4096 16384

PyTorch

NaiveSol
BasicFPRev
FPRev

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

4 16 64 256 1024 4096 16384

Numpy

NaiveSol
BasicFPRev
FPRev

Figure 5: Execution time of applying NaiveSol, BasicFPRev, and FPRev to the summation functions in NumPy, PyTorch, and
JAX. The vertical axis represents execution time in seconds. The horizontal axis represents the number of summands n.

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

4 16 64 256 1024 4096 16384

Dot product

BasicFPRev

FPRev
0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

4 16 64 256 1024 4096

Matrix-vector multiplication

BasicFPRev

FPRev
0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

4 8 16 32 64 128 256 512

Matrix multiplication

BasicFPRev

FPRev

Figure 6: Execution time of applying BasicFPRev and FPRev to the dor product, matrix-vector multiplication, and matrix
multiplication functions in NumPy. The vertical axis represents execution time in seconds. The horizontal axis represents the
number of summands n.

7 Performance evaluation

7.1 Experiment design
In this section, we evaluate the efficiency of FPRev. Specif-
ically, we aim to answer the following research questions
(RQs):

• RQ1: how efficient is FPRev when applied to different
libraries?

• RQ2: how efficient is FPRev when applied to different
operations?

• RQ3: how efficient is FPRev on different CPUs and
GPUs?

To answer the RQs, we measure the execution time (wall-
clock time) of applying our solutions to tested libraries and
operations. We implement FPRev (Algorithm 4) in Python
(version 3.11). For comparison, we also implement the basic
solution (Algorithm 2), denoted by BasicFPRev.

7.2 RQ1: How efficient is FPRev when applied
to different libraries?

For RQ1, we test the single-precision summation function in
three libraries: NumPy (version 1.26) [11], PyTorch (version
2.3) [27], and JAX (version 0.4) [3]. We run the experiments
on Intel Xeon E5-2690 v4 with 24 v-cores. In these experi-
ments, we also implement the naive brute-force solution (Sec-
tion 3.3), denoted by “NaiveSol”, to show its extremely low

efficiency. For remaining RQs, we omit the naive solution
because it is proven to be too inefficient.

We begin with the number of summands n = 4, and incre-
ment n until the execution time exceeds one second. Each
experiment is carried out 10 times, and the arithmetic mean of
the 10 results is reported in Figure 5. The red curves indicate
that the execution time of NaiveSol grows exponentially as
n grows. The results substantiate the O(4n/n3/2 · t(n)) time
complexity of NaiveSol. The green and blue lines show that
the execution time of BasicFPRev and FPRev grows polyno-
mially. The different slopes also demonstrate that the execu-
tion time of BasicFPRev is longer than that of FPRev, and
increases more rapidly as n increases. This is because the
time complexity of BasicFPRev is Θ(n2t(n)), while that of
FPRev is Ω(nt(n)) and O(n2t(n)).

These trends suggest that the scalability of BasicFPRev
is much better than that of NaiveSol, and the scalability of
FPRev is even better. For example, when n = 16, NaiveSol
can take over 24 hours to produce an output, but BasicFPRev
and FPRev only take less than 0.01 seconds. If n = 8192,
BasicFPRev will take over 100 seconds to produce an output,
but FPRev only takes about 1 second.

USENIX Association 2025 USENIX Annual Technical Conference 1435

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

4 16 64 256 1024

Intel Xeon E5-2690 v4 (24 v-cores)

BasicFPRev

FPRev
0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

4 16 64 256 1024

AMD EPYC 7V13 (24 v-cores)

BasicFPRev

FPRev
0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

4 16 64 256 1024

Intel Xeon Silver 4210 (40 v-cores)

BasicFPRev

FPRev

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

4 16 64 256 1024

NVIDIA V100

BasicFPRev

FPRev
0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

4 16 64 256 1024

NVIDIA A100

BasicFPRev

FPRev
0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

4 16 64 256 1024 4096

NVIDIA H100

BasicFPRev

FPRev

Figure 7: Execution time of applying BasicFPRev and FPRev to the matrix multiplication functions in PyTorch on different
CPUs and GPUs. The vertical axis represents execution time in seconds. The horizontal axis represents the number of summands
n.

7.3 RQ2: How efficient is FPRev when applied
to different operations?

For RQ2, we test the single-precision dot product, matrix-
vector multiplication, and matrix multiplication functions in
NumPy on Intel Xeon E5-2690 v4. The time complexity of
these functions is O(n), O(n2), and O(n3), respectively.

Similarly, we begin with n = 4, and increment n until the
execution time exceeds one second. Each experiment is car-
ried out 10 times, and the arithmetic mean of the 10 results
is reported in Table 6. The different slopes indicate that the
time complexity of BasicFPRev is higher than that of FPRev.
In addition, as the time complexity of the workload increases,
the growth speed of the runtime with regard to n accelerates.
Therefore, the speedup of FPRev over BasicFPRev is more
pronounced as the workload is more complex. For example,
for n = 256, FPRev is 13.0× as fast as BasicFPRev for dot
product, 32.3× for matrix-vector multiplication, and 82.1×
for matrix multiplication.

7.4 RQ3: How efficient is FPRev on different
CPUs and GPUs?

For RQ3, we test the single-precision matrix multiplication in
PyTorch on the CPUs and GPUs listed in Section 6. Similarly,
we begin with n = 4, and increment n until the execution
time exceeds one second. Each experiment is carried out 10
times, and the arithmetic mean of the 10 results is reported in
Figure 7. The results demonstrate consistent improvements
in the runtime of FPRev compared to BasicFPRev. Therefore,
FPRev is consistently more efficient than BasicFPRev on

different devices.

8 Discussion

8.1 Limitation and mitigation
8.1.1 Dynamic range of the input data type

When applying FPRev to data types with low dynamic range,
the mask M may be too small to effectively mask the sum of
ones. For example, the maximum value of the 8-bit floating-
point number with 4 exponent bits (FP8-e4m3) defined in [21]
is 1.75× 28, so the condition M ≫ n may not hold, and
±M + σ ̸= ±M for 0 ≤ σ ≤ n− 2. To mitigate the issue,
we can replace the ones in the masked all-one arrays with
smaller numbers (e.g., 2−9×2−9 for FP8-e4m3 matrix mul-
tiplication), and scale the sum back to an integer between 0
and n−2 when calculating li, j. This solution does not affect
efficiency.

8.1.2 Precision of the accumulator

The precision of the floating-point accumulator can limit the
input size that FPRev supports. For example, float32 has a
precision of 24 bits, so the maximum number of summands
(n) that FPRev supports is 224 +1 = 16777217 for float32 ac-
cumulation operations. For larger numbers, the sum of n−2
ones cannot be represented precisely in float32, so the sum
of masked all-one arrays may be incorrect. This issue can be
mitigated by dynamically replacing the multiple ones corre-
sponding to a constructed subtree with one and multiple zeros,
as if compressing the constructed subtree into one node.

1436 2025 USENIX Annual Technical Conference USENIX Association

Specifically in the BUILDSUBTREE(I) function of FPRev
(Algorithm 4), the computation of SUM(Ai, j) = 0 is accurate
for js such that li, j = n, so we can build the subtree for them
in the end. We extract those js to J = { j : li, j = n} after
computing Li = {li, j : j ∈ I−{i}}. Then, we set the values
at J to 0, and build the subtree for I− J recursively (which
results in a smaller subproblem). After the subtree for I− J
is constructed, we set the values at J back to 1.0, and set
the values at I− J−{i} to 0. Now, the constructed subtree
(containing I− J) is treated as a node, represented by node
#i. Next, we run the original tree construction algorithm (the
last iteration of the for-loop, i.e., l = |All|) for J, and then the
whole tree is constructed.

Combining the two mitigation techniques, the modified
version of FPRev is shown in Algorithm 5. This version
is applicable to data types with low dynamic range and low
accumulation precision, such as 16-bit and 8-bit floating-point
formats (including BF16, FP16, FP8-e5m2, and FP8-e4m3
on recent Tensor Cores).

Algorithm 5 The modified version of FPRev.

Require: Implementation SUMIMPL, the number of sum-
mands n, large value M, and tiny value e

Ensure: Summation tree of SUMIMPL
function MODIFIEDFPREV(SUMIMPL,n,M,e)

function BUILDSUBTREE(I,All)
T ←∅
if |I|= 1 then ▷ stop condition

return T
i←min(I); Li←∅
for j ∈ I−{i} do ▷ calculate li, j on demand

Ai, j
k ← e for k ∈ All; Ai, j

i ←M; Ai, j
j ←−M

li, j← |All|−SUMIMPL(Ai, j)/e
Li← Li∪{li, j}

J←{ j : li, j = max(Li)}
Ai, j

k ← 0 for k ∈ J ▷ Ignoring J
(T,nTc

leaves)← BUILDSUBTREE(I− J,All− J)
r← GetRoot(T)
Ai, j

k ← e for k ∈ J
K← I− J−{i}
Ai, j

k ← 0 for k ∈ K ▷ Treating I− J as {i}
(T ′,nTc

leaves)← BUILDSUBTREE(J,All−K)
T ← T ∪T ′

if |J|= nTc
leaves then ▷ T ′ = Tc

T ← T ∪{(r,r+n),(GetRoot(T ′),r+n)}
else ▷ T ′ ⊂ Tc

T ← T ∪{(r,GetRoot(T ′))}
return (T,max(Li))

All←{0,1, ...,n−1}
(T,nTc

leaves)← BUILDSUBTREE(All,All)
return T

8.2 Extensibility and future work

Section 6 has demonstrated that FPRev can be applied to pop-
ular numerical libraries like NumPy and PyTorch. FPRev can
be applied to other accumulation implementations as long as
they fall within the scope detailed in Section 3. In practice,
we find most popular libraries have deterministic reduction
orders and fall into the scope. FPRev also works for accu-
mulation operations in collective communication primitives,
such as the AllReduce operation, if their accumulation order
is predetermined.

To further extend our tool to other functions based on spe-
cial summation algorithms, the algorithms must satisfy the
property li, j = n−SUMIMPL(Ai, j) or its variant in Algorithm
5. For example, the next generation of Tensor Core will sup-
port the microscaling data format [30], including the 4-bit and
6-bit formats MXFP4 and MXFP6. If their dynamic range
and accumulator precision permit and the property holds, our
methods can reveal the accumulation order within a block
of microscaling numbers. Then, we can treat a block as one
summand, and use FPRev to construct the summation tree for
the summation of the blocks, and then expand each block to a
subtree.

In addition to revealing accumulation orders, we plan to
extend our methods to detect more floating-point behaviors
in matrix accelerators. For example, we can determine the
rounding mode and the precision of the accumulator of Tensor
Cores by enumerating n = 1,2, ... and checking the result of
2n+1.75−2n. We are designing more numerical experiments
to identify how the block fused multiply-add is conducted.
Then, with the information detected, we can model the exact
behavior of the hardware matrix accelerators.

Another direction is further optimizing the efficiency of
FPRev. For example, we can randomize the selection of i ∈ I
in the FPRev algorithm, as if selecting the random pivot in
quick sort. This might reduce the expected time complexity
of FPRev.

9 Conclusion

In this paper, we introduce FPRev, a diagnostic tool for re-
vealing the accumulation order in software and hardware
implementations through numerical testing. It can help ver-
ify and facilitate the development of reproducible software.
As a case study, FPRev reveal the undisclosed accumulation
orders of prevalent numerical libraries such as NumPy and
PyTorch on different CPUs and GPUs. We also demonstrated
the efficiency FPRev through experiments covering various
implementations and devices. Our source code is available
at https://github.com/peichenxie/FPRev, encouraging
further investigation and improvement by the research com-
munity.

USENIX Association 2025 USENIX Annual Technical Conference 1437

https://github.com/peichenxie/FPRev

References

[1] Andrea Arteaga, Oliver Fuhrer, and Torsten Hoefler. De-
signing Bit-Reproducible Portable High-Performance
Applications. In IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 1235–
1244, 2014. doi:10.1109/IPDPS.2014.127.

[2] David H Bailey, Jonathan M Borwein, and Victoria Stod-
den. Facilitating reproducibility in scientific computing:
Principles and practice. In Reproducibility: Principles,
Problems, Practices, and Prospects, pages 205–231. Wi-
ley Online Library, 2016. Publisher: Wiley Online Li-
brary.

[3] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, and Qiao Zhang. JAX: com-
posable transformations of Python+NumPy programs,
2018. URL: http://github.com/google/jax.

[4] Boyuan Chen, Mingzhi Wen, Yong Shi, Dayi Lin,
Gopi Krishnan Rajbahadur, and Zhen Ming Jiang. To-
wards Training Reproducible Deep Learning Models.
In International Conference on Software Engineer-
ing (ICSE), pages 2202–2214, 2022. doi:10.1145/
3510003.3510163.

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lian-
min Zheng, Eddie Q. Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. TVM: An Au-
tomated End-to-End Optimizing Compiler for Deep
Learning. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages
578–594, 2018. URL: https://www.usenix.org/
conference/osdi18/presentation/chen.

[6] Sylvain Collange, David Defour, Stef Graillat, and Ro-
man Iakymchuk. Numerical Reproducibility for the
Parallel Reduction on Multi- and Many-Core Archi-
tectures. Parallel Computing, 49:83–97, 2015. doi:
10.1016/j.parco.2015.09.001.

[7] James Demmel and Hong Diep Nguyen. Fast Repro-
ducible Floating-Point Summation. In IEEE Symposium
on Computer Arithmetic (ARITH), pages 163–172, 2013.
doi:10.1109/ARITH.2013.9.

[8] James Demmel and Hong Diep Nguyen. Parallel Re-
producible Summation. IEEE Transactions on Comput-
ers, 64(7):2060–2070, 2015. doi:10.1109/TC.2014.
2345391.

[9] Massimiliano Fasi, Nicholas J. Higham, Mantas
Mikaitis, and Srikara Pranesh. Numerical behavior of

NVIDIA tensor cores. PeerJ Computer Science, 7:e330,
2021. doi:10.7717/peerj-cs.330.

[10] Hui Guo, Ignacio Laguna, and Cindy Rubio-González.
pLiner: isolating lines of floating-point code for
compiler-induced variability. In International Con-
ference for High Performance Computing, Network-
ing, Storage and Analysis (SC), page 49, 2020. doi:
10.1109/SC41405.2020.00053.

[11] Charles R. Harris, K. Jarrod Millman, Stéfan van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau,
Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten
H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime
Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, War-
ren Weckesser, Hameer Abbasi, Christoph Gohlke,
and Travis E. Oliphant. Array programming with
NumPy. Nature, 585:357–362, 2020. URL: https:
//doi.org/10.1038/s41586-020-2649-2, doi:10.
1038/S41586-020-2649-2.

[12] Yun He and Chris H. Q. Ding. Using Accurate Arith-
metics to Improve Numerical Reproducibility and Sta-
bility in Parallel Applications. The Journal of Su-
percomputing, 18(3):259–277, 2001. doi:10.1023/A:
1008153532043.

[13] Nicholas J. Higham. The Accuracy of Floating Point
Summation. SIAM Journal on Scientific Computing,
14(4):783–799, 1993. doi:10.1137/0914050.

[14] IEEE. IEEE Standard for Floating-Point Arithmetic,
2019. doi:10.1109/IEEESTD.2019.8766229.

[15] Intel Corporation. Intel Math Kernel Library.
URL: https://www.intel.com/content/www/us/
en/developer/tools/oneapi/onemkl.html.

[16] Ignacio Laguna. Varity: Quantifying Floating-Point
Variations in HPC Systems Through Randomized Test-
ing. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 622–633, 2020.
doi:10.1109/IPDPS47924.2020.00070.

[17] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert.
Numba: a LLVM-based Python JIT compiler. In Work-
shop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC), pages 7:1–7:6. ACM, 2015. doi:10.
1145/2833157.2833162.

[18] Xinyi Li, Ang Li, Bo Fang, Katarzyna Swirydow-
icz, Ignacio Laguna, and Ganesh Gopalakrishnan.
FTTN: Feature-Targeted Testing for Numerical Prop-
erties of NVIDIA & AMD Matrix Accelerators.
In IEEE/ACM International Symposium on Clus-
ter, Cloud and Internet Computing (CCGRID), pages

1438 2025 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1109/IPDPS.2014.127
http://github.com/google/jax
https://doi.org/10.1145/3510003.3510163
https://doi.org/10.1145/3510003.3510163
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1109/ARITH.2013.9
https://doi.org/10.1109/TC.2014.2345391
https://doi.org/10.1109/TC.2014.2345391
https://doi.org/10.7717/peerj-cs.330
https://doi.org/10.1109/SC41405.2020.00053
https://doi.org/10.1109/SC41405.2020.00053
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/S41586-020-2649-2
https://doi.org/10.1038/S41586-020-2649-2
https://doi.org/10.1023/A:1008153532043
https://doi.org/10.1023/A:1008153532043
https://doi.org/10.1137/0914050
https://doi.org/10.1109/IEEESTD.2019.8766229
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://doi.org/10.1109/IPDPS47924.2020.00070
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162

39–46. IEEE, 2024. URL: https://doi.org/
10.1109/CCGrid59990.2024.00014, doi:10.1109/
CCGRID59990.2024.00014.

[19] Stefano Markidis, Steven Wei Der Chien, Erwin Laure,
Ivy Bo Peng, and Jeffrey S. Vetter. NVIDIA Tensor
Core Programmability, Performance & Precision. In
IEEE International Parallel and Distributed Processing
Symposium (IPDPS) Workshops, pages 522–531. IEEE
Computer Society, 2018. doi:10.1109/IPDPSW.2018.
00091.

[20] Dolores Miao, Ignacio Laguna, and Cindy
Rubio-González. Expression Isolation of
Compiler-Induced Numerical Inconsistencies
in Heterogeneous Code. In ISC High Perfor-
mance, pages 381–401, 2023. URL: https:
//doi.org/10.1007/978-3-031-32041-5_20,
doi:10.1007/978-3-031-32041-5_20.

[21] Paulius Micikevicius, Dusan Stosic, Neil Burgess,
Marius Cornea, Pradeep Dubey, Richard Grisenth-
waite, Sangwon Ha, Alexander Heinecke, Patrick
Judd, John Kamalu, Naveen Mellempudi, Stuart F.
Oberman, Mohammad Shoeybi, Michael Y. Siu, and
Hao Wu. FP8 Formats for Deep Learning,
2022. arXiv: 2209.05433. URL: https://doi.
org/10.48550/arXiv.2209.05433, doi:10.48550/
ARXIV.2209.05433.

[22] Ingo Müller, Andrea Arteaga, Torsten Hoefler, and Gus-
tavo Alonso. Reproducible Floating-Point Aggrega-
tion in RDBMSs. In IEEE International Conference
on Data Engineering (ICDE), pages 1049–1060, 2018.
doi:10.1109/ICDE.2018.00098.

[23] NVIDIA. Parallel Thread Execution ISA.
URL: https://docs.nvidia.com/cuda/
parallel-thread-execution/.

[24] NVIDIA Corporation. cuBLAS: Basic Linear Alge-
bra on NVIDIA GPUs. URL: https://developer.
nvidia.com/cublas/.

[25] OpenAI. OpenAI Documentation: Reproducible Out-
puts. URL: https://platform.openai.com/docs/
advanced-usage/reproducible-outputs.

[26] OpenBLAS Contributors. OpenBLAS: An optimized
BLAS library. URL: https://www.openblas.net/.

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie

Bai, and Soumith Chintala. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In
Conference on Neural Information Processing Systems
(NeurIPS), pages 8024–8035, 2019. URL: https:
//proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.
html.

[28] Line Pouchard, Sterling Baldwin, Todd Elsethagen,
Shantenu Jha, Bibi Raju, Eric G. Stephan, Li Tang, and
Kerstin Kleese van Dam. Computational reproducibility
of scientific workflows at extreme scales. International
Journal of High Performance Computing Applications,
33(5), 2019. doi:10.1177/1094342019839124.

[29] Md Aamir Raihan, Negar Goli, and Tor M. Aamodt.
Modeling Deep Learning Accelerator Enabled GPUs.
In IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), pages 79–92,
2019. doi:10.1109/ISPASS.2019.00016.

[30] Bita Darvish Rouhani, Ritchie Zhao, Ankit More,
Mathew Hall, Alireza Khodamoradi, Summer Deng,
Dhruv Choudhary, Marius Cornea, Eric Dellinger,
Kristof Denolf, Dusan Stosic, Venmugil Elango,
Maximilian Golub, Alexander Heinecke, Phil James-
Roxby, Dharmesh Jani, Gaurav Kolhe, Martin Lang-
hammer, Ada Li, Levi Melnick, Maral Mesmakhos-
roshahi, Andres Rodriguez, Michael Schulte, Rasoul
Shafipour, Lei Shao, Michael Y. Siu, Pradeep Dubey,
Paulius Micikevicius, Maxim Naumov, Colin Ver-
illi, Ralph Wittig, Doug Burger, and Eric S. Chung.
Microscaling Data Formats for Deep Learning,
2023. arXiv: 2310.10537. URL: https://doi.
org/10.48550/arXiv.2310.10537, doi:10.48550/
ARXIV.2310.10537.

[31] Sanjif Shanmugavelu, Mathieu Taillefumier, Christo-
pher Culver, Oscar R. Hernandez, Mark Coletti, and
Ada Sedova. Impacts of floating-point non-associativity
on reproducibility for HPC and deep learning applica-
tions. In Workshops of the International Conference for
High Performance Computing, pages 170–179, 2024.
doi:10.1109/SCW63240.2024.00028.

[32] Robert Endre Tarjan and Jan van Leeuwen. Worst-case
Analysis of Set Union Algorithms. Journal of the ACM,
31(2):245–281, 1984. doi:10.1145/62.2160.

[33] Michela Taufer, Omar Padron, Philip Saponaro, and
Sandeep Patel. Improving numerical reproducibility
and stability in large-scale numerical simulations on
GPUs. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1–9, 2010. doi:
10.1109/IPDPS.2010.5470481.

USENIX Association 2025 USENIX Annual Technical Conference 1439

https://doi.org/10.1109/CCGrid59990.2024.00014
https://doi.org/10.1109/CCGrid59990.2024.00014
https://doi.org/10.1109/CCGRID59990.2024.00014
https://doi.org/10.1109/CCGRID59990.2024.00014
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1007/978-3-031-32041-5_20
https://doi.org/10.1007/978-3-031-32041-5_20
https://doi.org/10.1007/978-3-031-32041-5_20
https://doi.org/10.48550/arXiv.2209.05433
https://doi.org/10.48550/arXiv.2209.05433
https://doi.org/10.48550/ARXIV.2209.05433
https://doi.org/10.48550/ARXIV.2209.05433
https://doi.org/10.1109/ICDE.2018.00098
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://developer.nvidia.com/cublas/
https://developer.nvidia.com/cublas/
https://platform.openai.com/docs/advanced-usage/reproducible-outputs
https://platform.openai.com/docs/advanced-usage/reproducible-outputs
https://www.openblas.net/
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1177/1094342019839124
https://doi.org/10.1109/ISPASS.2019.00016
https://doi.org/10.48550/arXiv.2310.10537
https://doi.org/10.48550/arXiv.2310.10537
https://doi.org/10.48550/ARXIV.2310.10537
https://doi.org/10.48550/ARXIV.2310.10537
https://doi.org/10.1109/SCW63240.2024.00028
https://doi.org/10.1145/62.2160
https://doi.org/10.1109/IPDPS.2010.5470481
https://doi.org/10.1109/IPDPS.2010.5470481

[34] Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox.
Triton: an intermediate language and compiler for tiled
neural network computations. In ACM SIGPLAN In-
ternational Workshop on Machine Learning and Pro-
gramming Languages, pages 10–19. ACM, 2019. doi:
10.1145/3315508.3329973.

[35] Oreste Villa, Daniel Chavarria-Miranda, Vidhya Guru-
moorthi, Andrés Márquez, and Sriram Krishnamoorthy.
Effects of floating-point non-associativity on numerical
computations on massively multithreaded systems. In
Cray User Group Meeting (CUG), volume 3, 2009.

A Artifact Appendix

Abstract
The repository includes the source code of FPRev and the
source code for reproducing the experiments of the paper. The
following content includes main claims that can be verified via
experiments, and instructions to reproduce the experiments.

Scope
The main claims include:

1. FPRev is functional to reveal the floating-point accumu-
lation orders in common implementations. This claim is
detailed by Section 6 “Case study” in the paper. To verify
this claim, run python experiments/casestudy.py
and check the output files in the outputs directory.

(a) outputs/Numpy*.pdf represents the revealed ac-
cumulation orders for NumPy, as discussed in Sec-
tion 6.1 “NumPy’s implementation on CPUs”.
Among them, outputs/NumpyGEMV8.pdf corre-
sponds to Figure 3 of the paper, if the CPU models
are consistent to those in the paper.

(b) outputs/Torch*.pdf represents the revealed ac-
cumulation orders for PyTorch, as discussed in Sec-
tion 6.2 “PyTorch’s implementation on GPUs”.
Among them, outputs/TorchF16GEMM32.pdf
corresponds to Figure 4 of the paper, if the GPU
models are consistent to those in the paper.

2. FPRev is efficient. This claim is detailed by Section
7 “Performance evaluation” in the paper. To verify
this claim, run python experiments/rq1.py,
python experiments/rq2.py, and python
experiments/rq3.py, and check the output files
in the outputs directory.

(a) outputs/rq1.csv provides the results of Section
7.2 “RQ1: How efficient is FPRev when applied to
different libraries?”. It corresponds to Figure 5 if
the CPU model is consistenst to that in the paper.

(b) outputs/rq2.csv provides the results of Section
7.3 “RQ2: How efficient is FPRev when applied to

different operations?”. It corresponds to Figure 6 if
the CPU model is consistenst to that in the paper.

(c) outputs/rq3.csv provides the results of Section
7.4 “RQ3: How efficient is FPRev on different
CPUs and GPUs?”. It corresponds to Figure 7 if
the CPU and GPU models are consistenst to those
in the paper.

Contents
Installation

sudo apt install graphviz
git clone https://github.com/peichenxie/FPRev.git
cd FPRev
pip install .
pip install -r experiments/requirements.txt

Running experiments
• To reproduce the results in Section 6 (Case study),

run python experiments/casestudy.py on different
hardware models.

• To reproduce the results in Section 7.2 (RQ1: How effi-
cient is FPRev when applied to different libraries?), run
python experiments/rq1.py.

• To reproduce the results in Section 7.3 (RQ2: How ef-
ficient is FPRev when applied to different operations?),
run python experiments/rq2.py.

• To reproduce the results in Section 7.4 (RQ3: How ef-
ficient is FPRev on different CPUs and GPUs?), run
python experiments/rq3.py on different hardware
models.

Then, check the output files in the outputs directory. See
outputs/README.md for more information.

Hosting
https://github.com/peichenxie/FPRev

Requirements
The artifact requires the following platform:

• GPU: NVIDIA V100 or newer
• OS: Ubuntu 22.04
• Software: Python (version 3.11)

If you wish to reproduce the results in the paper, please use
the identical CPU and GPU models:

1. CPU: Intel Xeon E5-2690 v4 (24 v-cores), GPU:
NVIDIA V100 (5120 CUDA cores)

2. CPU: AMD EPYC 7V13 (24 v-cores), GPU: NVIDIA
A100 (6912 CUDA cores)

3. CPU: Intel Xeon Silver 4210 (40 v-cores), GPU:
NVIDIA H100 (16896 CUDA cores)

1440 2025 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://github.com/peichenxie/FPRev

	Introduction
	Related work
	AccumOp implementations
	On canonical CPUs and GPUs
	On matrix accelerators

	Revelation of numerical behaviors
	Numerical reproducibility engineering

	Problem statement
	Motivation
	Problem definition
	Inefficiency of the naive solution

	Basic polynomial-time solution
	Step 1: designing testing inputs
	Step 2: analyzing the accumulation order from the outputs
	Step 3: generating the summation tree
	Time complexity and correctness analysis

	Algorithm improvement in FPRev
	Reducing time complexity
	Removing redundancy
	Demonstration with example
	Time complexity

	Adding support for matrix accelerators
	Multi-term fused summation
	Constructing the multiway summation tree

	Time complexity and correctness

	Case study
	NumPy's implementation on CPUs
	PyTorch's implementation on GPUs

	Performance evaluation
	Experiment design
	RQ1: How efficient is FPRev when applied to different libraries?
	RQ2: How efficient is FPRev when applied to different operations?
	RQ3: How efficient is FPRev on different CPUs and GPUs?

	Discussion
	Limitation and mitigation
	Dynamic range of the input data type
	Precision of the accumulator

	Extensibility and future work

	Conclusion
	Artifact Appendix

