
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

Voltrix: Sparse Matrix-Matrix Multiplication on
Tensor Cores with Asynchronous and Balanced

Kernel Optimization
Yaqi Xia and Weihu Wang, Wuhan University; Donglin Yang, Nvidia Corporation;

Xiaobo Zhou, University of Macau; Dazhao Cheng, Wuhan University
https://www.usenix.org/conference/atc25/presentation/xia

Voltrix: Sparse Matrix-Matrix Multiplication on Tensor Cores with Asynchronous
and Balanced Kernel Optimization

Yaqi Xia∗

School of Computer Science
Wuhan University

Weihu Wang∗

School of Computer Science
Wuhan University

Donglin Yang
NVIDIA Corporation

Xiaobo Zhou†

IOTSC
University of Macau

Dazhao Cheng†

School of Computer Science
Wuhan University

Abstract
Sparse Matrix-Matrix Multiplication (SpMM) is crucial in
scientific computing and machine learning. Despite advance-
ments in GPU architectures, efficiently leveraging Tensor
Cores for SpMM remains challenging. The core issue is the
mismatch between the inherently sparse nature of the matri-
ces and the dense computational patterns. Existing methods
struggle with substantial overheads in loading data to com-
putation units and cannot adequately manage data imbalance
across computations, thereby limiting the high computational
throughput potential of Tensor Cores.

In this paper, we introduce Voltrix-SpMM, a revolutionary
GPU kernel design that overcomes these challenges. First,
we implement an asynchronous data loading pipeline that
employs a bit-wise compressed format for sparse matrices
and bulk memory copy instructions for dense matrices. This
innovative design enables efficient data access and incorpo-
rates a warp-specialized producer-consumer model to seam-
lessly overlap data loading with computation. Second, we
develop a persistent and I/O co-balanced kernel mechanism
that features a two-stage partition strategy to achieve bal-
ance between input and output. Implemented with CUDA
12.6, Voltrix-SpMM substantially improves performance, de-
livering an average speedups of 36.5x and 1.8x over Tensor
Core-based TC-GNN and DTC-SpMM respectively, and an
average 1.7x speedup over the CUDA Core-based RoDe, fully
unleashing the power of Tensor Cores for SpMM.

1 Introduction

Sparse Matrix-Matrix Multiplication (SpMM), which refers
to the multiplication of a sparse matrix with a dense matrix,
plays a pivotal role in a wide range of scientific computing ap-
plications [1,3,13,20,22,40,45–47,52], from simulations and
linear algebra to advanced machine learning. Recent studies
have identified SpMM as a significant performance bottleneck

∗Contributed equally to this work.
†Co-corresponding authors.

in these applications, particularly in the training of Graph Neu-
ral Networks (GNNs), where SpMM accounts for over 80%
of the total computational cost during training [43].

GPUs have become the primary processing units for
modern high-performance computing and have been widely
adopted to accelerate SpMM computations. Recent studies
have utilized CUDA cores, the fundamental processing units
within NVIDIA’s GPU architecture, to speed up the multipli-
cation process [12,16,17,24,32]. With advancements in GPU
power, NVIDIA introduced a specialized unit known as the
Tensor Core, beginning with the Volta architecture [29]. Ten-
sor Cores offer significantly higher computational throughput
than traditional CUDA cores and are specifically optimized
for dense matrix multiplication and accumulation operations
using fixed-precision arithmetic. However, the inherent spar-
sity of matrices in SpMM presents challenges. Tensor Cores
struggle with the irregular memory access and data sparsity
typical of these operations, making them less effective for
SpMM without specialized optimizations.

One of the prominent attempts to apply Tensor Core accel-
eration to SpMM is TC-GNN [43], which introduces sparse
graph translation to convert sparse matrices into compressed
dense blocks, called TCU blocks. Although this method over-
comes the traditional barriers between sparse SpMM work-
loads and dense computation patterns, the inefficient process
of loading data into Tensor Core units severely limits their
full potential. Our experiments have shown that data load-
ing consumes over 80% of kernel execution time, signifi-
cantly constraining the effective use of Tensor Cores. Re-
cently, DTC-SpMM introduces an asynchronous loading tech-
nique that overlaps computation with data loading through a
pipeline [10]. However, the benefits of this approach are lim-
ited by several factors: firstly, DTC-SpMM’s asynchronous
loading instruction can only process 16-byte chunk at a time,
which is insufficient for the high-dimensional data typical
in applications like GNN training, where matrix sizes often
exceed 256 [37]. This limitation necessitates numerous load-
ing instructions, diminishing the pipeline’s potential benefits.
Secondly, the single-layer pipeline of DTC-SpMM results in

USENIX Association 2025 USENIX Annual Technical Conference 699

minimal overlap between computation and data loading, and
the required synchronization at the warp level introduces addi-
tional overhead, further impairing the expected performance
gains.

In addition to inefficient data loading, the irregular data
distribution in SpMM further exacerbates performance bottle-
necks during kernel execution on GPUs. A critical challenge
lies in efficiently partitioning unevenly distributed data across
different Streaming Multiprocessors (SMs) to achieve hard-
ware load balancing. Current methods typically focus either
on input balance or output balance. TC-GNN attempts to ad-
dress output balance by controlling how each Cooperative
Thread Array (CTA) processes rows of TCU blocks. How-
ever, this approach results in significant variations in the data
processed per CTA, leading to underutilization of some SMs
and overloading of others. Conversely, DTC-SpMM priori-
tizes input balance by assigning each CTA a fixed number of
TCU blocks, aiming for a more uniform workload distribution.
While this strategy reduces discrepancies, it fails to address
imbalances during the write-back phase. Moreover, the atomic
operations required to ensure accurate results during write-
back introduce substantial overhead, thereby undermining the
potential performance benefits of the optimization.

We introduce Voltrix-SpMM, a revolutionary GPU ker-
nel design that addresses the outlined challenges and fully
leverages the capabilities of Tensor Cores for accelerated
SpMM computations. Voltrix-SpMM features two key inno-
vations: First, a novel asynchronous data loading pipeline that
establishes seamless overlap between computation and data
loading. Unlike current SpMM kernels that manage these
processes within the same warp, our model uses a warp-
specialized workflow control to distinctly separate these tasks.
This approach allows for fine-grained, multi-tiered overlap,
significantly reducing the overhead associated with data load-
ing. Second, a persistent and I/O co-balanced kernel mech-
anism that ensures even partitioning of irregular workloads
across the underlying SM units. By integrating coarse-grained
input partitioning with fine-grained output partitioning, we
achieve an optimal balance between input and output, while
eliminating the overhead linked to atomic operations.

The first innovation, the warp-level asynchronous pipeline,
significantly reduces data loading overhead while achieving
seamless overlap with computation. Specifically, we design a
bit-wise compressed format for sparse matrices that is both
vectorization-friendly and conflict-free, accelerating access
and transformation. For dense matrices, we utilize the bulk
asynchronous loading instruction TMA [30], which reduces
the number of instructions while enabling the asynchronous
loading of large data blocks. Leveraging our warp-specialized
producer-consumer model, we decouple data access from
computation at the warp level. This separation allows for
finer granularity and higher overlap between data loading and
computation through a multi-tiered pipeline.

In the second innovation, a persistent and I/O co-balanced

kernel mechanism, we align each CTA task with SMs and en-
sure persistent execution, thus achieving a seamless software-
to-hardware balance. Through a greedy and heuristic search
algorithm, we determine the optimal partition points for each
CTA task, ensuring co-balance between input and output. Ad-
ditionally, by performing coarse-grained partitioning at the
input stage and fine-grained partitioning at the output stage,
we resolve the issue of data crossing row boundaries, avoiding
the additional overhead of atomic operations.

In summary, our key contributions are as follows:

1. Through in-depth analysis, we identify the primary chal-
lenge in current Tensor Core-accelerated SpMM meth-
ods: a significant gap between high-throughput computa-
tion units and inefficient, heavy data loading processes.

2. We design a bit-wise sparse matrix compression format
to enable efficient data access via vectorized loading, and
a bulk asynchronous loading instruction to load dense
matrices with reduced number of instructions.

3. We propose a warp-specialized producer-consumer
model to efficiently pipeline data access and compu-
tation, along with a multi-tiered pipeline to effectively
conceal the overhead associated with data loading.

4. We develop a persistent and I/O balanced kernel mecha-
nism, ensuring uniform kernel execution across hardware
that balances both input and output processing.

Voltrix-SpMM, implemented with CUDA 12.6, has been in-
tegrated into PyTorch 2.5 [33]. On the SuiteSparse dataset [7]
and 12 real-world graph datasets, it achieves average speedups
of 36.5x and 1.8x over the Tensor Core-based TC-GNN and
DTC-SpMM respectively, and 1.7x over the CUDA Core-
based RoDe [32]. Additionally, it delivers 2.0x speedup over
the popular GNN training framework DGL [2] in end-to-end
training. Notably, Voltrix-SpMM is the first to fully unleash
the power of Tensor Cores, achieving speedups that surpass
those of traditional CUDA Core-based methods.

2 Background and Motivation

2.1 Matrix-Matrix Multiplication on Hopper
General Matrix-Matrix Multiplication (GEMM) is a core op-
eration in deep learning [39, 50]. On NVIDIA Hopper [30],
GEMM performance is enhanced through warp-specialized
and persistent kernel designs [31]. Warps are split into pro-
ducers, which use Tensor Memory Accelerator (TMA) to
load tiles into shared memory, and consumers, which perform
Warp-Group Matrix Multiply-Accumulate (WGMMA) opera-
tions. This producer-consumer model enables overlap of data
load and computation, maximizing Tensor Core utilization.

Hopper’s persistent kernel strategy assigns a fixed number
of Cooperative Thread Arrays (CTAs), typically equal to the

700 2025 USENIX Annual Technical Conference USENIX Association

0 1 2 3
0

1

2

3

f1,1 f1,2 f1,3

f2,1 f2,2 f2,3
f3,1 f3,2 f3,3
f4,1 f4,2 f4,3

...

...

...

...

G
ather

S
catter

Sparse Matrix

X

Dense Matrix

Figure 1: Illustration of SpMM workflow.

number of Streaming Multiprocessors (SMs), allowing them
to remain resident and avoid relaunch overhead. This design
also overlaps epilogue storage with the next stage’s prologue
and compute loop, enhancing pipeline efficiency.

Sparse Matrix-Matrix Multiplication (SpMM) multiplies a
sparse matrix with a dense one, using only the non-zero ele-
ments [7]. Unlike GEMM, SpMM identifies non-zero indices
to guide a scatter from the dense matrix and a gather for
accumulation, as shown in Figure 1. However, due to spar-
sity and irregularity, SpMM cannot directly adopt GEMM’s
warp-specialized and persistent kernel designs: 1. TMA and
WGMMA require dense data blocks, wasting resources on ze-
ros. 2. Irregular non-zero patterns cause workload imbalance,
making persistent kernels inefficient.

This paper introduces a BMat encoding for fast non-zero
identification, a multi-tiered async loading scheme to max-
imize bandwidth, and a balanced partitioning strategy that
enables an effective sparse-aware persistent kernel.

2.2 SpMM on Tensor Cores
NVIDIA Tensor Cores are specialized units that accelerate
matrix operations essential for deep learning. They efficiently
perform dense mixed-precision matrix multiplications, such
as TF32 inputs with FP32 accumulation, computing

C = A×B+C

where A and B have dimensions m×k and k×n. Matrices are
distributed across thread registers (fragments) within a warp,
arranged in layouts like row- or column-major [29]. Applying
Tensor Cores to SpMM is challenging because, unlike dense
models (e.g., Transformers [19, 38] and CNNs [14, 21]) with
regular memory access, SpMM exhibits irregular access and
sparse computation patterns that conflict with the fixed-size
fragment requirements of Tensor Cores.

TC-GNN [43] represents the first significant effort to bridge
the gap between SpMM and Tensor Core capabilities by in-
troducing a novel sparse graph translation technique. As illus-
trated in the top part of Figure 2, this approach compresses
a sparse matrix into multiple condensed sparse blocks, re-
ferred to as TCU blocks. Each block is carefully sized to align
with the computational dimensions of Tensor Cores. This
transformation allows TC-GNN to effectively map irregular
computation workloads onto the regular computational frame-
work of Tensor Cores, thereby enabling these specialized units
to handle sparse computation tasks efficiently.

TCU
Convert

0 1 2 3

0

1

2

3

4 5 6 7

4

5

6

7

8 9 10 11 12 13 14 15 0 1 2 3

0

1

2

3

4 5 6 7

4

5

6

7
Sparse Matrix Condensed Sparse Matrix

TCU Block
Size

Shared
SparseA

Shared
DenseB

FragA

FragB

Tensor
Core

Updated
FragC

Next
Loop

Add to
FragC

B
LK

_H
B
LK

_H

BLK_W

RowWindow

Condensed Sparse Matrix Dense MatrixResult

Load
SparseA

Load
DenseB

MMA

Figure 2: Illustration of the typical Tensor core-based SpMM
implementation, TC-GNN’s workflow.

In TC-GNN, the TCU block data for each row (a RowWin-
dow) is processed iteratively. The workflow of TC-GNN oper-
ates as follows: First, the compressed TCU block is expanded
into a BLK_W × BLK_H matrix, named SparseA, where
BLK_W and BLK_H are specifically set to 8 and 16, respec-
tively, to fit the dimensions of the Tensor Core MMA opera-
tions. Then, based on the column index of the TCU block, the
corresponding row data from the dense matrix is identified
and transformed into a BLK_W × BLK_H matrix, DenseB.
Both matrices are first loaded into shared memory and then
into registers for MMA operations, as depicted in the bottom
part of Figure 2. The results are stored and subsequently used
to update the output matrix C, which is accumulated with
the next SparseA in the RowWindow in the subsequent loop
iteration, ensuring the correctness of the results.

2.2.1 Tensor Core’s Hunger: Starved by Data Loading

Utilizing Tensor Cores significantly enhances computational
throughput for sparse operations, providing potential perfor-
mance gains over traditional CUDA Cores. For instance, in
optimized conditions, Tensor Cores can achieve up to 495
TFLOPS for TF32 datatype matrix multiplications, in con-
trast to the 67 TFLOPS for FP32 typically delivered by CUDA
Cores in similar scenarios [30]. However, despite these im-
pressive advancements, the overall efficiency of kernel exe-
cution is often bottlenecked by the data loading process. Our
experiments across multiple datasets, as illustrated in Figure 3,
reveal that data loading accounts for over 80% of the execu-
tion time. This significant overhead, due to loading matrices
SparseA and DenseB into shared memory, severely restricts
the overall computational efficiency, thereby diminishing the
full potential of Tensor Core acceleration.

To address the data-loading bottleneck in Tensor Core-
accelerated SpMM computation, DTC-SpMM [10] introduces
a pivotal innovation: a pipeline arrangement that effectively

USENIX Association 2025 USENIX Annual Technical Conference 701

A5 DD PI RT A1 CN FR PN YH DI WN YT0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

20

40

60

80

100

Da
ta

Lo
ad

in
g

Pe
rc

en
ta

ge
 (%

) LoadA
LoadB
MMA
LoadA&B

Figure 3: Breakdown of TC-GNN.

overlaps the loading of SparseA with Tensor Core computa-
tions, mitigating loading time. However, the typically large
dimensions of the dense matrix in GNNs, often exceeding
256, mean one SparseA corresponds to multiple tiled DenseB
matrices, creating a data copy overhead that significantly ex-
ceeds that of SparseA. Our experimental results, as shown in
Figure 3 , reveal that in most cases, loading the dense matrix
(DenseB) accounts for over 60% of the total execution time.
Thus, despite the full overlap of SparseA loading, the primary
challenge persists: the prolonged stalls caused by loading
DenseB continue to dominate kernel execution time.

Furthermore, the pipelining strategy in DTC-SpMM strug-
gles to effectively parallelize the loading of DenseB with
MMA computations for several reasons: (1) DTC-SpMM
leverages the LDGSTS SASS instruction [28] for asynchronous
loading, which initiates data transfers without stalling compu-
tation. However, this instruction is limited to loading only 16
bytes of data per operation. When applied to the DenseB ma-
trix, the substantial number of LDGSTS instructions required
increases dramatically, leading to a high instruction count that
undermines the benefits of pipelining. (2) The single-layer and
intra-warp pipeline used by DTC-SpMM results in minimal
overlap and frequent synchronization within warps, thereby re-
ducing overall efficiency. (3) DTC-SpMM loads DenseB data
directly into the registers, bypassing shared memory. This
access pattern does not support asynchronous prefetching,
further limiting the effectiveness of the pipeline.
Summary. Given these issues, there is an urgent need for a
novel pipelining design that can effectively bridge the gap
between lengthy data loading times and efficient Tensor Core
computations. Such a design should enable enhanced overlap
of memory copying with computation, ultimately addressing
the persistent data-loading challenge.

2.2.2 Unbalanced Workload: Failure to Balance I/O

NVIDIA GPUs use a Streaming Multiprocessor (SM) ar-
chitecture, where multiple CTAs are executed concurrently on
each SM. In CUDA programming, CTAs are mapped to SMs
and execute in parallel. This model is highly efficient when
workloads are evenly distributed among CTAs. However, the
irregular nature of sparse data often leads to significant im-
balances in workload distribution. For example, each row of

2xDim

2xDim

2xDim

3 SPA

6 SPA

6 SPA

(a) Output balance for TC-GNN.

5 SPA

5 SPA

5 SPA

4xDim

2xDim

2xDim

(b) Input balance for DTC-SpMM.

5 SPA

5 SPA

5 SPA

3xDim

1.5xDim

1.5xDim

(c) Our input and output co-balance.

Figure 4: Workload partitioning strategies at the CTA level.

the sparse matrix has a different number and arrangement of
non-zero entries, leading to a varying number of TCU blocks
per RowWindow, as shown in Figure 4. Furthermore, results
from multiple TCU blocks within the same RowWindow must
be accumulated, adding complexity. This uneven distribution
of TCU blocks across RowWindows poses a substantial chal-
lenge in maintaining balanced workload distribution across
each SM. To address this, current methods employ various
workload partitioning strategies at the CTA level, which we
categorize into two main types.

Output Balancing. The approach, employed by TC-GNN
as illustrated in Figure 4a, assigns each CTA the task of pro-
cessing all TCU blocks corresponding to a single row within a
RowWindow. This strategy ensures that the output from each
CTA is confined to the results of one specific RowWindow.
While this design standardizes output workloads across CTAs,
it leads to a significant input imbalance due to the large varia-
tions in the number of TCU blocks per row. Since the input
directly influences the volume of data loading and computa-
tion, this discrepancy causes some CTAs to complete their
tasks quickly while others lag, resulting in inefficient utiliza-
tion of SM resources and diminished overall performance.

Input Balancing. Conversely, DTC-SpMM adopts the in-
put balancing approach, as demonstrated in Figure 4b. This
strategy ensures that each CTA processes an equal number
of TCU blocks, distributing the input workload evenly across
CTAs. While this method equalizes the amount of data each
CTA handles, it complicates the management of output re-
sults. Specifically, when one RowWindow contains a large
number of TCU blocks, multiple CTAs might need to con-
tribute to the same row. To address this, DTC-SpMM employs
atomic operations to accumulate results from different CTAs.
Although these atomic operations maintain result accuracy,

702 2025 USENIX Annual Technical Conference USENIX Association

they significantly increase computational overhead. On the
other hand, when a RowWindow includes only a few TCU
blocks, a single CTA may need to write results across multiple
rows, which exacerbates the disparities in output overhead
among CTAs. Consequently, DTC-SpMM still incurs con-
siderable overhead and does not fully resolve the imbalance
issue, thereby impacting its overall efficiency.
Summary. Due to the irregular nature of sparse data in
SpMM, attempting to balance the workload solely from either
the input or output perspective often leads to an imbalance on
the other side. Furthermore, partitioning data across RowWin-
dows requires atomic operations to ensure the correctness of
results. Given these challenges, an ideal partitioning scheme
should not only achieve input-output co-balance but also main-
tain coarse granularity for sparse data to prevent crossing
RowWindow boundaries, as illustrated in Figure 4c.

3 Voltrix-SpMM Design

Voltrix-SpMM significantly improves sparse matrix-matrix
multiplication through three key innovations. First, it utilizes
a bitwise-level format to compress sparse matrices, which
enables coalesced memory accesses and bank conflict-free de-
coding. Second, a warp-level asynchronous pipelining model
effectively decouples data loading from computation, leading
to greater overlap and improved throughput. Third, its per-
sistent and balanced kernel design ensures co-balanced input
and output workloads, ultimately boosting overall efficiency.

3.1 Warp-level Asynchronous Pipelining
In this subsection, we first introduce the BMat data format
for accelerating sparse matrix loading. Then, we present
the warp-specialized producer-consumer model that enables
multi-tiered data access and asynchronous computation, ef-
fectively hiding dense data loading overhead.

3.1.1 Bit-wise Compressed Data Format

In the design of Tensor Core-based SpMM kernels, SparseA
used in MMA calculations is typically represented as a 16x8
dense matrix. However, to accommodate the high proportion
of zero elements, which can exceed 90% as reported in DTC-
SpMM [10], SparseA is stored in a sparse format during non-
computational phases. For instance, TC-GNN uses the CSR
matrix format, while DTC-SpMM employs the ME-TCF for-
mat. Directly storing SparseA in a dense format would place
undue pressure on memory resources and incur substantial
data copy overhead during kernel execution.

Therefore, the processing of SparseA involves two steps
when transitioning from global memory to fragment: 1. load-
ing SparseA in its sparse format, and 2. converting SparseA
from a sparse to a dense format. In the data loading stage, the
goal is to minimize both the data volume and the number of

0 1

1 01

1

0

0 0

1 1

SparseA

0 1

1 0

0

0 1 1 0

6

Bit-wise Compress

Uint32

0 4 6 7 9 11 16

RowWinowOffset

Condensed Sparse Matrix
Bit-wise Compressed Matrix

6
12
9
6

12
9
6

RowWinow

B
LK

_H

BLK_W

(a) Bit-wise compressed matrix.

T0

T16

Row Major Tiling

T0 T4

Column Major Tiling

0 1 2 3

28 29 30 31

0 1 2 3

28 29 30 31
0 1 2 3

28 29 30 31

0 1 2 3

28 29 30 31
Row+column Major Tiling

(b) Various tiling methods. Different colors represent 128-byte con-
tiguous segments in shared memory, corresponding to one group of
32 banks. The arrows indicate the layout distribution of registers held
by threads in a warp during MMA execution.

Figure 5: Loading and decoding of BMat.

loading instructions. In the conversion stage, the goal is to
avoid bank conflicts during shared memory access.

While TC-GNN and DTC-SpMM have focused primarily
on optimizing one of these aspects, Voltrix-SpMM aims to
comprehensively address all these factors. We propose a novel
data format that is both vectorization-friendly and conflict-
free, termed the bit-wise compressed matrix, or BMat.

How to load? As illustrated in Figure 5a, we use
RowWindowOffset to record the offset of each RowWindow
in the condensed sparse matrix, with each offset correspond-
ing to a SparseA. Each 0 and 1 element of SparseA is repre-
sented by just 1 bit, allowing us to compress a 16x8 matrix
into a 128-bit BMat. Specifically, a BMat is stored using four
Uint32 values, enabling us to access the entire BMat with a
single vectorized load instruction LDGSTS.128.

How to decode? We address the challenge of tiling SparseA
to compress it into four Uint32 values, as different tiling strate-
gies significantly impact conversion efficiency. As illustrated
in Figure 5b, one could employ row-major tiling—as adopted
by the BitTCF format of ACC-SpMM [51]—resulting in four
4×8 sub-blocks, or column-major tiling, which splits it into
four 16x4 sub-blocks. However, we adopt a hybrid row +
column-major tiling approach, segmenting SparseA into four
8x4 sub-blocks. This method offers two key benefits:

1. Efficient decoding by each thread in a Warp using thread
ID-based shifting, where each Uint32 facilitates streamlined
data access. 2. The alignment of each Uint32’s BMat decoding
with its corresponding submatrix in the MMA computation
prevents bank conflicts, enhancing computational efficiency.
This contrasts with other tiling methods that often lead to
cross-bank accesses, marked by red crosses in Figure 5b.

By optimizing both the loading and conversion phases, our

USENIX Association 2025 USENIX Annual Technical Conference 703

Warp Threads

Producer
Warp 2

0 1 2 3

28 29 30 31

0 1 2 3

28 29 30 31
0 1 2 3

28 29 30 31

0 1 2 3

28 29 30 31

BMat Buffer Shared Memory

FragA

DenseB Buffer

0
1
2
3

28
29
30
31

0
1
2
3

28
29
30
31

FragB

6

0 1 1 0

Shift
Operation

0,0
1,1
2,2
3,3

28,28
29,29
30,30
31,31

0,0
1,1
2,2
3,3

28,28
29,29
30,30
31,31

FragC

6 12 9 6 BMat Index Thread
Int4 Vectorization

TMA Instruction

Consumer
Warps

Global Memory

Float2 Vectorization

Asynchronous Memory Copy Through Memory Copy

(GlAdd, ShAdd, Size)

Figure 6: The warp-specialized producer-consumer model.

BMat approach enables more efficient handling of SparseA.
Moreover, the decoded content is directly loaded into registers
for immediate computation. In contrast to previous methods
that required a 16x8-sized Int32 shared memory space, our
strategy only uses four Uint32 values to store the BMat, re-
ducing the demand on shared memory resources.

Non-binary cases. To support non-binary SparseA with
floating-point values, our BMat format only requires an addi-
tional value vector to store the non-zero floating-point values.
Within a warp, the i-th thread (thread Ti) constructs a 32-bit
position mask Mi. The first i+1 bits of this mask are set to 1,
while the remaining 31-i bits are set to 0. This mask is then
bitwise-and with the BMat to obtain Pi. Subsequently, each
thread calculates the bitwise-sum of its Pi using the __popc()
intrinsic. This bitwise-sum determines the offset of its corre-
sponding non-zero element within the value vector.

For instance, consider an 8x4 sparse matrix SparseA con-
taining floating-point values at indices 3, 7, and 20. The BMat
representation for this matrix is B = 0x00100088. For thread
i = 7, the binary mask is M7 = 0x0000000f. The bitwise-
and operation yields P7 = 0x00100088 & 0x0000000f =
0x00000008. The bitwise-sum of P7, calculated as bitwise-
sum(0x00000008), is 1, indicating that the non-zero element
associated with this thread is located at the second position in
the value vector (using zero-based indexing).

Unlike DTC-SpMM, which requires an explicit offset to
track non-zero counts, BMat encodes this information directly.
By performing a bitwise-sum on BMat, we can obtain the non-
zero count without extra metadata. In our method, we only
need to allocate a register within the kernel to accumulate
the total count of non-zero elements. This accumulated count
directly provides the starting offset for accessing the value
vector in the current iteration. This design contributes to more
efficient compression and memory access when using BMat.

3.1.2 Warp-Specialized Producer-Consumer Model

To mitigate the significant data access overhead, particularly
the stalls caused by loading SparseA and DenseB, we imple-
ment an inter-warp pipelining strategy. In our kernel design,
specific warps within a CTA are assigned to load data from

global memory into shared memory, while other warps concur-
rently fetch preloaded data from shared memory to perform
Tensor Core computations. This warp-specialized task alloca-
tion establishes a producer-consumer model within each CTA,
where shared memory serves as a shared buffer to facilitate
the overlap of computation and data access.

How to fetch data? As depicted in Figure 6, the Producer
is tasked with loading data and issuing instructions, managing
the transfer of SparseA and DenseB from global memory to
shared memory. For SparseA, as detailed in Section 3.1.1,
we employ vectorization techniques to copy the BMat to
shared memory using a single INT4 instruction. For DenseB,
each SparseA corresponds to a number of DenseB elements
equal to BLK_W × D, where D represents the dimension
of the dense data. The Producer utilizes its index to locate
these elements in global memory and subsequently transfers
them to shared memory. This transfer leverages asynchronous
TMA instructions for efficiency: 1) TMA requires only a
single instruction to access dense data, reducing the overhead
associated with multiple LDGSTS instructions; 2) TMA allows
just one thread to issue the instruction, enabling all the dense
data corresponding to a SparseA in a CTA to be loaded using
only 8 threads. As a result, a single Warp acts as the Producer
to issue the instructions, minimizing the resource wastage
caused by excessive producer warps.

The Consumer retrieves data from shared memory and
loads it into registers for MMA computation using Tensor
Cores, configured to an MMA size of m16n8k8. For SparseA,
each consumer performs shift operations for decoding. For
DenseB, pending operations are performed to prevent bank
conflicts in shared memory. After completing all SparseA in
a RowWindow, each thread retains two float32 results per
MMA. Consequently, we utilize FLOAT2 write-through in-
structions to directly transfer data from registers to global
memory, effectively bypassing shared memory.

How to pipeline? In Voltrix-SpMM design, shared memory
buffers are managed using a memory barrier (MBarrier) sig-
naling mechanism to efficiently coordinate producer and con-
sumer operations. All barriers are classified as either ‘ready’
or ‘filled’. Initially, ‘ready’ barriers use the SYNCS.ARRIVE
instruction to signal the producer to load data, while ‘filled’
barriers use the SYNCS.TRYWAIT instruction to block the con-
sumer. Once the producer finishes loading, it releases the
‘filled’ barrier with SYNCS.ARRIVE, notifying the consumer to
transfer the preloaded data for computation. Subsequently, the
‘ready’ barrier suspends the producer with SYNCS.TRYWAIT
for the next batch. Conversely, the consumer coordinates with
the producer to wait and refill the buffer.

This creates a ping-pong scheduling mechanism, where
data loading and computation alternate seamlessly across
buffers. As illustrated in Figures 7a and 7b, unlike DTC-
SpMM which only overlaps the loading of SparseA with
MMA computation, our producer-consumer model facilitates
pipelining of MMA with both SparseA and DenseB, allowing

704 2025 USENIX Annual Technical Conference USENIX Association

SPA
0

DEB
0,0

MMA
0,0

DEB
0,1

DEB
1,0

MMA
0,1

DEB
1,1

MMA
1,0

DEB
2,0

MMA
1,1

DEB
2,1

MMA
2,0

DEB
3,0

MMA
2,1

DEB
3,1

MMA
3,0

MMA
3,1

SPA
0

SPA
1

SPA
1

SPA
2

SPA
2

SPA
3

SPA
3

(a) Pipelining for DTC-SpMM.

SPA
0

DEB
0,0

DEB
0,1

DEB
1,0

DEB
1,1

DEB
2,0

DEB
2,1

DEB
3,0

DEB
3,1

SPA
0

SPA
1

SPA
1

SPA
2

SPA
2

SPA
3

SPA
3

MMA
0,0

MMA
0,1

MMA
1,0

MMA
1,1

MMA
2,0

MMA
2,1

MMA
3,0

MMA
3,1

(b) Voltrix-SpMM with single-layer pipelining.
SPA
0

DEB
0

MMA
0,0

SPA
1

DEB
1

SPA
2

DEB
2

SPA
3

DEB
3

MMA
0,1

MMA
1,0

MMA
1,1

MMA
2,0

MMA
2,1

MMA
3,0

MMA
3,1

(c) Voltrix-SpMM with multiple MMA.
SPA
0

DEB
0

SPA
1

DEB
1

MMA
0,0

MMA
0,1

MMA
2,0

MMA
2,1

MMA
1,0

MMA
1,1

SPA
2

DEB
2

SPA
3

DEB
3

MMA
3,0

MMA
3,1

(d) Voltrix-SpMM with multi-tiered pipelining.

Figure 7: Different pipelining strategies.

for enhanced potential to conceal data loading overhead.

3.1.3 Fine-Grained Multi-Tiered Pipelining

Although a single-layer pipeline can mitigate some data load-
ing overhead, it often results in low overlap and suboptimal re-
source utilization. In contrast, our producer-consumer model
enables a higher-level extension of the traditional pipeline,
maximizing hardware resource usage and facilitating seam-
less parallelism between computation and data access. By
deploying a warp to manage multiple MMAs and buffers
within the pipeline, this approach significantly minimizes idle
cycles and enhances overall system throughput.

Multiple MMA. Given that the data access phase incurs
higher stalls than the computation phase—due to the pro-
ducer’s loading speed lagging significantly behind the con-
sumer’s consumption speed—a practical solution is to in-
crease the computation workload for each consumer without
altering the producer’s throughput. A single CTA can manage
a maximum of 512-dimensional dense data, allocated across
32 warps, with each warp handling up to 16 dimensions of
dense data. Consequently, any data exceeding 512 dimensions
necessitates a reloading of SparseA. As depicted in Figure 7a,
a DenseB data chunk is divided into two loading phases, with
the MMA computations also split accordingly. We enable
each consumer to load multiple tiled DenseB data simulta-
neously and conduct multiple MMA operations to enhance
processing efficiency, as shown in Figure 7c. This strategy not
only reduces the instruction issuing overhead associated with
loading but also promotes a higher degree of overlap between
computational tasks.

Multiple buffer. To maximize bandwidth utilization and
enable seamless pipelining, we introduce multiple buffers,
as shown in Figure 7d, to accommodate concurrent MMA
operations. Each buffer operates independently, allowing the

producer to issue data copy instructions for multiple buffers
simultaneously. Once a buffer’s barrier is set to ‘filled’, the
consumer begins to read the data from that buffer for computa-
tion. Upon completing the computation, the consumer imme-
diately accesses data from another buffer, while the previously
used buffer is reloaded with new data. This multi-tiered fine-
grained pipeline, compared to traditional single-layer pipeline,
significantly enhances hardware data copy bandwidth utiliza-
tion. It bridges the gap between data loading and computation
and facilitates more seamless overlap of these processes, ulti-
mately improving overall system performance.

Trade off . While incorporating more MMAs and buffers
enhances pipelining potential, this approach does not guaran-
tee improved performance due to two primary factors:

1. Shared memory is a limited resource. Since it shares
the same hardware storage with the L1 cache, increasing the
number of buffers can reduce cache hit rates for other data,
potentially impacting overall performance.

2. Effective pipelining depends on the ability to simultane-
ously load corresponding DenseB data for different SparseA
matrices within the same RowWindow. If a RowWindow con-
tains only a few SparseA matrices, extensive pipelining might
lead to underutilization of resources.

Consequently, striking a balance between maximizing over-
lap and minimizing resource wastage is crucial. In Voltrix-
SpMM, we observe that the optimal configuration depends
solely on the dimensions of the dense matrix. By pretesting
various configurations for dense data of differing dimensions,
we can identify the most efficient setup for each scenario.

3.2 Persistent and Balanced Kernel
In this subsection, we’ll first present our persistent kernel
design, which eliminates atomic operations while simultane-
ously achieving co-balanced input and output. Following this,
we’ll introduce a greedy and heuristic partitioning strategy
developed to identify workload-balanced partition points.

3.2.1 SM-Aligned and Atomic-Free Partitioning

Software-hardware balance. In Section 2.2.2, we dis-
cussed the challenges of achieving balance in Tensor Core-
accelerated SpMM kernels. A well-balanced GPU kernel
evenly distributes tasks across hardware units. However, in
CUDA, software-level balance among CTAs doesn’t always
ensure hardware-level balance across SMs, since the number
of CTAs may not match the number of SMs, causing idle SMs
during later scheduling stages.

For example, TC-GNN sets CTAs based on RowWindow
rows, while DTC-SpMM assigns a fixed number of SparseA
elements per CTA. Both adjust CTAs dynamically based on
sparse matrix structure. Given millions of SparseA elements,
CTAs often far outnumber SMs, increasing overhead associ-
ated with CTAs scheduling and prologue/epilogue execution.

USENIX Association 2025 USENIX Annual Technical Conference 705

Results

Dim

N
U

M
_R

O
W

W

Flatten 0 NUM_ROWWxDim/16
......

Task_start Task_end

...

...

Partition Point RowWindow Point
SM_count - 1 Points

(a) Illustration of task partitioning.

Producer

ConsumerScheduler

S1 S2 S3 S4 S5
Remaining

TasksStep

TMA_Load_Size

Num_MMA

Shared
Memory

(b) Task coordination by the scheduler.

Figure 8: SM-aligned and atomic-free partitioning.

To address this, we adopt an SM-aligned kernel design by
fixing the number of CTAs to match the number of SMs. This
persistent approach offers two key benefits:

1. It ensures that the software-level distribution of tasks
(CTAs) corresponds directly with the hardware-level distri-
bution (SMs). This alignment results in a balanced execution
with no idle units.

2. It accommodates the high number of SparseA elements
relative to the available SMs, allowing the kernel to run per-
sistently until all tasks are completed. This continuous opera-
tion mode reduces the frequent launching and termination of
kernel CTAs, which typically incur significant prologue and
epilogue execution overhead.

Input-output co-balance. As detailed in Section 2.2.2, TC-
GNN suffers from output imbalance, causing uneven data
loading and computation across CTAs. DTC-SpMM’s input
balancing mitigates SparseA distribution issues but introduces
atomic addition overhead and output imbalance.

To address these challenges, we propose an atomic-free par-
tition method that balances both input and output while elim-
inating atomic operations. This dual-perspective approach
simplifies partitioning and improves computational efficiency.

On the input side, SparseA is partitioned at the RowWin-
dow level to keep data contiguous and complete within each
partition, eliminating the need for atomic operations. On the
output side, the dense matrix is partitioned by its dimensions
to ensure balanced output distribution. This fine-grained, flex-
ible partitioning fits naturally with our SM-aligned design,
allowing the kernel to persist until all tasks finish. As a result,
the kernel must continuously track its progress within each
RowWindow and monitor remaining tasks, which introduces
complexity in boundary detection.

To manage this, we integrate a scheduler within our
producer-consumer model tailored to the balanced partition-
ing method. Task partitioning is based on result allocation, as
shown in Figure 8a, by flattening the result matrix into a 1D
vector. The total task count equals the number of RowWin-
dow rows times the result matrix’s dimension. We divide
these tasks evenly across M SMs by selecting M − 1 split
points, using a single warp MMA operation (i.e., 16) as the

partition unit for finer granularity.
By tracking each task’s start and end points, the scheduler

effectively defines task and RowWindow boundaries. At run-
time (as shown in Figure 8b), tasks are divided into stages
aligned with RowWindow boundaries. The scheduler com-
putes remaining tasks in the current stage and instructs the
producer how much data to load via TMA. It also dynami-
cally adjusts the number of MMA operations per warp in the
consumer accordingly.

While this segmentation removes the need for atomic addi-
tions in output, it may require reloading SparseA at boundary
stages with incomplete tasks (i.e., tasks that do not fully form
a RowWindow). However, since RowWindows typically con-
tain many more rows than SMs and SparseA is efficiently
loaded via the BMat format, the overhead of this secondary
loading is effectively negligible.

Algorithm 1: Greedy and heuristic-based partition
point search algorithm

input :Total cost: Call , SM counts: M
output :Partitioned points S = {0,S1 . . . ,SM ,Call}

1 Calculate the average cost Cavg = Call/M .
2 for Si ∈ S , j← 1 to M do
3 Move the Si points forward until the accumulated cost

between Si−1 and Si exceeds Cavg.
4 Calculate column position of the end point Col = Si%D
5 if Col < D/8 then
6 Si = Si−Col
7 end
8 else if Col > D ∗7/8 then
9 Si = Si+D−Col

10 end
11 end

3.2.2 Input-Output Co-Balance Searching

With our SM-aligned and atomic-free partitioning, the kernel
balancing problem is simplified by dividing all tasks evenly
among the SMs to ensure balanced workloads. To evaluate
different splitting methods, we propose a cost model for the
entire SpMM operation:

Call =
RW

∑
i=0

Num_SPA(i) · c f1 ·D +RW · c f2 ·D + c f3 (1)

The first term captures input costs across all RowWindows,
including overhead from SparseA loading and computation,
scaled by D, the dense matrix dimension. The second term
represents output costs from write-back operations, with RW
as the number of RowWindows. Coefficients c f1, c f2, and c f3
quantify the costs of input, output, and fixed kernel overheads,
respectively, and are tuned to reflect hardware characteristics.

In the experimental section 4.7, we will measure these three
coefficients to validate the accuracy of our cost model. From
this model, we derive the optimization objective, which is
formulated as follows:

706 2025 USENIX Annual Technical Conference USENIX Association

S∗ = argmin
S

(
max

{
Ci(S)

∑ j C j(S)

∣∣∣∣i}+P(S)
)

(2)

Here, S denotes a partitioning scheme, and P(S) is the
penalty from crossing RowWindow boundaries. To find the
optimal scheme S∗, we design a greedy, heuristic-based search
algorithm, detailed in Algorithm 1.

The algorithm starts by computing the ideal per-SM cost
from the total task cost (Line 1). For each SM, it incrementally
extends the partition endpoint until the accumulated cost ex-
ceeds this average (Lines 3–4). To reduce boundary-crossing
overhead, partition points near RowWindow boundaries are
adjusted to align with them (Lines 5–10). Finally, a genetic
algorithm [8, 15] refines these points for a globally optimal
solution, requiring only one iteration in practice.

Utilizing the greedy and heuristic-based partition point
search algorithm, we aim to balance the tasks across each
SM as evenly as possible while minimizing the additional
overhead incurred by crossing RowWindow boundaries.

4 Evaluation

Voltrix-SpMM is a pure CUDA-based [28] library with
around 5k lines of code and no third-party dependencies.
It extensively utilizes the C++ template metaprogramming
paradigm to adapt to our multi-tiered pipelining design, mak-
ing the code highly configurable and minimizing kernel run-
time overhead. We employ inline PTX instructions to leverage
specific hardware features of the Hopper GPU [30], including
MMA, TMA, and MBarrier, to maximize efficiency.

Voltrix-SpMM is integrated into the popular machine learn-
ing framework PyTorch 2.5 [33] and can be easily invoked
from both Python and C++ backends using common sparse
matrix formats like CSR and COO. Voltrix-SpMM has been
open-sourced at github.com/YaqiXia/Voltrix-SpMM, en-
couraging community use and contributions.

4.1 Experimental Setup
Platform. Our experiments are conducted on a Hopper H100
PCIe GPU [30], equipped with 456 Tensor Core units, 14,592
CUDA cores, and 80 GB of graphics memory.
Dataset. As detailed in Table 1, we employ 12 real-world
graph datasets, categorized into two types: Type I datasets,
with a smaller average row length (less than 20), and Type
II datasets, with an average row length close to 500. This
distinction in row length influences the data volume in each
RowWindow’s TCU blocks, impacting efficiency. To evaluate
the adaptability of different methods, our selection includes
datasets with varied average row lengths. We also incorporate
the SuiteSparse dataset [7], a comprehensive collection of
sparse matrix benchmarks, for extended validation.
Methodology. We benchmark SpMM against state-of-the-
art CUDA Core-based and Tensor Core-based methods. The

Table 1: Dataset Statistics

Type Dataset Abbr. Vertex Edge

I

amazon0505 A5 410,236 4,878,875
DD DD 334,925 1,686,092
PPI PI 56,944 818,716
amazon0601 A1 403,394 3,387,388
com-amazon CN 334,863 1,851,744
Yeast YT 1,714,644 3,636,546
YeastH YH 3,139,988 6,487,230
web-BerkStan WN 685,230 7,600,595

II
FraudYelp-RSR FR 45,914 6,805,486
Reddit RT 232,965 114,848,857
ddi DI 4267 2,140,089
protein PN 132,534 79,255,038

CUDA Core baselines include Sputnik [12], GE-SpMM [17],
RoDe [32], and cuSPARSE [24], while the Tensor Core base-
lines include TC-GNN [43] and DTC-SpMM [10]. For GNN
testing, comparisons are made with GNNAdvisor [42], TC-
GNN, and the widely-used DGL framework [2]. Our GNN
model features two GCN [20] convolutional layers, each with
a hidden dimension of 256.

4.2 SpMM Performance

First, we evaluate the performance of Voltrix-SpMM against
other SpMM kernels using real-world graph datasets and the
SuiteSparse collection to provide the sparse matrices on the
left-hand side. The dimensions of the dense matrices on the
right-hand side are set to 256, 512, and 1024, respectively.

Graph datasets. As illustrated in Figure 9, Voltrix-SpMM
achieves superior performance across nearly all graph datasets.
It outperforms cuSPARSE with an average speedup of 2.7x
and surpasses the state-of-the-art CUDA Core-based method,
RoDe, by the 1.9x speedup. Against the Tensor Core-based
method, DTC-SpMM, Voltrix-SpMM delivers an average
speedup of 1.8x, demonstrating its high efficiency.

Voltrix-SpMM particularly excels as the dimension of the
dense matrix increases, achieving speedups of 2.4x, 2.8x, and
3.0x over cuSPARSE for dimensions of 256, 512, and 1024,
respectively. This improvement is attributed to our multiple
MMA and buffer design, which can load more data per op-
eration at higher dimensions, thereby reducing instruction
overhead and making more effective use of bandwidth.

Furthermore, while DTC-SpMM and TC-GNN also uti-
lize Tensor Cores for acceleration, their performance lags
behind the CUDA Core-based RoDe by 2% and 69%, respec-
tively. This highlights that despite the high computational
throughput of Tensor Cores, significant data loading overhead
can restrict their performance, leading to underutilized and
‘starved’ Tensor Cores. In contrast, Voltrix-SpMM overcomes
these limitations with its warp-level asynchronous pipelining
and balanced workload design, effectively unlocking the full

USENIX Association 2025 USENIX Annual Technical Conference 707

github.com/YaqiXia/Voltrix-SpMM

256 512 1024
2.09x - 2.28x speedup

1.0

2.0

amazon0505

256 512 1024
1.79x - 2.12x speedup

1.0

2.0
DD

256 512 1024
1.06x - 1.41x speedup

0.5

1.0

1.5
ppi

256 512 1024
2.18x - 2.34x speedup

1.0

2.0

reddit

256 512 1024
2.29x - 2.54x speedup

1.0

2.0

amazon0601

256 512 1024
2.74x - 3.08x speedup

1.0

2.0

3.0

CU
D

A
ER

RO
R

CU
D

A
ER

RO
R

CU
D

A
ER

RO
R

CU
D

A
ER

RO
R

com-amazon

256 512 1024
1.78x - 2.89x speedup

1.0

2.0

3.0 ddi

256 512 1024
6.50x - 11.12x speedup

5.0

10.0
FraudYelp-RSR

256 512 1024
1.96x - 2.27x speedup

1.0

2.0
web-BerkStan

256 512 1024
2.16x - 2.24x speedup

1.0

2.0
protein

256 512 1024
1.89x - 2.15x speedup

1.0

2.0

CU
D

A
ER

RO
R

CU
D

A
ER

RO
R

CU
D

A
ER

RO
R

CU
D

A
ER

RO
R

CU
D

A
ER

RO
R

YeastH

256 512 1024
1.92x - 2.21x speedup

1.0

2.0

CU
D

A
ER

RO
R

CU
D

A
ER

RO
R

Yeast

Sp
ee

du
p

ov
er

 c
uS

PA
RS

E

cuSPARSE Sputnik-SpMM GE-SpMM RoDe-SpMM TC-GNN DTC-SpMM Voltrix-SpMM

Figure 9: Performance comparison on graph datasets, with each subplot showing Voltrix-SpMM’s speedup over cuSPARSE.

Figure 10: Speedup comparison on SuiteSparse: Box plot shows the overall distribution, while line chart shows detailed speedup.

potential of Tensor Cores for SpMM. While some CUDA
Core-based methods, such as Sputnik and RoDe, encounter
CUDA errors under specific conditions due to shared memory
limitations, Voltrix-SpMM consistently adapts to all scenarios,
thanks to its robust persistent kernel design.

SuiteSparse datasets. As shown in Figure 10, Voltrix-
SpMM achieves average speedups of 2.5x compared to cuS-
PARSE. These results not only outperform all other meth-
ods but also demonstrate that the effectiveness of our de-
sign increases with the matrix dimensions, consistent with
results observed on graph datasets. In the SuiteSparse tests,
DTC-SpMM and TC-GNN still fall short of the performance
achieved by the state-of-the-art CUDA Core-based method,
RoDe, lagging by 11% and 70%, respectively. In contrast,
Voltrix-SpMM achieves a 1.6x speedup over RoDe. This un-
derscores that existing Tensor Core-based designs typically do
not outperform CUDA Core-based methods. Our work is the
first to fully leverage the capabilities of Tensor Cores, achiev-
ing speedups that surpass those achievable with traditional
CUDA Core-based methods.

Mirco-level analysis. To provide a more granular under-

standing of the performance characteristics of various SpMM
implementations, we augment our evaluation with micro-level
hardware analysis. Using NVIDIA Nsight Compute, we col-
lected key metrics such as register allocation, DRAM reads
(GB), bank conflicts, and Tensor Core Unit (TCU) pipe utiliza-
tion, as shown in Figure 12. These measurements are based
on experiments using the Reddit dataset.

Results show Voltrix-SpMM consistently outperforms
DTC-SpMM and RoDe-SpMM across multiple hardware met-
rics. It uses fewer registers and consumes less memory band-
width, reflecting the efficiency of our bit-wise compressed
data format, BMat.

Furthermore, Voltrix-SpMM exhibits a competitive L2
cache hit rate and significantly fewer bank conflicts, demon-
strating effective memory access management, especially dur-
ing the BMat decoding phase. It also demonstrates a competi-
tive L2 hit rate and significantly fewer bank conflicts, high-
lighting its effective memory access management, particularly
in optimizing BMat decoding phase.

Additionally, Voltrix-SpMM achieves the highest TCU pipe
utilization, demonstrating superior pipeline efficiency and

708 2025 USENIX Annual Technical Conference USENIX Association

0.0

0.5

1.0

No
rm

al
ize

d
Ti

m
e

DD

0.0

0.5

1.0

ppi

0.0

0.5

1.0

amazon0505

0.0

0.5

1.0

1.5
ddi

0.0

1.0

2.0

3.0

reddit

0.0

0.5

1.0

1.5
protein

1.0

1.2

1.5

1.8

1.0

2.0

3.0

1.0

2.0

3.0

0.00

0.05

0.0

20.0

40.0

0.00
0.01

0.0

100.0

200.0

300.0

0.00

0.03

0.0

25.0

50.0

75.0

Sp
ee

du
p

Baseline +Single-layer pipelining +BMat data format +Multi-tiered pipelining +Balanced partitioning

Figure 11: Performance Breakdown: The left axis shows normalized time, and the right axis shows speedup.

Register DRAM Read(GB) L2 Hit Rate Bank Conflicts TCU Utilization
0.0

0.2

0.5

0.8

1.0

No
rm

al
ize

d
Va

lu
es

163.0 53.5 80.0

373M

0.0

43.0

49.1
59.6

631M

8.5

33.0

33.4

72.7

10M

13.9
RoDe-SpMM DTC-SpMM Voltrix-SpMM

Figure 12: Micro-level performance comparison.

more effective use of GPU tensor cores. In contrast, RoDe-
SpMM, limited to CUDA cores, shows zero TCU activity.

In summary, Voltrix-SpMM outperforms the other imple-
mentations in terms of memory efficiency and hardware uti-
lization, making it the most optimized choice for SpMM tasks.

4.3 SpMM Performance Breakdown

We assess the performance contributions of Voltrix-SpMM’s
core components. Experiments are conducted on the graph
datasets with dense matrix dimensions set to 256, using TC-
GNN as the baseline. We incrementally integrate Voltrix-
SpMM’s components to gauge the performance improve-
ments, which are illustrated in Figure 11.

Initially, we integrate the bulk asynchronous data transfer
instruction, TMA, to establish a single layer of pipelining.
However, in most datasets, this addition results in a perfor-
mance degradation, with an average decrease of 32.6%. This
occurs because, while the TMA instruction can transfer a
large volume of data per operation, its latency is relatively
high. Therefore, with the data dimension set to 256, each op-
eration is limited to transferring only 256 float32 elements,
restricting the potential for bulk data transfer. Additionally,
the single-layer pipelining provides minimal overlap, further
reducing the overall benefits of pipelining.

Adding our bit-wise compressed data format (BMat), we
observe over a 77x average speedup, with results on Reddit
reaching up to 384x. This significant improvement is due
to datasets like Reddit, Protein, and ddi having larger aver-
age row lengths, which results in more SparseA blocks per
RowWindow after TCU compression. In comparison, TC-
GNN struggles with inefficient loading and transformation of
SparseA, causing substantial delays. Voltrix-SpMM, with its
bit-wise compressed data format, leverages vectorized load-

GNNAdvisor TC-GNN DTC-SpMM GE-SpMM Voltrix-GNN
0

1

2

Sp
ee

du
p

Figure 13: End-to-end GNN testing on different graph
datasets: The vertical axis represents the speedup over DGL.

ing and a conflict-free transformation design, dramatically
reducing the processing time for SparseA.

Next, incorporating our multi-tiered pipelining yields an
average 2.1x speedup. Although bulk asynchronous trans-
fers introduce some overhead, Voltrix-SpMM counteracts this
through multiple MMA operations and buffers, which amor-
tize the instruction overhead while optimizing bandwidth
utilization. Our warp-specialized producer-consumer model
further facilitates fine-grained, multi-tiered pipelining, achiev-
ing higher levels of overlap and yielding significant benefits.

Lastly, integrating our persistent kernel design results in
up to a 1.3x speedup. On datasets like Reddit, which fea-
ture more uneven data distributions, we observe even greater
improvements, showcasing our balance search algorithm’s
efficacy in addressing challenges associated with uneven data
distribution on input-output balance.

Overall, through the strategic design of these four compo-
nents, Voltrix-SpMM achieves speedups ranging from 2.0x
to 304x, underscoring the effectiveness of each module in
enhancing SpMM performance.

4.4 GNN End-to-end Training
We evaluate the performance of Voltrix-SpMM in end-to-end
GNN training, which we refer to as Voltrix-GNN, exploring
its potential in machine learning tasks. We use GCN [20],
one of the most widely used GNN models, which comprises
multiple graph convolutional layers. Each layer’s computation
primarily involves a SpMM operation and a GEMM operation,
indicating that any computational gaps in SpMM may be
balanced by other operations during training.

The experimental results in Figure 13 use DGL [2], which
leverages cuSPARSE library for SpMM acceleration, as the
baseline. Voltrix-GNN consistently outperforms all baselines

USENIX Association 2025 USENIX Annual Technical Conference 709

256 512
85% - 97% overlap rate

0.0

0.5

1.0
ddi

256 512
80% - 83% overlap rate

0.0

0.5

1.0
DD

256 512
63% - 94% overlap rate

0.0

0.5

1.0
ppi

Fully-Sync Voltrix-Async Fully-Async

Figure 14: Overlap rate testing: The horizontal axis shows
dimensions, and the vertical axis shows normalized speedup.

across diverse graph datasets, with average speedups of 1.55×,
1.77×, 4.01×, 1.45×, and 1.29× over DGL, GNNAdvisor, TC-
GNN, DTC-SpMM, and GE-SpMM, respectively. These find-
ings underscore the applicability and outstanding performance
of Voltrix-SpMM in GNN training tasks.

4.5 Overlap Rate of Pipelining
We investigate the overlap rate of Voltrix-SpMM’s pipelining
strategy. Profiling the kernel’s time trace is challenging, so
we adopt an approximation method to determine the kernel’s
overlap rate: First, we implement a configuration using a sin-
gle buffer, termed Fully-Sync, where the consumer begins
computation only after production has completed, forcing
the kernel to operate serially without any pipelining. Next,
we configure the kernel to run completely asynchronously
by removing all MBarrier instructions, which we refer to as
Fully-Async. This scenario represents the upper bound of
our kernel’s performance. We define the overlap rate, Ro, as:

Ro =
T (Fully_Sync)−T (Voltrix_Async)
T (Fully_Sync)−T (Fully_Async)

×100% (3)

Here, Voltrix-Async refers to our method. As depicted
in Figure 14, Voltrix-SpMM achieves peak overlap rates of
85% and 97% at 256 and 512 dimensions, respectively. These
results demonstrate the effectiveness of our warp-specialized
asynchronous data loading pipelining. With near-seamless
overlap, Voltrix-SpMM significantly reduces the data loading
overhead, showcasing its high efficiency.

4.6 Workload Balance Analysis
Active SM cycles analysis. To evaluate the effectiveness of
our workload balancing design, we analyze the distribution of
active SM cycles using runtime data from both non-balanced
and balanced kernel executions, as shown in Figure 15. The
impact of our approach varies across datasets. On imbalanced
workloads like ddi, our method significantly improves SM
utilization and reduces kernel time by 8.6%. In contrast, for
already balanced datasets like ppi, the benefit is marginal,
with only a 0.4% increase in kernel time.

While the balancing introduces minor overhead, it is largely
hidden by the persistent kernel design, which overlaps epi-
logue execution with ongoing computation. As a result,our

0 10 20 30 40 50 60 70 80 90 100 1100.0

0.2

0.5

0.8

1.0

No
rm

al
ize

d
Cy

cle
s

Before Balance
Kernel Time: 0.233 ms

SM Time Idle Gap

0 10 20 30 40 50 60 70 80 90 100 1100.0

0.2

0.5

0.8

1.0

After Balance
Kernel Time: 0.213 ms

SM Time Idle Gap

0 10 20 30 40 50 60 70 80 90 100 1100.0

0.2

0.5

0.8

1.0

No
rm

al
ize

d
Cy

cle
s

Kernel Time: 0.226 ms
SM Time Idle Gap

0 10 20 30 40 50 60 70 80 90 100 1100.0

0.2

0.5

0.8

1.0

Kernel Time: 0.227 ms
SM Time Idle Gap

ddi

ppi

Figure 15: SM-Level active cycle distribution comparison.

0 4 8 16 32 48 64 80 96128
Std_blocks

101

Ti
m

e
/ (

m
s)

TC-GNN
DTC-SpMM
Voltrix-SpMM

Figure 16: Sensitivity.

0 2 4
Actual Time / (ms)

0

1

2

3

4

5

Pr
ed

ict
ed

 T
im

e
/ (

m
s) Perfect Line

Figure 17: Time alignment.

method delivers clear gains on imbalanced workloads while
preserving original performance on balanced ones.

Sensitivity analysis. We investigate the balance of differ-
ent methods to irregular distributed data. By configuring the
number of SparseA elements in each RowWindow, we gener-
ate sparse datasets with varying levels of uniformity. Using a
Gamma distribution [25], we create datasets with a mean of
256 and variances ranging from 0 to 192, and evaluate their
performance.

As shown in Fiure 16, under different variance distributions,
our method outperforms both DTC-SpMM and TC-GNN in
terms of speed. Moreover, as the distribution of SparseA be-
comes increasingly uneven,our method remains stable with
only a 4% performance drop, while TC-GNN experiences a
significant 47% degradation. These results demonstrate the
superiority of Voltrix-SpMM in balancing I/O while avoiding
the high overhead of atomic operations.

4.7 Validation of Cost Model
We evaluate the effectiveness of the cost model outlined in
Equation 1, utilizing kernel execution time as the cost mea-
sure. To understand the relationship between time and the two
variables, Num_SPA and RW , we generate datasets with vary-
ing values for these parameters. Given the linear relationship
postulated in our model between the cost and these variables,
we employ linear regression for fitting, as demonstrated as:

T = α1 ·Num_SPA+α2 ·RW +α3 (4)

710 2025 USENIX Annual Technical Conference USENIX Association

Here, α1, α2, and α3 represent the coefficients of the linear
regression model, correlating positively with c f1, c f2, and c f3,
respectively. We divide the data into a training set (80%) and
a testing set (20%). Using this model, we predict values on the
testing set and compare these predictions to the actual values.
This comparison is visually represented in Figure 17, where
the predicted values are plotted against the actual values on
the x and y axes, respectively. The discrepancy between them
is indicated by the size of the scatter markers, with smaller
sizes denoting a closer fit to the perfect prediction line.

As depicted in Figure 17, nearly all points closely align
with the ideal prediction line. Moreover, we calculate the
coefficient of determination, R2 = 0.92, indicating a strong
linear relationship. An R2 value exceeding 0.9 reaffirms the
high accuracy of our model’s fit to the data.

5 Related Work

CUDA Core-accerateled SpMM. Recently, numerous stud-
ies have focused on optimizing SpMM computation on
GPUs, primarily utilizing CUDA Cores [12,16–18,26,32,34].
NVIDIA’s official sparse matrix library, cuSPARSE [24], of-
fers highly optimized GPU-accelerated routines for SpMM.
Merge-SpMM [48] accelerates SpMM using the CSR format,
emphasizing instruction-level parallelism. Sputnik [12] intro-
duces a 1D tiling scheme that enhances operand reuse and
employs subwarp tiling and reverse-offset memory alignment
to optimize vector memory access for misaligned addresses.
GE-SpMM [17] integrates a coalesced row caching method
for efficient memory access and a coarse-grained warp map-
ping method to reduce threading overheads. GNNAvisor [42]
proposes an adaptive runtime system with a novel 2D work-
load management strategy to improve GPU utilization. DA-
SpMM [6] employs a data-aware heuristic GPU kernel, while
HP-SpMM [9] uses dynamic task partitioning and hierarchi-
cal vectorized memory access. Lastly, RoDe [32] introduces a
row decomposition-based method that enables efficient com-
putation, load balancing, and fine-grained pipelining, setting
a new performance benchmarks for SpMM.

Collectively, these methods optimize SpMM across var-
ious dimensions but often overlook the potential of Tensor
Cores for accelerating computations. This oversight limits
their ability to leverage the high throughput of modern GPUs.

Tensor Core-accerateled SpMM. With the advancement
of Tensor Core computational throughput, an increasing num-
ber of studies have focused on leveraging Tensor Cores to
accelerate SpMM [1, 5, 23, 41, 44]. However, most of these ef-
forts target structured SpMM, which assumes a predefined pat-
tern for the non-zero element distribution in sparse matrices,
thereby limiting their applicability in real-world scenarios.

In contrast, TC-GNN addresses the more challenging ap-
plication of unstructured SpMM on Tensor Cores. By intro-
ducing a sparse graph translation method that compresses
sparse matrices into Tensor Core-sized TCU blocks, TC-

GNN enables the efficient mapping of SpMM workloads
to Tensor Core units. This approach has been further inte-
grated into SparseTIR [49]. Despite its advances, however,
TC-GNN’s performance is compromised by inefficient data
loading, which leaves the Tensor Cores underutilized. DTC-
SpMM [10] attempts to enhance efficiency through several
optimization methods, such as bypassing shared memory to
accelerate dense data loading and implementing a pipeline
arrangement to overlap sparse data loading and computa-
tion. However, the intra-warp asynchronous pipeline of DTC-
SpMM struggles with the overhead caused by a large number
of instructions and the costs of intra-warp synchronization.

While ACC-SpMM [51], FlashSparse [36], Groot [4], and
SpInfer [11] make valuable contributions and optimizations
beyond DTC-SpMM, they all operate within the same asyn-
chronous design paradigm. To address these limitations,
Voltrix-SpMM employs a multi-tiered inter-warp pipeline
for enhanced computational overlap through warp specializa-
tion and utilizes bulk asynchronous data loading via TMA to
efficiently handle high-dimensional data.

Libraries like cuBLAS [27], CUTLASS [31], and
FlashAttention-3 [35] optimize GEMM operation using warp
specialization and persistent kernel design, but the unique
challenges posed by the sparse and irregular workload of
SpMM make these approaches inapplicable.

6 Conclusion

In this paper, we introduced Voltrix-SpMM, a novel GPU
kernel design that enhances SpMM on Tensor Cores. Voltrix-
SpMM maximizes the computational potential of Tensor
Cores for unstructured SpMM tasks. Its innovations in-
clude a new compression format for sparse matrices, bulk
asynchronous data loading and a warp-specialized producer-
consumer model, which streamline data handling and compu-
tation. Additionally, its SM-aligned, atomic-free partitioning
mechanism ensures balanced workload distribution across
SMs. The impact of Voltrix-SpMM is significant, achieving
an average 1.8x improvement over DTC-SpMM, 1.7x over
RoDe, and a 2.0x increase in end-to-end GNN training speeds,
proving its effectiveness in real-world applications.

7 Acknowledgment

We sincerely thank all reviewers for their constructive com-
ments. Special thanks to our shepherd Tim Harris for his
patient guidance and valuable suggestions through multiple
review rounds, which greatly improved this paper’s quality.

This work was supported by the National Key Research
and Development Program of China (2023YFE0205700), the
National Natural Science Foundation of China (62341410),
and the Science and Technology Development Fund, Macao
S.A.R (FDCT) project (0078/2023/AMJ).

USENIX Association 2025 USENIX Annual Technical Conference 711

References

[1] Hartwig Anzt, Stanimire Tomov, and Jack J Dongarra.
Accelerating the lobpcg method on gpus using a blocked
sparse matrix vector product. In SpringSim (HPS), pages
75–82, 2015.

[2] AWS. Deep graph library. https://github.com/
dmlc/dgl, 2024.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan.
Latent dirichlet allocation. Journal of machine Learning
research (JMLR), 3(Jan):993–1022, 2003.

[4] YuAng Chen, Jiadong Xie, Siyi Teng, Wenqi Zeng, and
Jeffrey Xu Yu. Groot: Graph-centric row reordering with
tree for sparse matrix multiplications on tensor cores. In
Proceedings of the Twentieth European Conference on
Computer Systems (EuroSys), pages 803–817, 2025.

[5] Zhaodong Chen, Zheng Qu, Liu Liu, Yufei Ding, and
Yuan Xie. Efficient tensor core-based gpu kernels for
structured sparsity under reduced precision. In SC21:
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–14, 2021.

[6] Guohao Dai, Guyue Huang, Shang Yang, Zhongming
Yu, Hengrui Zhang, Yufei Ding, Yuan Xie, Huazhong
Yang, and Yu Wang. Heuristic adaptability to in-
put dynamics for spmm on gpus. In Proceedings of
the ACM/IEEE Design Automation Conference (DAC),
pages 595–600, 2022.

[7] Timothy A Davis and Yifan Hu. The university of florida
sparse matrix collection. ACM Transactions on Mathe-
matical Software (TOMS), 38(1):1–25, 2011.

[8] Kalyanmoy Deb. Multi-objective optimisation using
evolutionary algorithms: an introduction. In Multi-
objective evolutionary optimisation for product design
and manufacturing, pages 3–34. Springer, 2011.

[9] Ruibo Fan, Wei Wang, and Xiaowen Chu. Fast sparse
gpu kernels for accelerated training of graph neural net-
works. In Proceedings of the IEEE International Par-
allel and Distributed Processing Symposium (IPDPS),
pages 501–511. IEEE, 2023.

[10] Ruibo Fan, Wei Wang, and Xiaowen Chu. Dtc-spmm:
Bridging the gap in accelerating general sparse matrix
multiplication with tensor cores. In Proceedings of the
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), pages 253–267, 2024.

[11] Ruibo Fan, Xiangrui Yu, Peijie Dong, Zeyu Li, Gu Gong,
Qiang Wang, Wei Wang, and Xiaowen Chu. Spinfer:
Leveraging low-level sparsity for efficient large lan-
guage model inference on gpus. In Proceedings of the
Twentieth European Conference on Computer Systems
(EuroSys), pages 243–260, 2025.

[12] Trevor Gale, Matei Zaharia, Cliff Young, and Erich
Elsen. Sparse gpu kernels for deep learning. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–14.
IEEE, 2020.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs. In Proceed-
ings of the Advances in Neural Information Processing
Systems (NeurIPS), 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 770–778,
2016.

[15] John H Holland. Genetic algorithms. Scientific ameri-
can, 267(1):66–73, 1992.

[16] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa,
Kunal Singh, and P Sadayappan. Adaptive sparse tiling
for sparse matrix multiplication. In Proceedings of the
ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 300–314, 2019.

[17] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong
Yang. Ge-spmm: General-purpose sparse matrix-matrix
multiplication on gpus for graph neural networks. In
SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–12. IEEE, 2020.

[18] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi,
and Xipeng Shen. Understanding and bridging the gaps
in current gnn performance optimizations. In Proceed-
ings of the 26th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP),
pages 119–132, 2021.

[19] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
naacL-HLT, volume 1, page 2, 2019.

[20] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
Proceedings of the International Conference on Learn-
ing Representations (ICLR), 2016.

712 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/dmlc/dgl
https://github.com/dmlc/dgl

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), 2012.

[22] Andrew S Lan, Andrew E Waters, Christoph Studer, and
Richard G Baraniuk. Sparse factor analysis for learning
and content analytics. The Journal of Machine Learning
Research (JMLR), 15(1):1959–2008, 2014.

[23] Shigang Li, Kazuki Osawa, and Torsten Hoefler. Ef-
ficient quantized sparse matrix operations on tensor
cores. In SC22: International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pages 1–15. IEEE, 2022.

[24] Maxim Naumov, L Chien, Philippe Vandermersch, and
Ujval Kapasi. Cusparse library. In GPU Technology
Conference, volume 12, 2010.

[25] John Ashworth Nelder and Robert WM Wedderburn.
Generalized linear models. Journal of the Royal Statis-
tical Society Series A: Statistics in Society, 135(3):370–
384, 1972.

[26] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song,
Zhou Jin, and Weifeng Liu. Tilespgemm: A tiled al-
gorithm for parallel sparse general matrix-matrix mul-
tiplication on gpus. In Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 90–106, 2022.

[27] Nvidia. cublas. https://developer.nvidia.com/
cublas, 2023.

[28] Nvidia. Cuda. https://docs.nvidia.com/cuda/
cuda-toolkit-release-notes/index.html, 2023.

[29] Nvidia. Tensor core. https://www.nvidia.cn/
data-center/tensor-cores/, 2023.

[30] Nvidia. Nvidia hopper architecture. https:
//www.nvidia.com/en-us/data-center/
technologies/hopper-architecture/, 2024.

[31] Nvidia. Cutlass. https://github.com/NVIDIA/
cutlass, 2025.

[32] Meng Pang, Xiang Fei, Peng Qu, Youhui Zhang, and
Zhaolin Li. A row decomposition-based approach for
sparse matrix multiplication on gpus. In Proceedings of
the ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages
377–389, 2024.

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

Pytorch: an imperative style, high-performance deep
learning library. In Proceedings of the Advances in Neu-
ral Information Processing Systems (NeurIPS), pages
8026–8037, 2019.

[34] Hongwu Peng, Xi Xie, Kaustubh Shivdikar, Md Amit
Hasan, Jiahui Zhao, Shaoyi Huang, Omer Khan, David
Kaeli, and Caiwen Ding. Maxk-gnn: Extremely fast gpu
kernel design for accelerating graph neural networks
training. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
683–698, 2024.

[35] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay
Thakkar, Pradeep Ramani, and Tri Dao. Flashattention-
3: Fast and accurate attention with asynchrony and low-
precision. arXiv preprint arXiv:2407.08608, 2024.

[36] Jinliang Shi, Shigang Li, Youxuan Xu, Rongtian Fu,
Xueying Wang, and Tong Wu. Flashsparse: Minimizing
computation redundancy for fast sparse matrix multipli-
cations on tensor cores. In Proceedings of the 30th ACM
SIGPLAN Annual Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP), pages 312–325,
2025.

[37] Jie Sun, Li Su, Zuocheng Shi, Wenting Shen, Zeke Wang,
Lei Wang, Jie Zhang, Yong Li, Wenyuan Yu, Jingren
Zhou, et al. Legion: Automatically pushing the envelope
of multi-gpu system for billion-scale gnn training. In
2023 USENIX Annual Technical Conference (USENIX
ATC), pages 165–179, 2023.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in Neural Information Processing Systems (NeurIPS),
30, 2017.

[39] Hulin Wang, Yaqi Xia, Donglin Yang, Xiaobo Zhou, and
Dazhao Cheng. Harnessing inter-gpu shared memory
for seamless moe communication-computation fusion.
In Proceedings of the 30th ACM SIGPLAN Annual Sym-
posium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 170–182, 2025.

[40] Weihu Wang, Yaqi Xia, Donglin Yang, Xiaobo Zhou,
and Dazhao Cheng. Accelerating distributed dlrm train-
ing with optimized tt decomposition and micro-batching.
In International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), pages
1–15. IEEE, 2024.

[41] Yuke Wang, Boyuan Feng, and Yufei Ding. Qgtc: accel-
erating quantized graph neural networks via gpu tensor
core. In Proceedings of the ACM SIGPLAN Symposium

USENIX Association 2025 USENIX Annual Technical Conference 713

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://www.nvidia.cn/data-center/tensor-cores/
https://www.nvidia.cn/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture/
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass

on Principles and Practice of Parallel Programming
(PPoPP), pages 107–119, 2022.

[42] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li,
Lei Deng, Yuan Xie, and Yufei Ding. Gnnadvisor: An
adaptive and efficient runtime system for gnn acceler-
ation on gpus. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 515–531, 2021.

[43] Yuke Wang, Boyuan Feng, Zheng Wang, Guyue Huang,
and Yufei Ding. Tc-gnn: Bridging sparse gnn compu-
tation and dense tensor cores on gpus. In Proceedings
of the USENIX Annual Technical Conference (USENIX
ATC), pages 149–164, 2023.

[44] Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang,
Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin, and
Shuaiwen Leon Song. Flash-llm: Enabling cost-
effective and highly-efficient large generative model
inference with unstructured sparsity. Proceedings of the
VLDB Endowment, 17(2):211–224, 2023.

[45] Yaqi Xia, Donglin Yang, Xiaobo Zhou, and Dazhao
Cheng. Scaling new heights: Transformative cross-gpu
sampling for training billion-edge graphs. In Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1–15.
IEEE, 2024.

[46] Yaqi Xia, Zheng Zhang, Hulin Wang, Donglin Yang,
Xiaobo Zhou, and Dazhao Cheng. Redundancy-free
high-performance dynamic gnn training with hierarchi-
cal pipeline parallelism. In Proceedings of the 32nd
International Symposium on High-Performance Paral-
lel and Distributed Computing (HPDC), pages 17–30,
2023.

[47] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

[48] Carl Yang, Aydın Buluç, and John D Owens. Design
principles for sparse matrix multiplication on the gpu.
In Proceedings of the European Conference on Parallel
Processing (EuroPar, pages 672–687. Springer, 2018.

[49] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and
Luis Ceze. Sparsetir: Composable abstractions for
sparse compilation in deep learning. In Proceedings
of the ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 660–678, 2023.

[50] Zheng Zhang, Donglin Yang, Xiaobo Zhou, and Dazhao
Cheng. Mcfuser: High-performance and rapid fusion

of memory-bound compute-intensive operators. In In-
ternational Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC), pages 1–15.
IEEE, 2024.

[51] Haisha Zhao, San Li, Jiaheng Wang, Chunbao Zhou, Jue
Wang, Zhikuang Xin, Shunde Li, Zhiqiang Liang, Zhijie
Pan, Fang Liu, et al. Acc-spmm: Accelerating general-
purpose sparse matrix-matrix multiplication with gpu
tensor cores. In Proceedings of the 30th ACM SIGPLAN
Annual Symposium on Principles and Practice of Paral-
lel Programming, pages 326–338, 2025.

[52] Kai Zhong, Zhenhua Zhu, Guohao Dai, Hongyi Wang,
Xinhao Yang, Haoyu Zhang, Jin Si, Qiuli Mao, Shulin
Zeng, Ke Hong, et al. Feasta: A flexible and efficient
accelerator for sparse tensor algebra in machine learn-
ing. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
349–366, 2024.

714 2025 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivation
	Matrix-Matrix Multiplication on Hopper
	SpMM on Tensor Cores
	Tensor Core’s Hunger: Starved by Data Loading
	Unbalanced Workload: Failure to Balance I/O

	Voltrix-SpMM Design
	Warp-level Asynchronous Pipelining
	Bit-wise Compressed Data Format
	Warp-Specialized Producer-Consumer Model
	Fine-Grained Multi-Tiered Pipelining

	Persistent and Balanced Kernel
	SM-Aligned and Atomic-Free Partitioning
	Input-Output Co-Balance Searching

	Evaluation
	Experimental Setup
	SpMM Performance
	SpMM Performance Breakdown
	GNN End-to-end Training
	Overlap Rate of Pipelining
	Workload Balance Analysis
	Validation of Cost Model

	Related Work
	Conclusion
	Acknowledgment

