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Abstract
Sparse Matrix-Matrix Multiplication (SpMM) is crucial in
scientific computing and machine learning. Despite advance-
ments in GPU architectures, efficiently leveraging Tensor
Cores for SpMM remains challenging. The core issue is the
mismatch between the inherently sparse nature of the matri-
ces and the dense computational patterns. Existing methods
struggle with substantial overheads in loading data to com-
putation units and cannot adequately manage data imbalance
across computations, thereby limiting the high computational
throughput potential of Tensor Cores.

In this paper, we introduce Voltrix-SpMM, a revolutionary
GPU kernel design that overcomes these challenges. First,
we implement an asynchronous data loading pipeline that
employs a bit-wise compressed format for sparse matrices
and bulk memory copy instructions for dense matrices. This
innovative design enables efficient data access and incorpo-
rates a warp-specialized producer-consumer model to seam-
lessly overlap data loading with computation. Second, we
develop a persistent and I/O co-balanced kernel mechanism
that features a two-stage partition strategy to achieve bal-
ance between input and output. Implemented with CUDA
12.6, Voltrix-SpMM substantially improves performance, de-
livering an average speedups of 36.5x and 1.8x over Tensor
Core-based TC-GNN and DTC-SpMM respectively, and an
average 1.7x speedup over the CUDA Core-based RoDe, fully
unleashing the power of Tensor Cores for SpMM.

1 Introduction

Sparse Matrix-Matrix Multiplication (SpMM), which refers
to the multiplication of a sparse matrix with a dense matrix,
plays a pivotal role in a wide range of scientific computing ap-
plications [1,3,13,20,22,40,45–47,52], from simulations and
linear algebra to advanced machine learning. Recent studies
have identified SpMM as a significant performance bottleneck
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in these applications, particularly in the training of Graph Neu-
ral Networks (GNNs), where SpMM accounts for over 80%
of the total computational cost during training [43].

GPUs have become the primary processing units for
modern high-performance computing and have been widely
adopted to accelerate SpMM computations. Recent studies
have utilized CUDA cores, the fundamental processing units
within NVIDIA’s GPU architecture, to speed up the multipli-
cation process [12,16,17,24,32]. With advancements in GPU
power, NVIDIA introduced a specialized unit known as the
Tensor Core, beginning with the Volta architecture [29]. Ten-
sor Cores offer significantly higher computational throughput
than traditional CUDA cores and are specifically optimized
for dense matrix multiplication and accumulation operations
using fixed-precision arithmetic. However, the inherent spar-
sity of matrices in SpMM presents challenges. Tensor Cores
struggle with the irregular memory access and data sparsity
typical of these operations, making them less effective for
SpMM without specialized optimizations.

One of the prominent attempts to apply Tensor Core accel-
eration to SpMM is TC-GNN [43], which introduces sparse
graph translation to convert sparse matrices into compressed
dense blocks, called TCU blocks. Although this method over-
comes the traditional barriers between sparse SpMM work-
loads and dense computation patterns, the inefficient process
of loading data into Tensor Core units severely limits their
full potential. Our experiments have shown that data load-
ing consumes over 80% of kernel execution time, signifi-
cantly constraining the effective use of Tensor Cores. Re-
cently, DTC-SpMM introduces an asynchronous loading tech-
nique that overlaps computation with data loading through a
pipeline [10]. However, the benefits of this approach are lim-
ited by several factors: firstly, DTC-SpMM’s asynchronous
loading instruction can only process 16-byte chunk at a time,
which is insufficient for the high-dimensional data typical
in applications like GNN training, where matrix sizes often
exceed 256 [37]. This limitation necessitates numerous load-
ing instructions, diminishing the pipeline’s potential benefits.
Secondly, the single-layer pipeline of DTC-SpMM results in
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minimal overlap between computation and data loading, and
the required synchronization at the warp level introduces addi-
tional overhead, further impairing the expected performance
gains.

In addition to inefficient data loading, the irregular data
distribution in SpMM further exacerbates performance bottle-
necks during kernel execution on GPUs. A critical challenge
lies in efficiently partitioning unevenly distributed data across
different Streaming Multiprocessors (SMs) to achieve hard-
ware load balancing. Current methods typically focus either
on input balance or output balance. TC-GNN attempts to ad-
dress output balance by controlling how each Cooperative
Thread Array (CTA) processes rows of TCU blocks. How-
ever, this approach results in significant variations in the data
processed per CTA, leading to underutilization of some SMs
and overloading of others. Conversely, DTC-SpMM priori-
tizes input balance by assigning each CTA a fixed number of
TCU blocks, aiming for a more uniform workload distribution.
While this strategy reduces discrepancies, it fails to address
imbalances during the write-back phase. Moreover, the atomic
operations required to ensure accurate results during write-
back introduce substantial overhead, thereby undermining the
potential performance benefits of the optimization.

We introduce Voltrix-SpMM, a revolutionary GPU ker-
nel design that addresses the outlined challenges and fully
leverages the capabilities of Tensor Cores for accelerated
SpMM computations. Voltrix-SpMM features two key inno-
vations: First, a novel asynchronous data loading pipeline that
establishes seamless overlap between computation and data
loading. Unlike current SpMM kernels that manage these
processes within the same warp, our model uses a warp-
specialized workflow control to distinctly separate these tasks.
This approach allows for fine-grained, multi-tiered overlap,
significantly reducing the overhead associated with data load-
ing. Second, a persistent and I/O co-balanced kernel mech-
anism that ensures even partitioning of irregular workloads
across the underlying SM units. By integrating coarse-grained
input partitioning with fine-grained output partitioning, we
achieve an optimal balance between input and output, while
eliminating the overhead linked to atomic operations.

The first innovation, the warp-level asynchronous pipeline,
significantly reduces data loading overhead while achieving
seamless overlap with computation. Specifically, we design a
bit-wise compressed format for sparse matrices that is both
vectorization-friendly and conflict-free, accelerating access
and transformation. For dense matrices, we utilize the bulk
asynchronous loading instruction TMA [30], which reduces
the number of instructions while enabling the asynchronous
loading of large data blocks. Leveraging our warp-specialized
producer-consumer model, we decouple data access from
computation at the warp level. This separation allows for
finer granularity and higher overlap between data loading and
computation through a multi-tiered pipeline.

In the second innovation, a persistent and I/O co-balanced

kernel mechanism, we align each CTA task with SMs and en-
sure persistent execution, thus achieving a seamless software-
to-hardware balance. Through a greedy and heuristic search
algorithm, we determine the optimal partition points for each
CTA task, ensuring co-balance between input and output. Ad-
ditionally, by performing coarse-grained partitioning at the
input stage and fine-grained partitioning at the output stage,
we resolve the issue of data crossing row boundaries, avoiding
the additional overhead of atomic operations.

In summary, our key contributions are as follows:

1. Through in-depth analysis, we identify the primary chal-
lenge in current Tensor Core-accelerated SpMM meth-
ods: a significant gap between high-throughput computa-
tion units and inefficient, heavy data loading processes.

2. We design a bit-wise sparse matrix compression format
to enable efficient data access via vectorized loading, and
a bulk asynchronous loading instruction to load dense
matrices with reduced number of instructions.

3. We propose a warp-specialized producer-consumer
model to efficiently pipeline data access and compu-
tation, along with a multi-tiered pipeline to effectively
conceal the overhead associated with data loading.

4. We develop a persistent and I/O balanced kernel mecha-
nism, ensuring uniform kernel execution across hardware
that balances both input and output processing.

Voltrix-SpMM, implemented with CUDA 12.6, has been in-
tegrated into PyTorch 2.5 [33]. On the SuiteSparse dataset [7]
and 12 real-world graph datasets, it achieves average speedups
of 36.5x and 1.8x over the Tensor Core-based TC-GNN and
DTC-SpMM respectively, and 1.7x over the CUDA Core-
based RoDe [32]. Additionally, it delivers 2.0x speedup over
the popular GNN training framework DGL [2] in end-to-end
training. Notably, Voltrix-SpMM is the first to fully unleash
the power of Tensor Cores, achieving speedups that surpass
those of traditional CUDA Core-based methods.

2 Background and Motivation

2.1 Matrix-Matrix Multiplication on Hopper
General Matrix-Matrix Multiplication (GEMM) is a core op-
eration in deep learning [39, 50]. On NVIDIA Hopper [30],
GEMM performance is enhanced through warp-specialized
and persistent kernel designs [31]. Warps are split into pro-
ducers, which use Tensor Memory Accelerator (TMA) to
load tiles into shared memory, and consumers, which perform
Warp-Group Matrix Multiply-Accumulate (WGMMA) opera-
tions. This producer-consumer model enables overlap of data
load and computation, maximizing Tensor Core utilization.

Hopper’s persistent kernel strategy assigns a fixed number
of Cooperative Thread Arrays (CTAs), typically equal to the
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Figure 1: Illustration of SpMM workflow.

number of Streaming Multiprocessors (SMs), allowing them
to remain resident and avoid relaunch overhead. This design
also overlaps epilogue storage with the next stage’s prologue
and compute loop, enhancing pipeline efficiency.

Sparse Matrix-Matrix Multiplication (SpMM) multiplies a
sparse matrix with a dense one, using only the non-zero ele-
ments [7]. Unlike GEMM, SpMM identifies non-zero indices
to guide a scatter from the dense matrix and a gather for
accumulation, as shown in Figure 1. However, due to spar-
sity and irregularity, SpMM cannot directly adopt GEMM’s
warp-specialized and persistent kernel designs: 1. TMA and
WGMMA require dense data blocks, wasting resources on ze-
ros. 2. Irregular non-zero patterns cause workload imbalance,
making persistent kernels inefficient.

This paper introduces a BMat encoding for fast non-zero
identification, a multi-tiered async loading scheme to max-
imize bandwidth, and a balanced partitioning strategy that
enables an effective sparse-aware persistent kernel.

2.2 SpMM on Tensor Cores
NVIDIA Tensor Cores are specialized units that accelerate
matrix operations essential for deep learning. They efficiently
perform dense mixed-precision matrix multiplications, such
as TF32 inputs with FP32 accumulation, computing

C = A×B+C

where A and B have dimensions m×k and k×n. Matrices are
distributed across thread registers (fragments) within a warp,
arranged in layouts like row- or column-major [29]. Applying
Tensor Cores to SpMM is challenging because, unlike dense
models (e.g., Transformers [19, 38] and CNNs [14, 21]) with
regular memory access, SpMM exhibits irregular access and
sparse computation patterns that conflict with the fixed-size
fragment requirements of Tensor Cores.

TC-GNN [43] represents the first significant effort to bridge
the gap between SpMM and Tensor Core capabilities by in-
troducing a novel sparse graph translation technique. As illus-
trated in the top part of Figure 2, this approach compresses
a sparse matrix into multiple condensed sparse blocks, re-
ferred to as TCU blocks. Each block is carefully sized to align
with the computational dimensions of Tensor Cores. This
transformation allows TC-GNN to effectively map irregular
computation workloads onto the regular computational frame-
work of Tensor Cores, thereby enabling these specialized units
to handle sparse computation tasks efficiently.
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Figure 2: Illustration of the typical Tensor core-based SpMM
implementation, TC-GNN’s workflow.

In TC-GNN, the TCU block data for each row (a RowWin-
dow) is processed iteratively. The workflow of TC-GNN oper-
ates as follows: First, the compressed TCU block is expanded
into a BLK_W × BLK_H matrix, named SparseA, where
BLK_W and BLK_H are specifically set to 8 and 16, respec-
tively, to fit the dimensions of the Tensor Core MMA opera-
tions. Then, based on the column index of the TCU block, the
corresponding row data from the dense matrix is identified
and transformed into a BLK_W × BLK_H matrix, DenseB.
Both matrices are first loaded into shared memory and then
into registers for MMA operations, as depicted in the bottom
part of Figure 2. The results are stored and subsequently used
to update the output matrix C, which is accumulated with
the next SparseA in the RowWindow in the subsequent loop
iteration, ensuring the correctness of the results.

2.2.1 Tensor Core’s Hunger: Starved by Data Loading

Utilizing Tensor Cores significantly enhances computational
throughput for sparse operations, providing potential perfor-
mance gains over traditional CUDA Cores. For instance, in
optimized conditions, Tensor Cores can achieve up to 495
TFLOPS for TF32 datatype matrix multiplications, in con-
trast to the 67 TFLOPS for FP32 typically delivered by CUDA
Cores in similar scenarios [30]. However, despite these im-
pressive advancements, the overall efficiency of kernel exe-
cution is often bottlenecked by the data loading process. Our
experiments across multiple datasets, as illustrated in Figure 3,
reveal that data loading accounts for over 80% of the execu-
tion time. This significant overhead, due to loading matrices
SparseA and DenseB into shared memory, severely restricts
the overall computational efficiency, thereby diminishing the
full potential of Tensor Core acceleration.

To address the data-loading bottleneck in Tensor Core-
accelerated SpMM computation, DTC-SpMM [10] introduces
a pivotal innovation: a pipeline arrangement that effectively
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Figure 3: Breakdown of TC-GNN.

overlaps the loading of SparseA with Tensor Core computa-
tions, mitigating loading time. However, the typically large
dimensions of the dense matrix in GNNs, often exceeding
256, mean one SparseA corresponds to multiple tiled DenseB
matrices, creating a data copy overhead that significantly ex-
ceeds that of SparseA. Our experimental results, as shown in
Figure 3 , reveal that in most cases, loading the dense matrix
(DenseB) accounts for over 60% of the total execution time.
Thus, despite the full overlap of SparseA loading, the primary
challenge persists: the prolonged stalls caused by loading
DenseB continue to dominate kernel execution time.

Furthermore, the pipelining strategy in DTC-SpMM strug-
gles to effectively parallelize the loading of DenseB with
MMA computations for several reasons: (1) DTC-SpMM
leverages the LDGSTS SASS instruction [28] for asynchronous
loading, which initiates data transfers without stalling compu-
tation. However, this instruction is limited to loading only 16
bytes of data per operation. When applied to the DenseB ma-
trix, the substantial number of LDGSTS instructions required
increases dramatically, leading to a high instruction count that
undermines the benefits of pipelining. (2) The single-layer and
intra-warp pipeline used by DTC-SpMM results in minimal
overlap and frequent synchronization within warps, thereby re-
ducing overall efficiency. (3) DTC-SpMM loads DenseB data
directly into the registers, bypassing shared memory. This
access pattern does not support asynchronous prefetching,
further limiting the effectiveness of the pipeline.
Summary. Given these issues, there is an urgent need for a
novel pipelining design that can effectively bridge the gap
between lengthy data loading times and efficient Tensor Core
computations. Such a design should enable enhanced overlap
of memory copying with computation, ultimately addressing
the persistent data-loading challenge.

2.2.2 Unbalanced Workload: Failure to Balance I/O

NVIDIA GPUs use a Streaming Multiprocessor (SM) ar-
chitecture, where multiple CTAs are executed concurrently on
each SM. In CUDA programming, CTAs are mapped to SMs
and execute in parallel. This model is highly efficient when
workloads are evenly distributed among CTAs. However, the
irregular nature of sparse data often leads to significant im-
balances in workload distribution. For example, each row of
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Figure 4: Workload partitioning strategies at the CTA level.

the sparse matrix has a different number and arrangement of
non-zero entries, leading to a varying number of TCU blocks
per RowWindow, as shown in Figure 4. Furthermore, results
from multiple TCU blocks within the same RowWindow must
be accumulated, adding complexity. This uneven distribution
of TCU blocks across RowWindows poses a substantial chal-
lenge in maintaining balanced workload distribution across
each SM. To address this, current methods employ various
workload partitioning strategies at the CTA level, which we
categorize into two main types.

Output Balancing. The approach, employed by TC-GNN
as illustrated in Figure 4a, assigns each CTA the task of pro-
cessing all TCU blocks corresponding to a single row within a
RowWindow. This strategy ensures that the output from each
CTA is confined to the results of one specific RowWindow.
While this design standardizes output workloads across CTAs,
it leads to a significant input imbalance due to the large varia-
tions in the number of TCU blocks per row. Since the input
directly influences the volume of data loading and computa-
tion, this discrepancy causes some CTAs to complete their
tasks quickly while others lag, resulting in inefficient utiliza-
tion of SM resources and diminished overall performance.

Input Balancing. Conversely, DTC-SpMM adopts the in-
put balancing approach, as demonstrated in Figure 4b. This
strategy ensures that each CTA processes an equal number
of TCU blocks, distributing the input workload evenly across
CTAs. While this method equalizes the amount of data each
CTA handles, it complicates the management of output re-
sults. Specifically, when one RowWindow contains a large
number of TCU blocks, multiple CTAs might need to con-
tribute to the same row. To address this, DTC-SpMM employs
atomic operations to accumulate results from different CTAs.
Although these atomic operations maintain result accuracy,
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they significantly increase computational overhead. On the
other hand, when a RowWindow includes only a few TCU
blocks, a single CTA may need to write results across multiple
rows, which exacerbates the disparities in output overhead
among CTAs. Consequently, DTC-SpMM still incurs con-
siderable overhead and does not fully resolve the imbalance
issue, thereby impacting its overall efficiency.
Summary. Due to the irregular nature of sparse data in
SpMM, attempting to balance the workload solely from either
the input or output perspective often leads to an imbalance on
the other side. Furthermore, partitioning data across RowWin-
dows requires atomic operations to ensure the correctness of
results. Given these challenges, an ideal partitioning scheme
should not only achieve input-output co-balance but also main-
tain coarse granularity for sparse data to prevent crossing
RowWindow boundaries, as illustrated in Figure 4c.

3 Voltrix-SpMM Design

Voltrix-SpMM significantly improves sparse matrix-matrix
multiplication through three key innovations. First, it utilizes
a bitwise-level format to compress sparse matrices, which
enables coalesced memory accesses and bank conflict-free de-
coding. Second, a warp-level asynchronous pipelining model
effectively decouples data loading from computation, leading
to greater overlap and improved throughput. Third, its per-
sistent and balanced kernel design ensures co-balanced input
and output workloads, ultimately boosting overall efficiency.

3.1 Warp-level Asynchronous Pipelining
In this subsection, we first introduce the BMat data format
for accelerating sparse matrix loading. Then, we present
the warp-specialized producer-consumer model that enables
multi-tiered data access and asynchronous computation, ef-
fectively hiding dense data loading overhead.

3.1.1 Bit-wise Compressed Data Format

In the design of Tensor Core-based SpMM kernels, SparseA
used in MMA calculations is typically represented as a 16x8
dense matrix. However, to accommodate the high proportion
of zero elements, which can exceed 90% as reported in DTC-
SpMM [10], SparseA is stored in a sparse format during non-
computational phases. For instance, TC-GNN uses the CSR
matrix format, while DTC-SpMM employs the ME-TCF for-
mat. Directly storing SparseA in a dense format would place
undue pressure on memory resources and incur substantial
data copy overhead during kernel execution.

Therefore, the processing of SparseA involves two steps
when transitioning from global memory to fragment: 1. load-
ing SparseA in its sparse format, and 2. converting SparseA
from a sparse to a dense format. In the data loading stage, the
goal is to minimize both the data volume and the number of
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Figure 5: Loading and decoding of BMat.

loading instructions. In the conversion stage, the goal is to
avoid bank conflicts during shared memory access.

While TC-GNN and DTC-SpMM have focused primarily
on optimizing one of these aspects, Voltrix-SpMM aims to
comprehensively address all these factors. We propose a novel
data format that is both vectorization-friendly and conflict-
free, termed the bit-wise compressed matrix, or BMat.

How to load? As illustrated in Figure 5a, we use
RowWindowOffset to record the offset of each RowWindow
in the condensed sparse matrix, with each offset correspond-
ing to a SparseA. Each 0 and 1 element of SparseA is repre-
sented by just 1 bit, allowing us to compress a 16x8 matrix
into a 128-bit BMat. Specifically, a BMat is stored using four
Uint32 values, enabling us to access the entire BMat with a
single vectorized load instruction LDGSTS.128.

How to decode? We address the challenge of tiling SparseA
to compress it into four Uint32 values, as different tiling strate-
gies significantly impact conversion efficiency. As illustrated
in Figure 5b, one could employ row-major tiling—as adopted
by the BitTCF format of ACC-SpMM [51]—resulting in four
4×8 sub-blocks, or column-major tiling, which splits it into
four 16x4 sub-blocks. However, we adopt a hybrid row +
column-major tiling approach, segmenting SparseA into four
8x4 sub-blocks. This method offers two key benefits:

1. Efficient decoding by each thread in a Warp using thread
ID-based shifting, where each Uint32 facilitates streamlined
data access. 2. The alignment of each Uint32’s BMat decoding
with its corresponding submatrix in the MMA computation
prevents bank conflicts, enhancing computational efficiency.
This contrasts with other tiling methods that often lead to
cross-bank accesses, marked by red crosses in Figure 5b.

By optimizing both the loading and conversion phases, our
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BMat approach enables more efficient handling of SparseA.
Moreover, the decoded content is directly loaded into registers
for immediate computation. In contrast to previous methods
that required a 16x8-sized Int32 shared memory space, our
strategy only uses four Uint32 values to store the BMat, re-
ducing the demand on shared memory resources.

Non-binary cases. To support non-binary SparseA with
floating-point values, our BMat format only requires an addi-
tional value vector to store the non-zero floating-point values.
Within a warp, the i-th thread (thread Ti) constructs a 32-bit
position mask Mi. The first i+1 bits of this mask are set to 1,
while the remaining 31-i bits are set to 0. This mask is then
bitwise-and with the BMat to obtain Pi. Subsequently, each
thread calculates the bitwise-sum of its Pi using the __popc()
intrinsic. This bitwise-sum determines the offset of its corre-
sponding non-zero element within the value vector.

For instance, consider an 8x4 sparse matrix SparseA con-
taining floating-point values at indices 3, 7, and 20. The BMat
representation for this matrix is B = 0x00100088. For thread
i = 7, the binary mask is M7 = 0x0000000f. The bitwise-
and operation yields P7 = 0x00100088 & 0x0000000f =
0x00000008. The bitwise-sum of P7, calculated as bitwise-
sum(0x00000008), is 1, indicating that the non-zero element
associated with this thread is located at the second position in
the value vector (using zero-based indexing).

Unlike DTC-SpMM, which requires an explicit offset to
track non-zero counts, BMat encodes this information directly.
By performing a bitwise-sum on BMat, we can obtain the non-
zero count without extra metadata. In our method, we only
need to allocate a register within the kernel to accumulate
the total count of non-zero elements. This accumulated count
directly provides the starting offset for accessing the value
vector in the current iteration. This design contributes to more
efficient compression and memory access when using BMat.

3.1.2 Warp-Specialized Producer-Consumer Model

To mitigate the significant data access overhead, particularly
the stalls caused by loading SparseA and DenseB, we imple-
ment an inter-warp pipelining strategy. In our kernel design,
specific warps within a CTA are assigned to load data from

global memory into shared memory, while other warps concur-
rently fetch preloaded data from shared memory to perform
Tensor Core computations. This warp-specialized task alloca-
tion establishes a producer-consumer model within each CTA,
where shared memory serves as a shared buffer to facilitate
the overlap of computation and data access.

How to fetch data? As depicted in Figure 6, the Producer
is tasked with loading data and issuing instructions, managing
the transfer of SparseA and DenseB from global memory to
shared memory. For SparseA, as detailed in Section 3.1.1,
we employ vectorization techniques to copy the BMat to
shared memory using a single INT4 instruction. For DenseB,
each SparseA corresponds to a number of DenseB elements
equal to BLK_W × D, where D represents the dimension
of the dense data. The Producer utilizes its index to locate
these elements in global memory and subsequently transfers
them to shared memory. This transfer leverages asynchronous
TMA instructions for efficiency: 1) TMA requires only a
single instruction to access dense data, reducing the overhead
associated with multiple LDGSTS instructions; 2) TMA allows
just one thread to issue the instruction, enabling all the dense
data corresponding to a SparseA in a CTA to be loaded using
only 8 threads. As a result, a single Warp acts as the Producer
to issue the instructions, minimizing the resource wastage
caused by excessive producer warps.

The Consumer retrieves data from shared memory and
loads it into registers for MMA computation using Tensor
Cores, configured to an MMA size of m16n8k8. For SparseA,
each consumer performs shift operations for decoding. For
DenseB, pending operations are performed to prevent bank
conflicts in shared memory. After completing all SparseA in
a RowWindow, each thread retains two float32 results per
MMA. Consequently, we utilize FLOAT2 write-through in-
structions to directly transfer data from registers to global
memory, effectively bypassing shared memory.

How to pipeline? In Voltrix-SpMM design, shared memory
buffers are managed using a memory barrier (MBarrier) sig-
naling mechanism to efficiently coordinate producer and con-
sumer operations. All barriers are classified as either ‘ready’
or ‘filled’. Initially, ‘ready’ barriers use the SYNCS.ARRIVE
instruction to signal the producer to load data, while ‘filled’
barriers use the SYNCS.TRYWAIT instruction to block the con-
sumer. Once the producer finishes loading, it releases the
‘filled’ barrier with SYNCS.ARRIVE, notifying the consumer to
transfer the preloaded data for computation. Subsequently, the
‘ready’ barrier suspends the producer with SYNCS.TRYWAIT
for the next batch. Conversely, the consumer coordinates with
the producer to wait and refill the buffer.

This creates a ping-pong scheduling mechanism, where
data loading and computation alternate seamlessly across
buffers. As illustrated in Figures 7a and 7b, unlike DTC-
SpMM which only overlaps the loading of SparseA with
MMA computation, our producer-consumer model facilitates
pipelining of MMA with both SparseA and DenseB, allowing
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Figure 7: Different pipelining strategies.

for enhanced potential to conceal data loading overhead.

3.1.3 Fine-Grained Multi-Tiered Pipelining

Although a single-layer pipeline can mitigate some data load-
ing overhead, it often results in low overlap and suboptimal re-
source utilization. In contrast, our producer-consumer model
enables a higher-level extension of the traditional pipeline,
maximizing hardware resource usage and facilitating seam-
less parallelism between computation and data access. By
deploying a warp to manage multiple MMAs and buffers
within the pipeline, this approach significantly minimizes idle
cycles and enhances overall system throughput.

Multiple MMA. Given that the data access phase incurs
higher stalls than the computation phase—due to the pro-
ducer’s loading speed lagging significantly behind the con-
sumer’s consumption speed—a practical solution is to in-
crease the computation workload for each consumer without
altering the producer’s throughput. A single CTA can manage
a maximum of 512-dimensional dense data, allocated across
32 warps, with each warp handling up to 16 dimensions of
dense data. Consequently, any data exceeding 512 dimensions
necessitates a reloading of SparseA. As depicted in Figure 7a,
a DenseB data chunk is divided into two loading phases, with
the MMA computations also split accordingly. We enable
each consumer to load multiple tiled DenseB data simulta-
neously and conduct multiple MMA operations to enhance
processing efficiency, as shown in Figure 7c. This strategy not
only reduces the instruction issuing overhead associated with
loading but also promotes a higher degree of overlap between
computational tasks.

Multiple buffer. To maximize bandwidth utilization and
enable seamless pipelining, we introduce multiple buffers,
as shown in Figure 7d, to accommodate concurrent MMA
operations. Each buffer operates independently, allowing the

producer to issue data copy instructions for multiple buffers
simultaneously. Once a buffer’s barrier is set to ‘filled’, the
consumer begins to read the data from that buffer for computa-
tion. Upon completing the computation, the consumer imme-
diately accesses data from another buffer, while the previously
used buffer is reloaded with new data. This multi-tiered fine-
grained pipeline, compared to traditional single-layer pipeline,
significantly enhances hardware data copy bandwidth utiliza-
tion. It bridges the gap between data loading and computation
and facilitates more seamless overlap of these processes, ulti-
mately improving overall system performance.

Trade off . While incorporating more MMAs and buffers
enhances pipelining potential, this approach does not guaran-
tee improved performance due to two primary factors:

1. Shared memory is a limited resource. Since it shares
the same hardware storage with the L1 cache, increasing the
number of buffers can reduce cache hit rates for other data,
potentially impacting overall performance.

2. Effective pipelining depends on the ability to simultane-
ously load corresponding DenseB data for different SparseA
matrices within the same RowWindow. If a RowWindow con-
tains only a few SparseA matrices, extensive pipelining might
lead to underutilization of resources.

Consequently, striking a balance between maximizing over-
lap and minimizing resource wastage is crucial. In Voltrix-
SpMM, we observe that the optimal configuration depends
solely on the dimensions of the dense matrix. By pretesting
various configurations for dense data of differing dimensions,
we can identify the most efficient setup for each scenario.

3.2 Persistent and Balanced Kernel
In this subsection, we’ll first present our persistent kernel
design, which eliminates atomic operations while simultane-
ously achieving co-balanced input and output. Following this,
we’ll introduce a greedy and heuristic partitioning strategy
developed to identify workload-balanced partition points.

3.2.1 SM-Aligned and Atomic-Free Partitioning

Software-hardware balance. In Section 2.2.2, we dis-
cussed the challenges of achieving balance in Tensor Core-
accelerated SpMM kernels. A well-balanced GPU kernel
evenly distributes tasks across hardware units. However, in
CUDA, software-level balance among CTAs doesn’t always
ensure hardware-level balance across SMs, since the number
of CTAs may not match the number of SMs, causing idle SMs
during later scheduling stages.

For example, TC-GNN sets CTAs based on RowWindow
rows, while DTC-SpMM assigns a fixed number of SparseA
elements per CTA. Both adjust CTAs dynamically based on
sparse matrix structure. Given millions of SparseA elements,
CTAs often far outnumber SMs, increasing overhead associ-
ated with CTAs scheduling and prologue/epilogue execution.
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Figure 8: SM-aligned and atomic-free partitioning.

To address this, we adopt an SM-aligned kernel design by
fixing the number of CTAs to match the number of SMs. This
persistent approach offers two key benefits:

1. It ensures that the software-level distribution of tasks
(CTAs) corresponds directly with the hardware-level distri-
bution (SMs). This alignment results in a balanced execution
with no idle units.

2. It accommodates the high number of SparseA elements
relative to the available SMs, allowing the kernel to run per-
sistently until all tasks are completed. This continuous opera-
tion mode reduces the frequent launching and termination of
kernel CTAs, which typically incur significant prologue and
epilogue execution overhead.

Input-output co-balance. As detailed in Section 2.2.2, TC-
GNN suffers from output imbalance, causing uneven data
loading and computation across CTAs. DTC-SpMM’s input
balancing mitigates SparseA distribution issues but introduces
atomic addition overhead and output imbalance.

To address these challenges, we propose an atomic-free par-
tition method that balances both input and output while elim-
inating atomic operations. This dual-perspective approach
simplifies partitioning and improves computational efficiency.

On the input side, SparseA is partitioned at the RowWin-
dow level to keep data contiguous and complete within each
partition, eliminating the need for atomic operations. On the
output side, the dense matrix is partitioned by its dimensions
to ensure balanced output distribution. This fine-grained, flex-
ible partitioning fits naturally with our SM-aligned design,
allowing the kernel to persist until all tasks finish. As a result,
the kernel must continuously track its progress within each
RowWindow and monitor remaining tasks, which introduces
complexity in boundary detection.

To manage this, we integrate a scheduler within our
producer-consumer model tailored to the balanced partition-
ing method. Task partitioning is based on result allocation, as
shown in Figure 8a, by flattening the result matrix into a 1D
vector. The total task count equals the number of RowWin-
dow rows times the result matrix’s dimension. We divide
these tasks evenly across M SMs by selecting M − 1 split
points, using a single warp MMA operation (i.e., 16) as the

partition unit for finer granularity.
By tracking each task’s start and end points, the scheduler

effectively defines task and RowWindow boundaries. At run-
time (as shown in Figure 8b), tasks are divided into stages
aligned with RowWindow boundaries. The scheduler com-
putes remaining tasks in the current stage and instructs the
producer how much data to load via TMA. It also dynami-
cally adjusts the number of MMA operations per warp in the
consumer accordingly.

While this segmentation removes the need for atomic addi-
tions in output, it may require reloading SparseA at boundary
stages with incomplete tasks (i.e., tasks that do not fully form
a RowWindow). However, since RowWindows typically con-
tain many more rows than SMs and SparseA is efficiently
loaded via the BMat format, the overhead of this secondary
loading is effectively negligible.

Algorithm 1: Greedy and heuristic-based partition
point search algorithm

input :Total cost: Call , SM counts: M
output :Partitioned points S = {0,S1 . . . ,SM ,Call}

1 Calculate the average cost Cavg = Call/M .
2 for Si ∈ S , j← 1 to M do
3 Move the Si points forward until the accumulated cost

between Si−1 and Si exceeds Cavg.
4 Calculate column position of the end point Col = Si%D
5 if Col < D/8 then
6 Si = Si−Col
7 end
8 else if Col > D ∗7/8 then
9 Si = Si+D−Col

10 end
11 end

3.2.2 Input-Output Co-Balance Searching

With our SM-aligned and atomic-free partitioning, the kernel
balancing problem is simplified by dividing all tasks evenly
among the SMs to ensure balanced workloads. To evaluate
different splitting methods, we propose a cost model for the
entire SpMM operation:

Call =
RW

∑
i=0

Num_SPA(i) · c f1 ·D +RW · c f2 ·D + c f3 (1)

The first term captures input costs across all RowWindows,
including overhead from SparseA loading and computation,
scaled by D, the dense matrix dimension. The second term
represents output costs from write-back operations, with RW
as the number of RowWindows. Coefficients c f1, c f2, and c f3
quantify the costs of input, output, and fixed kernel overheads,
respectively, and are tuned to reflect hardware characteristics.

In the experimental section 4.7, we will measure these three
coefficients to validate the accuracy of our cost model. From
this model, we derive the optimization objective, which is
formulated as follows:
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S∗ = argmin
S

(
max

{
Ci(S)

∑ j C j(S)

∣∣∣∣i}+P(S)
)

(2)

Here, S denotes a partitioning scheme, and P(S) is the
penalty from crossing RowWindow boundaries. To find the
optimal scheme S∗, we design a greedy, heuristic-based search
algorithm, detailed in Algorithm 1.

The algorithm starts by computing the ideal per-SM cost
from the total task cost (Line 1). For each SM, it incrementally
extends the partition endpoint until the accumulated cost ex-
ceeds this average (Lines 3–4). To reduce boundary-crossing
overhead, partition points near RowWindow boundaries are
adjusted to align with them (Lines 5–10). Finally, a genetic
algorithm [8, 15] refines these points for a globally optimal
solution, requiring only one iteration in practice.

Utilizing the greedy and heuristic-based partition point
search algorithm, we aim to balance the tasks across each
SM as evenly as possible while minimizing the additional
overhead incurred by crossing RowWindow boundaries.

4 Evaluation

Voltrix-SpMM is a pure CUDA-based [28] library with
around 5k lines of code and no third-party dependencies.
It extensively utilizes the C++ template metaprogramming
paradigm to adapt to our multi-tiered pipelining design, mak-
ing the code highly configurable and minimizing kernel run-
time overhead. We employ inline PTX instructions to leverage
specific hardware features of the Hopper GPU [30], including
MMA, TMA, and MBarrier, to maximize efficiency.

Voltrix-SpMM is integrated into the popular machine learn-
ing framework PyTorch 2.5 [33] and can be easily invoked
from both Python and C++ backends using common sparse
matrix formats like CSR and COO. Voltrix-SpMM has been
open-sourced at github.com/YaqiXia/Voltrix-SpMM, en-
couraging community use and contributions.

4.1 Experimental Setup
Platform. Our experiments are conducted on a Hopper H100
PCIe GPU [30], equipped with 456 Tensor Core units, 14,592
CUDA cores, and 80 GB of graphics memory.
Dataset. As detailed in Table 1, we employ 12 real-world
graph datasets, categorized into two types: Type I datasets,
with a smaller average row length (less than 20), and Type
II datasets, with an average row length close to 500. This
distinction in row length influences the data volume in each
RowWindow’s TCU blocks, impacting efficiency. To evaluate
the adaptability of different methods, our selection includes
datasets with varied average row lengths. We also incorporate
the SuiteSparse dataset [7], a comprehensive collection of
sparse matrix benchmarks, for extended validation.
Methodology. We benchmark SpMM against state-of-the-
art CUDA Core-based and Tensor Core-based methods. The

Table 1: Dataset Statistics

Type Dataset Abbr. Vertex Edge

I

amazon0505 A5 410,236 4,878,875
DD DD 334,925 1,686,092
PPI PI 56,944 818,716
amazon0601 A1 403,394 3,387,388
com-amazon CN 334,863 1,851,744
Yeast YT 1,714,644 3,636,546
YeastH YH 3,139,988 6,487,230
web-BerkStan WN 685,230 7,600,595

II
FraudYelp-RSR FR 45,914 6,805,486
Reddit RT 232,965 114,848,857
ddi DI 4267 2,140,089
protein PN 132,534 79,255,038

CUDA Core baselines include Sputnik [12], GE-SpMM [17],
RoDe [32], and cuSPARSE [24], while the Tensor Core base-
lines include TC-GNN [43] and DTC-SpMM [10]. For GNN
testing, comparisons are made with GNNAdvisor [42], TC-
GNN, and the widely-used DGL framework [2]. Our GNN
model features two GCN [20] convolutional layers, each with
a hidden dimension of 256.

4.2 SpMM Performance

First, we evaluate the performance of Voltrix-SpMM against
other SpMM kernels using real-world graph datasets and the
SuiteSparse collection to provide the sparse matrices on the
left-hand side. The dimensions of the dense matrices on the
right-hand side are set to 256, 512, and 1024, respectively.

Graph datasets. As illustrated in Figure 9, Voltrix-SpMM
achieves superior performance across nearly all graph datasets.
It outperforms cuSPARSE with an average speedup of 2.7x
and surpasses the state-of-the-art CUDA Core-based method,
RoDe, by the 1.9x speedup. Against the Tensor Core-based
method, DTC-SpMM, Voltrix-SpMM delivers an average
speedup of 1.8x, demonstrating its high efficiency.

Voltrix-SpMM particularly excels as the dimension of the
dense matrix increases, achieving speedups of 2.4x, 2.8x, and
3.0x over cuSPARSE for dimensions of 256, 512, and 1024,
respectively. This improvement is attributed to our multiple
MMA and buffer design, which can load more data per op-
eration at higher dimensions, thereby reducing instruction
overhead and making more effective use of bandwidth.

Furthermore, while DTC-SpMM and TC-GNN also uti-
lize Tensor Cores for acceleration, their performance lags
behind the CUDA Core-based RoDe by 2% and 69%, respec-
tively. This highlights that despite the high computational
throughput of Tensor Cores, significant data loading overhead
can restrict their performance, leading to underutilized and
‘starved’ Tensor Cores. In contrast, Voltrix-SpMM overcomes
these limitations with its warp-level asynchronous pipelining
and balanced workload design, effectively unlocking the full
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Figure 9: Performance comparison on graph datasets, with each subplot showing Voltrix-SpMM’s speedup over cuSPARSE.

Figure 10: Speedup comparison on SuiteSparse: Box plot shows the overall distribution, while line chart shows detailed speedup.

potential of Tensor Cores for SpMM. While some CUDA
Core-based methods, such as Sputnik and RoDe, encounter
CUDA errors under specific conditions due to shared memory
limitations, Voltrix-SpMM consistently adapts to all scenarios,
thanks to its robust persistent kernel design.

SuiteSparse datasets. As shown in Figure 10, Voltrix-
SpMM achieves average speedups of 2.5x compared to cuS-
PARSE. These results not only outperform all other meth-
ods but also demonstrate that the effectiveness of our de-
sign increases with the matrix dimensions, consistent with
results observed on graph datasets. In the SuiteSparse tests,
DTC-SpMM and TC-GNN still fall short of the performance
achieved by the state-of-the-art CUDA Core-based method,
RoDe, lagging by 11% and 70%, respectively. In contrast,
Voltrix-SpMM achieves a 1.6x speedup over RoDe. This un-
derscores that existing Tensor Core-based designs typically do
not outperform CUDA Core-based methods. Our work is the
first to fully leverage the capabilities of Tensor Cores, achiev-
ing speedups that surpass those achievable with traditional
CUDA Core-based methods.

Mirco-level analysis. To provide a more granular under-

standing of the performance characteristics of various SpMM
implementations, we augment our evaluation with micro-level
hardware analysis. Using NVIDIA Nsight Compute, we col-
lected key metrics such as register allocation, DRAM reads
(GB), bank conflicts, and Tensor Core Unit (TCU) pipe utiliza-
tion, as shown in Figure 12. These measurements are based
on experiments using the Reddit dataset.

Results show Voltrix-SpMM consistently outperforms
DTC-SpMM and RoDe-SpMM across multiple hardware met-
rics. It uses fewer registers and consumes less memory band-
width, reflecting the efficiency of our bit-wise compressed
data format, BMat.

Furthermore, Voltrix-SpMM exhibits a competitive L2
cache hit rate and significantly fewer bank conflicts, demon-
strating effective memory access management, especially dur-
ing the BMat decoding phase. It also demonstrates a competi-
tive L2 hit rate and significantly fewer bank conflicts, high-
lighting its effective memory access management, particularly
in optimizing BMat decoding phase.

Additionally, Voltrix-SpMM achieves the highest TCU pipe
utilization, demonstrating superior pipeline efficiency and
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Figure 12: Micro-level performance comparison.

more effective use of GPU tensor cores. In contrast, RoDe-
SpMM, limited to CUDA cores, shows zero TCU activity.

In summary, Voltrix-SpMM outperforms the other imple-
mentations in terms of memory efficiency and hardware uti-
lization, making it the most optimized choice for SpMM tasks.

4.3 SpMM Performance Breakdown

We assess the performance contributions of Voltrix-SpMM’s
core components. Experiments are conducted on the graph
datasets with dense matrix dimensions set to 256, using TC-
GNN as the baseline. We incrementally integrate Voltrix-
SpMM’s components to gauge the performance improve-
ments, which are illustrated in Figure 11.

Initially, we integrate the bulk asynchronous data transfer
instruction, TMA, to establish a single layer of pipelining.
However, in most datasets, this addition results in a perfor-
mance degradation, with an average decrease of 32.6%. This
occurs because, while the TMA instruction can transfer a
large volume of data per operation, its latency is relatively
high. Therefore, with the data dimension set to 256, each op-
eration is limited to transferring only 256 float32 elements,
restricting the potential for bulk data transfer. Additionally,
the single-layer pipelining provides minimal overlap, further
reducing the overall benefits of pipelining.

Adding our bit-wise compressed data format (BMat), we
observe over a 77x average speedup, with results on Reddit
reaching up to 384x. This significant improvement is due
to datasets like Reddit, Protein, and ddi having larger aver-
age row lengths, which results in more SparseA blocks per
RowWindow after TCU compression. In comparison, TC-
GNN struggles with inefficient loading and transformation of
SparseA, causing substantial delays. Voltrix-SpMM, with its
bit-wise compressed data format, leverages vectorized load-
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Figure 13: End-to-end GNN testing on different graph
datasets: The vertical axis represents the speedup over DGL.

ing and a conflict-free transformation design, dramatically
reducing the processing time for SparseA.

Next, incorporating our multi-tiered pipelining yields an
average 2.1x speedup. Although bulk asynchronous trans-
fers introduce some overhead, Voltrix-SpMM counteracts this
through multiple MMA operations and buffers, which amor-
tize the instruction overhead while optimizing bandwidth
utilization. Our warp-specialized producer-consumer model
further facilitates fine-grained, multi-tiered pipelining, achiev-
ing higher levels of overlap and yielding significant benefits.

Lastly, integrating our persistent kernel design results in
up to a 1.3x speedup. On datasets like Reddit, which fea-
ture more uneven data distributions, we observe even greater
improvements, showcasing our balance search algorithm’s
efficacy in addressing challenges associated with uneven data
distribution on input-output balance.

Overall, through the strategic design of these four compo-
nents, Voltrix-SpMM achieves speedups ranging from 2.0x
to 304x, underscoring the effectiveness of each module in
enhancing SpMM performance.

4.4 GNN End-to-end Training
We evaluate the performance of Voltrix-SpMM in end-to-end
GNN training, which we refer to as Voltrix-GNN, exploring
its potential in machine learning tasks. We use GCN [20],
one of the most widely used GNN models, which comprises
multiple graph convolutional layers. Each layer’s computation
primarily involves a SpMM operation and a GEMM operation,
indicating that any computational gaps in SpMM may be
balanced by other operations during training.

The experimental results in Figure 13 use DGL [2], which
leverages cuSPARSE library for SpMM acceleration, as the
baseline. Voltrix-GNN consistently outperforms all baselines
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across diverse graph datasets, with average speedups of 1.55×,
1.77×, 4.01×, 1.45×, and 1.29× over DGL, GNNAdvisor, TC-
GNN, DTC-SpMM, and GE-SpMM, respectively. These find-
ings underscore the applicability and outstanding performance
of Voltrix-SpMM in GNN training tasks.

4.5 Overlap Rate of Pipelining
We investigate the overlap rate of Voltrix-SpMM’s pipelining
strategy. Profiling the kernel’s time trace is challenging, so
we adopt an approximation method to determine the kernel’s
overlap rate: First, we implement a configuration using a sin-
gle buffer, termed Fully-Sync, where the consumer begins
computation only after production has completed, forcing
the kernel to operate serially without any pipelining. Next,
we configure the kernel to run completely asynchronously
by removing all MBarrier instructions, which we refer to as
Fully-Async. This scenario represents the upper bound of
our kernel’s performance. We define the overlap rate, Ro, as:

Ro =
T (Fully_Sync)−T (Voltrix_Async)
T (Fully_Sync)−T (Fully_Async)

×100% (3)

Here, Voltrix-Async refers to our method. As depicted
in Figure 14, Voltrix-SpMM achieves peak overlap rates of
85% and 97% at 256 and 512 dimensions, respectively. These
results demonstrate the effectiveness of our warp-specialized
asynchronous data loading pipelining. With near-seamless
overlap, Voltrix-SpMM significantly reduces the data loading
overhead, showcasing its high efficiency.

4.6 Workload Balance Analysis
Active SM cycles analysis. To evaluate the effectiveness of
our workload balancing design, we analyze the distribution of
active SM cycles using runtime data from both non-balanced
and balanced kernel executions, as shown in Figure 15. The
impact of our approach varies across datasets. On imbalanced
workloads like ddi, our method significantly improves SM
utilization and reduces kernel time by 8.6%. In contrast, for
already balanced datasets like ppi, the benefit is marginal,
with only a 0.4% increase in kernel time.

While the balancing introduces minor overhead, it is largely
hidden by the persistent kernel design, which overlaps epi-
logue execution with ongoing computation. As a result,our
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method delivers clear gains on imbalanced workloads while
preserving original performance on balanced ones.

Sensitivity analysis. We investigate the balance of differ-
ent methods to irregular distributed data. By configuring the
number of SparseA elements in each RowWindow, we gener-
ate sparse datasets with varying levels of uniformity. Using a
Gamma distribution [25], we create datasets with a mean of
256 and variances ranging from 0 to 192, and evaluate their
performance.

As shown in Fiure 16, under different variance distributions,
our method outperforms both DTC-SpMM and TC-GNN in
terms of speed. Moreover, as the distribution of SparseA be-
comes increasingly uneven,our method remains stable with
only a 4% performance drop, while TC-GNN experiences a
significant 47% degradation. These results demonstrate the
superiority of Voltrix-SpMM in balancing I/O while avoiding
the high overhead of atomic operations.

4.7 Validation of Cost Model
We evaluate the effectiveness of the cost model outlined in
Equation 1, utilizing kernel execution time as the cost mea-
sure. To understand the relationship between time and the two
variables, Num_SPA and RW , we generate datasets with vary-
ing values for these parameters. Given the linear relationship
postulated in our model between the cost and these variables,
we employ linear regression for fitting, as demonstrated as:

T = α1 ·Num_SPA+α2 ·RW +α3 (4)
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Here, α1, α2, and α3 represent the coefficients of the linear
regression model, correlating positively with c f1, c f2, and c f3,
respectively. We divide the data into a training set (80%) and
a testing set (20%). Using this model, we predict values on the
testing set and compare these predictions to the actual values.
This comparison is visually represented in Figure 17, where
the predicted values are plotted against the actual values on
the x and y axes, respectively. The discrepancy between them
is indicated by the size of the scatter markers, with smaller
sizes denoting a closer fit to the perfect prediction line.

As depicted in Figure 17, nearly all points closely align
with the ideal prediction line. Moreover, we calculate the
coefficient of determination, R2 = 0.92, indicating a strong
linear relationship. An R2 value exceeding 0.9 reaffirms the
high accuracy of our model’s fit to the data.

5 Related Work

CUDA Core-accerateled SpMM. Recently, numerous stud-
ies have focused on optimizing SpMM computation on
GPUs, primarily utilizing CUDA Cores [12,16–18,26,32,34].
NVIDIA’s official sparse matrix library, cuSPARSE [24], of-
fers highly optimized GPU-accelerated routines for SpMM.
Merge-SpMM [48] accelerates SpMM using the CSR format,
emphasizing instruction-level parallelism. Sputnik [12] intro-
duces a 1D tiling scheme that enhances operand reuse and
employs subwarp tiling and reverse-offset memory alignment
to optimize vector memory access for misaligned addresses.
GE-SpMM [17] integrates a coalesced row caching method
for efficient memory access and a coarse-grained warp map-
ping method to reduce threading overheads. GNNAvisor [42]
proposes an adaptive runtime system with a novel 2D work-
load management strategy to improve GPU utilization. DA-
SpMM [6] employs a data-aware heuristic GPU kernel, while
HP-SpMM [9] uses dynamic task partitioning and hierarchi-
cal vectorized memory access. Lastly, RoDe [32] introduces a
row decomposition-based method that enables efficient com-
putation, load balancing, and fine-grained pipelining, setting
a new performance benchmarks for SpMM.

Collectively, these methods optimize SpMM across var-
ious dimensions but often overlook the potential of Tensor
Cores for accelerating computations. This oversight limits
their ability to leverage the high throughput of modern GPUs.

Tensor Core-accerateled SpMM. With the advancement
of Tensor Core computational throughput, an increasing num-
ber of studies have focused on leveraging Tensor Cores to
accelerate SpMM [1, 5, 23, 41, 44]. However, most of these ef-
forts target structured SpMM, which assumes a predefined pat-
tern for the non-zero element distribution in sparse matrices,
thereby limiting their applicability in real-world scenarios.

In contrast, TC-GNN addresses the more challenging ap-
plication of unstructured SpMM on Tensor Cores. By intro-
ducing a sparse graph translation method that compresses
sparse matrices into Tensor Core-sized TCU blocks, TC-

GNN enables the efficient mapping of SpMM workloads
to Tensor Core units. This approach has been further inte-
grated into SparseTIR [49]. Despite its advances, however,
TC-GNN’s performance is compromised by inefficient data
loading, which leaves the Tensor Cores underutilized. DTC-
SpMM [10] attempts to enhance efficiency through several
optimization methods, such as bypassing shared memory to
accelerate dense data loading and implementing a pipeline
arrangement to overlap sparse data loading and computa-
tion. However, the intra-warp asynchronous pipeline of DTC-
SpMM struggles with the overhead caused by a large number
of instructions and the costs of intra-warp synchronization.

While ACC-SpMM [51], FlashSparse [36], Groot [4], and
SpInfer [11] make valuable contributions and optimizations
beyond DTC-SpMM, they all operate within the same asyn-
chronous design paradigm. To address these limitations,
Voltrix-SpMM employs a multi-tiered inter-warp pipeline
for enhanced computational overlap through warp specializa-
tion and utilizes bulk asynchronous data loading via TMA to
efficiently handle high-dimensional data.

Libraries like cuBLAS [27], CUTLASS [31], and
FlashAttention-3 [35] optimize GEMM operation using warp
specialization and persistent kernel design, but the unique
challenges posed by the sparse and irregular workload of
SpMM make these approaches inapplicable.

6 Conclusion

In this paper, we introduced Voltrix-SpMM, a novel GPU
kernel design that enhances SpMM on Tensor Cores. Voltrix-
SpMM maximizes the computational potential of Tensor
Cores for unstructured SpMM tasks. Its innovations in-
clude a new compression format for sparse matrices, bulk
asynchronous data loading and a warp-specialized producer-
consumer model, which streamline data handling and compu-
tation. Additionally, its SM-aligned, atomic-free partitioning
mechanism ensures balanced workload distribution across
SMs. The impact of Voltrix-SpMM is significant, achieving
an average 1.8x improvement over DTC-SpMM, 1.7x over
RoDe, and a 2.0x increase in end-to-end GNN training speeds,
proving its effectiveness in real-world applications.
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