USENIX

THE ADVANCED COMPUTING
SYSTEMS ASSOCIATION

GreyHounD: Hunting Fail-Slows in Hybrid-Parallel
Training at Scale

Tianyuan Wu and Wei Wang, Hong Kong University of Science and Technology;
Yinghao Yu, Siran Yang, and Wenchao Wu, Alibaba Group; Qinkai Duan, Hong
Kong University of Science and Technology; Guodong Yang, Jiamang Wang, Lin Qu,
and Liping Zhang, Alibaba Group

https://www.usenix.org/conference/atc25/presentation/wu-tianyuan

This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7-9, 2025 « Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference
is sponsored by
alllasc &llall aeala

asidsllg aglell

King Abdullah University of
Science and Technology

(

ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

GREYHOUND: Hunting Fail-Slows in Hybrid-Parallel Training at Scale

Tianyuan Wu', Wei Wang"; Yinghao Yu®, Siran Yang®, Wenchao Wu?®,
Qinkai Duan’, Guodong Yang?®, Jiamang Wang?®, Lin Qu®, Liping Zhang®
THong Kong University of Science and Technology
SAlibaba Group

Abstract

Fail-slows, or stragglers, are common problems in large-
scale hybrid-parallel training that runs on a large fleet of GPU
servers for an extended period of time. Yet, these problems
are not well studied. In this paper, we first present a char-
acterization study on a shared production cluster with over
10,000 GPUs. We find that fail-slows manifest as transient
stragglers caused by slow computations or communications
due to contention, device degradation, or network congestion,
lasting from sub-minutes to nearly ten hours, and delaying
large training jobs by 1.34x on average. The current practice
is to manually detect fail-slows and treat them as fail-stops
by means of checkpoint-and-restart failover, which is time-
consuming. In this paper, we propose GREYHOUND, a sys-
tem that rapidly identifies slow GPUs and/or communication
links, and effectively tackles them with a novel multi-level
mitigation mechanism, all without human intervention. GREY-
HOUND correctly detects fail-slows in a production cluster
with over 99% accuracy. Testbed experiment on 256 H800
GPU s further shows it effectively handles (manually injected)
stragglers, improving end-to-end throughput by 1.58 x.

1 Introduction

Large deep learning models have taken the industry by
storm [1,40,42,51,52,55, 62]. These large models boast
unprecedented sizes, containing billions to trillions of param-
eters, and are trained over massive datasets in a large cluster.
A typical training job often runs on tens of thousands of GPUs
for weeks or even several months [1, 12, 62]. At this scale,
failures become a norm rather than an exception. Therefore,
developing runtime mechanisms that rapidly detect failures
and efficiently tackle them is crucial to achieving high relia-
bility in large model training.

Many of these mechanisms are developed to handle fail-
stop failures that result in a complete halt of training [20, 26,
28,33,56], e.g., GPU hangs and runtime crashes. However,
fail-stop alone does not cover the full spectrum of failure
issues encountered in hyperscale training. Many system com-
ponents, including CPUs, GPUs, and communication links,
may still function but experience occasional performance
degradation due to resource contention, thermal throttling,

*Corresponding author.

power supply, and network congestion. These failures, known
as fail-slows or stragglers, do not cause a crash stoppage but
significantly slow down the training progress [12,22], as state-
of-the-art large model training requires synchronization at
each iteration boundary to achieve optimal model quality [50].
Despite their prevalence, fail-slow failures are hard to detect
and have not been well studied. Although briefly mentioned in
recent reports [12,22], the overall characteristics of fail-slow
failures in hyperscale training remain not well understood.

To shed light on this, in this paper, we first conduct a com-
prehensive characterization study (§3) in a shared production
cluster comprising over 10,000 GPUs on 4,000 nodes inter-
connected through a RoCE network with up to 400 Gbps band-
width. Our study reveals that fail-slows manifest as transient
failures in both computation and communication. Specifically,
computation fail-slows primarily result from CPU contention
and GPU performance degradation due to thermal throttling
or other issues (§3.2). These fail-slows occur occasionally
(< 2%) on individual nodes, with a short mean duration of
10 minutes. In comparison, communication fail-slows caused
by network congestion on a communication link occur more
frequently (40%) and last longer time, with a mean duration
of 24 minutes. When it comes to at-scale distributed train-
ing, computation and communication fail-slows become even
more prevalent, collectively causing more damage than that
on small-scale training. We manually inspected large training
jobs submitted in July 2024, each requiring at least 512 GPUs.
Among all 27 large jobs, 16 experienced fail-slow failures,
with a mean straggler duration of 72 minutes. These fail-slows
delay the job completion time by an average of 1.34x.

Compared to fail-stops, fail-slows are more elusive to de-
tect and locate [12, 22], especially when advanced hybrid
parallelism techniques are utilized [35, 50], which combine
tensor, data, pipeline, and possibly other parallelism to ex-
pedite training [13,27]. Simply collecting hardware metrics
like GPU SM utilization and RNIC’s CNP (congestion no-
tification packet) responses through telemetry offers little
clue in this regard: given the synchronous nature of training,
the presence of a straggler results in simultaneous utilization
drops of all GPUs; likewise, a link could be shared by multi-
ple jobs, and an RNIC’s CNP response may not necessarily
indicate a job-level performance issue for all. Although ad-

USENIX Association

2025 USENIX Annual Technical Conference 731

vanced benchmarking tools are available [58,65], using them
to locate fail-slows requires stopping the entire training job
and benchmarking all the involved GPUs and links, which is
prohibitively expensive.

In this paper, we propose GREYHOUND, a system that
rapidly identifies computation and communication fail-slows
and reacts with effective mitigation mechanisms. GREY-
HOUND achieves this through two subsystems. The first
subsystem, GREYHOUND-DETECT, employs a non-intrusive,
framework-agnostic mechanism for fail-slow detection. It
transparently tracks the training iteration time on each worker
by hooking to NCCL [38] function calls and identifies pro-
longed iterations using the Bayesian Online Change-point
Detection (BOCD) algorithm [2]. It then initiates lightweight
profiling on each worker to obtain a fine-grained execution
profile for each parallelization group, without interrupting the
ongoing training job. By analyzing these execution profiles, it
narrows the search space to a few suspicious worker groups
where fail-slows may reside. To pinpoint their exact locations,
GREYHOUND-DETECT briefly hangs the training job and
runs benchmarking tests within suspicious groups to validate
the GPU computation and link communication performance.
Slow GPUs and links are then identified as straggling com-
ponents. Notably, our detection system uniquely introduces
online anomaly detection and micro-benchmarking to localize
fail-slows at runtime, without disrupting training or relying
on intrusive, full-job validation. This approach enables accu-
rate, framework-agnostic diagnosis of both computation and
communication stragglers at scale.

Once fail-slows are identified, GREYHOUND-MITIGATE
takes over with an efficient mitigation mechanism. As fail-
slows are usually transient, simply handling them as fail-
stops using checkpoint-and-restart is an overkill. We explore
the design space and identify four strategies to tackle fail-
slows: (S1) ignoring them in the hope that they will soon be
alleviated, (S2) resharding data parallelism to alleviate the
load on slow GPUs, (S3) adjusting the parallelization topol-
ogy to move congested links to light-traffic groups, and (S4)
checkpoint-and-restart. As we move from S1 to S4, the miti-
gations become more effective, while the cost of action taking
also increases. Therefore, the choice of optimal strategy de-
pends on the duration (and severity) of the ongoing fail-slows,
which cannot be known a priori. This problem resembles the
classical ski-rental problem [23]. Drawing inspirations from
its solution, we propose an effective online heuristic that starts
with a low-cost strategy (S1) and progressively switches to
a more effective, yet costly one if fail-slow persists and the
current strategy proves ineffective. The mechanism falls back
to job restart as a last resort. By explicitly modeling it as an
online decision process and applying ski-rental theory, our
system provides a principled solution for straggler mitigation.
This approach systematically balances effectiveness and cost,
which is not considered in previous solutions.

We have implemented GREYHOUND-DETECT as a

framework-independent detection system and GREYHOUND-
MITIGATE as a plugin for Megatron-LM [50]. We use GREY-
HOUND-DETECT as the primary tool in our characterization
study to identify computation and communication fail-slows
for 499 probing jobs submitted to the production cluster.
Cross validation with human inspection shows that GREY-
HOUND-DETECT correctly diagnoses 498 jobs (99.8% accu-
racy), with less than 1% performance overhead. We further
evaluate GREYHOUND-MITIGATE with manually injected
fail-slows. It reduces the slowdown from computation fail-
slows by up to 1.59x and from communication fail-slows
by up to 1.23x. Experiments involving a training job on
256 H800 GPUs demonstrate that GREYHOUND accurately
identifies the injected fail-slows and improves end-to-end
throughput by 1.58x.

Our contributions are summarized as follows:

1. We present the first comprehensive characterization
study in a production cluster to understand the over-
all characteristics and performance impacts of fail-slow
failures in hyperscale large model training.

2. We propose GREYHOUND-DETECT, a non-intrusive,
framework-agnostic detection system that identifies com-
putation and communication fail-slows at runtime.

3. We propose GREYHOUND-MITIGATE, a system that
effectively addresses fail-slow failures through a novel
multi-level straggler mitigation mechanism.

2 Background

Parallelism for distributed training. Hyperscale training
can require thousands of petaFLOP/s of compute power, ne-
cessitating the use of high-performance computing (HPC)
clusters [12, 22, 35,44]. These HPC clusters typically con-
sist of tens of thousands of GPUs interconnected through
high-speed fabrics such as InfiniBand [43] and RoCE [24].
To efficiently train large models on HPC clusters, various
parallelism strategies have been developed to partition and
distribute models across GPUs and nodes.

1) Tensor Parallelism (TP) is a technique that partitions
the computation of specific operators, such as MatMul or
Attention, along non-batch axes [25,50,63]. It enables parallel
computation of each partition across multiple devices. TP
often incurs significant communication costs due to the need
for synchronization of each operator, and is often confined to
a single node to minimize latency [22,35].

2) Data Parallelism (DP) involves creating multiple model
replicas and distributing them across multiple GPUs [35, 46,
50]. In each iteration, the global data batch is split into mini-
batches, allowing each model replica to handle a portion of
the data concurrently. After each iteration, the gradients from
all replicas are synchronized. DP communication involves a
moderate data transfer volume, which can occur either within
a single node or across multiple nodes.

3) Pipeline parallelism (PP) partitions the model by plac-
ing different groups of layers, called stages, on separate

732 2025 USENIX Annual Technical Conference

USENIX Association

GPUs [19,35,63]. It further divides the mini-batch into micro-
batches, allowing for pipelined forward and backward passes
across different nodes. PP incurs the smallest communication
overhead among all three strategies.

4) Hybrid parallelism. To maximize training efficiency,
different parallelism strategies can be combined, allowing the
model to be partitioned in multiple dimensions [12,22,35].
This technique, known as hybrid parallelism, have demon-
strated the ability to train models with over a trillion parame-
ters across thousands of GPUs [12,22,35].

Reliability issues. Given the complex nature of distributed
training and the sheer scale of resources involved, large model
training presents significant reliability challenges, manifested
as crash stoppage (fail-stop) and still-functioning but slow
stragglers (fail-slow). Both types of failures stem from soft-
ware or hardware problems, and their impacts are magnified in
large-scale setup: a single component experiencing fail-stop
or fail-slow can crash or slow down the entire training process
due to the frequent synchronization required in distributed
training. Compared to fail-stops, fail-slow problems are hard
to detect [12], necessitating sophisticated performance anal-
ysis tools [22, 58]. Despite brief reports from recent stud-
ies [12,22,58], the overall characteristics of fail-slows remains
largely unknown, which motivates our study.

3 Characterization Study

In this section, we intend to answer the question, how do
fail-slows manifest in large model training? We present a
characterization study in a shared production cluster.

3.1 Cluster Setup and Methodology

Cluster setup. Our production cluster consists of over 4,000
nodes and more than 10,000 heterogeneous GPUs, includ-
ing approximately 1,800 NVIDIA H800 GPUs and 2,600
A100 GPUs. These nodes are connected through a high-
performance network employing the popular spine-leaf ar-
chitecture [44]. The network offers up to 4 x 200/400 Gbps
RoCE bandwidth for A100/H800 nodes. Within a node, GPUs
are interconnected with NVLink/NVSwitch [36]. The cluster
is a shared, multi-tenant system that runs diverse workloads,
including: (1) large-scale model training jobs utilizing over
1,000 GPUs, (2) inference jobs encompassing both online
inference and offline batch inference, (3) jobs for recommen-
dation models, such as training embedding tables, and (4)
short-running spot jobs for model debugging. Unless a job
requests 8 x GPUs per node, it may colocate with other jobs
on the same node, e.g., embedding training collocated with
inference. No GPU sharing [57] is allowed.

Methodology. As we are not allowed to instrument produc-
tion workloads, we use two approaches to characterize fail-
slows. (1) Online probing with repeated sampling. We repeat-
edly submitted identical small training jobs as spot workloads,
which were randomly scheduled on available nodes across
the cluster, often colocated with other production jobs. These

1.00 A .
--- Comp 1 1
0.75 1 Comm ./ +i
w —— Large ! |
0 0.50 i 44
o ! | --- 1-node
0.251 / 11 4-node
0.00 ! [—— LargeScale

20 40 60 80 100
JCT Slowdown (%)

01 1 10 100 10000
Fail-slow Duration (min)

Figure 1: Left: CDF of fail-slow duration. Right: CDF of
fail-slows’ impact on job completion time (JCT).

Category Online Probing Offline Inspection
1-Node | 4-Node | At Scale (> 512 GPUs)

No fail-slow 386 64 11
CPU Contention 4 1 0
GPU Degradation 2 0 0
Network Congestion 0 42 13
Multiple Issues 0 0 3
Total # Jobs 392 107 27

Avg. JCT Slowdown | 11.79% | 15.45% 34.59%

Table 1: Root causes and JCT slowdown of fail-slow issues
in our characterization study.

training jobs are specially designed to act as probes, collecting
key performance metrics to identify computation and commu-
nication fail-slows at runtime using techniques developed in
§4. By submitting many of these probing jobs, we can cover a
large number of nodes and links, effectively sampling a large
portion of the cluster to characterize fail-slows at microscale
(e.g., individual nodes and links). (2) Offline inspection with
collected traces. To characterize fail-slows at macroscale,
we collected a one-month trace containing numerous large
training jobs, each utilizing at least 512 GPUs. We manually
inspected the trace to identify fail-slows.'

3.2 How Do Comput. Fail-Slows Manifest?

Probing jobs. We start to characterize computation fail-slows
occurred on individual nodes. We submitted 400 single-node
training jobs to the cluster, of which 392 completed success-
fully without fail-stop errors. Each job trains a GPT2-11B
model on one node using 4 xH800 GPUs with a hybrid par-
allelism strategy of (2TP, 1DP, 2PP) to fully utilize GPU
memory. The training framework used is Megatron-LM. Each
job runs 10,000 iterations, taking 70 to 90 minutes. These
probing jobs were scheduled to run on approximately 500 out
of 1,800 H800 GPUs in our cluster (28% coverage).

Frequency and impacts. As summarized in Table 1, among
392 completed probing jobs, six experienced computation
fail-slows, of which four are due to CPU contention and two
are resulted from GPU performance degradation. Figure 1
(left) further shows the distribution of fail-slow duration. All
computation fail-slows (blue curve) are short-lived, with an
average duration of 10 minutes, extending the job completion
time (JCT) by 11.79%. We next provide two case studies to
better understand the root causes of these issues.

'We are working on open releasing the trace for public access.

USENIX Association

2025 USENIX Annual Technical Conference 733

. 2

% 1.81 = 30.01

2 22751

= =

3161 N25.01 —GPUO PU2

£ z 295 GPU1—GPU3

T T T T G . T T T T

0 20 40 60 80 0 20 40 60 80

%) —_

751 & 100 {7

B 5.0 % 501

3 =

< 2.5]]

:{C_:O.of ‘ ‘ ‘ ‘ g_ ‘ ‘BGJot‘)—Tr‘ainjob‘
0 20 40 60 80 0 20 40 60 80

Training Time (min) Training Time (min)

Figure 2: A case of a fail-slow job due to CPU contention.
Upper-left: Training throughput. Upper-right: GPU SM
utilization of the four GPUs used by this job. Bottom-left:
The number of high-CPU jobs running on the same node.
Bottom-right: CPU satisfaction rate of the training job (red)
and other colocated background jobs (blue).

Case-1: CPU contention. As shown in Figure 2 (upper-left),
the job under study experienced two fail-slows at 22 and 55
minutes, resulting in a maximum performance drop of 21.6%.
Correspondingly, the job measured simultaneous declines in
SM utilization across all four GPUs during fail-slow periods
(upper-right), suggesting GPU slowdown. To validate this,
we paused the job and conducted a matrix computation to
assess GPU performance upon fail-slow detection, but found
no performance degradation. Further investigation revealed
a surge in the number of high-CPU jobs coinciding with the
fail-slow occurrence (bottom-left), leading to a decreased
CPU satisfaction rate (bottom-right), increased CPU time,
and ultimately, a reduction in throughput.

Case-2: GPU performance degradation. Computation fail-
slows can also be attributed to GPU performance degradation,
often linked to thermal throttling. Figure 3 illustrates a case
where the job under study experienced slowdown in the first
10 minutes (upper-left), during which all four GPUs measured
low SM utilization (upper-right). Further investigation indi-
cated that only GPUO was 20% slower than others (bottom-
left) because of thermal throttling (bottom-right). Notably,
rising temperatures do not always lead to performance issues;
this may indicate a hardware problem, with an occurrence
rate of about 0.5%, consistent with ByteDance’s report [22].
Requirements for mitigation strategies. Given that compute
fail-slows are typically transient—often resolving within tens
of minutes—the overall impact on training performance is
moderate. Thus, mitigation strategies must be lightweight and
impose minimal overhead. Costly interventions are unsuitable,
as their adjustment costs can exceed the potential performance
gains, thereby negating the benefits of mitigation.

3.3 How Do Commun. Fail-Slows Manifest?

Probing jobs. To explore communication fail-slows, we sub-
mitted 120 multi-node probing jobs, of which 107 successfully
completed without fail-stop. Each job utilizes 8 x A100 GPUs
across four nodes to train a GPT2-7B model with (2TP, 4DP,

—GPUO—GPU2
GPU1—GPU3

164 = 30.01
2 27.5
=] & 253
1.4 01
2 2251

0 10 20 30 40 50° 0 10 20 30 40 50
Training Time (min) Training Time (min)

Thpt (Iters/s)

5 9

o < —GPUO—GPU2

2 1.01 5001 GPU1—GPU3

) € 501

205 $ 50

£ £ a0

€ 0.0/ 2

Il 0.0 o T T T T

[} 0 1 2 3 0 10 20 30 40 50

GPU ID Training Time (min)

Figure 3: A case of a fail-slow job due to GPU perfor-
mance degradation. Upper-left: Training throughput. Upper-
right: GPU SM utilization of the four GPUs used by this job.
Bottom-left: Normalized GPU performance during fail-slow.
Bottom-right: NVML [39] reported GPU temperature.

1PP), where TP communications are over NVLink and DP
communications are cross-node through a 400 Gbps RoCE
link. Each job runs 10,000 iterations, taking approximately
five hours. These probing jobs were distributed among 690
out of 2,600 A100 GPUs in our cluster (26.5% coverage).

Frequency and impacts. As summarized in Table 1, 43 out
of 107 jobs experienced fail-slows. Among them, only one
job was slowed due to CPU contention, while the other 42
encountered communication fail-slows caused by network
congestion. We observed no hardware-induced fail-slows,
such as issues with RNICs. Compared to computation slow-
downs, communication fail-slows exhibit a wider range of
duration, from sub-minutes to over 100 minutes(Figure I,
left). On average, communication fail-slow persists for about
24 minutes, delaying the average JCT by 15.45%.

Network congestion. Compared to computation slowdowns,
network congestion emerges as a more significant factor
contributing to performance degradation in multi-node train-
ing [12,45], with a notably higher frequency. Figure 4 presents
a case study on a probing job that experienced two commu-
nication fail-slows at t=90 and t=265 minutes. The initial
fail-slow resulted in throughput drop from 0.57 to 0.41 iter-
ations/s; shortly thereafter, at t=265, the second slowdown
further reduced throughput to merely 0.31 iterations/s (Fig-
ure 4, left). The two throughput drops align with the surges
of congestion notification packets (CNPs) reported by the
RNICs (center), indicating severe network congestion. Upon
the onset of communication fail-slows, the SM utilization
across all eight GPUs reduced simultaneously (right), despite
healthy GPUs. We further investigated the spike in CNPs and
discovered that other jobs were sharing the same link as our
probing job, leading to throttled communication bandwidth.
Although this behavior is expected for network congestion
control, such congestion is typically unavoidable and unpre-
dictable in multi-tenant clusters, leading to reduced training
performance [4,45]. This is primarily due to the spine-leaf
topology in modern clusters, where multiple jobs must share
spine switches. As a result, isolating network traffic between

734 2025 USENIX Annual Technical Conference

USENIX Association

Q T 1~ " "
— Thpt = . —NICO—NIC2 ¥ 5& |—Avg SM Util
v P @ 107 Nici—nics S 25y :
§%°] £75 5
= o
=] s 20
Z 04/ 550 =
£ 225 2
o 151
; ; - O 0.0 . a0 ; ; ;
0 150 300 0 150 300 0 150 300
Time (min) Time (min) Time (min)

Figure 4: A case of fail-slow jobs caused by network conges-
tion. Left: Training throughput. Center: The number of con-
gestion notification packets (x 1000) sent by RNICs. Right:
Average GPU SM utilization of the 8 GPUs used by this job.

jobs remains difficult, even with advanced scheduling poli-
cies [4,45] and network-level optimizations [44]—though
improved isolation can help reduce the frequency of conges-
tion events. Given its inevitability and impact, we classify
such congestion-induced slowdowns as a type of fail-slow.
Requirements for mitigation strategies. Due to their long
duration and substantial impact, communication fail-slows
can cause severe performance degradation if left unaddressed
or mitigated ineffectively. This justifies and motivates the
use of more effective, aggressive—and potentially higher-
overhead— strategies, as the benefits can ultimately outweigh
the associated costs.

3.4 How Do Fail-Slows Manifest at Scale?

Limited by the small scale of each probing job, previous
studies can only characterize fail-slows at microscale, i.e., on
individual nodes or links. To characterize fail-slows at a larger
scale, we collected and manually examined a one-month trace
containing 27 large-scale training jobs that ran on our cluster
in July 2024, each utilizing 512 to 1024 GPUs.

Frequency and impacts. Among 27 jobs, 16 encountered
fail-slows, delaying the average JCT by 34.59%. In particu-
lar, 20% of these jobs were delayed more than 50% (green
curve in Figure 1, right). The mean fail-slow duration is 72
minutes, significantly longer than that measured in the small
sampling jobs (Figure 1, left). Table 1 summarizes the causes
of the encountered fail-slows, where 13 slow jobs were due
to network congestion, while the remaining were attributed
to both network and GPU degradation. We observed no CPU
contention for these jobs as they require 8 X GPU per node
and hence do not collocate with other workloads.

Deep dive. Figure 5 illustrates the throughput of two 1024-
GPU jobs, one for LLM training and the other for MoE model
training. Both jobs experienced severe network congestion,
leading to considerable throughput fluctuations, one at the ini-
tial stage (left) and the other throughout training (right). Worse
still, at this scale, a job may experience multiple fail-slows
at certain times, causing more damage to training. Figure 6
illustrates a real case. Throughout the training process, the ob-
served throughput closely aligns with the GPU SM utilization.
The first severe network congestion occurred at t=62 minutes,
slashing the training throughput by 80%. This degradation

o= 1.0 1.0

gs

© O]

g3 0.5 0.8

£e

2F g0k ; ‘ ‘ ; ‘ i i i
0 200 400 600 800 0 2000 4000 6000

Training Time (min) Training Time (min)

Figure 5: Two 1024-GPU jobs that failed slow due to network
congestion. Left: An LLM training job. Right: An MoE
training job with high variance and ladder-shaped fail-slow.

— 1.07 T 3
] N —Thpt SM Uil W
=) 3
oc 0.5 1 !
Fo .
0.0 4 v : ‘ j
"U. 70 | —Max. GPU Temperature
Q 1 |
§ 607 .\ Abniormal ;
'_1 0 j j : Temperaturet— T T
ks g ' i ed #CNPs/s
EZ 0.51
60 -
Z3# g0 Congestion!

0 50 100 150 200 250 300 350
Training Time (min)

Figure 6: A 1024-GPU training job experiencing multiple
performance issues, where fail-slow is caused by a compound
of high GPU temperature and congested network. Y-axis of
the top and bottom sub-figures are normalized.

was further exacerbated by a GPU thermal throttling event oc-
curred at around t=80 while the network congestion remains
unabated, further reducing the throughput to only 10% of the
normal performance. Subsequently, from t=120 onward, an-
other severe network congestion persisted for about two hours,
cutting the throughput by 85% again. This case highlights the
compounding effects of multiple performance issues in large-
scale training, significantly undermining training efficiency.
Requirements for mitigation strategies. At large scale, train-
ing jobs are likely to be affected compound of compute and
communication fail-slows. Therefore, mitigation strategies
must be adaptive and flexible, able to dynamically handle
these complex and compounded performance issues to main-
tain training efficiency.

3.5 Takeaways and Other Evidences

Our characterization study brings three takeaways:

Takeaway #1. Fail-slows are usually transient, primarily
caused by degradation in computation and communication;
the former typically stem from slow GPUs or CPU contention,
while the latter are mainly due to network congestion.
Takeaway #2. Computation fail-slows tend to be short-lived
and less frequent, leading to relatively minor performance
degradation. In contrast, communication fail-slows due to
network congestion are more common and tend to last longer,
resulting in more significant training slowdowns.
Takeaway #3. As training scales up, the likelihood of simulta-
neously encountering multiple performance issues increases.
The compounding effects of these issues can lead to signifi-
cant training slowdowns, potentially exceeding 90%.

USENIX Association

2025 USENIX Annual Technical Conference 735

4 Master Node ?- [_ Worker Nodesyaquing & report Fan.m

*#| Local Controller H Local Analyzer]

Ranki[Model/Apps @]

Distributed Training Framework

Global Controller |

Global Analyzer

)

Monitor][Benchmark Executor

Validator

Ea—— System Libs (e.g., NCCL, CUDA) |

Hardware Devices Cdooo
Test Dispatcher Q Jm /

\Validation

Training Processes

Figure 7: Architecture overview of GREYHOUND-DETECT.

Evidence from other companies. In addition to our study,
ByteDance has reported computation fail-slows in its training
platform [22]. Also, Meta’s Llama team and Alibaba Cloud
have reported communication fail-slows in LLM training [4,
12]. Our contacts with other companies bring attention to the
similar fail-slow problems in large model training even on a
single-tenant cluster of a hyperscale. While fail-slow issues
are generally aware to practitioners, the general consensus, as
noted in [12,22], is that they are hard to detect at scale.

4 GREYHOUND-DETECT

Simply performing telemetry at cluster or node level, such
as collecting GPU SM utilization and RNIC’s CNP responses
using standard tools like nvidia-smi or NVML [39], is in-
sufficient to locate fail-slows. As discussed in §3, given the
synchronous nature of training, any degraded component re-
sults in simultaneous utilization drops of all GPUs. Also, in a
multi-tenant cluster, a network link is commonly shared by
multiple jobs, and an increase in CNPs does not mean that all
jobs are experiencing communication fail-slows, especially
for those transferring light traffics over the link.

In this section, we design GREYHOUND-DETECT, a dis-
tributed monitoring system for large-scale training that accu-
rately identifies performance issues in computation and com-
munication at runtime. We have four design requirements.
R1: Non-intrusive and framework-independent. The de-
tection system should not be bound to a specific training
framework or require any modifications to the framework.
R2: Rapid and accurate. The system should rapidly iden-
tify the onset and resolution of fail-slow degradation while
accurately locating the slow GPUs or communication links.
R3: Automated. The detection should be fully automated.
R4: Lightweight. The system should introduce minimal in-
spection overhead to training, without costly full-job valida-
tions that typically require checkpoints and restarts.

4.1 System Overview

GREYHOUND-DETECT is a distributed performance moni-
toring system deployed together with a large model training
framework, such as DeepSpeed [46—48] or Megatron-LM [50].
Figure 7 provides an architecture overview, where compo-

nents introduced by GREYHOUND-DETECT are highlighted
in cyan. GREYHOUND-DETECT employs a master-worker
architecture. On each worker node, multiple worker agents
are co-deployed with the framework processes to monitor the
training performance and report potential degradation to the
master for further analysis and handling. Specifically, GREY-
HOUND-DETECT identifies fail-slows through a three-phase
workflow: tracking, profiling, and validation.

1) Tracking. In this phase, each worker keeps track of the
training iteration time for all training processes, called ranks,
and detects slow iterations that indicate the onset of fail-slows.
The worker reports these issues to the GlobalController,
which transitions the system to the profiling phase.’

2) Profiling. During this phase, the GlobalController
instructs each worker to collect the detailed execution profiles
of the ongoing training job. These log profiles are sent to the
GlobalAnalyzer, which identifies suspicious worker groups
that may contain fail-slows. The GlobalController then
transitions the system to the validation phase.

3) Validation. In this final phase, the system initiates fail-
slow validations within the suspicious worker groups to pre-
cisely locate slow GPUs or congested network links.

We next describe the detailed designs in the three phases.

4.2 Tracking

GREYHOUND-DETECT enters the tracking phase upon the
execution of a training job, continuously monitoring its per-
formance on each worker node. Note that the monitoring
is performed per-job on a multi-tenant cluster. To maintain
transparency to the training framework (R1), GREYHOUND-
DETECT inserts a shim monitoring and benchmarking layer
between the framework and the underlying system libraries,
such as NCCL and CUDA (Figure 7). In this shim layer, a
Monitor intercepts communication operations (e.g., NCCL
function calls) from the training framework and logs their
types and timestamps. This is done by hooking to NCCL
functions using Linux’s LD_PRELOAD mechanism. Our system
only intercepts top-level communication interfaces that are
uniform in all communication libraries, such as A11Reduce
or Al1lGather, regardless of the underlying library implemen-
tation. Consequently, GREYHOUND-DETECT can seamlessly
integrate with other communication libraries like ACCL [10],
MSCCL [8], or customized NCCL as long as their top-level
interfaces are consistent. The node’s LocalAnalyzer then
retrieves the communication call logs, maintained in shared
memory, to infer the iteration time and detect slow iterations
using two time series analysis techniques as follows.

Iteration time analysis. Throughout iterations, various col-
lective communication functions, such as ReduceScatter
(RS), AllGather (AG), and Al11Reduce (AR), are invoked
periodically. Figure 8 illustrates an example, where a training

2If a transient fail-slow resolves during subsequent profiling or validation
phase, our system identifies no anomaly and resumes normal training.

736 2025 USENIX Annual Technical Conference

USENIX Association

Training Process

[Iteration 1 Iteration 2 [Iteration 3 \
\Rs\AG\ AR | | AR HRS\AG\ AR | AR HRSHAGM \ AR

Perlod #2
Communication Operations

Perlod #1 Perlod #3

Figure 8: In iterative training, communication operations ex-
hibit a clear periodic pattern, leading to recurring periods.

process exhibits a recurring period containing four communi-
cation calls. In practice, the number of communication calls
involved in a recurring period and their patterns vary depend-
ing on the framework and the training model, which cannot
be known due to the framework-agnostic requirement (R1).

To identify the recurring period from a call sequence,
we employ a time series analysis approach based on auto-
correlation function (ACF) [5]. Formally, given a call se-
quence X = {xj,x2,...}, let X; be a subsequence of X con-
taining L elements starting from x;. Let k be the lag, ranging
from 1 to a predefined maximum. We evaluate the likelihood
of k being the recurring period of X by calculating the corre-
sponding ACF defined as follows:

Cov(X; X, T =) Xii—n)
ACF (X)1 = Syt = B s,
where u is the mean of X. A higher value of ACF (X) indi-
cates a greater likelihood that & is a recurring period. Thus,
we can determine the recurring period of X by identifying the
first k for which ACF (X); exceeds a certain threshold M (set
to 0.95 in our experiments), i.e.,

Period = argming (ACF (X) > M).
Once the recurring period is identified, the iteration time de-

rives as the time difference between a communication opera-
tion and its occurrence in the previous period.

Slow iteration detection. Training performance inherently
fluctuates due to factors like periodic Python garbage collec-
tion, PyTorch CUDA memory allocator cache misses, and un-
even sequence lengths in the dataset [59]. Thus, a robust statis-
tical method is required to reliably identify true performance
degradations while filtering out normal fluctuations (R2). To
achieve this at runtime, we propose to use the Bayesian online
change-point detection (BOCD) algorithm [2] followed by a
verification checking to differentiate between real fail-slow
issues and normal performance jitters.

1) The BOCD algorithm is an efficient time series algo-
rithm that finds change-points online in a dynamic sequence
in linear time. Feeding the algorithm the iteration time se-
quence, the identified change points usually correspond to the
iterations with its duration change of over 10% due to the on-
set or relief of fail-slows. Specifically, the algorithm defines a
run-length r, for each timestamp ¢, which equals to r,_; + 1 if
t is not a change point, otherwise it is reset to 0. It then applies
Bayesian inference to calculate the likelihood of r, = 0 for
each timestamp. If the likelihood exceeds a certain threshold
(0.9 in our experiments), it reports ¢ as a change-point.

DP-1 { Ei'GP; |EE>§§i’GPJ |EE>§E‘|'GP[
= {rers)i= frert) = erd) |
}

=
==
~
@
o
—
_J

@
o
=3
<

Figure 9: An example of cross-group comparison, ARy 1 7 3
form a comparable cluster and ARz is a degraded group.

2) Change-point verification. While the BOCD algorithm
identifies potential change-points, applying it directly to fail-
slow detection results in numerous false positives, as it mis-
classifies normal performance jitters as fail-slow incidents.
To improve the detection accuracy (R2), we propose an ad-
ditional verification step that compares the average iteration
time before and after each identified change-point, treating it
as a jitter if the difference is less than 10%.

The ACF-based iteration time analysis, combined with
BOCD plus change-point verification, detects slow iterations
reliably and in linear time, thereby meeting requirement R2.
Once slow iterations are detected, the LocalAnalyzer reports
to the master for further analysis and handling.

4.3 Profiling and Validation

Profiling. The detection of a slow iteration is a clear indicator
of stragglers, which must be located rapidly. To avoid bench-
marking all GPUs and links (R4), which is costly, GREY-
HOUND-DETECT narrows the search to a few suspicious
worker groups. This is achieved through lightweight profiling.
On each worker node, the GPU Moni tor injects CUDA events
into intercepted NCCL calls to measure the execution time
of each communication group. The measurement results are
then collected by the master’s GlobalAnalyzer to identify
the degraded groups via cross-group comparison. The basic
idea is to categorize communication profiles into comparable
clusters, where each communication group (e.g., NCCLGroup)
within a cluster handles an identical data transfer volume.
Ideally, communication times within the same comparable
cluster should be consistent. However, stragglers manifest as
groups with prolonged execution times due to performance
degradation. For instance, as illustrated in Figure 9, the four
DP all-reduce groups ARy 1,23 have identical communication
volumes under uniform PP stage division, forming a 4-group
comparable cluster. Nevertheless, AR3 measures a markedly
longer execution time compared to the other groups, indi-
cating the presence of a straggler within it. In practice, we
identify a group as degraded if its execution time exceeds the
median by over 10%.

Validation. Once a suspicious group is identified, further val-
idation is needed to locate the degraded components in it. As
this requires running benchmark tests, the training job must
be temporarily suspended. To avoid expensive checkpoint-

USENIX Association

2025 USENIX Annual Technical Conference 737

15t pass

3rd pass Tree
[o] [1}-{e]
i O
ven- 0Odd- 4t pass
[6] Ring [5] Ring [2]
1%t pass 3= <. 3" pass
(4] HRERRERE

i
k-]

&[]

I

a

Figure 10: O(1) validation of Ring and Tree communicators.
Each cell is a rank, and the lines represent network links.

and-restart, we devise a lightweight training suspension mech-
anism (R4). Since GPU Monitor hooks NCCL calls, it can
hang the training by simultaneously “trapping” those calls
into a wait loop and give control back to the hanged training
process once validation is done, without costly restarting the
process or re-initialization.

While the training is being hanged, computation and com-
munication benchmark tests are dispatched automatically to
the identified suspicious worker groups to precisely locate the
degraded components (R2 and R3).

1) Computation validation. To benchmark computation
performance within a group, the master’s TestDispatcher
dispatches standard GEMM [37] tests to all worker GPUs in
parallel to identify slow stragglers, if any. We use GEMM
as it is a building block training operation and is commonly
used as a standard test in advanced benchmarking tools like
SuperBench [58]. Customized tests are also supported.

2) Communication validation. Exhaustive evaluation of
all possible links within a communication group is time-
consuming (O(N?), where N is the group size). As collective
communications can be performed with ring or tree topolo-
gies, we propose to divide the collective topology into non-
overlapping peer-to-peer (P2P) operations and evaluate only
the links used in training. These operations can be executed
efficiently in O(1) time, regardless of the group size (R2), as
illustrated in Figure 10. Specifically, for a ring topology, the
algorithm differentiates between even- and odd-rank rings. It
divides even-rank rings into P2P send-receive operations that
can be covered in fwo passes. In the first pass, data is trans-
ferred from even to adjacent odd ranks simultaneously (i.e.,
0— 1,2 — 3,...); the second pass sends data from odd ranks
to adjacent even ranks simultaneously (i.e., 1 =+ 2,3 —4,...,
as shown in Figure 10, left). For odd-rank rings, an additional
pass is needed to accommodate the remaining link (Figure 10,
center). For tree topology, the validation requires four passes
(Figure 10, right). The first pass simultaneously sends from
left-child ranks at even levels to their parents, followed by the
second pass which sends from right-child ranks at even lev-
els, also simultaneously. The third and fourth passes reverse
the roles of the senders, starting from odd levels. Since the
transmission sizes are identical, slows link measures longer
communication times and can be easily identified. In our
implementation, both ring- and tree-topology validation are
needed in a worker group as NCCL determines the actual
collective communication topology dynamically.

Limitation. Our current design cannot detect fail-slows that
occur only when computation and communication kernels
co-execute in specific patterns [58]. However, these instances
are typically linked to defects in particular hardware batches
and are extremely rare in production environments.

5 GREYHOUND-MITIGATE

Unlike fail-slow detection, which is non-intrusive, fail-slow
mitigation requires supports from the training framework.
Therefore, it cannot be entirely non-intrusive to the training
job. In this section, we present GREYHOUND-MITIGATE,
a system that effectively addresses fail-slows with a novel
adaptive multi-level mitigation mechanism.

5.1 Adaptive Multi-Level Mitigation

Solution space. Simply treating transient fail-slows as fail-
stops by means of checkpoint-and-restart can do more harm
than good, as dumping and restoring checkpoints for large
models is time-consuming. In fact, dumping a GPT2-100B
model takes nearly 100 minutes [56], even longer than the
mean fail-slow duration in our cluster (§3). We explore the
solution space and identify four strategies.

(S1) Do nothing. This approach simply ignores fail-slow
problems in the hope that the straggler components will soon
be self-recovered. Many existing systems choose to do so due
to the lack of an effective detection tool.

(S2) Adjust micro-batch distribution. This strategy is efficient
in addressing computation fail-slows, which result in uneven
processing speed among model replicas (i.e., DP groups).
The strategy reacts by redistributing micro-batches across DP
groups based on their processing speed, alleviating the load
on slow GPUs and rebalancing the computation (§5.2).

(S3) Adjust parallelism topology. This strategy effectively
mitigates both computation and communication stragglers
by: 1) reassigning heavy-traffic communications to less con-
gested links, thereby mitigating network congestion; and 2)
consolidating multiple stragglers into the minimal number of
PP stages, thus reducing their overall impact (§5.2).

(S4) Checkpoint-and-restart. As a last resort, the system per-
forms checkpointing and restarts training on healthy nodes.
While this approach effectively eliminates all fail-slows by
replacing slow components, it incurs the highest overhead and
may require significant human intervention.

We compare the four strategies in Table 2. As we move
from S1 to S4, the mitigation effectiveness improves, but the
action overhead also increases. Therefore, the optimal strategy
varies depending on the severity and the duration of fail-
slows. While the severity can be measured, fail-slow duration
exhibits a large dynamic range, from tens of seconds to several
hours (Figure 1, left), and cannot be predicted accurately.

Ski-rental-like multi-level straggler mitigation. We find
that the mitigation planning problem resembles the classical

3 Adapting TP is ineffective for mitigating fail-slow, as TP operates within
a single node, which is not susceptible to communication fail-slow.

738 2025 USENIX Annual Technical Conference

USENIX Association

Strategy Effectiveness Action
Slow Comp. | Slow Comm. | Overhead
S1: Ignore No Effect No Effect None
S2: Adjust Microbatch Mitigate No Effect Low
S3: Adjust Topology Mitigate Mitigate Medium
S4: Ckpt-N-Restart Eliminate Eliminate High

Table 2: Comparison of mitigation strategies in terms of ef-
fectiveness and overhead.

Algorithm 1 Adaptive Multi-level Fail-Slow Mitigation

1: function MITIGATIONPLANNER (event)

Input: The fail-slow event to handle.
2 > Find available strategies to mitigate this event.
3 candidates <— FINDSTRATEGIES(event.root_cause)
4: > Sort the strategies by their overhead.
5: candidates.sort(key=strategy.overhead)
6.
7
8
9

id <~ 0 > Current mitigation strategy ID.
while event.persist() do
> Get number of iterations that fails slow.
slow_iters <— event.get_slow_iters()

10: > Calculate the impact of fail-slow.

11: slow_impact < slow_iters * (fs1ow — fhealthy)
12: > Apply the current strategy and move forward.
13: if slow_impact > candidates[id].overhead then
14: candidate_strategies[id].apply()

15: id<«id+1

16: end if

17: end while
18: end function

ski-rental problem [23], which involves balancing recurring
ski-rental costs (akin to experiencing fail-slows) against a one-
off ski-buying investment to avoid those costs (akin to taking
mitigation action), all without prior knowledge of duration.
Inspired by the classical ski-rental algorithm, we design an
adaptive multi-level fail-slow mitigation mechanism. It be-
gins with a low-cost strategy (S1) and progressively switches
to more effective—and hence more costly—strategies (S2 to
S4) if fail-slow persists and the current approach proves inef-
fective. To determine when to switch strategy, the algorithm
tracks the number of iterations affected by fail-slow and the re-
sulting slowdowns to calculate an accumulated performance
impact. It switches to the next strategy when the cumulative
slowdown equals the action overhead of that strategy; that is,
the algorithm is better off taking that more aggressive strategy
upon the detection of fail-slow should it have known its perfor-
mance impact (i.e., buy a ski when the cumulative rental cost
equals the one-off buy cost). Algorithm | formally describes
this mechanism.

5.2 Micro-batch and Parallelism Adjustment

We now describe the detailed design of the four strategies
employed in the multi-level mitigation scheme. Since S1 and
S4 are straightforward, we focus specifically on the two par-
allelism adjustment strategies S2 and S3.

S2: Adjust micro-batch distribution. This strategy dynam-
ically adjusts the number of micro-batches allocated to DP
groups according to their computation performance, effec-
tively mitigating computation fail-slows at a low cost. Specif-

ically, DP shards a large global batch into multiple micro-
batches and distributes them evenly among all groups (i.e.,
model replicas) at initial. When a certain group experiences
computation fail-slow, we rebalance the workload by accord-
ingly reducing the number of micro-batches allocated to it.

Formally, let D be the number of DP groups and M be
the number of micro-batches in a global batch, where group
DP; is allocated m; micro-batches. The processing time for
a micro-batch in DP; is denoted as ¢;, which is profiled by
GREYHOUND-DETECT (§4.3). Our goal is to minimize the
processing time of the slowest DP group, which can be for-
mulated as a quadratic programming problem that minimizes
the variance in processing times across all DP groups:*

D
min i=1’2‘1'>‘<’Dm,'t,- = minzlpzl (myt; — %)2, "
Subjectto m; € N* and Y2, m; = M.

Although the micro-batches are not evenly distributed after

this adjustment, the training loss can remain consistent using

a weighted gradient aggregation method [6]. This leads to

the same training result and hence ensures the correctness.

Moreover, this adjustment only modifies the number of micro-

batches (m;) assigned to each DP group, both the global batch

size and micro-batch sizes remain unchanged. Given the peak

GPU memory usage in memory-efficient pipelines such as

1F1B [34] is independent of m;, this strategy does not increase

memory footprint during training.

Implementation and overhead. Our implementation uses
cvxpy [9] to solve Equation (1), which typically takes only a
few seconds (detailed in Table 5). Before each iteration, each
DP group retrieves its assigned m; from the global controller,
allowing the new distribution to take effect immediately in
the subsequent iteration, without requiring a job restart.

S3: Adjust parallelism topology. We design this strategy
as a reactive method to handle communication stragglers. It
adjusts the parallelism topology to reduce congestion and min-
imize PP stages affected by stragglers, more effectively miti-
gating communication fail-slows with moderate overheads.
Reassign congested links to light-traffic groups. One key
characteristic in hybrid-parallel training is that PP communi-
cation involves significantly less data transfer than DP [35,50].
Specifically, per-GPU PP traffic is O(m; x activation_size),
typically in tens to hundreds of MBs per iteration, while DP
gradient synchronization can exceed tens of GBs. Therefore,
DP groups are much more susceptible to network conges-
tion. To mitigate fail-slow events caused by congestion, we
can reassign congested links from heavy-traffic DP groups
to light-traffic PP groups, reducing the overall performance
impact. For example, as shown in Figure 11, suppose the link
between nodes 3 and 4 is congested and originally used for
DP communication. By exchanging the DP and PP roles for
nodes 2 and 3, we can redirect the traffic from node 3 to node
4 into light-traffic PP communication, effectively alleviating

“4For a 1F1B pipeline, we add another constraint: m; = 0 mod PP.

USENIX Association

2025 USENIX Annual Technical Conference 739

PP dimension DP dimension

< c
2 Node 1 Node 3 2 Node 1 <:> Node 3
E DP=0, PP=0 DP=0,PP=1 | 5 || DP=0, PP=0 DP=1, PP=0
£ £
e @ Congestion@ °
(=} o
Node 2 Node 4 Node 2 <;:‘> Node 4
DP=1, PP=0 DP=1, PP=1 DP=0, PP=1 DP=1, PP=1
Fail-slow

Figure 11: Topology adjustment to mitigate network conges-
tion. After swapping Nodes 2 and 3, the congested link shifts
from a heavy-traffic DP group to a lighter-traffic PP group.

F;P_-s:t;g_e_l-ﬁ 2 (3 [a I EERE [1]2]3]]

PP-Stage2 23 |a o1 |2 [3 |4 1 [2 [3 [

PP-Stage3 1]2[3]4] 2] 3]s 2] 2] le]
Scattered: Consolidated:

2 slow stages: 8.5s 1 slow stage: 8s

[N

Healthy: 6s

Figure 12: The number of straggling PP stages determines
iteration time. With two stragglers are scattered across two
stages, the execution time is prolonged to 8.5s, while it can be
mitigated to 8s by consolidating two stragglers in one stage.

the impact of network congestion.

Straggler consolidation. When multiple stragglers are
present, consolidating them into one PP stage mitigates slow-
down. Since workers within the same PP stage operates syn-
chronously, the performance is determined by the slowest
straggler, irrespective of the number of stragglers within this
stage. In contrast, as shown in Figure 12, having stragglers
scatter across multiple PP stages is sub-optimal. Therefore,
in case of multiple stragglers, our topology adjustment aims
to consolidate them into the minimal PP stages. To achieve
this, we calculate the minimal number of PP stages needed
to contain stragglers by [#Stragglers/# GPUs per PP stage]
and consolidate the stragglers accordingly. We also prefer to
shift them to interior stages, as the first and last stages typi-
cally endure a higher load due to the pre- and post-processing
modules (e.g., embedding layers) allocated to them.

Implementation and overhead. Topology adjustment can
be implemented in four steps: 1) pausing the ongoing training,
2) temporally dumping parameters to swap into main mem-
ory, 3) swapping parameters via peer-to-peer RDMA, and 4)
restarting the training process. This adjustment incurs moder-
ate overhead, only determined by the number of parameters
per GPU, irrespective of the training scale given that each
GPU operates independently. This adjustment is typically
done in about one minute (detailed in Figure 19).

6 Implementation

We have implemented GREYHOUND-DETECT in approx-
imately 5.5k lines of code (LOC) of C++ and Python. The
worker’s GPU Monitor hooks NCCL functions using Linux’s
LD_PRELOAD mechanism. Intra-node and inter-node com-
munications between modules are achieved through shared
memory and Redis [49], respectively. During validation, the
BenchmarkExecutor reuses the same CUDA context and

NCCL communicators from training, eliminating initializa-
tion overhead. For compute benchmarking, we use GEMM
kernels with various data types, as GEMM is the primary
building block in training and a common benchmarking stan-
dard. Specifically, BenchmarkExecutor sequentially run FPS,
FP16, and FP32 GEMM kernels, with each kernel execution
monopolizing all SMs to accurately assess the performance.
For communication benchmarking, we perform concurrent
NCCL send/receive operations shown in Figure 10, using
message sizes of 16, 32, and 64 MB. Each computation and
communication test is repeated three times, with the mean
execution time used as the final metric. The benchmarking
component is designed in a modular fashion, which facilitates
the easy integration of additional benchmarks in the future.

GREYHOUND-MITIGATE is implemented in 1.5k LOC of
Python. The planner receives straggler IDs from Redis and
generates adjustment strategies, which are then executed a
lightweight plugin of Megatron-LM [50].

7 Evaluation

In this section, we evaluate GREYHOUND-DETECT and
GREYHOUND-MITIGATE to answer the following questions:

1. How accurately does GREYHOUND-DETECT estimate
iteration time and identify fail-slow incidents across var-
ious models and parallelism configurations? (§7.2)

2. Is GREYHOUND-MITIGATE effective in alleviating var-
ious fail-slow failures with different root causes and
parallelism configurations? (§7.3)

3. What is the overhead associated with GREYHOUND-
DETECT and the various mitigation strategies imple-
mented in GREYHOUND-MITIGATE? (§7.4)

4. How effective is GREYHOUND in enhancing training ef-
ficiency and mitigating the impact of fail-slow incidents
in large-scale real-world training scenarios? (§7.5)

7.1 Experiment Setup

Testbed configuration. We conduct our evaluation on a high-
performance cluster comprising 55 nodes, each equipped with
8 NVIDIA H800 GPUs connected via NVSwitch. The nodes
are interconnected through a 400Gbps InfiniBand network in
a spine-leaf topology, ensuring symmetric inter-node band-
width. Our tests utilize Megatron-LM [50], a large-scale dis-
tributed training framework built on PyTorch [3], to train a set
of GPT-2 models in various sizes and parallel strategies. The
testbed runs CUDA version 12.2 and NCCL version 2.18.1.

Fail-slow injection. We evaluate the effectiveness of our
mitigation system using deterministic manually injected fail-
slows. To simulate computational fail-slows, we employ
nvidia-smi to lock the GPU SM frequency. To inject com-
munication fail-slows, we initiate side-channel communica-
tion jobs that create network bandwidth contention, thereby
reducing the available bandwidths on specific network links.

740 2025 USENIX Annual Technical Conference

USENIX Association

N

Iter Time (s)
-

o

AP (HD2P oD (TP 972D AT N\‘?—_‘r)_D'l%_'L‘(AD

Figure 13: Accuracy of iteration time estimation in single-
node (S) and multi-node (M) settings. The notation x7TyDzP
specifies the TP size x, DP size y, and PP size z.

Algorithm Accuracy? (%) FPR| (%) FNR| (%)
SlideWindow 99.5(390/392) 0.0(0/386) 25.0(2/8)
BOCD 77.8(305/392) 18.39(87/473) 0.0(0/6)
BOCD+V 100.0(392/392) 0.0(0/386) 0.0(0/6)

Table 3: Detection evaluation for computation fail-slows.

7.2 How Accurate Is Detection?

Iteration time estimation. We first evaluate the accuracy of
the ACF-based iteration time estimation across various hybrid-
parallel strategies as it is the foundation of fail-slow detection.
We deploy GPT2-7B training jobs using different parallelism
strategies on 1, 2, and 4 nodes. As illustrated in Figure 13,
in single-node experiments with 4 GPUs, the relative error
remains below 1.2% compared to the ground truth iteration
time, regardless of the parallel strategies employed. In a 2-
node experiment with a (2TP, 2DP, 2PP) configuration, the
error is 0.7%, while in a 4-node test with a (2TP, 4DP) setup,
it remains highly accurate at just 0.1% relative error.

Fail-slow detection. We then assess the effectiveness of our
BOCD and verification algorithm (BOCD+V) in detecting
computation and communication fail-slows. The baseline
methods are sliding window and classical BOCD; the former
reports a fail-slow if there’s a >10% performance change in
the sliding window from the current median, while the latter
performs no verification. Using traces from §3, we assess
their accuracy against human-labeled ground truth. As shown
in Table 3, BOCD+V achieves perfect 100% accuracy with
0% False-Positive Rate (FPR) and 0% False-Negative Rate
(FNR) in detecting computation fail-slow. In case of com-
munication fail-slow (as illustrated in Table 4), BOCD+V
attains 99.1% accuracy, 0% FPR, and only 2.3% FNR. The
FNR primarily results from a rare case containing consecutive
<10% degradations. The original BOCD has a lower FNR by
reporting all suspicious change-points but suffers from a high
FPR. Similarly, the sliding window method is less accurate,
missing many fail-slow cases with a higher FNR.

7.3 How Effective Is Mitigation?

In this section, we assess the effectiveness of the mitigation
strategies introduced in § 5.2. Since GREYHOUND does not

Algorithm Accuracy? (%) FPR| (%) FNR| (%)
SlidingWindow 93.5(100/107) 1.5(1/65) 12.2(6/49)
BOCD 69.2(74/107) 34.033/97) | 0.00(0/43)
BOCD+V 99.1(106/107) 0.00(0/64) 2.3(1/44)

Table 4: Detection evaluation for communication fail-slows.

= #DP=2 #DP=8
~4 7x 1.0 Tx
g %u] 281 3 8% ol 6 2/x
—— 2 .

[0.4

3 o BB & 0:(2) ML= =

- W M S W M S

EEEFail-slow ZZEMitigated MllHealthy

Figure 14: Effectiveness of micro-batch adjustment strategy
of mitigating various fail-slow severities and DP settings.

EEEFail-slow ZZMitigated MllHealthy

gl3 Tox Lox Lox “1ok->
qé 1'0‘1)&)(i a2 1.0 {1.6% 5 L7%
= 0.59 0.5
(9]
Soolld B4 B4 BA BA)
0O 1 2 3 4 1 2 3 2

Fail-slow DP groups

#Congested PP stages

Figure 15: Left: Effectiveness of micro-batch adjustment (S2)
on various number of slow DP groups. Right: Effectiveness
of straggler consolidation (S3) on various slow PP stages.

have prior knowledge of stragglers, they must be detected
online during training. As a result, these experiments also
serve as an implicit end-to-end test of GREYHOUND-DETECT,
which achieves 100% accuracy in all cases reported below.
Micro-batch distribution adjustment (S2). To evaluate the
effectiveness of strategy S2 in mitigating computation fail-
slows, we deploy a single-node training with 8 GPUs. We
inject weak (W), medium (M), and severe (S) computation
fail-slows to training jobs with 2, 4, and 8 DP groups, as illus-
trated in Figure 14. Our approach reduces the average iteration
time from 1.7x the baseline to 1.3/1.1/1.2x, yielding up to
1.52x optimization. This strategy proves effective across var-
ious setups and fail-slow severity since it consistently ensures
a dynamic load balance across all DP groups.

As shown in Figure 15 (left), we also evaluate S2 when
multiple DP groups experience fail-slow. In a 4-DP training
job, we inject medium slow computation into 0 to 4 DP groups.
S2 achieves its best performance with only one slow group,
reducing iteration time from 1.31s to 0.83s, yielding 1.59x
improvement. While multiple slow DP groups do not further
increase iteration time, the room for mitigation decreases as
the number of degraded DP groups rises. This is because
with multiple DP groups degraded, total computational power
decreases, limiting adjustment flexibility, and there is no room
for adjustment if all groups are slow.

Topology adjustment (S3). We evaluate strategy S3 in a 2-
node experiment with 16 GPUs. As shown in Figure 16, we
inject communication fail-slows into training jobs with 4 or
8 PP stages. The results reveal a reduction in the average
iteration time by up to 1.23x for PP=4, and 1.14 x for PP=8,
both under severe congestion. The strategy is more effective
with 4-stage PP due to the increased bubble rate and longer
idle times associated with the longer pipeline in the 8-stage

USENIX Association

2025 USENIX Annual Technical Conference 741

Iter Time (s)
=

e ©°
o U o

EEmFail-slow mzMitigated MElHealthy

Figure 16: Effectiveness of topology adjustment strategy of
mitigating various fail-slow severity and PP settings.

setup, which ultimately understates the effectiveness.

To evaluate the effectiveness of straggler consolidation
in topology adjustment, we conduct an experiment with
16 GPUs using (4DP, 4PP) setup. As shown in Figure 15
right, congestion in one or two links raises iteration time to
1.6/1.7x, which can be both mitigated to 1.3 through con-
solidating them into only one PP stage. With three congested
links affecting 6 GPUs, mitigation reduces iteration time from
1.9x to 1.7, since one stage contains only four GPUs and
six stragglers must occur across two PP stages. If all links are
slow, there is no room for adjustment.

7.4 How Large Is the Overhead?

Overhead of GREYHOUND-DETECT. As discussed in §4,
GREYHOUND-DETECT comprises a three-phase workflow:
tracking, profiling, and validation, with corresponding over-
head evaluated as follows.

Tracking. We conducted training under the same settings
as in §7.2. As shown in Figure 18, the average overhead is
only 0.39%, with a maximum of 1.1% compared to training
without the detector. In some cases, enabling the detector
results in an even slightly faster iteration (indicated by 0.0% in
green), highlighting that such overhead is caused by inherent
fluctuations instead of detector itself. These results prove that
the overhead of GREYHOUND-DETECT is negligible. Upon
fail-slow events, the BOCD algorithm can detect it in the next
2-3 iterations, costing typically <5 seconds for reaction.

Profiling. Since this phase only collects profiles for offline
analysis, it does not introduce any additional overhead.

Validation. The validation phase runs the compute and com-
munication benchmarks described in §6. As shown in Fig-
ure 17, compute validation completes within 0.59/0.51/0.24s
on NVIDIA A10, A100, and H800 GPUs under normal con-
ditions, and within 1.94/1.23/0.87s under fail-slow scenarios
(GPU clock rate locked at 300 MHz). For communication val-
idation, we assess NVLink, PCle, and RDMA, where RDMA
is most susceptible to congestion, but all benchmarks (3 rep-
etitions) still finish within 3.04 seconds. Overall, the total
benchmarking overhead remains about 5 seconds even under
severe fail-slow scenarios or on lower-end GPUs.

Overhead of GREYHOUND-MITIGATE. We then evaluate
the overhead of the strategies in GREYHOUND-MITIGATE.

Micro-batch adjustment (S2). We evaluate the overhead for
adjusting the micro-batch distribution, which primarily arises
from solving Equation (1). As shown in Table 5, although

B Healthy 77 Fail-slow
s22{ B
= 1,2 i
SE1 7, 98 2
SF |

NVLink PCl-e RDMA

Al0 A100 H800

Figure 17: Left: overhead of executing compute benchmarks.
Right: overhead of executing communication benchmarks.

===/ Detector mzmw/o Detector +0.5% 0.0%
0.0% 1

/+11 %o
0.0% +0.5%

Iter Time (s)
o = N

o 9D 8D TP 5T2D oaT M.’LT')—D?'PN\"I—TAD

Figure 18: Overhead introduced by GREYHOUND-DETECT
across various parallel strategies.

this overhead increases exponentially with the number of
DP groups, it remains around 30 seconds even with 512 DP
groups, showing its efficiency for hyperscale training.
Topology adjustment (S3). We evaluate the topology ad-
justment overhead under various parameter settings. We set
the per GPU memory footprint to dump to 10, 22, 38, and
76GB, and conduct training on a single node with 8 GPUs.
The adjustment time will no more increase as training scales
up, since each node operates independently. As shown in
Figure 19, our approach reduces pause time by up to 6.72x
compared to the disk-based C/R, primarily by eliminating
checkpoint dumping and loading times. The performance
gains are more pronounced with more parameters, as the disk
operation times increase significantly for large I/O sizes.

7.5 How Does GREYHOUND Perform at Scale?

To evaluate GREYHOUND s effectiveness at scale, we con-
duct a GPT2-40B training experiment on 256 NVIDIA H800
GPUs with (8TP, 16DP, 2PP). We manually inject 12 fail-slow
events, including two communication congestion events and
ten compute slowdowns, each with varying severity levels,
as detailed in Table 6. We also simulate compound cases
where compute and communication fail-slows occur simulta-
neously, mirroring the scenarios presented in our characteriza-
tion (§3.4). The training job is executed twice under identical
straggler injection schedule: once with GREYHOUND and
once without for A/B testing. Note that the straggler schedule
is unknown to GREYHOUND—-all fail-slows must be detected
first and then mitigated, yielding an end-to-end evaluation.

Detection. First, we evaluate GREYHOUND-DETECT ’s de-
tection accuracy and reaction time. As presented in Table 0,
it accurately identifies all 12 fail-slow events, achieving a
100% detection rate. For each fail-slow event, we measure
the time difference between when GREYHOUND-DETECT

DPs 16 32 64 128 256 512
Time(s) | 0.01 | 0.01 | 0.01 | 0.11 | 6.78 | 3593

Table 5: Time to find the optimal micro-batch distribution.

742 2025 USENIX Annual Technical Conference

USENIX Association

E 300 774 Ckpt-D N\ Load-D === Init-D WEEE Trans-D
kel 7/ .Ckpt-M XX'Load-M —— Init-M [TIT1Trans-M
s 200 \
(] PR N
5 100 N 7
N
3 ==2.46x 53.03x 25.01x 0.72%
(@] 0 S———— — ; 3
10/SOGB 22/80GB 38/80GB 76/80GB

GPU Memory Utilization

Figure 19: Overhead breakdown of S3. M: memory-based
dump and load (our method), D: disk-based C/R.

Comm. Slow | Comp. Slow | Detect Acc. Avg. Reaction
Weak: 3 BOCD: 3.7s
Medium: 2 Medium: 5 100% Prof.&Val.: 6.86s
Severe: 2 Total: 10.56s

Table 6: Detection accuracy and average reaction time of
GREYHOUND-DETECT in the 256 H800 GPU experiment.

reports it and the actual injection timestamp, representing the
reaction time. The average reaction time is 10.56 seconds in
this 256-GPU experiment, indicating low detection overhead
at scale. This reaction time consists of two phases: the BOCD
algorithm signals a change point, occurring approximately 4
seconds post straggler injection. Subsequently, GREYHOUND-
DETECT enters profiling and validation mode, requiring an
additional 6 to 10 seconds to identify the root cause.

Mitigation. Accurate and timely detection enables effective
mitigation strategies. As shown at the top of Figure 20, with-
out GREYHOUND, computation stragglers cause significant
throughput declines. In contrast, with GREYHOUND, through-
put quickly recovers to near-optimal levels, demonstrating the
effectiveness of micro-batch adjustment (S2). During com-
munication congestion periods, GREYHOUND initiates brief
pause for topology adjustments (S3) at t=850 and t=2100,
each lasting under one minute. These adjustments are faster
than traditional C/R methods which takes tens of minutes.
Once congestion ends, the topology is promptly reverted (at
t=1150 and t=2350). Notably, compound fail-slows can re-
duce training throughput by about 55%, but it can be mitigated
to only 25% degradation with GREYHOUND.

End-to-end performance. Combining accurate detection
and effective mitigation, GREYHOUND significantly reduces
the impact of stragglers. Without GREYHOUND, end-to-end
throughput decreases from 37.4 to 18.9 iterations per minute
due to injected fail-slow events. In contrast, with GREY-
HOUND, throughput recovers to 29.8 iterations per minute
(including the detection and validation overhead), achieving
1.58 x improvement in end-to-end throughput.

8 Related Work

Reliability issues in training. Several studies address the fail-
stop issue using checkpoints [28,33,56], re-computation [53],
and elastic frameworks [11, 20, 53, 56, 64]. For example,
Oobleck [20] pre-computes static parallelism adjustments
for predictable resource changes (e.g., node removal). In con-
trast, while fail-slow have been acknowledged in various re-
ports [12,22], only a concurrent work, Holmes [59], addresses

40 M’l W

£ N
8 E 301 P *V\T(ju tT J N\r ﬂ{
= |
=220 _

= ——NMitigated Orlglnal Adju tTOpO"

e PO LT I EislE o

& 0.51 —Communlcat|on ——- Corﬁ;;ut atio -

0 500 1000 1500 20'00 2500 3000
Training Time (s)

Figure 20: Evaluation of GREYHOUND for a 256 H800 GPU
training with computation and communication fail-slows.

this issue but lacks mitigation. However, fail-slow mitigation
is orthogonal to fail-stop recovery and more challenging as
it requires dynamic reactions according to the detected strag-
glers without altering the number of available resources.

Fail-slow in other fields. Fail-slow also exists in cloud ser-
vices [7,14,15,17,18,29], operating systems [61], and stor-
age [16, 30], but presents unique challenges in large-scale
training. In these domains, the main issue is identifying the
source of gradually propagating [14, 15] or independent [30]
fail-slows. In contrast, large-scale training is synchronous,
one slow component can immediately propagate to the entire
cluster. Additionally, replacing degraded components in these
fields often does not impact the entire system.

Heterogeneous DL training. Several researches focus on
efficient parallel training on heterogeneous hardware with
various performance [6,21,31,32,41, 54,60, 63]. However,
mitigating fail-slow presents distinct challenges. Heteroge-
neous training is static, where performance does not fluctu-
ate over time, thus allowing for higher-cost parallel strategy
searches at initial [54,63]. In contrast, fail-slow handling must
be dynamic, precluding those high-cost searches.

9 Conclusion

In this paper, we presented the first comprehensive charac-
terization study in a production cluster to understand the over-
all characteristics and performance impacts of fail-slow fail-
ures in large-scale LM training. We proposed GREYHOUND,
a framework that swiftly identifies fail-slowed compute or
communication components and effectively mitigates them
using a novel multi-level mechanism, all without human in-
tervention. GREYHOUND achieves over 99% accuracy in de-
tecting fail-slows and improves the end-to-end performance
by 1.58 % in large-scale training.

Acknowledgment

We thank our shepherd, Linhai Song, and the anonymous
reviewers for their valuable comments that help improve the
quality of this work. This work was supported in part by the
Alibaba Innovative Research (AIR) Grant, RGC CRF Grant
(Ref. #C6015-23G), RGC GRF Grant (Ref. #16217124), and
NSFC/RGC CRS Grant (#CRS_HKUST601/24).

USENIX Association

2025 USENIX Annual Technical Conference 743

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Diego Agudelo-Espafia, Sebastian Gomez-Gonzalez,
Stefan Bauer, Bernhard Scholkopf, and Jan Peters.
Bayesian online prediction of change points. In Con-
ference on Uncertainty in Artificial Intelligence, pages
320-329. PMLR, 2020.

Jason Ansel, Edward Yang, Horace He, Natalia
Gimelshein, Animesh Jain, Michael Voznesensky, Bin
Bao, Peter Bell, David Berard, Evgeni Burovski, et al.
Pytorch 2: Faster machine learning through dynamic
python bytecode transformation and graph compilation.
In Proceedings of the 29th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, pages 929—
947, 2024.

Jiamin Cao, Yu Guan, Kun Qian, Jiaqi Gao, Wencong
Xiao, Jianbo Dong, Binzhang Fu, Dennis Cai, and Ennan
Zhai. Crux: Gpu-efficient communication scheduling
for deep learning training. In Proceedings of the ACM
SIGCOMM 2024 Conference, pages 1-15, 2024.

Christopher Chatfield. The analysis of time series: the-
ory and practice. Springer, 2013.

Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and
Bo Li. Semi-dynamic load balancing: Efficient dis-
tributed learning in non-dedicated environments. In
Proceedings of the 11th ACM Symposium on Cloud
Computing, pages 431-446, 2020.

Mike Chow, Yang Wang, William Wang, Ayichew
Hailu, Rohan Bopardikar, Bin Zhang, Jialiang Qu,
David Meisner, Santosh Sonawane, Yunqi Zhang, et al.
{ServiceLab}: Preventing tiny performance regressions
at hyperscale through {Pre-Production} testing. In 18th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pages 545-562, 2024.

Meghan Cowan, Saeed Maleki, Madanlal Musuvathi,
Olli Saarikivi, and Yifan Xiong. Mscclang: Microsoft
collective communication language. In Proceedings of
the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 2, pages 502-514, 2023.

Steven Diamond and Stephen Boyd. CVXPY: A Python-
embedded modeling language for convex optimization.
Journal of Machine Learning Research, 17(83):1-5,
2016.

[10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

Jianbo Dong, Shaochuang Wang, Fei Feng, Zheng
Cao, Heng Pan, Lingbo Tang, Pengcheng Li, Hao Li,
Qianyuan Ran, Yiqun Guo, et al. Accl: Architecting
highly scalable distributed training systems with highly
efficient collective communication library. IEEE micro,
41(5):85-92, 2021.

Jiangfei Duan, Ziang Song, Xupeng Miao, Xiaoli Xi,
Dahua Lin, Harry Xu, Minjia Zhang, and Zhihao Jia. Par-
cae: Proactive,{Liveput-Optimized } { DNN} training on
preemptible instances. In 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI
24), pages 1121-1139, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine Learn-
ing Research, 23(120):1-39, 2022.

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and
Christina Delimitrou. Sage: Leveraging ml to diag-
nose unpredictable performance in cloud microservices.
arXiv preprint arXiv:2112.06263, 2021.

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan
He, Meghna Pancholi, and Christina Delimitrou. Seer:
Leveraging big data to navigate the complexity of per-
formance debugging in cloud microservices. In Pro-
ceedings of the twenty-fourth international conference
on architectural support for programming languages
and operating systems, pages 19-33, 2019.

Haryadi S Gunawi, Riza O Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, et al. Fail-slow at scale: Evidence
of hardware performance faults in large production sys-
tems. ACM Transactions on Storage (TOS), 14(3):1-26,
2018.

Peng Huang, Chuanxiong Guo, Jacob R Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing in
situ system observability for failure detection. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 1-16, 2018.

Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems, pages 150-155, 2017.

744

2025 USENIX Annual Technical Conference

USENIX Association

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Effi-
cient training of giant neural networks using pipeline
parallelism. In NeurIPS, 2019.

Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and
Mosharaf Chowdhury. Oobleck: Resilient distributed
training of large models using pipeline templates. In
Proceedings of the 29th Symposium on Operating Sys-
tems Principles, pages 382-395, 2023.

Xianyan Jia, Le Jiang, Ang Wang, Wencong Xiao, Ziji
Shi, Jie Zhang, Xinyuan Li, Langshi Chen, Yong Li,
Zhen Zheng, et al. Whale: Efficient giant model training
over heterogeneous {GPUs}. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22), pages 673—
688, 2022.

Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, et al. {MegaScale}: Scal-
ing large language model training to more than 10,000
{GPUs}. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), pages
745-760, 2024.

Anna R Karlin, Claire Kenyon, and Dana Randall. Dy-
namic tcp acknowledgement and other stories about e/(e-
1). In Proceedings of the thirty-third annual ACM sym-
posium on Theory of computing, pages 502-509, 2001.

Gurkirat Kaur and Manju Bala. Rdma over converged
ethernet: A review. International Journal of Advances
in Engineering & Technology, 6(4):1890, 2013.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym,
Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation
recomputation in large transformer models. In MLSys,
2023.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ili¢, Daniel Hesslow, Roman Castagné,
Alexandra Sasha Luccioni, Francois Yvon, Matthias
Gallé, et al. Bloom: A 176b-parameter open-access
multilingual language model. 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Yuanhao Li, Tianyuan Wu, Guancheng Li, Yanjie Song,
and Shu Yin. Portus: Efficient dnn checkpointing to
persistent memory with zero-copy. In 2024 IEEE 44th

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

International Conference on Distributed Computing Sys-
tems (ICDCS), pages 59-70. IEEE, 2024.

Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, detecting and localizing partial failures in large sys-
tem software. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20),
pages 559-574, 2020.

Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu,
Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu,
Guangtao Xue, Jiwu Shu, Minglu Li, et al. Perseus:
A {Fail-Slow} detection framework for cloud storage
systems. In 21st USENIX Conference on File and Stor-
age Technologies (FAST 23), pages 49-64, 2023.

Yixuan Mei, Yonghao Zhuang, Xupeng Miao, Juncheng
Yang, Zhihao Jia, and Rashmi Vinayak. Helix:
Distributed serving of large language models via
max-flow on heterogeneous gpus. arXiv preprint
arXiv:2406.01566, 2024.

Xupeng Miao, Yining Shi, Zhi Yang, Bin Cui, and Zhi-
hao Jia. Sdpipe: A semi-decentralized framework for
heterogeneity-aware pipeline-parallel training. Proceed-
ings of the VLDB Endowment, 16(9):2354-2363, 2023.

Jayashree Mohan, Amar Phanishayee, and Vijay
Chidambaram. {CheckFreq}: Frequent,{Fine-
Grained }{DNN} checkpointing. In 19th USENIX
Conference on File and Storage Technologies (FAST
21), pages 203-216, 2021.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM symposium on operating sys-
tems principles, pages 1-15, 2019.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, et al. Efficient large-scale language
model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1-15, 2021.

NVIDIA Corporation. Fabric manager for nvidia
nvswitch systems, 2023. Accessed: 2024-09-04.

NVIDIA Corporation. Matrix multiplication back-
ground user’s guide, 2024. Accessed: 2024-09-17.

NVIDIA Corporation. Nvidia collective communica-
tions library (nccl), 2024. Accessed: 2024-09-06.

USENIX Association

2025 USENIX Annual Technical Conference 745

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

NVIDIA Corporation. Nvidia management library
(nvml), 2024. Accessed: 2025-01-01.

OpenAl. Openai sora, 2024. Accessed: 2024-09-13.

Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T
Nguyen, Seungmin Lee, Jaesik Choi, Sam H Noh, and
Young-ri Choi. {HetPipe}: Enabling large {DNN} train-
ing on (whimpy) heterogeneous { GPU} clusters through
integration of pipelined model parallelism and data par-
allelism. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 307-321, 2020.

William Peebles and Saining Xie. Scalable diffu-
sion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 4195-4205, 2023.

Gregory F Pfister. An introduction to the infiniband ar-

chitecture. High performance mass storage and parallel
1/0, 42(617-632):10, 2001.

Kun Qian, Yongqging Xi, Jiamin Cao, Jiaqi Gao, Yichi
Xu, Yu Guan, Binzhang Fu, Xuemei Shi, Fangbo Zhu,
Rui Miao, et al. Alibaba hpn: A data center network
for large language model training. In Proceedings of
the ACM SIGCOMM 2024 Conference, pages 691-706,
2024.

Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya
Akella. {CASSINT}:{Network-Aware} job scheduling
in machine learning clusters. In 27st USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 24), pages 1403—-1420, 2024.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In IEEE/ACM SC, 2020.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion pa-
rameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 3505-3506, 2020.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. {Zero-offload}: De-
mocratizing {billion-scale} model training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pages 551-564, 2021.

Salvatore Sanfilippo. Redis - the real-time data platform,
2009. Accessed: 2024-09-08.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared Casper,
Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay
Korthikanti, et al. Using deepspeed and megatron to
train megatron-turing nlg 530b, a large-scale genera-
tive language model. arXiv preprint arXiv:2201.11990,
2022.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yi-
fan Qiao, Zhihao Jia, Minjia Zhang, Ravi Netravali, and
Guoqing Harry Xu. Bamboo: Making preemptible in-
stances resilient for affordable training of large {DNNs}.
In 20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 23), pages 497-513,
2023.

Taegeon Um, Byungsoo Oh, Minyoung Kang, Woo-
Yeon Lee, Goeun Kim, Dongseob Kim, Youngtaeck
Kim, Mohd Muzzammil, and Myeongjae Jeon. Metis:
Fast automatic distributed training on heterogeneous
{GPUs}. In 2024 USENIX Annual Technical Confer-
ence (USENIX ATC 24), pages 563-578, 2024.

Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu,
Lennart Heim, Anson Ho, and Marius Hobbhahn. Ma-
chine learning model sizes and the parameter gap. arXiv
preprint arXiv:2207.02852, 2022.

Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xin-
wei Fu, TS Eugene Ng, and Yida Wang. Gemini: Fast
failure recovery in distributed training with in-memory
checkpoints. In Proceedings of the 29th Symposium on
Operating Systems Principles, pages 364-381, 2023.

Qizhen Weng, Lingyun Yang, Yinghao Yu, Wei Wang,
Xiaochuan Tang, Guodong Yang, and Liping Zhang. Be-
ware of fragmentation: Scheduling gpu-sharing work-
loads with fragmentation gradient descent. In 2023
USENIX Annual Technical Conference (ATC’23), 2023.

Yifan Xiong, Yuting Jiang, Ziyue Yang, Lei Qu, Gu-
oshuai Zhao, Shuguang Liu, Dong Zhong, Boris Pinzur,
Jie Zhang, Yang Wang, et al. SuperBench: Improving
cloud Al infrastructure reliability with proactive valida-
tion. In 2024 USENIX Annual Technical Conference
(ATC’24), pages 835-850, 2024.

746

2025 USENIX Annual Technical Conference

USENIX Association

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Zhiyi Yao, Pengbo Hu, Congcong Miao, Xuya Jia, Zun-
ing Liang, Yuedong Xu, Chunzhi He, Hao Lu, Mingzhuo
Chen, Xiang Li, et al. Holmes: Localizing irregularities
in {LLM} training with mega-scale {GPU} clusters. In
22nd USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 25), pages 523-540,
2025.

Xiaodong Yi, Shiwei Zhang, Ziyue Luo, Guoping Long,
Lansong Diao, Chuan Wu, Zhen Zheng, Jun Yang, and
Wei Lin. Optimizing distributed training deployment
in heterogeneous gpu clusters. In Proceedings of the
16th International Conference on emerging Networking
EXperiments and Technologies, pages 93—107, 2020.

Shenglin Zhang, Yongxin Zhao, Xiao Xiong, Yongqian
Sun, Xiaohui Nie, Jiacheng Zhang, Fenglai Wang, Xian
Zheng, Yuzhi Zhang, and Dan Pei. [lluminating the gray
zone: Non-intrusive gray failure localization in server
operating systems. In Companion Proceedings of the
32nd ACM International Conference on the Foundations
of Software Engineering, pages 126—137, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt:
Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa:
Automating inter-and {Intra-Operator} parallelism for
distributed deep learning. In /6th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pages 559-578, 2022.

Yuchen Zhong, Guangming Sheng, Juncheng Liu, Jinhui
Yuan, and Chuan Wu. Swift: Expedited failure recov-
ery for large-scale dnn training. In Proceedings of the
28th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, pages 447-449,
2023.

Keren Zhou, Yueming Hao, John Mellor-Crummey, Xi-
aozhu Meng, and Xu Liu. Gvprof: A value profiler for
gpu-based clusters. In SC20: International Conference
for High Performance Computing, Networking, Storage
and Analysis, pages 1-16. IEEE, 2020.

USENIX Association

2025 USENIX Annual Technical Conference 747

	Introduction
	Background
	Characterization Study
	Cluster Setup and Methodology
	How Do Comput. Fail-Slows Manifest?
	How Do Commun. Fail-Slows Manifest?
	How Do Fail-Slows Manifest at Scale?
	Takeaways and Other Evidences

	Greyhound-Detect
	System Overview
	Tracking
	Profiling and Validation

	Greyhound-Mitigate
	Adaptive Multi-Level Mitigation
	Micro-batch and Parallelism Adjustment

	Implementation
	Evaluation
	Experiment Setup
	How Accurate Is Detection?
	How Effective Is Mitigation?
	How Large Is the Overhead?
	How Does Greyhound Perform at Scale?

	Related Work
	Conclusion

