
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

Turbocharge ANNS on Real Processing-in-Memory
by Enabling Fine-Grained Per-PIM-Core Scheduling

Puqing Wu, Minhui Xie, Enrui Zhao, Dafang Zhang, and Jing Wang, Renmin
University of China; Xiao Liang and Kai Ren, Kuaishou;

Yunpeng Chai, Renmin University of China
https://www.usenix.org/conference/atc25/presentation/wu-puqing

Turbocharge ANNS on Real Processing-in-Memory
by Enabling Fine-Grained Per-PIM-Core Scheduling

Puqing Wu1†, Minhui Xie1†, Enrui Zhao1, Dafang Zhang1, Jing Wang1,
Xiao Liang2, Kai Ren2, Yunpeng Chai1*

1Renmin University of China
2Kuaishou

Abstract
Approximate Nearest Neighbor Search (ANNS) plays a key
role in database and AI infrastructure. It exhibits extremely
high memory intensity with a ∼1:1 compute-to-memory ac-
cess ratio. Commodity Processing-in-Memory (PIM) hard-
ware such as UPMEM is promising for overcoming the mem-
ory wall in ANNS. However, its reuse of the system DDR
bus prevents the CPU and PIM cores from accessing memory
simultaneously. This necessitates batch scheduling in existing
systems, which, in turn, leads to severe underutilization in
two scenarios: 1) inter-batch, where PIM remains idle while
the CPU is copying data, and 2) intra-batch, caused by uneven
load distribution of PIM cores in a batch.

This paper proposes an efficient PIM-capable ANNS sys-
tem named PIMANN. We observe that each PIM core has an
additional, undocumented, and little-known control interface
(originally used for control commands like launching PIM
kernels), which could be retrofitted for fine-grained arbitration
of DDR bus access. Thus, PIMANN can break the traditional
batching scheduling paradigm and adopt a fine-grained, per-
PIM-core scheduling paradigm. With this key idea, PIMANN
introduces 1) persistent PIM kernel technique to eliminate the
idle state between two batches, and 2) per-PU query dispatch-
ing technique that dispatches queries based on the real-time
load of PIM cores. Experiments show that PIMANN can
boost throughput by 2.4-10.4× compared to existing ANNS
systems on CPU or GPU. The implementation of PIMANN
is available at https://github.com/cds-ruc/PIM-ANNS.

1 Introduction

Nearest Neighbor Search (NNS) finds top-k vectors closest
to a query vector in a dataset. Approximate Nearest Neigh-
bor Search (ANNS) balances speed and accuracy, making it
suitable for massive high-dimensional data where exact NNS
is costly. ANNS has wide applications in various scenarios,

† These authors contributed equally.
* Corresponding author (ypchai@ruc.edu.cn).

including information retrieval tasks such as search [59] and
recommendation [66] (e.g., image-based search [7] and con-
tent retrieval [19]), or assist large language models through
retrieval-augmented generation (RAG) [48].

ANNS is characterized by extremely high memory inten-
sity [34]. The core of ANNS lies in maintaining in-memory
data structures to quickly identify potential neighbors. Cur-
rently, mainstream ANNS algorithms rely on traversing data
points within their respective data structure (i.e., cluster-
based [36] or graph-based [68]), resulting in an extremely
low compute-to-memory access ratio, close to 1:1.

Constrained by the von Neumann memory wall [53], cur-
rent ANNS systems based on CPUs [35] or GPUs [71] are
increasingly unable to meet the growing demand in both vol-
ume and performance [40]. While CPUs can provide TB-
scale memory capacity to store large volumes of vectors, their
limited DRAM bandwidth (approximately 200 GB/s) limits
vector retrieval performance. Existing work [14] shows that
modern CPUs, with SIMD instructions equipped, can typ-
ically process 5 billion vector operations per second (with
a compute bandwidth of around 500 GB/s), far exceeding
DRAM bandwidth. On the other hand, while GPUs offer sub-
stantial computing capability and high-bandwidth memory,
their limited memory capacity (even a recent high-end GPU
like H100 has only 100 GB) prevents them from handling
storage requirements for billions of vectors with thousands of
dimensions.

Processing-in-Memory (PIM) is a classic approach to over-
coming the memory wall by performing computations directly
within memory, eliminating the need for extensive data trans-
fers between memory and processors. With the release of UP-
MEM [65], the world’s first commercially available real PIM
hardware in 2022, this technology is finally no longer limited
to software simulations [5, 6, 10, 11, 15, 18, 20, 23, 26, 29, 31]
or FPGA verification [4, 5, 32, 37] and is ready for public
real use [42, 47, 57]. UPMEM modules can be plugged into
general-purpose servers via DIMM interfaces, functioning
like DRAM. Each module integrates two levels of memory
(WRAM and MRAM) and incorporates over one hundred

USENIX Association 2025 USENIX Annual Technical Conference 1223

Inter-batch underutilization

Intra-batch underutilization

batch1 batch2 batch3

Max

Figure 1: The active PU count over time in a PIM-capble
ANNS strawman system. The red dashed line shows the
maximum PU count (2560). In an ideal case, the blue line
should closely follow the red dashed line as much as possible.

RISC-based processing units (PUs1), with each PU capable
of supporting up to 16 parallel threads. Equipped with 20
UPMEM modules, a single server can provide a total of 2,560
PUs (supporting over 40,000 threads) and deliver an aggregate
memory bandwidth of 2 TB/s.

However, due to the architectural differences between UP-
MEM and CPU/GPU, simply shoehorning existing ANNS
systems into UPMEM can only achieve 18.2% of the hard-
ware’s theoretical throughput cap (see §2.3), and the number
of active PUs is zero for more than 65% of the time (Figure 1).
We analyze that this under-utilization stems from the defi-
ciency of batching paradigm (§2.3), including the following
two key factors:
• Inter-batch under-utilization, caused by batches’ gang

scheduling. Due to UPMEM’s reuse of the system DDR
bus, it currently does not natively support concurrent mem-
ory access by both the CPU and PUs; see §2.2. As a result,
existing applications [8, 9, 16, 25, 27, 30, 38, 43, 51, 54] typi-
cally rely on batching paradigm, where the CPU first copies
all necessary data to UPMEM, and then gang-schedules all
PUs to run. This leads to a gap between two batches where
PUs are unable to perform computations.

• Intra-batch under-utilization, caused by PU load unbal-
ance within a batch. Although UPMEM enjoys a strong
aggregated multi-core performance, its single-core capa-
bility is rather weak. Unlike CPUs, where multiple cores
can access each other through the shared memory architec-
ture, UPMEM hardware restricts PUs from mutual access.
Thus, uneven load distribution among PUs may cause some
straggler PUs to become the performance bottleneck for
the entire batch.

To this end, we propose PIMANN, an ANNS system de-
signed to fully harness UPMEM’s potential. Its core idea is
breaking the traditional batching scheduling paradigm and
adopting a fine-grained, per-PU scheduling paradigm. We
observe that the necessity of existing batch gang-scheduling

1This component is referred to as the data processing unit (DPU) in
UPMEM. Here we call it PU to avoid ambiguity with smart NICs.

arises from the hypothesis that CPU and PUs can only com-
municate at the boundary of batches due to their mutually
exclusive access to the shared DDR bus. Under this paradigm,
once a PIM kernel (i.e., a batch of tasks) is launched, it must
be assumed that the PU always retains control of the shared
bus until the kernel completes. However, this constraint could
be relaxed, with our key observation that each PU has an
additional, undocumented, and little-known control interface
(originally used for launching and synchronizing PU pro-
grams), which could be retrofitted for fine-grained arbitration
of DDR bus access.

With this key idea, we propose persistent PIM kernel (§4.2)
to address inter-batch under-utilization. persistent PIM ker-
nel allows continuous sending of individual ANN requests to
different PUs for computation in runtime. Unlike the origi-
nal batch gang-scheduling approach, where there is a pause
between two batches, our approach ensures that UPMEM
remains uninterrupted throughout the entire process. Specifi-
cally, by modifying the UPMEM driver, persistent PIM kernel
carefully coordinates the access to the corresponding memory
(i.e., MRAM) by either the CPU or PU through each PU’s con-
trol interface. Due to the limited shared bus bandwidth (∼0.41
GB/s), the CPU or PUs may experience prolonged data stalls
when attempting to gain bus control while the other is holding
it. To minimize this data stall, PIMANN employs coroutine
techniques on the CPU, which hides the bus acquisition time
and parallelizes data transmission and computation.

To cope with intra-batch under-utilization, PIMANN intro-
duces per-PU query dispatching (§4.3) to dispatch queries to
individual PUs based on their real-time load to achieve well
load balance. Since PUs follow a share-nothing architecture,
PIMANN employs a selective replication data placement
scheme, which replicates hot clusters across multiple PUs.
With the help of fine-grained per-PU scheduling, PIMANN
enables 1) live adjusting data placement without downtime
based on the updated hotness information, and 2) dynamically
dispatching queries to different replicas based on the real-time
load of PUs.

Our evaluation on off-the-shelf UPMEM shows that, PI-
MANN can improve the throughput by up to 10.4× compared
with Faiss-CPU [22] and by up to 2.4× compared with a
PIM-capable ANNS system based on the batching paradigm.
Compared to a pure-GPU-storage system, Faiss-GPU [22],
PIMANN can also improve the throughput by up to 3.7×.

2 Background and Motivation

2.1 Approximate Nearest Neighbor Search
(ANNS)

By 2030, humanity will enter the YB-scale data era, with
more than 90% being unstructured [33]. ANNS is the pri-
mary method for retrieving useful information from massive
unstructured data. ANNS has wide applications in various

1224 2025 USENIX Annual Technical Conference USENIX Association

scenarios. Initially, they were used in traditional information
retrieval tasks such as search [59] and recommendation [66]
(e.g., image-based search [7] and content retrieval [19]). In
recent years, as large language models (LLMs) have emerged
as a new frontier of artificial intelligence, ANNS has become
a core infrastructure to carry knowledge for LLMs. Through
retrieval-augmented generation (RAG) [48], they assist LLMs
in retrieving credible, accurate, and timely knowledge, help-
ing to mitigate hallucinations [64].

ANNS exhibits an extremely high memory intensity. First,
ANNS needs to repeatedly read large volumes of vectors
from memory, causing massive memory access. For exam-
ple, Alibaba handles approximate searches on billions of data
points [69], while Microsoft performs approximate queries
on datasets with hundreds of billions of entries [1]. Second,
ANNS have an extremely low compute-to-memory access ra-
tio. Typical ANNS algorithms rely on maintaining in-memory
data structures to quickly identify potential neighbors. Cur-
rently, ANNS algorithms can be broadly classified into two
categories, cluster-based [36] and graph-based [68]. Both rely
on traversing data points within their respective data structure
(i.e., clusters or graphs), resulting in a compute-to-memory
access ratio close to 1:1.

In this paper, we explore ANNS systems on UPMEM, with
a specific focus on cluster-based algorithms, which are well-
suited to UPMEM’s massive parallel threading capabilities.
Specifically, we focus on the Inverted File with Product Quan-
tization (IVFPQ) algorithm, as it incorporates the Product
Quantization (PQ) technique on standard cluster algorithms to
further reduce computational overhead. Another category of
ANNS algorithms (graph-based methods) are not suitable for
UPMEM, because they introduce significant communication
overhead when implemented on PIM architectures. This limi-
tation is caused by the constrained communication bandwidth
on commodity UPMEM systems—only 0.41 GB/s (from our
test results) for both inter-PU and CPU-PIM data transfers.
In fact, to the best of our knowledge, there are no existing
implementations of graph-based ANNS on PIM devices.

Figure 2 shows an example of the IVFPQ algorithm, which
includes two phases: the offline phase and the online phase.

Offline Phase: The offline phase is responsible for prepar-
ing the dataset for efficient search by building a cluster-based
index. This phase includes two steps: ➀ Inverted File (IVF)
and ➁ Product Quantization (PQ).

➀ The IVF step partitions the whole dataset into C clus-
ters using methods such as K-means. Once the clusters are
formed, ➁ the PQ step calculates the residuals, which are
defined as the differences between each data point x and its
corresponding cluster centroid c. It then compresses these
residuals by dividing the residual vectors into M subvectors
and then encoding them using a codebook. Each encoded
point serves as an identifier that has a one-to-one mapping
with a specific codeword in the codebook. In practical imple-
mentations, the identifiers are often encoded as 8-bit unsigned

4 4 2 7
8 1 0 7
2 5 5 2
1 3 2 9
6 5 4 6
2 2 4 7

3 4 3 4
7 3 2 6
1 2 3 8

-1 1 -1 1
1 0 2 -1

1 0
1 0
0 1
0 0
0 1
1 1

1 0 -1 3
1 -2 -2 1
-1 1 2 -2
0 1 -1 1
-1 2 2 0
1 0 1 -1

1st

2nd

1

2

1

2

36

13
36

13

48

22
47

23

Clusters C
Residuals

Codebook

Encoded
points

1
0

Vectors

1 36
2 13

3 5 8 5

1 1 1 10 1 5 1

Query q

�Cluster filtering

�LUT
construction

�Distance computation

�IVF step �PQ step

�Identifying Top-K

1
0

q-c
1 1 1 13 4 3 4

Cluster c seg1seg2

seg1 seg2of
fli

ne
on

lin
e

Figure 2: IVFPQ example.

integers (uint8), enabling a compression rate of 4D
M .

Online Phase: Given a query vector q, the online phase
includes 4 steps to find k vectors closest to q. ➊ Cluster
filtering, which finds nprobes clusters that are closest to q
by computing the distances between their centroids and q.
➋ Look-up table (LUT) construction. The LUT serves to
store pre-computed data, significantly optimizing the search
process by converting computing to memory lookups. Specifi-
cally, each element LUT[j][i] represents the distance between
the j-th vector in the codebook Bi, where i denotes the i-th
segment of residual vectors. To derive the distance from q to
a given data point x, one can refer to and sum up the values
in LUT as follows:

L2(q,x) = L2(q− c,r) =
M−1

∑
i=0

LUT[ei][i],

where r and e· denote the residual and encoded vectors of x,
respectively.

➌ Distance computation. Leveraging LUTs, the distances
from q to all data points within the filtered clusters are cal-
culated. ➍ Identifying Top-K, which sorts all computed dis-
tances and selects the k vectors with the shortest distances as
the approximate nearest neighbors.

2.2 Commodity PIM hardware architecture
Processing-in-Memory (PIM) is a classic way to deal with the
famous “memory wall” problem [6]. For a long time, various
PIM architectures have been proposed [17]. However, prior to
the release of UPMEM in 2022, these PIM architectures were
confined to simulations or FPGA-based verification. UPMEM
marked a significant milestone as the world’s first commer-
cially available real-world PIM hardware, bridging the gap
between theoretical concepts and practical applications. Con-
sequently, our work mainly focuses on leveraging UPMEM
to build ANNS system.

In this section, we mainly introduce the following three
hardware features of UPMEM.

Multi-core architecture. Figure 3a shows the architecture
of the UPMEM-capable system and inner-UPMEM-DIMM

USENIX Association 2025 USENIX Annual Technical Conference 1225

PU

MRAM

PU

MRAM

PU

MRAM

PU

MRAM

PU

MRAM

PU

MRAM Control
Interface

D
D
R

Pipeline

MRAM
(64 MB)

in total 2,560 PUs, over parallel 40k threads

WRAM
(64 KB)

DMA

M
U
X

Regs

PU

Control
Interface

D
D
R

PIM unit

a PIM unit

(a) Architecture of UPMEM-capable system.

(b) Inner-PIM-unit details.
Reuse DDR bus for both PU and CPU access

Figure 3: Architecture of UPMEM-capable system and
inner-PIM-unit details. The bold line represents DDR bus,
and the dashed line represents control interface.

details. UPMEM are connected to the CPU through DIMM
slots. An UPMEM DIMM is made up of 64 PIM units. As
shown in Figure 3b, each unit has two main components: a
memory bank (MRAM) and a general-purpose processing
unit (PU) integrated with the bank. Each PU is a 32-bit in-
order RISC-V core featuring a 14-stage pipeline and support-
ing up to 16 hardware threads. With 20 UPMEM DIMMs, a
single server can harness a total of 2,560 PUs, accommodat-
ing over 40,000 threads and achieving an aggregate memory
bandwidth of 2.5 TB/s. Due to limitations in hardware fabrica-
tion, PUs in the current generation of PIM hardware have the
following three issues: 1) PU only offers integer-native ALUs;
float-related operations are implemented via software. This
causes UPMEM to have a much slower FLOPS compared to
integer operations. 2) All PUs adhere to a share-nothing ar-
chitecture, meaning that each PU can only access data stored
in its local memory bank. Currently, any communication be-
tween PU has to go through the host CPU.

Two-level memory hierarchy. Each PIM unit contains
two levels of memory internally, including 1) Working RAM
(WRAM), and 2) Main RAM (MRAM). WRAM acts as the
faster cache, made of SRAM, with a size of 64KB. MRAM
has a substantially larger storage capacity (64MB), but it has
slower access speeds compared to WRAM. PU cannot di-
rectly access MRAM; it must first bring data from MRAM to
WRAM via the on-chip DMA engine.

Bus sharing on MRAM. MRAM receives access from
both the CPU and the PU. The CPU is used for sending/col-

lecting task data, while the PU is for PIM computing. Nev-
ertheless, the DIMM-PIM architecture (such as UPMEM),
which plugs PIM devices into DIMM slots, inherently lacks
the support for simultaneous memory access by the host CPU
and the PUs. Specifically, as shown in Figure 3b, each PIM
unit reuses the DDR bus for both the PU and host CPU ac-
cess. Due to the constraints of existing DDR bus protocols,
which require deterministic latency behavior [61], simultane-
ous memory access by the CPU and PU is not feasible. This
is because shared access alters the memory access latency,
violating the strict timing guarantees of DDR protocols. To
address this limitation, UPMEM hardware employs a mul-
tiplexer (MUX) for manual access arbitration. Specifically,
MUX is a two-state register, namely CPU-side or PU-side,
allowing exclusive access to the MRAM by the CPU or the
PU, respectively. The state of MUX is controlled by the CPU
through the control interface. With this design, it simplifies
the integration of PIM into traditional systems while adhering
to the requirements of DDR bus protocols.

2.3 Motivation

Batching paradigm of current PIM programming model.
The PIM programming model adheres to an accelerator model,
similar to that of GPUs. Programmers prepare an execution
program (referred to as a kernel) along with its data in advance
and then launch it on the PIM device. The CPU communicates
with PIM via the control interface, by sending commands such
as starting/synchronizing kernels or querying the status of the
running kernel (Figure 3b).

Currently, PIM-capable programs [12, 13, 39, 46, 49, 51]
typically follow the batching paradigm. This paradigm stems
from the limitation that the CPU can only interact with PIM’s
MRAM at kernel boundaries—either before launching a ker-
nel or after it completes. This restriction arises with the hy-
pothesis that, once PUs are activated, PUs will retain the bus
control until the kernel terminates. Thus, the CPU can not
read/write PIM’s MRAM when PUs are running.

This batching paradigm includes three steps; see Figure 4.
First, the CPU gets a buffer ready, filling it with a set of tasks
(i.e., a batch) meant for each PIM unit, and sends the buffer
to all PIM’s MRAM. Next, the CPU launches the PIM kernel,
prompting the PIM units to start working on their assigned
tasks and generate computing results. Lastly, the CPU collects
all the running results and moves them into the host memory.

Impact of batching paradigm on ANNS. We investigate
the deficiency of existing batching paradigm on ANNS. We
implement a strawman ANNS system based on Faiss [22], by
storing clusters on MRAM and offloading the distance com-
putation step (➌ in the Online Phase) to PIM’s PUs. Figure 5
shows their performance on the SPACE-1B dataset [3]. We
can observe that:
• Achieving only 18.2% of the theoretical performance. Fig-

ure 5a shows the computing performance of Faiss-CPU

1226 2025 USENIX Annual Technical Conference USENIX Association

PU1

MRAM

PUn

MRAM

PU0

MRAM

PU0

MRAM

PUn

MRAM

① The CPU sends task data (i.e., a batch) to MRAM.

PU1

MRAM

…

…R/W R/W R/W

CPU yields the bus
ownership to PUs

② Launch a PIM kernel; all PUs perform computing.

All PUs are
idle now

PU1

MRAM

PU0

MRAM

PUn

MRAM
…

③ When kernel finished, the CPU copies back results.

All PUs yield the bus ownership to CPU

All PUs are
idle now

W

R

(a) Existing batching paradigm

Gang schedule
 all PUs

(b) PIMANN: Per-PU scheduling paradigm

PU1

MRAM
R/W

PUn

MRAM
R/W

PU0

MRAM
R/W

R/W
Fine-grained arbitration of
each PU’s bus ownership

② Only a very small number of PUs, which are
currently copying data, remain in an idle state.

① The CPU operates MRAM
 at the granularity of a single PU

Figure 4: Comparision of existing batching paradigm and
PIMANN’s per-PU scheduling paradigm.

and PIM-capable strawman system. We observe that: 1) for
the strawmen system, the throughput of PIM, although with
tens of thousands of threads, is comparable with that of a
standard CPU. 2) PIM’s performance is far from being fully
utilized. If fully leveraged, PIM has the potential to achieve
more than 5.5× the throughput. Further analysis reveals
that there are two types of under-utilization as follows.

• Inter-batch under-utilization. Figure 1 shows the number
of active PUs across time. Between two batches, there is
a period of over 1.21s during which the number of active
PUs is zero. This period accounts for 65% of a single
batch’s duration. This is because, during this time, the
CPU is copying the results of the previous batch from
MRAM while transferring the input for the next batch to
MRAM. Since the CPU and PUs cannot access the shared
bus simultaneously, PUs cannot be activated.

• Intra-batch under-utilization. In batch scheduling, a batch
of queries is distributed among the PUs. Figure 5b shows
the number of tasks assigned to each PU. As shown in
this figure, imbalanced workloads across PUs may cause
some PUs to idle while others are overloaded, delaying the
completion of the entire batch.

Ideal

5.5×

Th
ro

ug
hp

ut
 (Q

P
S

)

0

1k

2k

N
orm

alized load

0%

50%

100%

0 1000 2000

40%
60%
80%
100%

Faiss-CPU StrawmenPIM PU IDs

(a) Throughput (b) Load of each PU

Figure 5: Motivation. (a) The throughput of a standard CPU
ANNS system (Faiss-CPU) and a strawmen PIM-capable
system (StrawmenPIM). The dashed line denotes the ideal
performance of UPMEM. (b) The load of each PU. The load
values are normalized by the heaviest PU.

3 Key Idea & Challenges

Key Idea: Per-PU scheduling with fine-grained arbitra-
tion. Traditional PIM systems use batched gang scheduling
where CPUs and PUs operate MRAM alternately, leading to
the inefficiencies of inter/intra-batch underutilization (§2.3).
These issues are rooted in the assumption that PUs retain
control of the shared bus for the entire duration of the PIM
kernel’s execution, from launch to completion. Differently,
this assumption is broken with our key observation that: each
PU in UPMEM has an additional control interface (originally
used for control commands), which could be retrofitted for
sending custom control messages to fine-grainedly coordi-
nate the access of PU and CPU. Building on this insight, we
propose a per-PU scheduling paradigm (Figure 4b) by manip-
ulating the ownership of each PU unit’s MRAM, determining
whether it is currently being read/written by PU/CPU.

Per-PU scheduling offers two advantages. First, it elimi-
nates the idle state between two batches (Figure 1), effectively
handling inter-batch underutilization. Each PU can be in one
of two states: either performing computation or waiting for
the CPU to copy data. Second, without gang scheduling, it
enables dynamically dispatching each query to different PUs
based on their real-time loads, thus achieving good load bal-
ance and avoiding intra-batch underutilization.

Challenges. However, achieving per-PU scheduling is not
easy. First, the native driver does not allow reading from or
copying data to PIM when PIM is running. Second, due to
the limited read/write bandwidth between the CPU and the
PU’s MRAM, switching a PU’s state may cause the CPU to
experience a long stall. Third, although per-PU scheduling
can dynamically send queries based on the current load of
each PU, PUs do not share the same memory space. Therefore,
an efficient data placement scheme needs to be designed to
pre-distribute clusters across the PUs.

USENIX Association 2025 USENIX Annual Technical Conference 1227

CPU

PIM

Cluster
Filtering LUT Construction

Per-PU Query Dispatching
(Sec. 4.3)

Persistent PIM kernel
(Sec. 4.2)

Identifying
Top-K

message
queues:

Send task

MRAM

PU0 PU1

MRAM

PUn

MRAM

Distance
Computation

Result
Merge

OUT

IN
Cluster
Filtering

Cluster

Figure 6: Overview of PIMANN. This figure shows the
workflow of an ANNS query in PIMANN. It supposes PU0 is
overloaded. Our per-PU query dispatching will dispatch this
query to the replica on PU1.

4 PIMANN Design

4.1 Overview
PIMANN architecture. Figure 6 shows the architecture
of PIMANN. PIMANN offloads the most parallelizable
distance computation step (see §2.1) of the entire IVFPQ
process to UPMEM, while the other steps are still executed by
the CPU. Each PU stores multiple IVF clusters and performs
the corresponding distance computations.

To mitigate inter-batch underutilization, PIMANN intro-
duces the persistent PIM kernel (§4.2), which launches a
persistent kernel enabling continuous query processing with-
out idle states between batches. Each PU can independently
receive queries from the CPU continuously.

However, due to bus sharing, the native UPMEM driver
does not support copying data to/from PIM when PIM is
running. Based on our observation that the additional control
interface can be retrofitted for fine-grained bus arbitration, we
implement a hot transfer mechanism to transfer data between
the CPU and PU when PIM is running (§4.2.1).

With bus arbitration, each PU can dynamically switch be-
tween two states: Running (performing computation) or Wait-
CPUCopy (waiting for the CPU to copy data). These two
states correspond to the ownership of the shared bus being
held by either the PU or the CPU. We discuss how to switch
two states safely and efficiently in §4.2.2.

To optimize energy efficiency during idle periods (i.e.,
when no queries are being processed), we also support transi-
tioning from the persistent kernel to the normal kernel.

To mitigate intra-batch underutilization, we propose per-
PU query dispatching (§4.3). With the help of bus arbitration,
we can dispatch queries to individual PUs based on their
real-time load. However, as PUs follow a share-nothing ar-

Switching latency
 hidingcoroutines

PUn

MRAM

message
queues:

PU1

MRAM
 WaitCpuCopy Running

R/W

R/W

Persistent PIM kernel

PUn

MRAM
R/W

 Running PU status:

PUn

MRAM

Running WaitCpuCopy

Bus ownership switching

PU0

MRAM
R/W R/W × R/W

Hot transfer
mechanism control message

Legend Data Path (via DDR) Control Path (via control inferface)

contex (one query)

PIM

CPU

Figure 7: Design of persistent PIM kernel. Each PU con-
tiguously pulls tasks from the message queue and performs
computation. The input/output data of tasks are transferred
via the hot transfer mechanism, involving multiple bus owner-
ship switches.

chitecture, different PUs cannot access each other’s MRAM.
Thus, we must tailor an efficient data placement scheme, pre-
allocating each PU’s clusters in advance. PIMANN leverages
a selective replication for data placement (§4.3.1), replicating
high-popularity clusters among PUs. It also detects hotness
shifts and dynamically adjusts data placement without shut-
ting down the PIM (§4.3.2).

4.2 Persistent PIM kernel

Different from the existing batching paradigm which launches
a separate PIM kernel for each batch of queries and lets the
CPU copy data between two kernels, PIMANN only launches
one persistent PIM kernel for all ANNS queries during sys-
tem initialization. In this kernel, since we allow dynamic
arbitration of per-PU bus during runtime, each PU can inde-
pendently perform computation or data copying. Thus, the
persistent PIM kernel design eliminates the idle copying time
introduced by batch gang scheduling.

The main workflow of each PU continuously loops through
the following steps:

➀Dequeue an ANNS request from the message queue.
➁Wait for CPU to copy the task data (e.g., LUT) to MRAM.
➂Switch to the Running state and perform computing.
➃Switch to the WaitCPUCopy state.
➄Wait for the CPU to copy the computing results.

Step ➀➁➄ require data transfer from the CPU to the PU
while PUs are in the running state; step ➂➃ require switch-
ing the PU’s state (i.e., switching ownership of the shared
bus). Therefore, we have designed the hot transfer mecha-
nism (§4.2.1) and bus ownership switching scheme (§4.2.2),
respectively.

1228 2025 USENIX Annual Technical Conference USENIX Association

4.2.1 Hot transfer between CPU and PIM

Next, we discuss how CPU and PUs transfer data to each other
when PUs are running. This hot transfer mechanism includes
two parts, with control and data paths separated: 1) The con-
trol path uses a custom message queue, implemented through
the PU’s control interface link and isolated from the DDR bus.
2) The data path allows the CPU to directly read/write MRAM
via the DDR bus (but requires holding the bus ownership).

Control path: Message queue implemented on the con-
trol interface. To achieve fine-grained per-PU scheduling,
the most fundamental function lies in the ability of CPU-PU
communication when PIM is running. By carefully reading
through the UPMEM driver, we notice that the CPU’s read and
write access to the WRAM is routed through an additional,
undocumented control interface link (§2.2), completely by-
passing the DDR bus. This hardware characteristic allows
us to implement a message queue directly on WRAM for
communication between the PU and the CPU.

This message queue has two limitations, which should be
considered when designing our system. First, the message
queue has a limited capacity (in the order of a few tens of
bytes), In comparison, a common data structure in an ANNS
query, LUT, has a typical size of 32 KB. To this end, we only
store necessary metadata (e.g., query ID) or small control
messages (e.g., ownership switching) in this queue. Other
large messages (e.g., LUT) are directly written to MRAM.
Second, as PIM does not have the ability to interrupt the
CPU, PIMANN maintains dedicated CPU threads to poll all
message queues of PUs to get notifications from PIM.

Data path: Exposing MRAM to CPU. The native UP-
MEM driver does not support exposing MRAM to the CPU
for direct read and write operations during PIM execution.
We perform a thorough analysis of the driver and make the
following two modifications: 1) exposing MRAM to CPU
when PIM is running (enabling the CPU to directly read/write
MRAM), and 2) constructing a mapping table that maps all
variable symbols to their corresponding MRAM addresses
(finding where should the CPU read/write).

For 1), all MRAM are viewed as multiple device files in the
operation system, and mapped in the virtual memory space.
We can obtain the base address of mmap files by implanting
a recording function in the PIM startup path. Considering
UPMEM adopts memory-level parallelism [44], all writes to
MRAM should perform a transpose operation on the data to
ensure that the data can be correctly transmitted to the same
chip [44].

For 2), the main challenge is the lack of mapping from
variable symbols to offsets in the mmap files. Our solution
is as follows: before starting the PIM, we first use the stan-
dard MRAM copy interface (dpu_copy_to) to access the cor-
responding variables once, recording the corresponding ad-
dresses and caching them in the user program.

It should also be noted that the bandwidth of directly writ-

ing MRAM by CPU in the running state seems to be relatively
low (0.41 GB/s). The reason is that: different from batching
paradigm which could easily exploit the bank-level paral-
lelism (8 PUs), our fine-grained per-PU scheduling means that
data can be copied to only one PU’s MRAM at a time. Al-
though per-8PU scheduling could achieve higher bandwidth,
we abandon this approach for two main reasons. First, per-
8PU scheduling incurs computation redundancy: if a cluster
is split into 8 slices, each slice needs to maintain its own
top-k queue, resulting in 8x computation redundancy. Second,
per-PU scheduling already has a negligible data transfer time:
Although per-PU may suffer from a relatively lower band-
width, in our implementation, the time taken to copy data is
negligible (please refer to the purple bar in Figure 15).

4.2.2 Per-PU bus ownership switching

In this subsection, we present how we safely and efficiently
switch the state (i.e., bus ownership) of each PU in PIMANN.

Switching ownership safely. As stated in §2.2, the bus
ownership is controlled by the MUX registers; we expose
the mapping of each PU units’ MUX registers to userspace.
Each MUX has two states: CPU-side and PU-side. If there is
an inconsistency between the memory access and the MUX
state, it may cause abnormal access by either the CPU or PU.

Thus, we next show how PIMANN ensure this consistency.
We discuss two cases of PU state switching respectively:
1) WaitCPUCopy→Running (i.e., MRAM access ownership
switching from CPU to PU), and 2) Running→WaitCPUCopy,
reversely. The first case corresponds to the CPU copying the
LUT table to the PU, and waiting for the PU to start the
distance calculation. The second case occurs after the compu-
tation finishes, where the PU waits for the CPU to perform
result aggregation.

For WaitCPUCopy→Running, in PIMANN, the CPU
sends an ownership transfer message to the queue after com-
pleting the copy operation. Thus, the PU only needs to poll
the message queue to receive the message, after which it can
safely access the MRAM and perform computation.

For Running→WaitCPUCopy, since the PU itself cannot
switch its MUX, it sends a message to the CPU via the queue.
Upon receiving this message, the CPU switches the MUX
and sends an ack message back to the PU. At this point, the
PU can enter the WaitCPUCopy state safely.

To reduce the software stack overhead, PIMANN caches
the MUX state for each PU in userspace. The interface for
checking the MUX state directly reads from the cache. When
switching a PU bus ownership, both the actual MUX state
and its cached copy are updated simultaneously. Since only
the CPU can modify the MUX state, cache inconsistency is
not a concern.

Ownership switch in pairs. In our implementation, we
discover a strange phenomenon: when the CPU directly ac-
cesses the MRAM of a certain PU, it sometimes causes the

USENIX Association 2025 USENIX Annual Technical Conference 1229

tasks on the adjacent PU to malfunction. This lead us to a rea-
sonable speculation: two adjacent PUs may share a physical
MUX register. It may be due to the special hardware circuit
design of UPMEM that there is only one control interface
for the MUXes of two adjacent PUs. We later confirm this
speculation through experiments. As a result, we determine
that the minimum switching granularity of PIMANN is two
adjacent PUs. Thus, even if the current query only involves
one PU, it is necessary to simultaneously switch the owner-
ship of two adjacent PUs, resulting in a resource waste of the
other adjacent PU.

To address this limitation and minimize resource waste,
we propose the optimization of pairwise cluster slicing to
ensure that adjacent PUs are always invoked simultaneously.
Specifically, instead of assigning a single IVF cluster to a
PU, each cluster is sliced into two smaller cluster slices and
adjacent PUs are allocated segments from the same cluster.
This ensures that when one PU in a pair is active, its neigh-
boring PU is also active, thus maximizing hardware resource
efficiency. We will refine this slicing strategy in the section
of load balancing design (§4.3).

Hiding the switching latency. The per-PU bus ownership
switching may experience significant latency if the required
MUX ownership is not immediately available. The reasons are
twofold. First, PU’s computing capability is weak. The clock
frequency of PU is only O(100) MHz, so the task execution
time of a single PU may be relatively long. If the PU is
still executing a task, the switching time also includes the
wait for the ongoing computation to complete, which can be
substantial, reaching up to several milliseconds.

Second, the CPU-PIM communication latency is high.
Even if the PU already releases the ownership, the CPU side
cannot obtain it immediately. Instead, it has to poll the mes-
sage queue on WRAM through a bandwidth-limited inter-
face [2]; it takes 0.9 ms to poll the message queue of one rank
(64 PUs). Thus, naively blocking the CPU thread is inefficient.

To mitigate this, we employ a coroutine-based optimization
that allows the CPU to switch execution contexts to other tasks
while waiting for ownership switching, thus hiding the switch-
ing latency. Specifically, our coroutine scheduling prioritizes
tasks based on the two following principles. 1) Immediate
ownership availability: coroutines associated with PUs whose
bus ownership is already set to CPU side are prioritized for
execution. 2) Predictive scheduling: for PUs whose MUX
state is on the PU side, our scheduler estimates when the
MUX state will switch based on the fixed execution time of
PU tasks. Coroutines likely to have their ownership status be-
come available soon are given higher priority. This estimation
leverages the deterministic nature [28] of UPMEM’s in-order
RISC cores, which have no caching or speculative execution.

4.3 Per-PU query dispatching
The design of the persistent PIM kernel enables us to dis-
patch queries to individual PUs based on their real-time load,
thereby addressing intra-batch underutilization. However,
since each PU follows a share-nothing architecture, differ-
ent PUs cannot access each other’s MRAM. As a result, it is
crucial to design an appropriate data (i.e., cluster) placement
strategy. A naive approach, such as random assignment of
clusters to PUs, often leads to significant load imbalances due
to variations in cluster popularity.

To this end, PIMANN employs a selective replication data
placement scheme. This scheme selectively replicates hot
clusters across multiple PUs. In this section, we discuss:
1) how to choose clusters to replicate in §4.3.1, 2) how to
live adjust the data placement when hotness shifts in §4.3.2,
and 3) how to dispatch queries between replicas to achieve
well load balance in §4.3.3.

4.3.1 Selective replication data placement

The selective replication data placement includes the follow-
ing three steps.

Replicating high-popularity clusters. Clusters are repli-
cated based on their popularity, which is quantified as the
product of cluster size (si) and access frequency (fi), because
popularity is determined by the query time of a cluster and
the query time is proportional to its size and its access fre-
quency. The number of replicas for a cluster is determined by
dividing its popularity (pi = si ∗ fi) by the average PU load.
Formally, for a high-popularity cluster i, its number of repli-
cas replica_counti = pi/pavg. where pavg =

∑i pi
n , n denotes

the cluster count.
Slicing clusters for less memory fragmentation. As the

size of MRAM is not necessarily an exact multiple of the clus-
ter size, the previous strategy may lead to significant memory
fragmentation. To address this problem, we divide clusters
into smaller slices of uniform size. Specifically, MRAM is
partitioned into fixed-length slots, each capable of holding
one slice. This approach simplifies data allocation and mini-
mizes memory fragmentation, especially given the variety in
cluster sizes and dynamic insertion or deletion of clusters in
online adjustment (§4.3.2).

Placement of cluster slices. Cluster slices are placed to
ensure balanced utilization across PUs. Considering the con-
straint of pairwise bus ownership switching, we group adja-
cent PUs and distribute slices evenly among PU pairs, ensur-
ing that the two adjacent PUs are always active simultane-
ously. We define a heat upper limit for each PU pair. The heat
upper limit is a hyperparameter tradeoff the time spent on
generating the placement with the degree of load balancing.
Within this upper limit, all cluster slices are greedily assigned
to maintain balanced workload distribution. In our practice,
this simple greedy strategy can already achieve a well load
balance; please see the evaluation section.

1230 2025 USENIX Annual Technical Conference USENIX Association

CPU

PIMPIM
H
ot
ne
ss

Cluster

MRAM

PU0

1

2

3

4

PU1

MRAM
1

2

4
MRAM

PU0

1

2

3

4

PU1

MRAM
1

2

4

3

1

2

3

4

1

2

4 4

Hotness
shift

1

Slicing

Replicating

Placement

Cluster

H
ot
ne
ss

Update
Legend

single
slice replication

2

1

2

1

clusters

1

2

3

4

5

Figure 8: Design of per-PU query dispatching.

4.3.2 Live adjustment of data placement

Over time, cluster hotness may shift, necessitating real-time
adjustments to the data placement. Fortunately, the per-PU
scheduling design of the persistent kernel enables us to redis-
tribute clusters without shutting down the PIM.

Hotness shifting detection. We use a lightweight mon-
itoring mechanism that tracks cluster access frequency in
real time. Specifically, each cluster is assigned a frequency
counter that increments when a query involves the cluster.
We define a time window and threshold used to detect signif-
icant changes in cluster popularity. For example, within the
past 1,000 queries (pre-defined time window), if the ratio of
a cluster’s access frequency compared to the previous time
window exceeds a factor of 2 (pre-defined threshold), whether
the change is an increase or a decrease, it is considered that
the cluster’s heat has changed significantly.

Adjustment strategy based on updated hotness. 1) For
increased cluster hotness, additional replicas are created on
underutilized PUs based on the updated hotness. Queries are
then dynamically redirected to these new replicas. 2) For
decreased cluster hotness, we remove redundant replicas to
free up MRAM space; we prioritize the removal of replicas on
heavily loaded PUs. Freed memory slots can be reallocated
to clusters with increasing hotness.

4.3.3 Online request dispatching

We maintain a mapping table that records the cluster ID to PU
IDs (i.e., all replicas) on the host side. The dispatcher always
selects the replica with the lightest current load to send the
request. The load of PUs are denoted by the queue depth of
message queues.

5 Evaluation

5.1 Experimental Setup
The experiments are conducted on a server equipped with
UPMEM modules. The server features two Intel Xeon Silver

4210 processors, providing a total of 20 physical cores running
at 2.4 GHz. It is configured with 128 GB of DDR4 memory
distributed across 4 DIMM slots. The UPMEM setup consists
of 20 DIMM modules, containing a total of 2,560 PUs running
at 400 MHz. Each PU supports 16 threads. The server runs
Ubuntu 22.04 with kernel version 5.15. The host program
is developed using the GCC 11.4.0 compiler, while the PIM
program is built with UPMEM SDK 2024.2.0, based on Clang
12.0.0. Additionally, we use an NVIDIA RTX A6000 for
evaluating GPU-based ANNS systems.

Competitors:We compare PIMANN with the following
ANNS systems.

• Faiss-CPU [22]: It is a popular approximate nearest neigh-
bor search library developed by Meta.

• PIMANN-Batch: There exists one UPMEM baseline sys-
tem named DRIM-ANN [12], which leverages the batching
paradigm, but this work does not provide open-source code.
Therefore, we rigorously implemented it according to its
paper and named it PIMANN-Batch in our paper.

• Faiss-GPU [22]: It is the GPU-capable version of Faiss,
which stores all vectors in GPU memory and performs their
computations directly on the GPU.

As for FPGA-based systems [34, 70], because they are not
open source, and work [34] requires a customized IP core, for
which we do not have the necessary experimental setup, we
are unable to include a comparison with these systems.

Datasets: We use the following two large-scale datasets
for evaluation:

• SIFT-1B [62]: It consists of 1 billion 128-dimensional vec-
tors encoded into 32 segments.

• SPACE-1B [3]: It consists of 1 billion 100-dimensional
vectors encoded into 20 dimensions.

Metrics: We compare different solutions based on: through-
put (QPS), latency, and tail latency under the same recall@10.
Here, recall@10 refers to the recall calculated for the top 10
items returned by ANNS systems. For Faiss-GPU, we also
compare the QPS/Watt to evaluate the energy efficiency of
different systems. And we compare the QPS/$ to evaluate the
cost efficiency.

Unless otherwise specified, we use the following default
experimental configuration: selective replication defaults to
using all MRAM memory; the number of clusters in IVF is
set to 4096; the number of coroutine is 4; the slice size is
100 K; the default dataset is SPACE-1B; the default achieved
recall@10 is 0.9.

5.2 Performance vs. Recall

We evaluate the throughput and latency of PIMANN, Faiss-
CPU and PIMANN-Batch. PIMANN significantly outper-
forms the other two in all cases.

USENIX Association 2025 USENIX Annual Technical Conference 1231

(b) SIFT-1B

0

500

1.0k

1.5k

0.84
0.86

0.88 0.9 0.92
0.94

Recall@10

Faiss-CPU PIMANN-Batch PIMANN

Th
ro

ug
hp

ut
 (Q

P
S

) (a) SPACE-1B

0

1k

2k

3k

0.84
0.86

0.88 0.9 0.92
0.94

Figure 9: (Exp #1) Throughput under different recalls.

1

10

0.85 0.90 0.95

Faiss-CPU PIMANN-Batch PIMANN

0.1

1

10

0.85 0.90 0.95

La
te

nc
y

(s
)

Recall@10

(a) Average (b) P99

Figure 10: (Exp #2) Latency under different recalls. (a)
Average latency, (b) Tail latency

Exp #1: Overall throughput. Figure 9 shows the throughput
of PIMANN, Faiss-CPU, and PIMANN-Batch on SPACE-1B
and SIFT-1B. We can make the following observations:

1) The throughput of PIMANN-Batch is 2.4-3.7× higher
than that of Faiss-CPU. This is because batch takes advantage
of the High Memory Bandwidth of UPMEM.

2) Compared with PIMANN-Batch, introducing per-PU
scheduling (PIMANN) can further boost throughput by 2.4-
2.9×. This is because PIMANN eliminates inter-batch under-
utilization caused by batch gang scheduling, and alleviates
intra-batch under-utilization caused by PU load imbalance
within a batch. As a result, the QPS of PIMANN improves by
5.9-10.4× compared with that of Faiss-CPU.

3) For cases with low recall (≤ 0.88), the QPS of all three
systems on SPACE-1B is higher than on SIFT-1B; for cases
with high recall, the opposite is true. This is because, in low-
recall cases, fewer clusters need to be queried on SPACE-1B
compared to SIFT-1B to achieve the same recall rate, whereas
in high-recall cases, the reverse holds true.

Exp #2: End-to-end latency. Figure 10 shows the average
latency and the P99 tail latency of Faiss-CPU, PIMANN-
Batch, and PIMANN under different levels of search recall
requirements, ranging from 0.84 to 0.94. We can find that
PIMANN exhibited significantly superior performance com-
pared to CPU and PIMANN-Batch.

Compared to Faiss-CPU, although PIMANN-Batch is
equipped with high-parallel UPMEM and enjoy a 2.4-3.7×
throughput boost (Exp #1), its average latency is approxi-

MAX

PIMANN-Batch PIMANN

of

 a
ct

iv
e

P
U

s

0

1000

2000

Time (s)
0 1 2 3 4 5 6

Figure 11: (Exp #3) The number of active PUs over time.

PIMANN-Batch PIMANN

P
IM

 U
til

iz
at

io
n

Recall@10

(a) SPACE-1B (b) SIFT-1B

20%

40%

60%

80%

0.85 0.90 0.95 0.85 0.90 0.95

Figure 12: (Exp #3) PIM utilization of different systems.
Utilization is defined as the integral of the number of active
PUs over time.

mately 7.1 to 10.5× higher and its tail latency is about 1.7-
8.8× higher, mainly due to the additional inter-batch blockage
latency. In contrast, PIMANN eliminates this additional la-
tency by enabling fine-grained bus sharing, reducing average
latency by 32-43% and tail latency by 26-63%. The indepen-
dent per-PU scheduling enables the independent scheduling
of tasks, reducing the end-to-end per-query latency.

5.3 PIM utilization

Exp #3: PIM utilization. In this experiment, we revisit our
motivation to investigate the PIM utilization of different sys-
tems. Figure 11 shows the number of active PUs over time.
An active PU refers to a PU that is currently executing com-
puting tasks. Here the used dataset is SPACE-1B; the recall
rate is 0.9; other cases share a similar conclusion.

As shown in Figure 11, the number of active PUs in PI-
MANN (the red line) remains basically stable over time,
achieving a utilization around 80%. This stability is achieved
because PIMANN overcomes the limitations of batch
scheduling. When the CPU receives a query task and com-
pletes the corresponding stage, it can immediately send the
task to the PU. After the PU finishes the task, it can promptly
return the result to the CPU and wait for new tasks. The PU
remains active from the time it receives a task until it com-
pletes the task. In contrast, in PIMANN-Batch, the number
of active PUs exhibits periodic fluctuations (the blue dashed

1232 2025 USENIX Annual Technical Conference USENIX Association

0.84 0.86 0.88 0.90Recall@10=

Th
ro

ug
hp

ut
 (Q

P
S

)

(a) Throughput
1k

2k

3k

1 2 4 8 16

Latency (m
s)

(b) Latency

0

200

400

600

1 2 4 8 16
of coroutines

Figure 13: (Exp #4): Effectiveness of coroutine-based bus
ownership switching.

line). At the start of each batch, when all PUs are initially
active, the number of active PUs peaks. Later, during the data
copying phase between batches, all PUs yield the bus owner-
ship and become inactive. Additionally, within a batch, due
to the imbalanced task load among PUs, some PUs complete
their tasks early and enter a waiting state, further reducing the
number of active PUs.

Furthermore, we integrate the number of active PUs over
time, and based on this, calculate the PIM utilization rates
of the two systems under different datasets and recall condi-
tions; please see Figure 12. Under all datasets and all recall
rates, PIMANN can achieve 65-83% of the PIM utilization,
far surpassing the batch paradigm (∼20%). This shows the
effectiveness and efficiency of PIMANN’s designs. The per-
sistent PIM kernel technique eliminates the idle state between
batches. On the other hand, the per-PU dispatching technique
makes the load of each PU sufficiently balanced.

5.4 Techniques

Exp #4: Coroutine-based bus ownership switching. Fig-
ure 13 shows the performance with different coroutine counts.
We can see that: 1) Compared to PIMANN without corou-
tine optimization (i.e., coroutine count=1), PIMANN with
this optimization can yield around 3× better throughput. A
moderate coroutine count can slightly reduce request latency,
as coroutines help hide the latency associated with shared bus
ownership switching. 2) However, an excessive number of
coroutines increases the system’s scheduling overhead, which
negatively impacts both throughput and latency.

Exp #5: Effect of selective replication. Figure 14a shows the
impact of selective replication technique in per-PU dispatch-
ing of PIMANN. Compared to the system without replication,
which causes a single PU to become a bottleneck, PIMANN
can use the replication technique to prevent hotspot clusters
from concentrating on a few PUs, achieving better load bal-
ancing. Figure 14b shows the throughput under different
memory capacity budgets, and throughput increases with the
budget.

N
or

m
al

iz
ed

 lo
ad

PU IDs

w/ selective replication
w/o selective replication

(a) Per-PU load

0%

50%

100%

0 1000 2000

Throughput (Q
P

S
)

(b)

1150

1200

1250

Replication Ratio (×)
1.5 2.0 2.5 3.0 3.5

Figure 14: (Exp #5): Effect of per-PU dispatching. (a)
Per-PU load w/ or w/o selective replication, (b) Throughput
with different capacity budgets.

(a) Throughput

Th
ro

ug
hp

ut
 (Q

P
S

)

BasicPIM
+K
+K+D

0

1k

2k

3k

0.
84

0.
86

0.
88 0.

9
0.

92
0.

94

Recall@10

Latency (s)

0

1

2
Cluster filtering
LUT construction
Task construct
Copy data
Distance computing
Identifying Top-K
Merge

(b) Latency

Fa
is

s-
C

P
U

B
as

ic
P

IM +K
+K

+D 0

0.2

Figure 15: (Exp #6): Contributions of techniques. (a)
Throughput, (b) Latency breakdown of a query. Design tech-
niques are cumulative. BasicPIM: a version of PIMANN-
Batch w/o selective replication; K: persistent PIM kernel; D:
per-PU query dispatching.

Exp #6: Contributions of individual techniques. Figure 15
shows the contribution of each individual technique to the end-
to-end performance. We only show the result of SPACE-1B,
while SIFT-1B shares a similar conclusion.

We evaluate the throughput (Figure 15a) and latency break-
down (Figure 15b) of the system by gradually adding the
persistent PIM kernel (abbr. as K) and the per-PU query
dispatching technique (abbr. as D) to a baseline version of
PIMANN-batch (called BasicPIM, which forbids the selective
data replication optimization).

From Figure 15, we can observe that: 1) in all cases, both
techniques have achieved positive performance gains. Specifi-
cally, the persistent PIM kernel technique has increased the
throughput by 30% to 70%; by introducing the per-PU query
dispatching, it further increases the throughput by 88% to
112%. 2) The persistent PIM kernel technique reduces the
time in all stages except for distance computation, since it
overcomes the inter-batch wait time of batch scheduling.
3) By introducing per PU query scheduling, distance compu-
tation time is also greatly reduced. The main reason is that this
technique leads to a more balanced load distribution between
PUs.

USENIX Association 2025 USENIX Annual Technical Conference 1233

(a) Throughput
Faiss-GPU
PIMANN

Th
ro

ug
hp

ut
 (Q

P
S

)

0

1k

2k

3k

0.84
0.86

0.88 0.9 0.92
0.94

Throughput/W
att (Q

P
S

/W
)

(b) Throughput/Watt

0

2

4

6

0.84
0.86

0.88 0.9 0.92
0.94

Recall@10

Figure 16: (Exp #7) Comparision with GPU-based system.
(a) Throughput, (b) Power Efficiency.

Table 1: (Exp #8): Cost efficiency comparison of different
solutions.

Solution Price ($) QPS QPS/$

Faiss-CPU 1,500 144 0.096
Faiss-GPU 9,685 478 0.049
PIMANN 5,473 1,276 0.233

5.5 Comparison with GPU-based systems
Exp #7: Comparison with Faiss-GPU. We compare PI-
MANN and Faiss-GPU in terms of performance and power
efficiency on the SPACE-1B dataset; see Figure 16. It is
worth noting that there is a huge gap in peak computing re-
sources between UPMEM and GPU. The GPU is equipped
with 10,752 cores and has a computing power of up to 38.7
TFLOPS, while UPMEM can only achieve an integer process-
ing capacity of 1 TOPS [65]. In terms of power consumption,
the total power consumption of UPMEM is 462W [24]. In
contrast, the power consumption of the RTX A6000 GPU is
approximately 300W. The current high power consumption
of UPMEM is mainly influenced by hardware fabrication, but
it can be significantly reduced with future PIM designs. How-
ever, even with such a large power gap, as shown in Figure 16,
the throughput of PIMANN is still 2.4 to 3.7× compared
with that of the GPU, and the power efficiency is increased
by 1.6 to 2.5× compared with that of the GPU. It is worth
noting that Faiss-GPU requires storing all vectors in the GPU
memory, so PIMANN has a much better capacity scalability.

5.6 Cost efficiency
Exp #8: Cost efficiency. As shown in Table 1, we evaluate the
cost-effectiveness of three solutions using QPS/$. PIMANN
outperforms both Faiss-CPU and Faiss-GPU. Compared to
Faiss-CPU, PIMANN’s price is higher, but its throughput is
significantly improved, leading to a 2.4× increase in cost-
effectiveness. Compared to Faiss-GPU, PIMANN achieves
both the lower price and the higher throughput, resulting in a
4.8× improvement in cost-effectiveness.

6 Discussion

Available for the next generation of UPMEM: Our ap-
proach is fundamentally decoupled from specific architectural
implementation details of the UPMEM platform. Instead, it
leverages intrinsic hardware capabilities that are inherent to
the underlying PIM infrastructure. Consequently, potential
architectural modifications to UMPEM would not necessitate
revisions to our proposed design.

The core of our methodology relies exclusively on the
standardized control interface exposed by each PU. As it
serves as the fundamental mechanism through which the host
CPU issues critical control commands like launching PIM
kernels, it is guaranteed to persist across future iterations of
the UMPEM platform.

Other PIM architectures: We evaluate our framework
on the UPMEM platform, which is the first commercially
available real-world PIM hardware. And we observe that
other PIM architectures [41,45,52,56,58] also exhibit similar
characteristics to UPMEM. In future work, we will evaluate
our framework on these platforms as conditions permit.

7 Related Work

We organize the related work into two types: 1) with similar
goal and different mechanism, which uses other hardware
to optimize ANNS systems, and 2) with different goal and
similar mechanism, which uses PIM for other applications.

ANNS systems built on CPU, GPU, or FPGA. Faiss [22]
and Milvus [67] are two widely used open-source vector
databases. Both support CPU and GPU, but they are also
restricted by the memory capacity.

DiskANN [35] and HM-ANN [60] all expand the memory
of a single machine to support vector storage with a larger
capacity. DiskANN extends DRAM with SSDs, forming a
two-layer memory structure consisting of DRAM and SSD. It
modifies the neighbor pruning algorithm of nodes, enabling
free control over the scale of edge pruning, and adapts to the
poor random access performance of SSDs through techniques
such as cache prefetching. HM-ANN expands memory using
heterogeneous memory and maps the hierarchical design of
HNSW onto the memory hierarchy. The upper layer is placed
on DRAM, and the bottom layer is placed on heterogeneous
memory.

CAGRA [55], BANG [40] and RUMMY [71] use GPU to
build ANN systems. CAGRA has designed a new indexing
algorithm to make full use of the parallel processing capabil-
ities of the GPU: it first calculates the kNN graph [21], and
then prunes and reorders based on the kNN graph to build the
index. However, the expensive GPU memory limits the scale
of vectors. BANG focuses on graph-based ANNS, which
requires much more memory than cluster-based systems. To
extend GPU memory, BANG uses a storage structure simi-
lar to that of DiskANN. It stores compressed vectors in the

1234 2025 USENIX Annual Technical Conference USENIX Association

GPU video memory and the full set of vectors in DRAM for
full distance computation. RUMMY solves the problem of
redundant and inefficient data transmission between video
memory and memory through techniques such as pipeline
rearrangement.

Apart from CPUs and GPUs, there are also works that use
FPGAs and SmartSSDs to build ANN systems. FANNS [37]
achieves lower costs and power consumption than GPU
through multi-stage automatic tuning, but it is still limited to a
single card. DF-GAS [70] extends vector retrieval to multiple
FPGAs, improving memory access efficiency through data
prefetching and latency optimization. It also enhances query
performance by enabling parallel searches that integrate both
the entire graph and its subgraphs. Vstore [50] utilizes com-
putable SSDs to complete graph-based approximate retrieval.
SmartSSDs [63] are extended to multiple computable SSD
devices. It has designed a multi-disk task scheduling strat-
egy to ensure load balancing and a search pruning strategy
to reduce unnecessary computations. CXL-ANNS [34] uses
the CXL link protocol to connect memory pools and adopts
caching and prefetching techniques to reduce the impact of
the high latency of the CXL pooled memory.

Other systems using emerging PIM hardware. Numer-
ous explorations have been made to build applications in dif-
ferent fields on PIM. 1) In the field of databases, PID-Join [51]
utilizes PIM to implement the join operator and proposes a
method for rapid communication among PIM nodes. Work [8]
utilized PIM to address large table scan. Work [9] used PIM
for query compilation. PIM-tree [38] designed an ordered
index for PIM systems. 2) In the field of programming library,
TransPimLib [27] provided a library of transcendental func-
tions, such as trigonometric functions, logarithms, powers, etc.
PID-Comm [54] proposes a framework for collective inter-PE
communication designed for PIM-enabled DIMMs. 3) In the
field of machine learning, work [16] implements two CNN
algorithms, eBNN and YOLO3, on UPMEM. 4) In the field of
scientific computing, UPMEM BLAST [43] deploys a molec-
ular biology software on UPMEM. SparseP [25] provided a
sparse matrix-vector multiplication library.

8 Conclusion

This paper presents PIMANN, an ANNS system designed
to fully exploit the potential of UPMEM. By introducing
the persistent PIM kernel and per-PU dispatching techniques,
PIMANN effectively addresses the inefficiencies of tradi-
tional batching scheduling in PIM-based ANNS systems. The
experimental results demonstrate its superiority in terms of
throughput, latency, and resource utilization compared to ex-
isting CPU-based, GPU-based, and batching-paradigm-based
solutions. PIMANN not only provides a promising approach
for accelerating ANNS on PIM hardware but also offers valu-
able insights for future research in the intersection of memory-
centric computing applications.

Acknowledgement

We appreciate our shepherd and anonymous reviewers’ construc-
tive comments for improving the quality of this paper. This work
is supported by Beijing Natural Science Foundation (Grant No.
4254083), National Natural Science Foundation of China (Grant
No. U23A20299), PCL-CMCC Foundation for Science and Innova-
tion (Grant No. 2024ZY1C0030) and Kuaishou.

USENIX Association 2025 USENIX Annual Technical Conference 1235

A Artifact Appendix

Abstract
The artifact consists of the C++ code of PIMANN and baseline
systems used in evaluation. For ease of experiment reproduction
and result visualization, we also provide runner scripts and plotter
scripts accordingly. It is intended for validating the claims made in
the paper and facilitating further research on Processing-in-Memory
(PIM) hardware.

Scope
At a high level, the artifact allows its users to validate the following
major claims in the paper:

• Major Claim 1: PIMANN outperforms baselines in terms of query
throughput and latency. (Exp #1,#2,#7,#8)

• Major Claim 2: PIMANN overcomes batch scheduling limitations
via fine-grained per-PU scheduling. (Exp #3,#6a)

• Major Claim 3: PIMANN’s techniques synergistically improve
performance.(Exp #4,#5,#6b)

Contents
The artifact contains source code, scripts, and README files. Below,
we explain the contents aside from the README.

Source codes. The major part of source codes are well docu-
mented, facilitating further research.

Figure 17: Directory structure of our project.

Scripts. The scripts directory contains runner scripts for running
experiments and plotter scripts for visualizing the results. Scripts
directly reproducing the experiments (i.e., AE scripts) in the pa-
per are in the ae subdirectory. Scripts not in the ae subdirectory
serve as building blocks of the AE scripts, such as running a single
experiment.

Hosting
PIMANN’s artifact repository is hosted on GitHub at PIM-ANNS
on the main branch. The first usable commit version is the initial
commit (af44d9f). However, due to possible future bugfixes and
updates, please always use the latest commit.

Requirements
Hardware Requirements: To run this project, a server equipped
with UPMEM hardware (https://www.upmem.com/) is required.
Software Requirements: Additionally, we also need setup the
following software environment.

• UPMEM-SDK: This project uses a modified version of UPMEM-
SDK based on the 2024.2 release.

1 cd third -party/upmem -2024.2.0-Linux -x86_64
2 cd src/backends
3 bash ./install.sh

• FAISS: The IVFPQ index algorithm reuses portions of the
FAISS codebase. For better UPMEM compatibility, we provide
a modified version of FAISS based on: https://github.com/
facebookresearch/faiss. Install like FAISS.

1 cd third -party/faiss_upmem
2 cmake -B build .
3 make -C build -j faiss
4 make -C build install

• Boost library: This project utilizes Boost’s coroutine library.
Thus, please install the libboost with the following commands.

1 sudo apt-get update
2 sudo apt install libboost -all-dev

Experiment workflow
Building PIMANN from source

Please simply use the CMake building system.

1 cmake -B build .
2 cd build
3 make -j

Hello-world example

To verify that everything is prepared, you can run a hello-world ex-
ample that verifies PIMANN’s functionality, please run the following
command:

1 bash AE/hello_world.sh

It will run for approximately 1 minute and, on success, output
something like below:

1 yyyy -mm-dd hh:mm:ss
2 json_path: PIMANN/config.json
3 query path is dataset/space/query10K.i8bin
4 query_num: 10000, dim: 100
5 searching SPACE1M , nprobe = 11
6 The command ./main 11 completed successfully

If you can see this output, then everything is OK, and you can
start running the artifact.

Run all experiments

We provide convenient scripts for running either all experiments
collectively (#1) or individual experiments selectively (#2).

#1: Running the all-in-one script. We provide an all-in-one AE
script for running all experiments end-to-endly:

1236 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/cds-ruc/PIM-ANNS
https://www.upmem.com/
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss

1 AE/run_all.sh

This script will run for approximately 8 hours and store all results
in the “AE” directory.

#2: Running specific experiments. If you wish to replicate only
specific experiments, we provide nine separate scripts correspond-
ing to different experimental settings. These scripts, located in the
AE/exps/expX.sh files (where X = 1, 2, ..., 8), can be used to repro-
duce all the figures presented in our paper. The name of all scripts
(i.e., expX.sh) are aligned with those presented in our main paper.

If you want to run individual experiments, please refer to these
script files and the comments in them (which describes the relation-
ship between experiments and figures/tables).

Estimated running hours of experiments are shown in Table 2.

Table 2: Estimated time of all experiments

Experiment Description Time(hours)

Exp #1: Overall throughput 1.5
Exp #2: End-to-end latency 1.5
Exp #3: PIM utilization 1.5
Exp #4: Coroutine 1.0
Exp #5: Selective replication 0.5
Exp #6: Individual techniques 1.0
Exp #7: Comparison with Faiss-GPU 0.5
Exp #8: Cost efficiency 0.2

Plot all figures & tables

We provide two alternative ways to visualize the experimental results.

#1: (Recommended) All-in-one jupyter notebook for Visual Stu-
dio Code users. Please install the Jupyter extension in VSCode.
Then, please open AE/figures/plot.ipynb. Please activate the vir-
tual environment (.venv/bin/python) by running the following com-
mands.

1 source .venv/bin/activate

Then, you can run each cell from top to bottom. Each cell will
plot a figure or table (see Figure 18). Titles of these figures and tables
are consistent with those in the paper.

#2: Traditional python plotting scripts.
We provide a traditional plotter script. Please run it in the AE

directory:

1 cd AE/figures
2 python3 plot.py

The command above will plot all figures and tables by default,
and the results will be stored in the AE/figures directory (Figure 19).
So, please ensure that you have finished running the all-in-one AE
script before running the plotter.

The plotter further allows users to specify particular figures or
tables to generate by providing supplementary command-line argu-
ments. For example:

Figure 18: Visualizing results with the all-in-one Jupyter
notebook.

Figure 19: Visualizing results with the conventional script.

1 python3 plot.py exp1 exp2

Please refer to plot.py for accepted arguments.

1 python3 plot.py help

USENIX Association 2025 USENIX Annual Technical Conference 1237

References

[1] Microsoft Research talk: Approximate nearest neighbor search
systems at scale. [EB/OL].

[2] The Software Development Kit for programming and using the
DPU provided by the UPMEM Acceleration platform.

[3] SPACEV1B: A billion-Scale vector dataset for text de-
scriptors. https://github.com/microsoft/SPTAG/tree/
main/datasets/SPACEV1B, 2021.

[4] Ameer MS Abdelhadi, Christos-Savvas Bouganis, and
George A Constantinides. Accelerated approximate nearest
neighbors search through hierarchical product quantization. In
2019 International Conference on Field-Programmable Tech-
nology (ICFPT), pages 90–98. IEEE, 2019.

[5] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and
Kiyoung Choi. A scalable processing-in-memory accelerator
for parallel graph processing. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture,
pages 105–117, 2015.

[6] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
Pim-enabled instructions: A low-overhead, locality-aware
processing-in-memory architecture. ACM SIGARCH Com-
puter Architecture News, 43(3S):336–348, 2015.

[7] Dimitrios Androutsos, Konstantinos N Plataniotis, and Anas-
tasios N Venetsanopoulos. A novel vector-based approach
to color image retrieval using a vector angular-based distance
measure. Computer Vision and Image Understanding, 75(1-
2):46–58, 1999.

[8] Alexander Baumstark, Muhammad Attahir Jibril, and Kai-Uwe
Sattler. Accelerating large table scan using processing-in-
memory technology. Datenbank-Spektrum, 23(3):199–209,
2023.

[9] Alexander Baumstark, Muhammad Attahir Jibril, and Kai-
Uwe Sattler. Adaptive query compilation with processing-
in-memory. In 2023 IEEE 39th International Conference on
Data Engineering Workshops (ICDEW), pages 191–197. IEEE,
2023.

[10] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Has-
san, Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna T Malladi, Hongzhong Zheng,
et al. Conda: Efficient cache coherence support for near-data
accelerators. In Proceedings of the 46th International Sympo-
sium on Computer Architecture, pages 629–642, 2019.

[11] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T Malladi,
Hongzhong Zheng, and Onur Mutlu. Lazypim: An efficient
cache coherence mechanism for processing-in-memory. IEEE
Computer Architecture Letters, 16(1):46–50, 2016.

[12] Mingkai Chen, Tianhua Han, Cheng Liu, Shengwen Liang,
Kuai Yu, Lei Dai, Ziming Yuan, Ying Wang, Lei Zhang,
Huawei Li, and Xiaowei Li. Drim-ann: An approximate near-
est neighbor search engine based on commercial dram-pims,
2024.

[13] Sitian Chen, Amelie Chi Zhou, Yucheng Shi, Yusen Li, and
Xin Yao. Memanns: Enhancing billion-scale anns efficiency
with practical pim hardware, 2024.

[14] Rongxin Cheng, Yifan Peng, Xingda Wei, Hongrui Xie, Rong
Chen, Sijie Shen, and Haibo Chen. Characterizing the dilemma
of performance and index size in billion-scale vector search
and breaking it with second-tier memory, 2024.

[15] Benjamin Y Cho, Jeageun Jung, and Mattan Erez. Accelerating
bandwidth-bound deep learning inference with main-memory
accelerators. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis, pages 1–14, 2021.

[16] Prangon Das, Purab Ranjan Sutradhar, Mark Indovina, Sai
Manoj Pudukotai Dinakarrao, and Amlan Ganguly. Implemen-
tation and evaluation of deep neural networks in commercially
available processing in memory hardware. In 2022 IEEE 35th
International System-on-Chip Conference (SOCC), pages 1–6.
IEEE, 2022.

[17] Stephen Deering, Deborah L Estrin, Dino Farinacci, Van Jacob-
son, Ching-Gung Liu, and Liming Wei. The pim architecture
for wide-area multicast routing. IEEE/ACM transactions on
networking, 4(2):153–162, 1996.

[18] Alexandar Devic, Siddhartha Balakrishna Rai, Anand Sivasub-
ramaniam, Ameen Akel, Sean Eilert, and Justin Eno. To pim
or not for emerging general purpose processing in ddr mem-
ory systems. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, pages 231–244, 2022.

[19] T Dharani and I Laurence Aroquiaraj. Content based image
retrieval system using feature classification with modified knn
algorithm. arXiv preprint arXiv:1307.4717, 2013.

[20] Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan
Gómez Luna, Onur Mutlu, and Izzat El Hajj. A framework for
high-throughput sequence alignment using real processing-in-
memory systems. Bioinformatics, 39(5):btad155, 2023.

[21] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest
neighbor graph construction for generic similarity measures.
In Proceedings of the 20th international conference on World
wide web, pages 577–586, 2011.

[22] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria
Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library.
arXiv preprint arXiv:2401.08281, 2024.

[23] Duncan G Elliott, Michael Stumm, W Martin Snelgrove, Chris-
tian Cojocaru, and Robert McKenzie. Computational ram:
Implementing processors in memory. IEEE Design & Test of
Computers, 16(1):32–41, 1999.

[24] Yann Falevoz and Julien Legriel. Energy efficiency impact
of processing in memory: A comprehensive review of work-
loads on the upmem architecture. In European Conference on
Parallel Processing, pages 155–166. Springer, 2023.

[25] Christina Giannoula, Ivan Fernandez, Juan Gómez Luna, Nec-
tarios Koziris, Georgios Goumas, and Onur Mutlu. Sparsep:
Towards efficient sparse matrix vector multiplication on real
processing-in-memory architectures. Proceedings of the ACM
on Measurement and Analysis of Computing Systems, 6(1):1–
49, 2022.

[26] Christina Giannoula, Nandita Vijaykumar, Nikela Pa-
padopoulou, Vasileios Karakostas, Ivan Fernandez, Juan

1238 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B

Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios
Goumas, and Onur Mutlu. Syncron: Efficient synchronization
support for near-data-processing architectures. In 2021 IEEE
International Symposium on High-Performance Computer
Architecture (HPCA), pages 263–276. IEEE, 2021.

[27] Juan Gómez-Luna, Yuxin Guo, Geraldo F Oliveira, Moham-
mad Sadrosadati, and Onur Mutlu. Transpimlib: A library for
efficient transcendental functions on processing-in-memory
systems. arXiv preprint arXiv:2304.01951, 2023.

[28] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Gi-
annoula, Geraldo F Oliveira, and Onur Mutlu. Benchmarking
a new paradigm: An experimental analysis of a real processing-
in-memory architecture. arXiv preprint arXiv:2105.03814,
2021.

[29] Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio,
João Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mo-
hammed Alser, Saugata Ghose, Juan Gómez-Luna, and Onur
Mutlu. Simdram: A framework for bit-serial simd processing
using dram. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 329–345, 2021.

[30] Guseul Heo, Sangyeop Lee, Jaehong Cho, Hyunmin Choi,
Sanghyeon Lee, Hyungkyu Ham, Gwangsun Kim, Divya Ma-
hajan, and Jongse Park. Neupims: Npu-pim heterogeneous
acceleration for batched llm inferencing. In Proceedings of the
29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume
3, pages 722–737, 2024.

[31] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chat-
terjee, Mike O’Connor, Nandita Vijaykumar, Onur Mutlu, and
Stephen W Keckler. Transparent offloading and mapping
(tom) enabling programmer-transparent near-data processing
in gpu systems. ACM SIGARCH Computer Architecture News,
44(3):204–216, 2016.

[32] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K
Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu.
Accelerating pointer chasing in 3d-stacked memory: Chal-
lenges, mechanisms, evaluation. In 2016 IEEE 34th Interna-
tional Conference on Computer Design (ICCD), pages 25–32.
IEEE, 2016.

[33] Huawei. Data Storage 2030. Technical report, 2024.
[34] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun

Lee, Miryeong Kwon, and Myoungsoo Jung. {CXL-
ANNS}:{Software-Hardware} collaborative memory disag-
gregation and computation for {Billion-Scale} approximate
nearest neighbor search. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23), pages 585–600, 2023.

[35] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan
Simhadri, Ravishankar Krishnawamy, and Rohan Kadekodi.
Diskann: Fast accurate billion-point nearest neighbor search
on a single node. Advances in Neural Information Processing
Systems, 32, 2019.

[36] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent
Amsaleg. Searching in one billion vectors: re-rank with source
coding. In 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 861–864. IEEE,
2011.

[37] Wenqi Jiang, Shigang Li, Yu Zhu, Johannes de Fine Licht,
Zhenhao He, Runbin Shi, Cedric Renggli, Shuai Zhang,
Theodoros Rekatsinas, Torsten Hoefler, et al. Co-design hard-
ware and algorithm for vector search. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–15, 2023.

[38] Hongbo Kang, Yiwei Zhao, Guy E. Blelloch, Laxman Dhuli-
pala, Yan Gu, Charles McGuffey, and Phillip B. Gibbons. Pim-
tree: A skew-resistant index for processing-in-memory. Proc.
VLDB Endow., 16(4):946–958, December 2022.

[39] Hongbo Kang, Yiwei Zhao, Guy E Blelloch, Laxman Dhuli-
pala, Yan Gu, Charles McGuffey, and Phillip B Gibbons. Pim-
trie: A skew-resistant trie for processing-in-memory. In Pro-
ceedings of the 35th ACM Symposium on Parallelism in Algo-
rithms and Architectures, pages 1–14, 2023.

[40] Saim Khan, Somesh Singh, Harsha Vardhan Simhadri, Jyothi
Vedurada, et al. Bang: Billion-scale approximate near-
est neighbor search using a single gpu. arXiv preprint
arXiv:2401.11324, 2024.

[41] Seongguk Kim, Subin Kim, Kyungjun Cho, Taein Shin, Hyun-
wook Park, Daehwan Lho, Shinyoung Park, Kyungjune Son,
Gapyeol Park, and Joungho Kim. Processing-in-memory in
high bandwidth memory (pim-hbm) architecture with energy-
efficient and low latency channels for high bandwidth system.
In 2019 IEEE 28th Conference on Electrical Performance of
Electronic Packaging and Systems (EPEPS), pages 1–3, 2019.

[42] Yongkee Kwon, Guhyun Kim, Nahsung Kim, Woojae Shin,
Jongsoon Won, Hyunha Joo, Haerang Choi, Byeongju An,
Gyeongcheol Shin, Dayeon Yun, et al. Memory-centric com-
puting with sk hynix’s domain-specific memory. In 2023 IEEE
Hot Chips 35 Symposium (HCS), pages 1–26. IEEE Computer
Society, 2023.

[43] Dominique Lavenier, Charles Deltel, David Furodet, and Jean-
François Roy. BLAST on UPMEM. PhD thesis, INRIA Rennes-
Bretagne Atlantique, 2016.

[44] Dongjae Lee, Bongjoon Hyun, Taehun Kim, and Minsoo
Rhu. Pim-mmu: A memory management unit for acceler-
ating data transfers in commercial pim systems. In 2024 57th
IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 627–642. IEEE, 2024.

[45] Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park,
Gimoon Hong, Dongyoon Ka, Kyudong Hwang, Jeongje Park,
Kyeongpil Kang, Jungyeon Kim, Junyeol Jeon, Nahsung Kim,
Yongkee Kwon, Kornijcuk Vladimir, Woojae Shin, Jongsoon
Won, Minkyu Lee, Hyunha Joo, Haerang Choi, Jaewook Lee,
Donguc Ko, Younggun Jun, Keewon Cho, Ilwoong Kim,
Choungki Song, Chunseok Jeong, Daehan Kwon, Jieun Jang,
Il Park, Junhyun Chun, and Joohwan Cho. A 1ynm 1.25v
8gb, 16gb/s/pin gddr6-based accelerator-in-memory support-
ing 1tflops mac operation and various activation functions
for deep-learning applications. In 2022 IEEE International
Solid-State Circuits Conference (ISSCC), volume 65, pages
1–3, 2022.

[46] Suhyun Lee, Chaemin Lim, Jinwoo Choi, Heelim Choi, Chan
Lee, Yongjun Park, Kwanghyun Park, Hanjun Kim, and Young-
sok Kim. Spid-join: A skew-resistant processing-in-dimm join

USENIX Association 2025 USENIX Annual Technical Conference 1239

algorithm exploiting the bank- and rank-level parallelisms of
dimms. Proc. ACM Manag. Data, 2(6), December 2024.

[47] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim,
Eojin Lee, Seungwoo Seo, Hosang Yoon, Seungwon Lee, Ky-
ounghwan Lim, Hyunsung Shin, et al. Hardware architecture
and software stack for pim based on commercial dram tech-
nology: Industrial product. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA),
pages 43–56. IEEE, 2021.

[48] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike
Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. Ad-
vances in Neural Information Processing Systems, 33:9459–
9474, 2020.

[49] Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao
Yang, Yun Liang, and Guangyu Sun. Pim-dl: Expanding the
applicability of commodity dram-pims for deep learning via
algorithm-system co-optimization. In Proceedings of the 29th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2,
ASPLOS ’24, page 879–896, New York, NY, USA, 2024. As-
sociation for Computing Machinery.

[50] Shengwen Liang, Ying Wang, Ziming Yuan, Cheng Liu,
Huawei Li, and Xiaowei Li. Vstore: in-storage graph based vec-
tor search accelerator. In Proceedings of the 59th ACM/IEEE
Design Automation Conference, pages 997–1002, 2022.

[51] Chaemin Lim, Suhyun Lee, Jinwoo Choi, Jounghoo Lee,
Seongyeon Park, Hanjun Kim, Jinho Lee, and Youngsok Kim.
Design and analysis of a processing-in-dimm join algorithm:
A case study with upmem dimms. Proceedings of the ACM on
Management of Data, 1(2):1–27, 2023.

[52] Haifeng Liu, Long Zheng, Yu Huang, Jingyi Zhou, Chaoqiang
Liu, Runze Wang, Xiaofei Liao, Hai Jin, and Jingling Xue.
Enabling efficient large recommendation model training with
near cxl memory processing. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA),
pages 382–395, 2024.

[53] Ravi Nair. Evolution of memory architecture. Proceedings of
the IEEE, 103(8):1331–1345, 2015.

[54] Si Ung Noh, Junguk Hong, Chaemin Lim, Seongyeon Park,
Jeehyun Kim, Hanjun Kim, Youngsok Kim, and Jinho Lee. Pid-
comm: A fast and flexible collective communication frame-
work for commodity processing-in-dimm devices. arXiv
preprint arXiv:2404.08871, 2024.

[55] Hiroyuki Ootomo, Akira Naruse, Corey Nolet, Ray Wang,
Tamas Feher, and Yong Wang. Cagra: Highly parallel graph
construction and approximate nearest neighbor search for gpus.
In 2024 IEEE 40th International Conference on Data Engi-
neering (ICDE), pages 4236–4247. IEEE, 2024.

[56] Jaehyun Park, Jaewan Choi, Kwanhee Kyung, Michael Jaemin
Kim, Yongsuk Kwon, Nam Sung Kim, and Jung Ho Ahn. At-
tacc! unleashing the power of pim for batched transformer-
based generative model inference. In Proceedings of the 29th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2,

ASPLOS ’24, page 103–119, New York, NY, USA, 2024. As-
sociation for Computing Machinery.

[57] Sang-Soo Park, KyungSoo Kim, Jinin So, Jin Jung, Jonggeon
Lee, Kyoungwan Woo, Nayeon Kim, Younghyun Lee,
Hyungyo Kim, Yongsuk Kwon, et al. An lpddr-based cxl-
pnm platform for tco-efficient inference of transformer-based
large language models. In 2024 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA),
pages 970–982. IEEE, 2024.

[58] Sang-Soo Park, KyungSoo Kim, Jinin So, Jin Jung, Jonggeon
Lee, Kyoungwan Woo, Nayeon Kim, Younghyun Lee,
Hyungyo Kim, Yongsuk Kwon, Jinhyun Kim, Jieun Lee, Yeon-
Gon Cho, Yongmin Tai, Jeonghyeon Cho, Hoyoung Song,
Jung Ho Ahn, and Nam Sung Kim. An lpddr-based cxl-pnm
platform for tco-efficient inference of transformer-based large
language models. In 2024 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages
970–982, 2024.

[59] Christian Platzer and Schahram Dustdar. A vector space search
engine for web services. In Third European Conference on
Web Services (ECOWS’05), pages 9–pp. IEEE, 2005.

[60] Jie Ren, Minjia Zhang, and Dong Li. Hm-ann: Efficient billion-
point nearest neighbor search on heterogeneous memory. Ad-
vances in Neural Information Processing Systems, 33:10672–
10684, 2020.

[61] Samsung. “8Gb C-die DDR4 SDRAM x16,” 2017.
https://download.semiconductor.samsung.com/
resources/user-manual/x16%20only_8G_C_DDR4_
Samsung_Spec_Rev1.5_Apr.17.pdf. [Accessed 09-01-
2025].

[62] Harsha Vardhan Simhadri, George Williams, Martin Aumüller,
Matthijs Douze, Artem Babenko, Dmitry Baranchuk, Qi Chen,
Lucas Hosseini, Ravishankar Krishnaswamny, Gopal Srinivasa,
et al. Results of the neurips’21 challenge on billion-scale ap-
proximate nearest neighbor search. In NeurIPS 2021 Com-
petitions and Demonstrations Track, pages 177–189. PMLR,
2022.

[63] Bing Tian, Haikun Liu, Zhuohui Duan, Xiaofei Liao, Hai Jin,
and Yu Zhang. Scalable billion-point approximate nearest
neighbor search using {SmartSSDs}. In 2024 USENIX Annual
Technical Conference (USENIX ATC 24), pages 1135–1150,
2024.

[64] SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte,
Aman Chadha, and Amitava Das. A comprehensive survey of
hallucination mitigation techniques in large language models.
arXiv preprint arXiv:2401.01313, 2024.

[65] UPMEM. Upmem website. https://www.upmem.com/,
2025.

[66] Vaishali S Vairale and Samiksha Shukla. Recommendation of
food items for thyroid patients using content-based knn method.
In Data Science and Security: Proceedings of IDSCS 2020,
pages 71–77. Springer, 2021.

[67] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu,
Shengjun Li, Xiangyu Wang, Xiangzhou Guo, Chengming
Li, Xiaohai Xu, et al. Milvus: A purpose-built vector data

1240 2025 USENIX Annual Technical Conference USENIX Association

https://download.semiconductor.samsung.com/resources/user-manual/x16%20only_8G_C_DDR4_Samsung_Spec_Rev1.5_Apr.17.pdf
https://download.semiconductor.samsung.com/resources/user-manual/x16%20only_8G_C_DDR4_Samsung_Spec_Rev1.5_Apr.17.pdf
https://download.semiconductor.samsung.com/resources/user-manual/x16%20only_8G_C_DDR4_Samsung_Spec_Rev1.5_Apr.17.pdf
https://www.upmem.com/

management system. In Proceedings of the 2021 International
Conference on Management of Data, pages 2614–2627, 2021.

[68] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang
Wang. A comprehensive survey and experimental comparison
of graph-based approximate nearest neighbor search. arXiv
preprint arXiv:2101.12631, 2021.

[69] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun
Zhan, Feifei Li, and Yuanzhe Cai. Analyticdb-v: a hybrid ana-
lytical engine towards query fusion for structured and unstruc-
tured data. Proceedings of the VLDB Endowment, 13(12):3152–
3165, 2020.

[70] Shulin Zeng, Zhenhua Zhu, Jun Liu, Haoyu Zhang, Guohao
Dai, Zixuan Zhou, Shuangchen Li, Xuefei Ning, Yuan Xie,
Huazhong Yang, et al. Df-gas: a distributed fpga-as-a-service
architecture towards billion-scale graph-based approximate
nearest neighbor search. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 283–296, 2023.

[71] Zili Zhang, Fangyue Liu, Gang Huang, Xuanzhe Liu, and Xin
Jin. Fast vector query processing for large datasets beyond
{GPU} memory with reordered pipelining. In 21st USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 24), pages 23–40, 2024.

USENIX Association 2025 USENIX Annual Technical Conference 1241

	Introduction
	Background and Motivation
	Approximate Nearest Neighbor Search (ANNS)
	Commodity PIM hardware architecture
	Motivation

	Key Idea & Challenges
	PIMANN Design
	Overview
	Persistent PIM kernel
	 Hot transfer between CPU and PIM
	Per-PU bus ownership switching

	Per-PU query dispatching
	Selective replication data placement
	Live adjustment of data placement
	Online request dispatching

	Evaluation
	Experimental Setup
	Performance vs. Recall
	PIM utilization
	Techniques
	Comparison with GPU-based systems
	Cost efficiency

	Discussion
	Related Work
	Conclusion
	Artifact Appendix

