
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

PluS: Highly Efficient and Expandable ML Compiler
with Pluggable Graph Schedules

Ruofan Wu, Renmin University of China; Zhen Zheng, Microsoft; Feng Zhang,
Renmin University of China; Chuanjie Liu, Microsoft; Zaifeng Pan, Renmin University
of China; Jidong Zhai, Tsinghua University; Xiaoyong Du, Renmin University of China

https://www.usenix.org/conference/atc25/presentation/wu-ruofan

PluS: Highly Efficient and Expandable ML Compiler with Pluggable Graph
Schedules

Ruofan Wu§∗1, Zhen Zheng†, Feng Zhang§, Chuanjie Liu†, Zaifeng Pan§∗2, Jidong Zhai‡, Xiaoyong Du§

§Renmin University of China †Microsoft ‡Tsinghua University

Abstract
Machine learning (ML) compilers are effective solutions

for deploying diverse Deep Neural Network (DNN) work-
loads on various hardware platforms automatically. However,
there is a notable lag in existing ML compilers when it comes
to supporting emerging optimization techniques like recent
attention optimizations. These compilers lack the requisite
flexibility to support expert-driven subgraph optimizations
timely, resulting in suboptimal performance compared to man-
ually optimized libraries. Conversely, template-based compil-
ers lack the ability to abstractly express subgraphs, thereby
reducing their adaptability to subtle changes in model archi-
tectures.

In this paper, we present PluS, an end-to-end ML com-
piler that facilitates the deployment of expert-optimized sub-
graph implementations while still preserving compiler flex-
ibility. We rethink the encapsulation of ML compiler and
decouple the burdensome embedded graph transformation
process. PluS provides a lightweight loop-centric subgraph
abstraction for experts to manage a flexible pattern warehouse,
and employs a pattern identification approach for subgraph
generation. As a result, PluS can deploy efficient subgraph
implementations with minimal manual efforts, making it out-
perform the state-of-the-art rule-based embedded compilers
(up to 4.04× speedup) on popular ML models.

1 Introduction

Deep neural networks (DNNs) have achieved remarkable suc-
cess in various ML tasks [16, 25, 29, 33, 34, 41, 50]. In recent
years, key DNN architectures have exhibited the trend of con-
vergence. For instance, notably, the attention mechanism [43]
has become a staple in state-of-the-art DNN designs. Even
so, they continue to evolve with the introduction of novel

*Work was done when Ruofan and Zaifeng interned at Microsoft, advised
by Zhen.

1Currently at the University of Michigan.
2Currently at the University of California, San Diego.

local changes over time, e.g., RMSNorm normalizing func-
tion [48] and SwiGLU activation function [37]. Besides the
above trends of model evolving, new tensor graph optimiza-
tion techniques emerge rapidly, e.g., FlashAttention [13, 14]
and fused Matmul-LayerNorm-Matmul [40]. The partially
convergent model architectures and the rapidly evolved graph
optimizations lead to a new demand for ML compilers.

ML compilers [10, 22, 30, 36, 57] play a crucial role in gen-
erating efficient kernel implementations for deploying ML
models on various hardware platforms automatically. Typi-
cally, ML compilers translate ML models into computational
graphs of operators and leverage graph transformation tech-
niques like operator fusion to enhance performance. However,
many ML compilers [22, 30, 36, 57] rely on predefined rules
hard-written in the compilers for graph transformation. This
approach cannot meet the growing demands of quickly sup-
porting emerging novel and high-performance optimization
techniques, as adjusting the compilers often requires signif-
icant effort. Consequently, ML compilers often lag behind
the state-of-the-art performance due to the need for heavy
modifications to predefined rules and code bases.

Simultaneously, template-based methods have been pro-
posed to optimize computational graphs by matching prede-
fined templates with specific operator compositions. Com-
pared with the compilers with hard-written predefined rules,
these methods allow users to support emerging optimizations
more easily, without the need to modify the compiler imple-
mentation itself. However, this approach often struggles to
support diverse model structures. For instance, the current
AITemplate [45] codebase fails to support models like T5
due to the absence of fused T5LayerNorm composition, even
though the T5LayerNorm consists of very basic operators. To
support this model, users need to define the T5LayerNorm
graph pattern and code generation (codegen) template.

Given the limitations of existing works, ML compilers
face significant demands and challenges in swiftly supporting
emerging graph optimization technologies, especially as ML
model architectures exhibit a convergent yet evolving trend.

In this work, we introduce PluS, a highly efficient and

USENIX Association 2025 USENIX Annual Technical Conference 647

DNN model

Matmul

ReduceGELU

Matmul + GELU

Reduce

Executable
kernels

1

2

Subgraph Identification1

Support user-defined patterns?

✅❌

Specific operator compositions Generic loop-centric features

……

def GEMM_skeleton_codes

Adaptable to model variations?

3. ……

2. GEMM + GELU

1. GEMM + Bias + GELU

✅✅ ✅❌

Code Generation2

……

def GEMM_codes
def GELU_codes

def GEMM_codes
def Bias_codes
def GELU_codes

……

for i ← 1 to M
 for j ← 1 to N
 for k ← 1 to K
 ……

Support user-defined schedules?

Avoid duplicate definitions?

✅❌ ✅✅❌

Code template

✅

Embedded compilers Existing pluggable compiler PluS

abstracted

High-level IR

Low-level IR

2. ……..

1. Fusable + injective

Embedded fusion rules

Code completion

reuse

Figure 1: Workflow of ML compilers and a comparison between embedded compilers, existing pluggable compilers, and PluS.

expandable ML optimizing compiler with pluggable graph
schedules. PluS decouples the graph transformation and code-
gen schedule definition from the compiler implementation
itself based on the following insights. First, rather than rely-
ing on cumbersome graph transformation rules hard-written
in the compiler itself, PluS offers a pluggable graph trans-
formation module, which allows domain experts to maintain
a warehouse of subgraph patterns. This approach facilitates
the seamless deployment of emerging high-performance opti-
mization techniques. Second, PluS recognizes that the opti-
mized schedules for a subgraph are usually determined by the
loop structure of key operators, such as MatMul and Reduce.
For instance, substituting an Add operator with a Sub operator
does not alter the loop structure of a graph, making it unneces-
sary to regenerate the entire schedule for such modifications.
Therefore, instead of matching the exact graph of operators,
PluS employs a loop-centric pattern matching method for
graph transformation, wherein a pattern represents operators
or subgraphs with similar underlying loop-centric features.

Building upon these insights, PluS proposes +Graph, a
lightweight subgraph abstraction based on the loop-centric
feature (named +Loop) (Sec. 4.1). PluS employs a novel
graph transformation approach by generically matching a
set of predefined subgraph patterns (with +Graph) from the
expert-driven pattern warehouse (Sec. 4.2). Subsequently,
PluS generates code for the subgraph pattern using the prede-
fined code template (Sec. 4.3).

We have implemented PluS on top of PyTorch and con-
ducted evaluations using five mainstream ML models on
NVIDIA A100 GPU and RTX 4090 GPU. In comparison with
TorchInductor [8] and TensorRT [22], PluS demonstrates an
average end-to-end performance improvement of 4.04× and
1.77×, respectively. These performance gains are attributed
to PluS’s ability to integrate high-performance subgraph op-
timization techniques from various vendors and select opti-

mal schedules for different shapes. When compared to the
template-based ML compiler AITemplate [45], PluS excels
in supporting newly developed DNN architectures while still
maintaining a slight performance advantage (approximately
7.8%) on those AITemplate-supported models.

In summary, we make the following contributions:
▶ We pioneer the concept of pluggable graph schedules,

enabling the effortless integration of expert-driven subgraph
optimizations within an ML compiler. This innovation facil-
itates the decoupling of subgraph code generation iteration
from the burdensome compiler infrastructure.

▶ We introduce a novel subgraph abstraction based on the
underlying loop-centric features, providing a robust represen-
tation of subgraph patterns. Leveraging this abstraction, we
devise a novel pattern-matching strategy for graph optimiza-
tion.

▶ We develop PluS, an ML compiler supporting the plug-
gable graph schedule definition, and establish a subgraph
pattern warehouse leveraging optimization schedules from
state-of-the-art vendors. Extensive evaluation demonstrates
the efficacy, portability, and flexibility of PluS.

2 Background and Motivation
2.1 Embedded and Pluggable Compilers
Given a DNN model, an ML compiler typically lowers it
into a computation graph composed of a set of fine-grained
tensor operators. The common workflow of ML compilers
usually involves two key modules: subgraph identification
and code generation (codegen), as shown in the left half of
Fig. 1. The subgraph identification is to identify subgraphs
within the computation graph that can be further optimized.
For example, it identifies groups of operators that can be fused
into a single subgraph, allowing for the generation of higher-
performance code. Codegen is responsible for generating

648 2025 USENIX Annual Technical Conference USENIX Association

codegen schedules for the identified subgraphs, which define
how to map data computation onto hardware [56].

We categorize the optimizing compilers into two types:
embedded and pluggable, based on whether the subgraph
identification process supports user-defined functions or not.
Embedded compilers implement the subgraph identification
within the compiler so that users cannot customize this be-
havior. In contrast, pluggable compilers empower users to
customize the process without modifying the compiler itself.
Fig. 1 shows the characteristics of the embedded compilers
and the existing pluggable compilers.

Embedded mode. Many of the ML compilers adopt
embedded mode, such as XLA [36], TorchInductor [8],
BladeDISC [56], DNNFusion [31] and TensorRT [22]. These
compilers utilize predefined fusion rules to generate sub-
graphs. Users cannot modify the fusion rules without chang-
ing the compiler implementation. For example, TVM [10] has
a set of embedded fusion rules not customizable by users. It
categorizes operators into complex-out-fusable, injective, and
reduction, and proposes three fusion rules: injective can fuse
after complex-out-fusable, injective can fuse before reduc-
tion, and injective can fuse with injective. After generating
the subgraphs, these compilers lower the high-level graph
representations into target-specific code using a low-level in-
termediate representation (IR). For example, BladeDISC [56]
employs the MLIR dialects [26], which encodes computa-
tions as loop constructs that map closely to the underlying
hardware.

However, embedded compilers are not friendly to adopt-
ing the emerging subgraph optimizations. This stems from
the complete reliance on compiler predefined rules for graph
transformation, making it challenging to harness the inno-
vations of the new optimizations fast. To catch up the new
optimizations, it usually requires to modify the cumbersome
graph transformation module in the compiler, demanding sub-
stantial effort and time.

We utilize the subgraph and the corresponding optimized
kernels depicted in Fig. 2 to elucidate the limitations of em-
bedded graph transformation. This subgraph comprises a ma-
trix multiplication (Matmul) followed by a softmax function
(Softmax), and the Softmax is decomposed into several ba-
sic operators by the ML compiler. Existing manually-written
libraries (CUTLASS [40]) can optimize this pattern into 3
kernels as shown in Fig. 2. However, embedded-mode ML
compilers face challenges in leveraging these optimizations.
First, it requires modifying the fusion and codegen rules to
support such subgraphs, which is usually labor-intensive and
cannot be timely. Second, given that the high-level operators
(Softmax) are usually decomposed into smaller and basic op-
erators in the modern ML compilers, it is hard for the existing
compilers to match the intricate subgraph adequately based
on simplistic rules.

Pluggable mode. Some tensor compilers allow users to
customize the subgraph identification. Users do not need

Subtract

ReduceMax

local
reduce

Matmul

kernel 1

Exp ReduceSum

Divide

global
reduce

kernel 3

kernel 2

Figure 2: A subgraph formed by basic operators consisting of
matrix multiplication followed by the softmax function, and
the corresponding kernel implementation in CUTLASS.

to rewrite the compiler itself to add new fusion or codegen
rules. For example, AITemplate [45] employs operator-level
subgraph matching to optimize ML models. Users can de-
fine desired subgraphs during model definition, and AITem-
plate identifies specific operator-composed subgraphs for
code generation. For instance, AITemplate currently supports
18 types of matrix multiplication-based subgraphs, such as
gemm_rcr_bias_gelu. This particular subgraph represents a
General Matrix Multiply (GEMM) with inputs in row major
and column major, followed by Bias and GELU operations,
with the output in row major.

However, the existing pluggable mode ML compiler re-
lies on operator-level pattern matching to identify subgraphs
and lacks proficiency in handling subtle changes in model
architectures. Users are required to provide corresponding
implementations for the specific operator composition and
specify it during the model definition. For instance, in the case
of AITemplate, it currently supports gemm_rcr_bias_gelu
but not gemm_rcr_gelu. This implies that if a user opts to
exclude the Bias operation, a new backend template and fron-
tend definition must be added to AITemplate. Furthermore,
AITemplate lacks the design for compiling models with dy-
namic shapes, limiting its flexibility in real-world scenarios.
These shortcomings significantly reduce adaptability of plug-
gable ML compiler and hinders its ability to generalize for
broader use cases.

2.2 Opportunities and Insights
We recognize the pressing need for ML compilers to alleviate
manual burdens and overcome the inflexibility of embedded
graph transformations. In this work, we introduce the concept
of pluggable graph transformation to decouple the intricate
graph transformation process from the ML compiler imple-
mentation. By providing a pluggable and flexible approach to
subgraph identification and optimization, we empower users
to define graph transformation patterns flexibly.

Given the limitations of existing pluggable compilers that
rely on operator-level pattern matching for subgraph optimiza-
tion, our insight is to use a general pattern with fundamental
characteristics to map different operator compositions into the
same underlying codegen schedule. We address several key
issues with PluS in Sec. 4.1, Sec. 4.2 and Sec. 4.3 respectively:

USENIX Association 2025 USENIX Annual Technical Conference 649

▶ How is the general pattern defined, and how does it
express the fundamental characteristics of a subgraph?

▶ How does PluS match or identify subgraph patterns?
▶ How do users provide codegen schedules for subgraph

patterns, and how does PluS generate code accordingly?
First, operators and subgraphs can be expressed through

only the loop skeleton of several key operators, which dom-
inate the codegen schedules [56, 57]. PluS introduces a
lightweight subgraph abstraction, +Graph, to define subgraph
patterns with the loop-centric characteristics of key operators
while ignoring trivial operators.

Unlike low-level loop abstractions designed for code gen-
eration like MLIR dialects [26], which are complex and gen-
erally inaccessible to ML optimization experts, +Graph is
specifically designed for subgraph pattern matching, offering
users the concise and necessary representation of a subgraph’s
essential structure.

Second, PluS employs a novel subgraph pattern identifica-
tion method based on +Graph, rather than relying on fusion
rules or matching specific operator compositions. PluS starts
identification from the key operators and iteratively matches
the subgraphs with user-predefined subgraph patterns.

Compared to the operator-by-operator matching approach
employed by AITemplate [45], PluS’s subgraph identifica-
tion algorithm applies a generic matching on subgraph loop
skeletons, which allows subgraphs with the same underlying
loop-centric features but different operator compositions to
be matched to the same +Graph.

Third, PluS offers an interface called +Code for users to
provide the codegen template for any +Graph. The code tem-
plates define the schedules for the loop skeleton of the key
operators, and PluS generates code for other trivial opera-
tions in the subgraph according to the data and computation
information maintained by the compiler.

With this mechanism, PluS can reuse the codegen schedules
for subgraphs with identical +Graph, eliminating the need
to repeatedly define code implementations for every operator
composition like in AITemplate (Fig. 1).

3 System Overview

Building upon the motivation and insights elaborated in Sec. 2,
we introduce PluS to address the challenge of flexible sub-
graph optimization integration with a pluggable graph trans-
formation solution based on loop-centric pattern matching.
The core insight is to map different subgraphs with the same
loop skeleton to a unique identifier and share the same code-
gen schedules for these subgraphs. PluS first designs +Graph
(Sec. 4.1) to serve as an identifier for subgraph pattern match-
ing, which encapsulates the loop-centric characteristics of
subgraphs. PluS develops a pattern warehouse to decouple the
subgraph identification and codegen process from compiler
internals. Users are empowered to manage these processes
by providing mappings of +Graphs to their corresponding

DNN models

Matmul

Add Sub

Ops

......

Matmul

Add

Pattern warehouse

Pattern
(key)

Code template
(value)

......

Pattern identification

Subgraphs

+Code

CUDA
code

Matmul

Add Sub

......

+Loop0: [M, para]
 +Loop1 [N, para]
 +Loop2 [K, non-para]

+Graph

Abstraction

Fill with
operations

Match

Pattern warehouse

// for skeleton
……

for skeleton

Figure 3: System Overview of PluS.

code templates using PluS’s interface +Code (Sec. 4.3). The
code template defines the codegen schedules for the skeleton
operations in the subgraphs.

Figure 3 shows the system overview of PluS. To begin the
compilation process, PluS ingests a DNN model from the
framework (e.g., PyTorch). It then automatically translates
the model into a computational graph comprised of operators.
Each operator is essentially expressed as a +Loop (Sec. 4.1),
which serves as the building block of +Graph. Subsequently,
PluS employs a pattern identification methodology to iden-
tify subgraphs that match the pre-defined subgraph patterns
in the pattern warehouse, as detailed in Sec. 4.2. Specifi-
cally, PluS adopts a greedy extension policy to expand the
subgraph scope, obtaining the +Graphs of subgraphs and iter-
atively querying the pattern warehouse to determine whether
the +Graph matches the pre-defined patterns. Finally, PluS
generates code for the identified subgraphs using the code
templates in the pattern warehouse and specific information
within each subgraph, filling in the trivial operations, as de-
tailed in Sec. 4.3.

4 Design Methodology
4.1 Subgraph Identifier: +Graph
In this section, we introduce +Graph, a subgraph representa-
tion designed to serve as an identifier in the subgraph iden-
tification process. +Graph abstracts DNN computation to
its loop structure and key operations. This allows subgraphs
with different operator compositions but similar loop-centric
features to be mapped to the same +Graph, and share the
same codegen schedule. This enhances PluS’s adaptability
to varying model structures. The +Graph consists of mul-
tiple levels of +Loops. Typically, computations on a tensor
can be expressed as nested loops. +Loop is an abstraction
of such loops, with the nested loops of tensor computations
corresponding to the nested +Loops.

As a subgraph identifier for pattern identification, +Graph
must possess two key features: it encapsulates the underlying
characteristics of loops and computations, and it maintains

650 2025 USENIX Annual Technical Conference USENIX Association

loop0 [K, non-parallelizable, (dot)] {input0, input1}:{output0}

+Loop

parallelismsize operations inputs -> outputs

void MergeKeepProperty();
void MergeAlterParallellism();
void CreateNewLoop();
void NestedLoopCoalesce();

Figure 4: The +Loop representation.

uniqueness—each subgraph has a distinct +Graph. In the fol-
lowing content, we first introduce the key properties of +Loop,
which succinctly express essential information of a loop for
the pattern abstraction. We then present a comprehensive list
of transformation primitives of +Loop. When multiple op-
erators are grouped into a single subgraph, the +Loops are
interconnected and undergo transformations based on these
primitives, forming the unique +Graph of the subgraph.

Properties. As shown in Fig. 4, +Loop is characterized by
three main properties: size, parallelism, and operation.

Size describes the size of a +Loop, encompassing two types:
integer and symbolic. When the size is known at the compile
time, it will be a constant integer, otherwise it will be repre-
sented symbolically (i.e., dynamic shape).

Loop-level Parallelism assumes paramount significance for
mapping +Loop computations onto hardware execution units.
It can be classified into two categories: parallelizable and
non-parallelizable +Loop. A parallelizable +Loop indicates
that there are no data dependencies between consecutive loop
iterations, allowing for parallel execution. Conversely, in the
non-parallelizable +Loop, statements in an iteration of the
+Loop depend on statements in another iteration of the +Loop,
which necessitates serial execution or synchronization efforts.
For instance, the innermost +Loop of a reduction operator (Re-
duceOp) is non-parallelizable, while each level of the +Loop
in an elementwise operator is parallelizable.

Operation is an optional property that records compu-
tational operations within a +Loop. When users provide
+Graph in the pattern warehouse, they need to specify only
the crucial operations that determine codegen schedules in
the subgraph pattern, such as dot product, reduce-max, etc.,
rather than specifying all trivial operations. PluS will identify
subgraph patterns by leveraging the information within the
Operation property. If an operation is defined in a +Graph,
only subgraphs whose corresponding +Loop contains this
operation will match the pattern (detailed in Sec. 4.2). Other
trivial operations not specified by users will be ignored in the
subgraph’s +Loop. For instance, users can specify the permu-
tation (transpose) operation in +Graph to determine whether
the permutation operator can be included in a subgraph.

In addition to the three properties mentioned above, +Loops
in a subgraph also carry input and output tensors. However,
this information does not affect pattern matching as this does
not affect the underlining codegen schedule design. This
means that subgraphs with different inputs and outputs might
still map to the same +Graph, depending on the key oper-
ations within the subgraph. We will discuss the input and

output features in the code generation section in Sec. 4.3.
Transformation primitives. As an identifier of a subgraph,

the +Graph representation should be deterministic and unique
for a given subgraph. Our insight is to merge the loops in a
graph as much as possible while maintaining correctness to
simplify the representation of the subgraph, making pattern
identification easier. To achieve this, we design three primi-
tives to guide the transformation of +Loops across different
operators when forming a subgraph. After the +Loops of the
subgraph are transformed, a fourth primitive collapses nested
+Loops for final standardization.

Assuming operator B follows operator A, i.e., B’s input
corresponds to A’s output, we define the tensor connecting
these two operators as the hub tensor. The +Loop associated
with this hub tensor in operator A is referred to as prev_loop.
The corresponding loop of operator B is denoted as cur_loop.

Primitive 1: Merge without Altering Properties. This prim-
itive involves merging prev_loop and cur_loop when they
share identical sizes and are both parallelizable.

For example, consider merging MatmulOp [M, N, K] and
AddOp [M, N] into a +Graph, where axes M and N can be
seamlessly merged without altering their properties. Before
the merge, the computation of MatmulOp is illustrated in
Fig. 5(1)(a). After the merge, the computation of MatmulOp
and AddOp is depicted in Fig. 5(1)(b). The final +Loop struc-
ture of the subgraph is determined as shown in Fig. 5(1)(c).

Primitive 2: Merge with Parallelism Modification. In
cases where prev_loop and cur_loop share identical sizes,
and prev_loop is parallelizable while cur_loop is non-
parallelizable, when merging the two loops, the Parallelism
property is adjusted to non-parallelizable.

For instance, consider the fusion of AddOp [M, N] and
ReduceOp [M, N], where the reduction axis is N. Since the N
axis of AddOp is parallelizable while the N axis of ReduceOp
is non-parallelizable, these +Loops can be merged into a non-
parallelizable +Loop. The computation of AddOp and this
fused subgraph, and the +Loop structure of this subgraph are
shown in Fig. 5(2).

Primitive 3: Transition to a New Loop. If the prev_loop is
non-parallelizable, cur_loop cannot be merged and instead
forms a distinct new +Loop, irrespective of the size and par-
allelism of cur_loop.

For instance, consider the fusion of ReduceOp [M, N] and
AddOp [M, N], shown in Fig. 5(3)(a) and (b). Given that the
N axis of ReduceOp is non-parallelizable, it results in the
creation of a distinct new +Loop for the N axis of AddOp in
Fig. 5(3)(c). This subgraph is represented as Fig. 5(3)(d).

Primitive 4: Nested loops collapsing. After the +Loops in
different operator are transformed, PluS collapses consecutive
nested +Loops that belong to the same categories within the
subgraph to achieve the simplest representation under equiv-
alent conditions. For instance, a BatchMatmulOp [B, L, M,
N, D] can be simplified to BatchMatmulOp [B x L, M, N, D]
because axes B and L both represent batch dimensions in this

USENIX Association 2025 USENIX Annual Technical Conference 651

for m in range(M):
for n in range(N):

for k in range(K):
output0[m,n]+=input0[m,k]*input1[k,n]

(a) MatmulOp

for m in range(M):
for n in range(N):

for k in range(K):
output0[m,n]+=input0[m,k]*input1[k,n]

output1[m,n]=output0[m,n]+1.0f

(b) MatmulOp + AddOp

(c) +Loop

loop0 [M, para]
loop1 [N, para, (add)]

loop2 [K, non-para, (dot)]

for m in range(M):
for n in range(N):

output0[m,n]=input0[m,n]+1.0f

(a) AddOp

for m in range(M):
for n in range(N):

output0[m,n]=input0[m,n]+1.0f
output1[m]+=output0[m,n]

(b) AddOp + ReduceOp

(c) +Loop

loop0 [M, para]
loop1 [N, non-para, (add, reduceSum)]

for m in range(M):
for n in range(N):

output0[m]+=input0[m,n]

(a) ReduceOp

for m in range(M):
for n in range(N):

output1[m,n]=output0[m]+input1[m,n]

(b) AddOp

(d) +Loop

loop0 [M, para]
loop1 [N, non-para, (reduceSum)]
loop2 [N, para, (add)]

for m in range(M):
for n in range(N):

output0[m]+=input0[m,n]
for n in range(N):

output1[m,n]=output0[m]+input1[m,n]

(c) ReduceOp + AddOp

(3) An example for Primitive 3.(2) An example for Primitive 2.(1) An example for Primitive 1.

Figure 5: Examples for transformation primitives of +Loop.

scenario and can be collapsed.
Specifically, PluS determines the collapsibility of a +Loop

and its next +Loop sequentially, adhering to three conditions
for collapsing: First, the next +Loop must be the only +Loop
nested inside the current +Loop. Second, the next +Loop must
possess the same parallelism as the current +Loop. Third, the
input tensors involved in both the next +Loop and the current
+Loop must be exactly the same. For instance, consider the
BatchMatmulOp [B x L, M, N, D]. Here, axes B and L are
both parallelizable and present in all input tensors, whereas
the parallelizable M axis exists only in the first input tensor,
and the parallelizable N axis exists only in the second input
tensor. The D axis is non-parallelizable.

4.2 Subgraph Identification
Based on the subgraph identifier +Graph, PluS employs a
pattern identification method to generate subgraphs. This
process is guided by two key insights. First, PluS begins
subgraph identification with a skeleton operator. The concept
of a skeleton operator, as proposed in [57] and [56], denotes a
crucial operator that determines the data layout and codegen
schedule within the computational graph, such as MatmulOp
and ReduceOp. Most advanced optimized subgraphs are now
built around these skeleton operators.

Second, PluS uses a greedy extension strategy to expand
the subgraph scope when identifying subgraph patterns. This
approach aims to match the largest possible range of sub-
graph patterns, including the maximum number of operators.
Through subgraph extension, PluS iteratively matches the
subgraph with pre-defined +Graphs in the pattern warehouse.
The greedy extension strategy provides users with the greatest
flexibility in code planning to decide the best implementation
of the subgraphs. Unlike conventional ML compilers that map
each subgraph into a single kernel, PluS allows users to freely

determine the number of kernels in the code template of a
+Graph. By expanding the range of subgraphs from the skele-
ton operator, PluS can identify most of the current mainstream
subgraph optimizations.

In this section, we first present the steps of PluS’s pattern
identification method, which continually expands the sub-
graph and queries the pattern warehouse to match +Graphs.
We then propose the match conditions to determine whether
to continue or stop the extension.

Algorithm 1: Main steps of subgraph identification.
Input :un f used_ops initialized by the computational graph of

operators
Output :computational graph of fused subgraphs

1 while un f used_ops.IsEmpty() ̸= True do
2 skeleton_op = FindSkeletonOp(unfused_ops);
3 if skeleton_op then
4 MatchFromSkeletonOp(skeleton_op);
5 else
6 root_op = FindRootOp(unfused_ops);
7 MatchFromSkeletonOp(root_op);

Subgraph identification process. The main steps of PluS’s
subgraph identification are outlined as Algo.1. The variable
unfused_ops denotes the operators that have not yet been
fused into a subgraph and is initialized by the computational
graph. When the list of unfused operators is not empty (line
1), PluS attempts to identify a skeleton operator from unfused
operators (line 2) and initiates pattern matching from that
point (line 4). In PluS, we define the skeleton operator as the
operator possessing at least one non-parallelizable +Loop,
including MatmulOp and ReduceOp. If there is no skele-
ton operator in the unfused operators, PluS will start pattern
matching from the root operator (lines 7-8), defined as the
operator without a producer operator in the list in this paper.

652 2025 USENIX Annual Technical Conference USENIX Association

x2[M,N] = MatmulOp(x0[M,K], x1[K,N])
x3[M,1] = ReduceMaxOp(x2[M,N])
x4[M,N] = SubtractOp(x2[M,N], x3[M,1])
x5[M,N] = ExpOp(x4[M,N])
x6[M,1] = ReduceSumOp(x5[M,N])
x7[M,N] = DivideOp(x5[M,N], x6[M,1])

(a) Operators

(b) MatmulOp

for m in range(M): // [para]
for n in range(N): // [para]
for k in range(K): // [non-para]
x2[m,n]+=x0[m,k]*x1[k,n]

for m in range(M): // [para]
for n in range(N): // [non-para]
for k in range(K): // [non-para]
x2[m,n]+=x0[m,k]*x1[k,n]

x3[m,0]=max(x3[m,1],x2[m,n])

(c) MatmulOp + ReduceMaxOp

for m in range(M): // [para]
for n in range(N): // [non-para]
for k in range(K): // [non-para]
x2[m,n]+=x0[m,k]*x1[k,n]

x3[m,0]=max(x3[m,0],x2[m,n])
for n in range(N): // [para]
x4[m,n]=x2[m,n]-x3[m,0]

(d) MatmulOp + ReduceMaxOp + SubtractOp

for m in range(M): // [para]
for n in range(N): // [non-para]
for k in range(K): // [non-para]
x2[m,n]+=x0[m,k]*x1[k,n]

x3[m,0]=max(x3[m,0],x2[m,n])
for n in range(N): // [non-para]
x4[m,n]=x2[m,n]-x3[m,0]
x5[m,n]=exp(x4[m,n])
x6[m,0]+=x5[m,n]

(e) MatmulOp + ReduceMaxOp + SubtractOp
+ ExpOp + ReduceSumOp

for m in range(M): // [para]
for n in range(N): // [non-para]
for k in range(K): // [non-para]
x2[m,n]+=x0[m,k]*x1[k,n]

x3[m,0]=max(x3[m,0],x2[m,n])
for n in range(N): // [non-para]
x4[m,n]=x2[m,n]-x3[m,0]
x5[m,n]=exp(x4[m,n])
x6[m,0]+=x5[m,n]

for n in range(N): // [para]
x7[m,n]=x6[m,0]/N

(f) MatmulOp + ReduceMaxOp + SubstractOp
+ ExpOp + ReduceSumOp + DivideOp

(g) +Graph (+Loops)

loop0 [M, para]
loop1 [N, non-para, (reduceMax)]
loop2 [K, non-para, (dot)]

loop3 [N, non-para, (sub, exp, reduceSum)]
loop4 [N, para, (div)]

Figure 6: Case study for the subgraph identification workflow of PluS.

Algorithm 2: The steps of MatchFromSkeletonOp.
Input :subgraph initialized by skeleton operator
Input :Boolean flags: allow_prologue, allow_epilogue

1 if allow_prologue then
2 while prologue = FindPrologueOp(subgraph) do
3 if Matching(subgraph, prologue) then
4 FusePrologueOp(subgraph, prologue);
5 if allow_epilogue then
6 while epilogue = FindEpilogueOp(subgraph) do
7 if Matching(subgraph, epilogue) then
8 FuseEpilogueOp(subgraph, epilogue);
9 while producer = GetProducerOp(epilogue) do

10 if Matching(subgraph, producer) then
11 FusePrologueOp(subgraph, producer);

The steps of MatchFromSkeletonOp are outlined in Algo.2.
First, PluS initializes the current subgraph with a skeleton op-
erator. Each skeleton operator has two boolean properties pre-
defined by experts in the pattern warehouse: allow_prologue
and allow_epilogue, which determine the fusion direction of
the skeleton operator. Specifically, if the skeleton operator
allows prologue fusion (line 1), PluS continuously attempts
to find a prologue operator of the current subgraph (line 2),
which produces one of the input tensors of the current sub-
graph. PluS then assesses whether the subgraph meets the
match conditions if the prologue operator is fused (line 3). If
the conditions are met, PluS fuses this prologue operator into
the subgraph (line 4). The criteria for determining whether the
subgraph meets the match conditions will be detailed later.

Additionally, if the skeleton operator allows epilogue fusion
(line 5), PluS continuously attempts to find an epilogue oper-
ator of the current subgraph that utilizes the output tensor of
the current subgraph (line 6). PluS then evaluates whether the
subgraph meets the match conditions if the epilogue operator
is fused (line 7). If the conditions are met, PluS incorporates
this epilogue operator into the subgraph (line 8). Moreover,
unlike prologue operators, after an epilogue operator is fused,

PluS endeavors to find the producer operator of this operator
that is not in the subgraph (line 9) and assesses whether it
can be fused (lines 10-11). For instance, after fusing a Mat-
mulOp and a binary AddOp, PluS will also fuse the producer
operator of another input tensor in the AddOp, such as the
DivideScalarOp.

PluS applies the following prioritization to avoid ambiguity
in subgraph matching. First, if an operator can serve either
as an epilogue to a skeleton operator or as a prologue, PluS
prioritizes epilogue fusion. This is because prologue fusion
sometimes introduce redundant computations due to repeated
input loading across multiple thread blocks, whereas epilogue
operations do not, as the output is computed and written only
once, such as the data processing in MatMul. Second, if an
operator A produces two outputs, and each output could be
fused with different downstream operators (B and C), but
not both together, PluS does not enforce a fusion priority
between them. PluS applies a greedy matching strategy: if
B is encountered first during traversal, PluS fuses A with
B, saves A’s intermediate output, and computes C separately
using that output. From a performance standpoint, fusing A
with either B or C yields comparable efficiency, as the key
benefit—avoiding redundant memory accesses and kernel
launches—is achieved in both cases.

PluS fuses operators only to generate +Graphs as iden-
tifiers to match the pre-defined patterns and corresponding
codegen schedules in the pattern warehouse. This approach
differs from conventional compilers, which use hard-written
fusion rules to generate code of subgraphs.

Case study for subgraph identification. We use Fig. 6 to
illustrate how the +Graph of a subgraph is transformed during
subgraph identification based on the transformation primitives.
It is assumed that at each step the subgraph satisfies the match
conditions. To exemplify, we consider the subgraph shown
in Fig. 6, which consists of a subgraph comprising a GEMM
operation followed by a Softmax operation. This subgraph

USENIX Association 2025 USENIX Annual Technical Conference 653

fuse an operator

match with
PluSG patterns

perfectly match?

partially match?

archive subgraph final subgraph

halt fusion
No

No

Yes

Yes

skeleton operator start

end

Figure 7: Workflow of match conditions.

encompasses six basic operators, as shown in Fig. 6(a).
Initially, PluS identifies a skeleton operator, MatmulOp [M,

N, K], within the un f used_ops. The MatmulOp permits epi-
logue fusion while disallowing prologue fusion. The +Loop
of MatmulOp [M, N, K] is shown in Fig. 6(b), where the M
axis and N axis are parallelizable +Loops, while the K axis is
a non-parallelizable +Loop.

Subsequently, PluS identifies an epilogue operator, Reduce-
MaxOp [M, N], and attempts to incorporate it into the sub-
graph. During the fusion of MatmulOp and ReduceMaxOp,
the properties of the M axis remain unaltered, following
Primitive 1. However, the N axis is modified to be non-
parallelizable in accordance with Primitive 2. The results
are shown in Fig. 6(c).

Following that, PluS identifies an epilogue operator, Sub-
tractOp [M, N]. The M axis can be merged according to
Primitive 1 since the M axis in the subgraph and SubtractOp
are both parallelizable. However, the N axis in the subgraph
is non-parallelizable, while in SubtractOp, it is parallelizable.
Hence, after fusing SubtractOp based on Primitive 3, the sub-
graph requires a new N axis, depicted in Fig. 6(d).

Similarly, as depicted in Fig. 6(e), PluS fuses injective Ex-
pOp [M, N] where axes M and N are merged following Prim-
itive 1, and ReduceSumOp [M, N] where M axis is merged
following Primitive 1 and N axis is merged following Primi-
tive 2. Additionally, a new N axis emerges within the subgraph
during the fusion of DivideOp [M, N], according to Primi-
tive 3. Finally, the computation of the resulting subgraph is
depicted in Fig. 6(f), and can be represented by Fig. 6(g).

Match conditions. During the pattern matching process,
PluS generates subgraphs represented by +Graph and evalu-
ates them against match conditions with the patterns stored
in the pattern warehouse to determine whether to extend fur-
ther. Fig. 7 shows the workflow of this assessment process
in PluS. Initially, it verifies whether each pattern in the ware-
house perfectly aligns with the +Graph of the subgraph. If
there is a complete match, PluS archives the subgraph as the
most recently successfully matched subgraph corresponding
to that skeleton operator and proceeds with the extension.
This aligns with the principle of PluS, which is to expand
subgraphs within the broadest scope possible.

In cases where there’s no perfect match, PluS investigates
whether the current subgraph represents a partial or intermedi-
ate state of a +Graph pattern in the warehouse. This involves
determining if the current subgraph could potentially evolve
into a specific +Graph pattern in the future. PluS accom-
plishes this by recursively traversing the multi-level +Loop
tree, considering the following criteria for each +Loop: First,
if the +Loop in the warehouse pattern is non-parallelizable,
the corresponding +Loop in the current subgraph can be either
parallelizable or non-parallelizable, as parallelizable +Loops
might transform into non-parallelizable ones in subsequent
extension as per Primitive 2. Second, if the +Loop in the
warehouse pattern is parallelizable, the corresponding +Loop
in the current subgraph must also be parallelizable. Third, the
number of +Loops nested within one +Loop in the warehouse
pattern must be greater than or equal to the number of +Loops
nested within the corresponding +Loop in the current sub-
graph, as subsequent extension operations might introduce
new +Loops. Fourth, if the warehouse pattern includes an op-
eration, such as dot product and max-reduction, the subgraph
must match it exactly.

Finally, two outcomes emerge: First, if the current subgraph
doesn’t align with any +Graph pattern in the pattern ware-
house in its partial or intermediate state, the pattern matching
process for the current skeleton operator is halted. The last
archived subgraph, i.e., the most recently matched subgraph
corresponding to a warehouse pattern, becomes the final sub-
graph for the current skeleton operator. Second, if the current
subgraph represents the partial or intermediate state of a spe-
cific pattern in the pattern warehouse, the pattern matching
process continues.

Case study for match conditions. Taking the subgraph in
Fig. 6(d) as an example, which includes MatmulOp, Reduce-
MaxOp, and SubtractOp, its +Graph (+Graph0) can be rep-
resented as follows.

loop0 [M, parallelizable]
loop1 [N, non-parallelizable , (reduceMax)]

loop2 [K, non-parallelizable , (dot)]
loop3 [N, parallelizable , (sub)]

While this subgraph does not perfectly match the +Graph
pattern in Fig. 6(g) (+Graph1), it can be identified as a partial
state of that pattern. First, loop0 in +Graph1 is parallelizable,
and loop0 in +Graph0 is also parallelizable. Second, loop3
in +Graph1 is non-parallelizable, whereas loop3 in +Graph0
can be parallelizable. Third, the number of +Loops nested
within +Graph1-loop0 (loop1, loop3, loop4) is greater than
those nested within +Graph0-loop0 (loop1, loop3). Finally,
the skeleton operations involving in +Graph0, specifically
reduceMax and dot, are the same as those in +Graph1.

4.3 Code Generation
In this section, we describe how PluS generates code for
subgraphs. Subgraph optimization experts first provide map-
pings between a +Graph and the code template in the pattern

654 2025 USENIX Annual Technical Conference USENIX Association

x2[M,N] = MatmulOp(x0[M,K], x1[K,N])
x3[M,1] = ReduceMaxOp(x2[M,N])
x4[M,N] = SubtractOp(x2[M,N], x3[M,1])
x5[M,N] = ExpOp(x4[M,N])
x6[M,1] = ReduceSumOp(x5[M,N])
x7[M,N] = DivideOp(x5[M,N], x6[M,1])

(a) Operators

(b) MatmulOp

for m in range(M): // [para]
for n in range(N): // [para]
for k in range(K): // [non-para]
x2[m,n]+=x0[m,k]*x1[k,n]

for m in range(M): // [para]
for n in range(N): // [non-para]
for k in range(K): // [non-para]
x2[m,n]+=x0[m,k]*x1[k,n]

x3[m,1]=max(x3[m,1],x2[m,n])

(c) MatmulOp + ReduceMaxOp

for m in range(M): // [para]
for n in range(N): // [non-para]
for k in range(K): // [non-para]
x2[m,n]+=x0[m,k]*x1[k,n]

x3[m,1]=max(x3[m,1],x2[m,n])
 for n in range(N): // [para]
 x4[m,n]=x2[m,n]-x3[m,1]

(d) MatmulOp + ReduceMaxOp + SubtractOp

for m in range(M): // [para]
for n in range(N): // [non-para]
for k in range(K): // [non-para]
x2[m,n]+=x0[m,k]*x1[k,n]

x3[m,1]=max(x3[m,1],x2[m,n])
 for n in range(N): // [non-para]
 x4[m,n]=x2[m,n]-x3[m,1]
 x5[m,n]=exp(x4[m,n])
 x6[m,n]+=x5[m,n]

(e) MatmulOp + ReduceMaxOp + SubtractOp
 + ExpOp + ReduceSumOp

for m in range(M): // [para]
for n in range(N): // [non-para]
for k in range(K): // [non-para]
x2[m,n]+=x0[m,k]*x1[k,n]

x3[m,1]=max(x3[m,1],x2[m,n])
 for n in range(N): // [non-para]
 x4[m,n]=x2[m,n]-x3[m,1]
 x5[m,n]=exp(x4[m,n])
 x6[m,n]+=x5[m,n]
 for n in range(N): // [para]
 x7[m,n]=x6[m,n]/N

(f) MatmulOp + ReduceMaxOp + SubstractOp
 + ExpOp + ReduceSumOp + DivideOp

(g) +Graph (+Loops)

loop0 [M, para]
 loop1 [N, non-para, (reduceMax)]
 loop2 [K, non-para, (dot)]
 loop3 [N, non-para, (sub, exp, reduceSum)]
loop4 [N, para, (div)]

loop0 [M, para] {x0,x1}:{x7}
 loop1 [N, non-para, (reduceMax)] {x2}:{x3}
 loop2 [K, non-para, (dot)] {x0,x1}:{x2}
 loop3 [N, non-para, (sub, exp, reduceSum)] {x2,x3}:{x6}
loop4 [N, para, (div)] {x6}:{x7}

Figure 8: An example for loop bodies.

warehouse. The +Graph encapsulates the loop skeleton of the
subgraph with key operations, while the code template defines
the codegen schedules for this skeleton, leaving the code for
trivial operations to fill by compiler. PluS compiler will main-
tain every detailed information during subgraph identification
and generate the remaining code for the subgraph.

PluS compiler. During actual compilation, PluS retains
information about all the data dependencies and operations of
each +Loop, including the input tensors, output tensors, and
computations involved in each loop. When the PluS compiler
fills the code template of the +Graph with specific code, it
traverses from the leaf nodes of the +Loop tree and gener-
ates the corresponding data and operation code, because the
+Loop body of each leaf node can be implemented as an inde-
pendent code segment. For instance, consider the subgraph in
Fig. 6(g). PluS compiler will generate code for four +Loop
bodies in turn: loop0-loop1-loop2, loop0-loop1, loop0-loop3
and loop0-loop4. The inputs, outputs, and operations involved
in each of these +Loops are illustrated in Fig 8.

+Code interface. Each matched subgraph pattern has a
expert-provided code template in the pattern warehouse. Ex-
perts can create these templates by adding +Code statements
in the code. +Code includes three types: data placeholder,
compute, and data write-back, as shown in Fig 9. A data
placeholder can represent any number of input and output
tensors in the code. The compiler will complete the code
for pointers to the data at this position based on the specific
+Loop information. Compute-type statement tells the com-
piler where the data computation occurs in the code. If the
data has not been loaded before computation, the compiler
will automatically generate the code to load the data based on
the addressing information in the +Loop, followed by the cor-
responding computation code. Data write-back usually occurs
after all +Loop body computations are completed, indicating
to the compiler to generate code that writes the computa-
tion results back to global memory. Typically, the compiler
needs to address computations and write-backs. PluS has
also implemented a compilation path compatible with CUT-
LASS, which is widely used by many ML compiler backends.
Since CUTLASS provides a wrapper for implementing high-
performance linear algebra on CUDA, PluS’s compiler does
not need to handle those details in code generation.

Case study for code generation. Continuing with the sub-
graph from Fig. 6 as an example, an expert might want to de-
fine a codegen schedule for subgraphs with this skeleton. First,
they would define the pattern of this subgraph, or +Graph, in
the pattern warehouse, retaining only the skeleton operations
in the pattern. This allows the compiler to reuse the codegen

// data placeholder
plus::InputList input_list;
plus::OutputList output_list;
// compute
plus::compute </*DataType*/float>(input_list ,

/*Result*/local_out);
// data write -back
plus::writeback(local_out , output_list);

Figure 9: +Code statements.

schedule for any subgraph that matches the same structure.
Then, in the code template, the expert defines the code de-

sign for the loop0-loop1-loop2 structure, which corresponds
to a matrix multiplication pattern. The expert has the flexibil-
ity to use a simple cuBLAS interface, the Matmul templates
from CUTLASS, or even custom handwritten code. Since
MatmulOp is a skeleton operator that allows epilogue fusion,
the expert uses the compute statement in the code to reserve a
placeholder for epilogue operations. Next, the expert imple-
ments the schedule logic for loop0-loop1 and loop0-loop2,
handling the reduction logic by designing parallel execution
and synchronization operations as needed. They can also de-
cide whether to integrate this logic with the previous dot
operation to achieve the most efficient schedule. Similarly,
compute placeholders for prologue operations are reserved
before reduction operations. Finally, since the loop0-loop4
loop body does not contain skeleton operations, the expert
only needs to reserve a placeholder with a compute statement
for this loop body. After all the loops are completed, a data
write-back statement is added to the code.

Dynamic shape. PluS is capable of compiling models with
dynamic shapes. It uses symbolic types to represent shapes
during subgraph identification. These symbolic dimensions
are carried through the compilation process, and the corre-
sponding code templates treat shapes as runtime variables.
Experts can then autonomously decide dynamic schedules
based on the actual input sizes. PluS enables broad flexibility
in handling dynamic shapes by allowing multiple implementa-
tions for the same subgraph pattern. For example, if different
shapes require different fusion or scheduling strategies, ex-
perts can define a subgraph pattern with maximal scope, and
encode shape-based routing logic within the code template.

5 Implementation
Recalling the overview of PluS outlined in Sec. 3, PluS has
the capability to compile model representations compatible
with various mainstream deep learning frameworks, and our
current implementation is specifically based on PyTorch [32].

Pattern warehouse. PluS incorporates an expert-defined
pattern warehouse that facilitates the dynamic insertion and
deletion of patterns at any given time. This warehouse serves
as a mapping between +Graphs and their corresponding
kernel implementations. Users can define subgraph patterns
through two methods. The first method allows them to de-
ploy optimized code for a specific subgraph by providing a

USENIX Association 2025 USENIX Annual Technical Conference 655

torch.nn.Module and the corresponding code. For instance,
deploying the FlashAttention optimization for the attention
mechanism. In such cases, PluS automatically generates a
+Graph and stores the provided code as a template in the
pattern warehouse. Nevertheless, this approach may lack the
desired flexibility and universality.

Meanwhile, PluS offers a second method where users can
articulate the +Graph, as detailed in Sec. 4.1. Users also
provide the associated code template to the pattern warehouse
with +Code detailed in Sec. 4.3. Subgraphs with the same
data layout share identical +Graph, minimizing the need for
additional deployment efforts. PluS automatically generates
codes for various operations.

Workflow. We implement a complete TorchDynamo-based
backend. Initially, PluS takes a torch.fx.GraphModule as in-
puts and leverages Hidet [17]’s API to parse the graph module,
resulting in a computational graph composed of low-level op-
erators represented by the +Graph outlined in Sec. 4.1. Subse-
quently, PluS generates subgraphs through a pattern matching
method explained in Sec. 4.2. Finally, PluS utilizes a code gen-
eration module detailed in Sec. 4.3 to produce codes for each
subgraph. The code generation module maps the +Graph to
codes using the templates stored in the pattern warehouse. In
our current implementation, we seamlessly integrate kernels
from CUTLASS, ByteTransformer, FlashAttention, and other
sources.

Applicability discussion. PluS can support all DNN mod-
els, as all DNN computations are fundamentally loop-based
computations involving multi-dimensional tensors. The sub-
graph abstraction introduced by PluS is built on this loop-
based nature, which allows various types of operators to be
supported through this abstraction.

6 Evaluation
6.1 Experimental Setup
Methodology. We compare PluS against mainstream DNN
compilers and framework including TorchInductor [8] v2.4.0,
TensorRT [22] v10.5.0 (in ONNX Runtime [15] v1.18.0), and
AITemplate [45] v0.3.dev0. In our evaluation, we initially
evaluate the end-to-end inference latency (Sec. 6.2). The ef-
fectiveness of PluS’s +Graph-matching fusion strategies is
demonstrated by presenting the layer count before and after
fusion. Subsequently, we conduct several case studies to high-
light the advantages of PluS in two aspects (Sec. 6.3). First,
we report the subgraph inference latency to showcase PluS’s
ability to leverage efficient expert-optimized subgraph imple-
mentations. Second, we compare the size of code required
by experts to add a new subgraph implementation against
AITemplate, demonstrating that PluS can accommodate new
subgraph implementations with minimal effort.

Platforms. We conduct experiments on two GPUs with
different architectures: an NVIDIA A100 PCIe 80GB and an
NVIDIA GeForce RTX 4090. The servers are equipped with

AMD EPYC 7V13 CPUs and Intel Xeon Gold 5318Y CPUs,
running Ubuntu 22.04 with CUDA 11.8 installed.

Workloads. We use five typical DNN models for evalua-
tion, including BERT-base [16], ALBERT [25], GPT-2 [33],
T5 [34] and ViT [18], encompassing popular transformer ar-
chitectures in both natural language processing and computer
vision. For the experiments, we set the batch sizes to 1 and
16, with a default sequence length of 128 for language models
and an input image size of 224×224 for vision models.

6.2 End-to-End Evaluation
Performance. We first evaluate the end-to-end performance
of PluS by comparing it against TorchInductor, TensorRT,
and AITemplate. For TorchInductor, we employ the TorchIn-
ductor compiler provided by TorchDynamo to compile the
PyTorch models, but dynamic shape support is disabled due
to its poor performance. To evaluate TensorRT, we utilize
the TensorRT provider in the Onnx Runtime with dynamic
shape enabled, defining a batch size range of 1 to 32 and a
sequence length range of 64 to 256 for the TensorRT engine.
Furthermore, AITemplate does not support dynamic shape,
whereas PluS supports the compilation of PyTorch models
with dynamic shape. For each experiment, we measure the
average end-to-end latency over 10 executions, repeated three
times after 10 warm-up executions. One exception is that we
observe unusually long GPU-to-CPU memory transfer time
when running the T5 model in TensorRT, resulting in the
end-to-end runtime exceeding 300 ms. Therefore, we perform
additional profiling of the T5 model in TensorRT using Nsight
Systems [1] and use the pure kernel execution time from the
profiling data as the end-to-end runtime for the T5 model.

Fig. 10 shows the end-to-end inference latency on all work-
loads for batch sizes 1 and 16. PluS, when compared to state-
of-the-art deep learning compilers with embedded graph trans-
formation, outperforms TorchInductor by an average of 4.04×
and TensorRT by 1.77× on A100 GPU. On the RTX 4090
GPU, it achieves an average speedup of 4.59× over TorchIn-
ductor and 2.01× over TensorRT. In Sec. 6.3, we delve into
a subgraph performance analysis to showcase PluS’s advan-
tages in supporting highly optimized subgraph implementa-
tions.

Additionally, as a pluggable graph transformation solu-
tion, PluS demonstrates comparable end-to-end performance
with AITemplate, even exhibiting an average 7.8% perfor-
mance improvement on the A100 and 7.2% on the RTX 4090.
This achievement stems from PluS’s ability to leverage all
subgraph optimization techniques available in AITemplate,
alongside additional techniques from various vendors, such as
ByteTransformer [47] and FlashInfer [46]. Notably, the per-
formance of the T5 model in AITemplate is not reported, as
we cannot define the T5LayerNorm module using the AITem-
plate interface. Meanwhile, AITemplate is designed solely for
static shapes, limiting its flexibility in deployment. A case
study in Sec. 6.3 further illustrates the portability of PluS in

656 2025 USENIX Annual Technical Conference USENIX Association

BERT ALBERT GPT2 T5 ViT
Model

0
1
2
3
4
5
6
7

La
te

nc
y

(m
s)

TorchInductor TensorRT AITemplate PluS

(a) A100, batch size = 1.

BERT ALBERT GPT2 T5 ViT
Model

0
1
2
3
4
5
6
7
8
9

La
te

nc
y

(m
s)

TorchInductor TensorRT AITemplate PluS

(b) A100, batch size = 16.

BERT ALBERT GPT2 T5 ViT
Model

0
1
2
3
4
5
6
7

La
te

nc
y

(m
s)

TorchInductor TensorRT AITemplate PluS

(c) RTX 4090, batch size = 1.

BERT ALBERT GPT2 T5 ViT
Model

0
1
2
3
4
5
6
7
8
9

La
te

nc
y

(m
s)

TorchInductor TensorRT AITemplate PluS

(d) RTX 4090, batch size = 16.

Figure 10: End-to-end inference latency on different GPU platforms.

Table 1: Fusion rate evaluation. #Ops represents the number
of fundamental operators comprising the DNN model, and
#Layers denotes the number of layers after graph transforma-
tion within DNN compilers.

Model #Ops #Layers
TorchInductor TensorRT AITemplate PluS

BERT 635 195 107 88 87
ALBERT 637 195 107 89 88

GPT2 630 171 126 89 87
T5 1460 364 247 - 220
ViT 655 201 105 90 87

comparison to AITemplate.
Fusion rate. In this section, we report the number of fun-

damental operators and the number of layers after subgraph
identification (i.e., fusion) in PluS, TorchInductor, TensorRT,
and AITemplate across all evaluated models. We define the
fusion rate as the ratio of the original operator count to the
fused layer count as [31]. As illustrated in Tab. 1, PluS demon-
strates an average 2.08× and 1.25× fusion rate improvement
compared to TorchInductor and TensorRT, respectively. This
is due to PluS’s capability to generate fused subgraphs with a
larger scope, facilitated by its flexible pattern warehouse, in
contrast to TorchInductor and TensorRT’s rule-based embed-
ded graph transformation module. Moreover, PluS exhibits
subgraph fusion behavior similar to that of AITemplate, as
both are ML compilers equipped with pluggable graph trans-
formation modules, sharing advanced capabilities for deploy-
ing state-of-the-art subgraph optimizations. However, PluS
can identify subgraphs with broader operator variations and
leverage the reuse of codegen schedules, enabling it to support
a wider range of models than AITemplate, such as T5.

Runtime overhead. We analyze the compilation time and

memory overhead of PluS. PluS incurs a compilation over-
head of 18 to 25 seconds when the model is cached, which is
dominated by NVCC compilation. It takes 1 to 2 minutes to
compile the model for the first time. The memory overhead of
PluS includes the memory consumption of pattern warehouse
and the intermediate representations, all of which reside on
the CPU. After excluding memory consumed by other Python
modules such as torch andtransformers, PluS introduces a
memory overhead of 130 to 190 MB.

6.3 Case Studies
Subgraph optimization. In this section, we utilize the bench-
mark BERT on A100 GPU to dissect why PluS outper-
forms other frameworks. Tab.2 delineates the configurations
of subgraphs that consume over 95% of end-to-end execu-
tion time, detailing the operators constituting each subgraph
along with shape information. The final column specifies
the implementation vendor PluS utilizes for each subgraph.
PluS integrates highly optimized kernel implementations
from CUTLASS [40], ByteTransformer [47], and FlashAtten-
tion [13, 14]. We dynamically select the optimal solution for
different configurations during the pattern definition phase. It
is noteworthy that we adopt the implementation from FlashAt-
tention for multi-head attention in batch size 16 (S1) and the
implementation from ByteTransformer for multi-head atten-
tion in batch size 1 (S6). Both implementations demonstrate
optimal performance within their respective configurations
during our evaluation.

We utilize Nsight Systems [1] to measure the latency of
subgraphs. Comparisons of subgraph latency between PluS,
TensorRT, and AITemplate are presented in Fig. 11. The re-
sults demonstrate that PluS achieves an average speedup of

USENIX Association 2025 USENIX Annual Technical Conference 657

Table 2: Dominant subgraph configurations in BERT.
Note Operators Configuration PluS vendor

S0 Matmul+Bias M=2048,N=2304,K=768 CUTLASS

S1
Split+Permute+Matmul+

Div+Add+Softmax+
Matmul+Permute

M0=2048,N0=128,K0=64
M1=2048,N1=64,K1=128 FlashAttention

S2 Matmul+Bias+
Add+LayerNorm M=2048,N=768,K=768 ByteTransformer

S3 Matmul+Bias+Gelu M=2048,N=3072,K=768 CUTLASS

S4 Matmul+Bias+
Add+LayerNorm M=2048,N=768,K=3072 ByteTransformer

S5 Matmul+Bias M=128,N=2304,K=768 CUTLASS

S6
Split+Permute+Matmul+

Div+Add+Softmax+
Matmul+Permute

M0=128,N0=128,K0=64
M1=128,N1=64,K1=128 ByteTransformer

S7 Matmul+Bias+
Add+LayerNorm M=128,N=768,K=768 ByteTransformer

S8 Matmul+Bias+Gelu M=128,N=3072,K=768 CUTLASS

S9 Matmul+Bias+
Add+LayerNorm M=128,N=768,K=3072 ByteTransformer

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
Subgraph

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

La
te

nc
y

(m
s)

TensorRT AITemplate PluS

Figure 11: Subgraph latency.

1.53× over TensorRT and 1.07× over AITemplate. Moreover,
PluS retains the ability to reduce their latency by incorporat-
ing superior optimizations subsequently.

Ablation study. We then compare PluS with a configura-
tion that disables optimized kernel sources (i.e., CUTLASS,
ByteTransformer, and FlashAttention), falling back to generic
implementations. PyTorch eager mode is used as the default
baseline. Experimental results on the ten subgraphs show that
PluS achieves an average speedup of 4.79× and 13.27× over
the baseline with batch size of 16 and 1, respectively.

We further analyze why flexibly supporting a variety of sub-
graph patterns is necessary. Take the subgraphs S1 and S6 as
examples. If these subgraphs are executed in PyTorch’s eager
mode—where each operator is executed separately—the total
runtime for S1 and S6 is 0.221 ms and 0.209 ms, respectively.
This demonstrates the poor performance that results from a
lack of operator fusion. Next, when using TorchInductor, it
excutes three kernels for this subgraph, fusing the element-

wise operators with MatmulOp and implementing SoftmaxOp
as a whole. Under this mode, the runtime for S1 and S6 be-
comes 0.0183 ms and 0.0078 ms. Furthermore, TensorRT,
AITemplate and our PluS go a step further by implementing
S1 and S6 as a single subgraph, generating one large kernel
to execute the entire subgraph [13, 14]. They achieve better
performance due to the tighter integration, with execution
times of 0.015 ms and 0.0077 ms in PluS. The results demon-
strate that different graph optimization techniques can lead to
significant changes in model performance.

Portability. In this section, we use the T5 model as an
example to showcase the portability of PluS compared to
AITemplate, which does not support T5. Assuming that both
frameworks can already support models like BERT, ALBERT,
and GPT2, it becomes evident that PluS exhibits superior
adaptability to minor alterations in DNN models, thereby
reducing deployment complexities when compared to other
pluggable ML compilers.

First, we observe that all Linear layers utilized in the T5
model lack bias operations, leading to the emergence of nu-
merous new subgraphs not present in models like BERT, AL-
BERT, and GPT2. Intuitively, this subgraph should share the
same code generation schedule as the subgraph with bias oper-
ations found in BERT, ALBERT, and GPT2, given their shared
loop structure and data layout. However, to accommodate this
fused subgraph in AITemplate, a new template must be added.
This entails a developer writing both frontend and backend
code for the Matmul+Relu module, comprising over 250 lines
of code (LoC), and registering it in the pipeline. As similar
subgraphs continue to arise, programmers must repetitively
perform this task. In contrast, leveraging the +Graph and code
templates previously added by experts in the pattern ware-
house, PluS can seamlessly generate code for these subgraphs
without additional efforts.

x1[M,N] = Pow(x0[M,N])
x2[M,1] = ReduceMean(x1[M,N])
x3[M,1] = AddScalar(x2[M,1])
x4[M,1] = Rsqrt(x3[M,1])
x5[M,N] = Multiply(x1[M,N], x4[M,1])
x6[M,N] = Multiply(x5[M,N], c[1,N])

Another case arises with T5 introducing a novel layer nor-
malization method, T5LayerNorm [49], leading to a distinct
subgraph composition as depicted above. To support this sub-
graph in AITemplate, developers must invest additional effort
in writing an end-to-end pipeline, including frontend and
backend components, due to the lack of inheritable similar
subgraphs defined previously. This process involves 1701
LoC to accommodate all components related to layer nor-
malization, including 453 LoC for frontend registration and
1248 LoC for backend implementation. Similarly, in PluS, a
new subgraph pattern must be incorporated into the pattern
warehouse due to the absence of subgraphs sharing the same
subsequent +Loop structure. In total, PluS requires 18 LoC
to define the +Graph and an additional 129 lines to provide

658 2025 USENIX Annual Technical Conference USENIX Association

the necessary code template. In contrast, when new variants
of this algorithm emerge, such as adopting a zero-centered
gamma, PluS supports them seamlessly without requiring any
additional effort.

loop0 [M, parallelizable]
loop1 [N, non-parallelizable]
loop2 [N, parallelizable]

Sensitivity analysis. PluS is designed as a functional com-
piler, where subgraph matching and operator fusion does not
change the computation semantics. The code generation pro-
cess in PluS strictly follows the data dependencies between
operations, ensuring correct implementation of the backend
kernels. Therefore, accuracy degradation is not expected un-
der correct pattern definitions.

To validate the correctness and robustness of PluS, we com-
pare the accuracy of subgraph outputs between the optimized
and unoptimized execution paths using randomly initialized
inputs from a standard normal distribution. We use PyTorch
eager mode as the baseline. Experimental results show that the
maximum absolute difference between the outputs is 1.9e-3,
and the average absolute difference is 3.57e-5.

7 Related Works
Graph-level optimization. Graph-level optimization tech-
niques are crucial for enhancing model execution in ML com-
pilers [8, 10, 19, 22, 23, 30, 31, 36, 39, 45, 51, 52, 56, 57]. ML
compilers can be categorized into two classes based on the
approach to graph transformation. Embedded mode ML com-
pilers [8,22,23,30,31,36,39,51,52,56,57], such as TensorFlow
XLA [36] and TorchInductor [8], employ a rule-based strat-
egy for graph enhancement. In particular, FractalTensor [28]
employs nested loops to express DNN operator, breaking
the optimization boundaries of traditional operator functions.
However, they often overlook opportunities for expert-driven
subgraph optimizations due to the complexities of their em-
bedded graph transformation modules. In contrast, pluggable
mode ML compilers like AITemplate [45] utilize fixed opera-
tor patterns for graph-level optimizations, sacrificing adapt-
ability to structure-similar subgraphs. PluS offers a novel
approach supporting flexible integration of pluggable graph
schedules with an adaptable pattern-matching strategy based
on loop-centric features. Additionally, FlexAttention [20] sup-
ports the implementation of different attentions variants as
FlashAttention optimizations; however, its scope is limited to
attention-specific adaptations. While TVM [10] and Tensor-
Flow Grappler [19] allow users to catch and modify the entire
computational graph with customized passes, they require
developers to define complicated graph transformation rules
from scratch. In contrast, PluS allows users to define graph
optimization easily, providing a mapping of loop-centric sub-
graph pattern with associated code templates. It is also possi-
ble for us to implement PluS on top of TVM and TensorFlow
Grappler, and integrate FlexAttention in the future.

Kernel-level optimization. Many deep learning frame-
works [4, 5, 32] rely on ad-hoc kernels libraries [2, 3, 7, 13,
14, 27, 40, 47] to efficiently execute specific operators or sub-
graphs. NVIDIA’s libraries like cuBLAS [2], CUTLASS [40],
and cuSPARSE [3] provide high-performance implementa-
tions for operators and subgraphs, and frameworks like Byte-
Transformer [47], FasterTransformer [4], xFormers [27] and
FlashInfer [46] offer optimized GPU kernels for transformer-
based models. FlashAttention [13,14] is a novel attention ker-
nel implementation with fewer memory accesses. Meanwhile,
ML compilers [6,9,11,12,17,21,24,38,42,44,52–55,58] focus
on different operator-level scheduling strategies to improve
efficiency. TVM [10], for instance, leverages Halide [35]’s
scheduling principles to map tensor expressions to low-
level code. AutoTVM [11] and Ansor [54] employ heuristic
algorithms to automatically search optimal configurations.
Tiramisu [9], AKG [52], and Tensor Comprehensions [42] au-
tomate scheduling space exploration using polyhedral models.
PluS is a compiler that supports pluggable graph schedules,
making it compatible with these manually-optimized and auto-
scheduled approaches, and capable of accommodating various
tensor program scheduling within its pattern warehouse.

8 Conclusion
ML compilers encounter new challenges in the face of par-
tially convergent model architectures and the rapid evolu-
tion of graph optimization techniques. PluS addresses this
challenge by offering pluggable graph scheduling based on
the +Graph abstraction, enabling rapid deployment of high-
performance subgraph implementations. Unlike existing ML
compilers burdened by cumbersome embedded graph trans-
formation rules, or limited by matching fixed operator com-
position, PluS introduces a pioneering loop-centric pattern-
matching solution. Consequently, PluS outperforms state-of-
the-art embedded ML compilers, achieving up to a 4.04×
speedup, owing to its superior expandability for graph opti-
mizations. Moreover, it demonstrates improved adaptability
to model evolution while still preserving minor performance
benefits (about 7.8%) compared to template-based solutions.

Acknowledgments
We sincerely thank all the anonymous reviewers and
our shepherd, Prof. Saurabh Bagchi, for their insightful
comments and feedback. This work is supported by the
Project of Key R&D Program of Shandong Province
(2024CXGC010113), National Natural Science Foundation of
China (No. 62461146205 and 62322213), and Beijing Nova
Program (No. 20230484397 and 20220484137). Ruofan Wu,
Feng Zhang, Zaifeng Pan, and Xiaoyong Du are with the Key
Laboratory of Data Engineering and Knowledge Engineering
(MOE), and School of Information, Renmin University of
China. Feng Zhang is the corresponding author of this paper
(fengzhang@ruc.edu.cn).

USENIX Association 2025 USENIX Annual Technical Conference 659

References

[1] Nvidia nsight systems. https://developer.nvidia.
com/nsight-systems.

[2] Basic linear algebra on nvidia gpus. https://
developer.nvidia.com/cublas, 2024.

[3] Gpu library apis for sparse computation. https://
developer.nvidia.com/cusparse, 2024.

[4] Nvidia fastertransformer. https://github.com/
NVIDIA/FasterTransformer, 2024.

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: a system for large-
scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, page 265–283, USA, 2016.
USENIX Association.

[6] Peter Ahrens, Fredrik Kjolstad, and Saman Amaras-
inghe. Autoscheduling for sparse tensor algebra with an
asymptotic cost model. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2022, page
269–285, New York, NY, USA, 2022. Association for
Computing Machinery.

[7] Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, and Yuxiong He. Deepspeed-inference: enabling
efficient inference of transformer models at unprece-
dented scale. In Proceedings of the International Con-
ference on High Performance Computing, Networking,
Storage and Analysis, SC ’22. IEEE Press, 2022.

[8] Jason Ansel, Edward Yang, Horace He, Natalia
Gimelshein, Animesh Jain, Michael Voznesensky, Bin
Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta
Chauhan, Anjali Chourdia, Will Constable, Alban Des-
maison, Zachary DeVito, Elias Ellison, Will Feng, Jiong
Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang,
Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu,
C. K. Luk, Bert Maher, Yunjie Pan, Christian Puhrsch,
Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi,
Helen Suk, Shunting Zhang, Michael Suo, Phil Tillet,
Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xi-
aodong Wang, Ajit Mathews, William Wen, Gregory
Chanan, Peng Wu, and Soumith Chintala. Pytorch 2:

Faster machine learning through dynamic python byte-
code transformation and graph compilation. In Proceed-
ings of the 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, Volume 2, ASPLOS ’24, page 929–947,
New York, NY, USA, 2024. Association for Computing
Machinery.

[9] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: a polyhedral compiler for express-
ing fast and portable code. In Proceedings of the 2019
IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO 2019, page 193–205. IEEE
Press, 2019.

[10] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated End-
to-End optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad,
CA, October 2018. USENIX Association.

[11] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018.

[12] Stephen Chou, Fredrik Kjolstad, and Saman Amaras-
inghe. Automatic generation of efficient sparse tensor
format conversion routines. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2020, page 823–838,
New York, NY, USA, 2020. Association for Computing
Machinery.

[13] Tri Dao. FlashAttention-2: Faster attention with better
parallelism and work partitioning. 2023.

[14] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. FlashAttention: Fast and memory-
efficient exact attention with IO-awareness. In Advances
in Neural Information Processing Systems, 2022.

[15] ONNX Runtime developers. ONNX Runtime, Novem-
ber 2018.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors,

660 2025 USENIX Annual Technical Conference USENIX Association

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusparse
https://developer.nvidia.com/cusparse
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer

Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[17] Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu,
Yida Wang, and Gennady Pekhimenko. Hidet: Task-
mapping programming paradigm for deep learning ten-
sor programs. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume
2, ASPLOS 2023, page 370–384, New York, NY, USA,
2023. Association for Computing Machinery.

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[19] Google. TensorFlow graph optimization with Grap-
pler. https://www.tensorflow.org/guide/graph_
optimization, 2024.

[20] Horace He, Driss Guessous, Yanbo Liang, and Joy Dong.
FlexAttention: The Flexibility of PyTorch with the Per-
formance of FlashAttention, 2024.

[21] Guyue Huang, Yang Bai, Liu Liu, Yuke Wang, Bei Yu,
Yufei Ding, and Yuan Xie. Alcop: Automatic load-
compute pipelining in deep learning compiler for ai-
gpus. Proceedings of Machine Learning and Systems, 5,
2023.

[22] NVIDIA Inc. NVIDIA TensorRT., 2022.

[23] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: optimizing
deep learning computation with automatic generation of
graph substitutions. SOSP ’19, page 47–62, New York,
NY, USA, 2019. Association for Computing Machinery.

[24] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David
Lugato, and Saman Amarasinghe. The tensor al-
gebra compiler. Proc. ACM Program. Lang.,
1(OOPSLA):77:1–77:29, October 2017.

[25] Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut. Al-
bert: A lite bert for self-supervised learning of language
representations. In International Conference on Learn-
ing Representations, 2020.

[26] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert
Cohen, Andy Davis, Jacques Pienaar, River Riddle, Ta-
tiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-
nenko. Mlir: A compiler infrastructure for the end of
moore’s law, 2020.

[27] Benjamin Lefaudeux, Francisco Massa, Diana
Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang,
Patrick Labatut, Daniel Haziza, Luca Wehrstedt, Jeremy
Reizenstein, and Grigory Sizov. xformers: A modular
and hackable transformer modelling library. https:
//github.com/facebookresearch/xformers,
2022.

[28] Siran Liu, Chengxiang Qi, Ying Cao, Chao Yang,
Weifang Hu, Xuanhua Shi, Fan Yang, and Mao Yang.
Uncovering nested data parallelism and data reuse in
dnn computation with fractaltensor. In SOSP, November
2024.

[29] Yaoyang Liu, Zhen Zheng, Feng Zhang, Jincheng Feng,
Yiyang Fu, Jidong Zhai, Bingsheng He, Xiao Zhang, and
Xiaoyong Du. A comprehensive taxonomy of prompt
engineering techniques for large language models. Fron-
tiers of Computer Science, 2025.

[30] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lin-
tao Zhang, and Lidong Zhou. Rammer: Enabling holis-
tic deep learning compiler optimizations with rTasks.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 881–897.
USENIX Association, November 2020.

[31] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal,
and Bin Ren. Dnnfusion: accelerating deep neural net-
works execution with advanced operator fusion. In Pro-
ceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Imple-
mentation, PLDI 2021, page 883–898, New York, NY,
USA, 2021. Association for Computing Machinery.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019.

USENIX Association 2025 USENIX Annual Technical Conference 661

https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/guide/graph_optimization
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers

[33] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are un-
supervised multitask learners. 2019.

[34] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach.
Learn. Res., 21(1), jan 2020.

[35] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. SIGPLAN Not., 48(6):519–530,
jun 2013.

[36] Amit Sabne. Xla : Compiling machine learning for peak
performance, 2020.

[37] Noam Shazeer. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

[38] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong
Wu, Mu Li, Vin Sharma, Zachary Tatlock, and Yida
Wang. Nimble: Efficiently compiling dynamic neural
networks for model inference. Proceedings of Machine
Learning and Systems, 3:208–222, 2021.

[39] Yining Shi, Zhi Yang, Jilong Xue, Lingxiao Ma, Yuqing
Xia, Ziming Miao, Yuxiao Guo, Fan Yang, and Lidong
Zhou. Welder: Scheduling deep learning memory access
via tile-graph. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23),
pages 701–718, 2023.

[40] Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket
Shivam, Honghao Lu, Ethan Yan, Jack Kosaian, Mark
Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely,
Duane Merrill, Dustyn Blasig, Fengqi Qiao, Piotr Ma-
jcher, Paul Springer, Markus Hohnerbach, Jin Wang, and
Manish Gupta. CUTLASS, January 2023.

[41] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[42] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S.
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[44] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen,
Ang Chen, and Yibo Zhu. Bolt: Bridging the gap be-
tween auto-tuners and hardware-native performance.
Proceedings of Machine Learning and Systems, 4:204–
216, 2022.

[45] Bing Xu, Ying Zhang, Hao Lu, Yang Chen, Terry Chen,
Mike Iovine, Mu-Chu Lee, and Zhijing Li. AITemplate,
October 2022.

[46] Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin,
Yineng Zhang, Stephanie Wang, Tianqi Chen, Baris
Kasikci, Vinod Grover, Arvind Krishnamurthy, and Luis
Ceze. Flashinfer: Efficient and customizable atten-
tion engine for llm inference serving. arXiv preprint
arXiv:2501.01005, 2025.

[47] Y. Zhai, C. Jiang, L. Wang, X. Jia, S. Zhang, Z. Chen,
X. Liu, and Y. Zhu. Bytetransformer: A high-
performance transformer boosted for variable-length
inputs. In 2023 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 344–
355, Los Alamitos, CA, USA, may 2023. IEEE Com-
puter Society.

[48] Biao Zhang and Rico Sennrich. Root mean square layer
normalization. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

[49] Biao Zhang and Rico Sennrich. Root Mean Square
Layer Normalization. In Advances in Neural Informa-
tion Processing Systems 32, Vancouver, Canada, 2019.

[50] Feng Zhang, Chenyang Zhang, Jiawei Guan, Qiangjun
Zhou, Kuangyu Chen, Xiao Zhang, Bingsheng He, Ji-
dong Zhai, and Xiaoyong Du. Breaking the edge: En-
abling efficient neural network inference on integrated
edge devices. IEEE Transactions on Cloud Computing,
2025.

[51] Jie Zhao, Xiong Gao, Ruijie Xia, Zhaochuang Zhang,
Deshi Chen, Lei Chen, Renwei Zhang, Zhen Geng, Bin
Cheng, and Xuefeng Jin. Apollo: Automatic partition-
based operator fusion through layer by layer optimiza-
tion. Proceedings of Machine Learning and Systems,
4:1–19, 2022.

[52] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei
Zhang, Xiong Gao, Bin Cheng, Chen Wu, Yun Cheng,
Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. Akg:
automatic kernel generation for neural processing units
using polyhedral transformations. In Proceedings of the
42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, PLDI
2021, page 1233–1248, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

662 2025 USENIX Annual Technical Conference USENIX Association

[53] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen
Shen, Joshua Fromm, Yizhi Liu, Yida Wang, Luis Ceze,
Tianqi Chen, and Gennady Pekhimenko. Dietcode: Au-
tomatic optimization for dynamic tensor programs. Pro-
ceedings of Machine Learning and Systems, 4:848–863,
2022.

[54] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: generating high-performance ten-
sor programs for deep learning. In Proceedings of the
14th USENIX Conference on Operating Systems Design
and Implementation, OSDI’20, USA, 2020. USENIX
Association.

[55] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor compu-
tation on heterogeneous system. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 859–873, 2020.

[56] Zhen Zheng, Zaifeng Pan, Dalin Wang, Kai Zhu, Wenyi
Zhao, Tianyou Guo, Xiafei Qiu, Minmin Sun, Junjie Bai,

Feng Zhang, Xiaoyong Du, Jidong Zhai, and Wei Lin.
Bladedisc: Optimizing dynamic shape machine learning
workloads via compiler approach. Proc. ACM Manag.
Data, 1(3), nov 2023.

[57] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping
Long, Kai Zhu, Feiwen Zhu, Wenyi Zhao, Xiaoyong
Liu, Jun Yang, Jidong Zhai, Shuaiwen Leon Song, and
Wei Lin. AStitch: enabling a new multi-dimensional
optimization space for memory-intensive ML training
and inference on modern SIMT architectures. In Pro-
ceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’22, page 359–373, New
York, NY, USA, 2022. Association for Computing Ma-
chinery.

[58] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke,
Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma,
Yuqing Xia, Wei Cui, Fan Yang, Mao Yang, Lidong
Zhou, Asaf Cidon, and Gennady Pekhimenko. ROLLER:
Fast and efficient tensor compilation for deep learning.
In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 233–248,
Carlsbad, CA, July 2022. USENIX Association.

USENIX Association 2025 USENIX Annual Technical Conference 663

	Introduction
	Background and Motivation
	Embedded and Pluggable Compilers
	Opportunities and Insights

	System Overview
	Design Methodology
	Subgraph Identifier: +Graph
	Subgraph Identification
	Code Generation

	Implementation
	Evaluation
	Experimental Setup
	End-to-End Evaluation
	Case Studies

	Related Works
	Conclusion

