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Abstract
Cloud providers generate logs at massive scales, often re-
quiring dense compression using log patterns. Meanwhile,
aggregated analysis on logs is essential for various applica-
tions. However, performing aggregated analysis on highly
compressed logs presents two fundamental challenges: 1) it
is hard to extract a set of log patterns that have both a global
description and high filtering effectiveness; 2) executing full-
text queries on numerically encoded data is challenging.

This paper proposes a two-phase pattern extraction
paradigm. Such a paradigm decouples messages within pat-
terns into Sketch (global pattern structure) and Specs (local
fine-grained pattern specifications). The Sketch is extracted
in an offline phase to provide a comprehensive global descrip-
tion, while the Specs are customized in the online phase to en-
hance pattern filtering effectiveness. Additionally, this paper
proposes an efficient prefix/suffix vectorized query algorithm
for numerically encoded data, which leverages AVX SIMD
instructions to convert full-text queries into high-performance
range/point queries.

We implement and integrate all these techniques into a sys-
tem called LogCrisp, which is evaluated using nearly 7TB of
logs from both production environments and public datasets.
Experimental results show that LogCrisp achieves an order
of magnitude lower analysis latency, 3.8× higher ingestion
speed, and an almost identical compression ratio, compared
with state-of-the-art works.

1 Introduction

Large cloud providers continuously generate system logs,
which can accumulate to the PB scale per day [26, 29, 33, 35].
Cloud logs capture critical system information and user access
records. To support error diagnosis, security attack detection,
and user behavior profiling [7, 12, 14, 38, 39], it is common
to perform aggregated analysis (e.g. counting, summation,
getting max/min) on these logs.
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Figure 1: Comparison of different pattern extraction
paradigms

In addition, since logs need to be retained for a rela-
tively long time (say 180 days [35]) for audit purposes, ex-
isting log storage methods [17, 26, 29, 33–35] propose to
compress logs densely using patterns within them. For ex-
ample, in Hadoop logs, the chunk ID has the pattern of
“blk_<hex,3>_<num,2>”. During the ingestion process, each
variable value (e.g. “blk_4ff_34”) will be broken into a group
of fragments (e.g. “4ff” and “34”) according to the pattern.
All fragments occurring at the same place will be encoded as
a unit during the compression to achieve a high compression
ratio. Patterns can also be used to filter out unrelated units
during analysis. For example, when counting logs containing
“blk_czf”, there is no need to decompress any unit of chunk
ID variable, since “czf” is not a three-character hexadecimal
value.

However, performing aggregated analysis on highly com-
pressed logs faces two fundamental challenges. The first is the
dilemma between global description and filtering effective-
ness of log patterns. Pattern-based log compression methods
ingest logs as multiple log blocks and compress each block as
a compressed file containing a set of units. They thus have a
key design choice of extracting patterns. As shown in Figure 1,
global-pattern-based methods [29, 35] extract or predefine a
set of global patterns shared by all log blocks. On the other
hand, local-pattern-based methods [17, 26, 33] extract a set
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of patterns for each log block. In order to perform aggre-
gated analysis on multiple log blocks, a global description of
each fragment positions is needed. For example, to count how
many chunks belong to “4f*” region, we need to perform a
prefix query on the first unit of chunk ID variables accord-
ing to the global pattern “blk_<hex,3>_<num,2>”. However,
global patterns are usually too general to describe the con-
tent of each unit precisely, and thus the query process needs
to decompress more units because of the limited filtering
effectiveness. According to previous work, the analysis laten-
cies of global-pattern-based methods are usually longer than
local-pattern-based methods by up to 10× [33].

We thus propose to extract patterns in two phases by de-
coupling messages within patterns clearly. We begin with an
off-line phase that only extracts the minimum messages neces-
sary to break variables into fragments. We call these messages
as Sketch. For example, pattern “blk_<hex,3>_<num,2>” has
the Sketch “<*>_<*>_<*>”. Sketch contains the necessary
global description for aggregation and leaves as many mes-
sages as possible to be customized for each log block. We then
continue with an on-line phase when ingesting each log block.
This phase extracts other messages of the pattern, such as the
constant characters (“blk”), type messages (“hex”, “num”)
and length messages (“3”, “2”). We call these messages as
Spec.

However, to enable two-phase pattern extraction, it is chal-
lenging to derive all fragment boundaries before extract-
ing the whole pattern. We thus examine 11,954 fragment
boundaries in all 3,259 local patterns extracted by the state-
of-the-art method [33] and find over 98% of them are non-
alphanumerical (NAU) characters. We thus choose to extract
the Sketch according to all NAU characters heuristically. How-
ever, the opposite direction does not hold, namely some NAU
characters may not be the boundaries and thus variable val-
ues originally correspond to the same local pattern may have
multiple Sketches. To address this issue, a well-organized
Sketch warehouse is maintained for each variable type, en-
abling efficient selection of the appropriate Sketch during data
ingestion.

Besides, we further optimize the on-line ingestion speed by
leveraging the total count of units according to the Sketch and
generating Spec in a pre-allocated cacheline-aligned manner.

The second fundamental challenge in performing aggre-
gated analysis on compressed logs is the dilemma between
numerical encoding format and full-text query semantic. To
execute arithmetical aggregation and improve the compres-
sion ratio, values in the unit that only contains numerical char-
acters, which takes up 53% of all units, have to be encoded as
integers. However, since logs are of text format originally, it
is required to support full text queries on real-world logs, i.e.
pre/suffix queries on some numerical variables [29, 33]. For
example, it is a common practice to count how many chunks
has a number starting with “3” (i.e., to query “blk_4FF_3*”).

To overcome such a problem, we propose a vectorized

pre/suffix query algorithm to execute pre/suffix queries di-
rectly on integer-encoded units with AVX SIMD instructions.
Our key idea is to convert pre/suffix queries into range/point
queries which are compatible to numerical encoding format.
It is not hard to convert suffix queries since they correspond
to querying specific modulo results for all target values. How-
ever, converting prefix queries to range queries is more com-
plex, as the resulting range varies with each value. We prove
that the corresponding range can be uniquely determined by
a squeezing range whose endpoints are both powers of two.
Based on this theorem, we: 1) calculate the squeezing range
using vectorized shift operations; 2) determine the correspond-
ing range for each value; 3) load each range with an AVX
SIMD instruction of conditional blending [10]; 4) perform
vectorized range queries accordingly.

Besides, to further reduce analysis latency, we use the AVX
SIMD shuffle instruction [10] to construct the indexed bim-
tap [33], which records intermediate query results for subse-
quent aggregation and enables efficient merging across differ-
ent units.

Finally, we implement and integrate all these techniques
into a system called LogCrisp. We evaluate LogCrisp on 13
types of logs, nearly 7TB of data in total, including both
production logs from our collaborator Alibaba Cloud and
public logs used in previous works [18, 29, 33, 35]. We com-
pare LogCrisp with the state-of-the-art works, i.e. CLP [29]
and LogGrep [33]. We observe that LogCrisp achieves sig-
nificantly lower aggregated analysis latency—15.32× and
4.65× faster than CLP and LogGrep, respectively. Addition-
ally, LogCrisp improves ingestion speed by up to 3.8× over
LogGrep, while maintaining a compression ratio comparable
to CLP (about 1.1×) and LogGrep (about 96%).

The contributions of this paper are threefold:

• We propose a two-phase pattern extraction paradigm
that delivers a global description for aggregated analysis
while maintaining high filtering effectiveness.

• We propose a prefix/suffix query algorithm that, for the
first time, enables vectorized aggregated analysis on
highly compressed logs.

• We implement and evaluate LogCrisp, a compressed log
storage system that outperforms state-of-the-art methods
in analysis latency and ingestion speed.

2 Background and Related Work

Log storage systems target at a high compression ratio, a low
analysis latency as well as a high ingestion speed. Table 1
shows four typical log storage systems as well as our work
(called LogCrisp) in respect of their compression, ingestion
and analysis performance. Besides, not all log storage systems
have a global description of each variable, some systems thus
can only perform keyword searching on logs.
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ZG [24] ES [5] CLP [29] LG [33] LC
Compression Ratio Bad Bad Medium Good Good

Ingestion Speed Good Bad Good Medium Good
Analysis Latency Bad Good Medium Good Good

Global Description No Yes Yes No Yes

Table 1: Summary of log storage systems. ZG, ES, LG and
LC are the abbreviations for Zgrep, Elastic Search, LogGrep
and LogCrisp respectively
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Figure 2: Conceptual diagram of pattern-based log storage

Due to the semi-structured characteristics of logs, pattern-
based log storage methods [17, 26, 29, 33–35] are the most
common solutions for log storage. Figure 2 shows the concep-
tual diagram of pattern-based log storage methods, which can
be further categorized into global-pattern-based methods and
local-pattern-based methods. Both of them need a log parsing
process to extract output statements and log variables. In this
section, we first introduce the log parsing process and then
analyze these two types of pattern-based methods respectively.
Finally, we discuss other works related with log storage.

2.1 Log Parsing

Since logs are generated by programs, each log entry can be
parsed as an output statement and several variables. This pars-
ing can be done by designating programming standard [6],
analysis source code [8, 36] or using a log parser [11, 21]. For
example, as shown in Figure 2, output statement printf("%s
Write block: %s with length: %d", time, blk, len) will print
many log entries, each containing three variable values,
namely the timestamp, the block number and the write size.

Pattern-based log storage methods are all built based on
such output statements and use them to extract log variables
as well as locate the to-be-aggregated variables during the
analysis. They regard all variable values occurring at the same
place of the statement as belonging to the same variable and
further extract a pattern for each variable to improve the
compression ratio and accelerate the analysis.

2.2 Global-pattern-based Methods

Global-pattern-based methods extract or pre-define a global
pattern for each variable, which is shared by all log blocks.
This pattern is usually very general (e.g. “blk_<all,10>”) since
it has to describe variable values occurring at all log blocks.

CLP [29] is the state-of-the-art global-pattern-based
method. During the ingestion process, CLP extracts variables
based on the output statements and breaks them according
to the pre-defined global pattern. Such process can be done
alongside the ingestion process without any extra data copy.
Then CLP reorganizes all fragments of each log entry as an
encoded message. Finally, it compresses all encoded mes-
sages of the same log block together as a unit and constructs
an inverted index to map the global pattern to the unit. During
the analysis, it will first query on the output statements to
locate to-be-aggregated variables and then query on the cor-
responding global patterns to decompress part of units based
on the inverted index.

CLP achieves a relatively high compression ratio, a high
ingestion speed as well as a global description of variables
delivered by the global patterns. However, the analysis latency
of CLP is sub-optimal in some scenarios [33] due to the
limited filtering efficiency of global patterns. Besides, since
CLP stores all fragments according to their original order,
numerical fragments cannot be processed and aggregated with
vectorized instructions.

2.3 Local-pattern-based Methods

Local-pattern-based methods propose to extract a local pattern
for each variable within a log block. Compared with global
pattern, such pattern will be more concrete and describe the
content of each unit precisely (e.g. “blk_<hex,3>_<num,2>”)
since it only needs to describe variables within this block.

LogGrep [33] is the state-of-the-art local-pattern-based
method. During the ingestion process, LogGrep first uses the
output statement to extract all variables like CLP and then
copies all variables of the same type into a variable vector.
Afterward, LogGrep extracts a local pattern for each vector.
Then it breaks each variable in the vector into fragments ac-
cording to the local pattern and stores all fragments occurring
at the same position within a unit. Finally, it compresses each
unit individually. During the analysis process, LogGrep first
locates to-be-aggregated variables like CLP (step ① in Fig-
ure 2) and filters units based on the local patterns (step ②). It
then only decompresses and searches within a small part of
units (step ③ and step ④).

LogGrep can partition log blocks into fine-grained units
to achieve a low query latency without compromising the
compression ratio. Such a design is also necessary to process
numerical units with vectorized instructions together. How-
ever, due to the differences of local patterns, LogGrep does
not have a global description. It thus can only support key-
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word searching like Linux grep. Besides, when processing
numerical units with vectorized instructions, full-text queries
cannot be supported directly. LogGrep thus compromises to
execute ordinary text query on numerical units. Thirdly, Log-
Grep’s lack of prior knowledge about the patterns requires
to execute full pattern extraction process for each log block.
Consequently, LogGrep’s ingestion speed is 2-5× slower than
that of CLP.

2.4 Other Related Works

Except for CLP and LogGrep, there are still some related
log storage methods. Besides, there are some works that can
process directly on column-oriented storage in database or on
compressed text data.
Log storage methods. Besides pattern-based methods, some
other methods, such as Cowic [25] and LogArchive [16], are
designed to compress log. They choose to compress by clus-
tering similar logs together instead of breaking the variables
and encoding similar fragments with tailored methods. As
a result, their compression ratio is lower than pattern-based
methods [35].

A common practice to execute aggregated analysis is using
log management tools, such as ElasticSearch [5], Splunk [20],
Scalyr [19] and Loki [22]. These tools can manage large-scale
logs and are employed in production environments. However,
they can not process compressed logs, which hinders them to
achieve a low storage cost.
Processing directly on compressed data. Processing directly
on compressed data includes two basic types: light-weight
encoding methods [3, 15, 27, 28, 30, 31, 40, 41] and partial de-
compression methods [1,2,23,29,33] . Light-weight encoding
methods do not combine with heavy byte-oriented compres-
sion method as its packing method, their compression ratios
are lower than partial decompression methods [29, 33] and
their supported operations are limited.

Pattern-based log storage methods can be categorized as
partial decompression methods but they are different from
other methods used in database [1, 2, 23] in respect that they
are designed on compressed text logs. They thus need to
support full-text queries on the original data.

3 Two-phase Pattern Extraction

A common global description shared by all log blocks can
support aggregating fragments within the variable as well
as improves the ingestion speed. However, to maintain the
filtering effectiveness of patterns, local details for each log
block are also needed.

We thus propose to decouple messages within the pattern
and extract them in a two-phase manner. The primary chal-
lenge of this design is how to minimize the messages extracted
globally so as to 1) ensure they are sufficient to describe each

Pattern Count Boundary Count NAU Boundary Rate
Hadoop 118 570 97.37%

HadoopL 97 358 99.16%
Hive 470 2117 98.87%

OpenStackC 170 850 100.00%
Spark 316 1416 99.44%

Thunderbird 1962 5691 98.84%
Windows 126 952 98.84%

Table 2: Proportion of non-alphanumerical boundaries

fragment’s position; 2) maximize locally customized mes-
sages to enhance filtering effectiveness.

In this section, we first discuss the clear decoupling of mes-
sages within patterns and then present the two-phase pattern
extraction paradigm. Additionally, we explore a cache-line-
aware optimization based on this paradigm to further boost
ingestion speed.

3.1 Pattern Message Decoupling
To locate and deliver a global description of fragments, we
must at least know their boundaries. To investigate fragment
boundary characteristics in local patterns, we extract 3,259
local patterns from 7 log types using LogGrep [33]. Among
these patterns, which include 11,954 fragment boundaries in
total, we find that over 98% of them are non-alphanumerical
(NAU) characters, as shown in Table 2. This trend likely arises
from two factors: 1) NAU characters often separate seman-
tic components within log variables, making them natural
boundaries; 2) State-of-the-art local-pattern extraction meth-
ods (e.g., [17, 26, 33, 35]) typically use NAU characters to
split variables during pattern extraction.

Based on this observation, we define all NAU characters
within a variable value as its Sketch. For example, in Figure 3,
the value /pjhe/35/part-0009” has a Sketch /<*>/<*>/<*>-
<*>”. However, this observation is not bidirectional, namely
not all NAU characters function as boundaries. Our method
therefore extracts multiple Sketches for each variable type.

To overcome such problem, we organize all Sketches we
found for a variable in a Sketch warehouse and represent each
Sketch in a compactly: we calculate a 64-bit integer based on
all NAU characters shown within the Sketch [32]. Such an
integer serves as a fingerprint to merge common Sketches dur-
ing the extraction as well as to determine the corresponding
Sketch of an ingested variable value immediately. To acceler-
ate such process, we build a hashing-based searching index
on the Sketch warehouse.

3.2 Two-phase Extraction Paradigm
Pattern message decoupling enables simultaneous global de-
scription and local detail maintenance. We therefore propose
to locate fragments using pre-extracted Sketches from an
off-line phase and extract additional messages, referred to as

486    2025 USENIX Annual Technical Conference USENIX Association



LogBlock 1
/ pjhe/ 35/ part-0009
/ user/ app_ 175
/ pjhe/ 34/ part-0092
/ bin/ asly/ pk.zip
/ user/ app_ 35
/ bin/ asly/ md.zip

LogBlock 2
/ bin/ add/ 37.log
/ pjhe/ test/ 39/ part-3356
/ bin/ add/ 39.log
/ pjhe/ test/ 40/ part-337
/ stage/ 345_ app
/ stage/ 351_ app

LogBlock 3
/ pjhe/ 44/ part-2147
/ pjhe/ 46/ part-389
/ rst/ 67.txt
/ pjhe/ 47/ part-4982
/ pjhe/ 47/ part-53
/ mnt/ 78.txt

Main Sketch / <*>/ <*>/ <*>-<*>

Backup Sketches / <*>/ <*>_ <*> / <*>/ <*>/ <*>.<*> / <*>/ <*>.<*>

35
-1
34
-3
-2
-4

Spec

pjhe <N,2> part <N,4>
user app <N,3>
bin asly <S,2> zip

1 175
2 35

3 pk
4 md

0009
-1
0092
-3
-2
-4

Spec

pjhe <N,2> part <N,4>
stage <N,3> app
bin add <N,2> log

1 345
2 351

-3
3356
-4
337
-1
-2

-3
39
-4
40
-1
-2

3 37
4 39

Spec

pjhe <N,2> part <N,4>
<S,3> <N,2> txt

1 rst
2 mnt

2147
389
-1
4982
53
-2

44
46
-1
47
37
-2

1 67
2 78

Figure 3: An example of pattern message decoupling

Specs, during ingestion. During analysis, units are filtered by
combining both Sketch and Spec information.
Off-line phase. The extraction algorithm’s pseudocode is
detailed in Algorithm 1. First, we extract the Sketch from
each value’s NAU characters (line 5). We then merge identical
Sketches to build the Sketch warehouse (line 6). The most
common Sketch in the warehouse is designated as the main
Sketch (line 8), with others classified as backup Sketches.

Algorithm 1 Sketch extraction algorithm
1: Variable value sample set S
2: Main sketch Ψ

3: Sketch warehouse B= /0

4: for all s in S do
5: K ← getSketch(s)
6: B← B∩K
7: end for
8: Ψ = the most common sketch in B
9: Output Ψ, B

On-line phase. We extract other details, namely Specs, for
each Sketch when ingesting logs during the online phase.
After parsing variables with output statements, we first cal-
culate the Sketch fingerprint of each incoming variable value
based on all NAU characters in that value. We then search for
this fingerprint in the corresponding Sketch warehouse. If a
Sketch matches, we locate all fragments accordingly. If not,
the incoming log entry is stored as an outlier.

We extract Specs in a piggybacked manner alongside in-
gestion after fragment location. Specifically: 1) (e.g., pjhe” in
the Spec of LogBlock1” in Figure 3): We record the latest
fragment and compare it with subsequent ingested fragments.
If all fragments are constant by the end of ingestion, this value
is treated as part of the pattern rather than creating a new unit.
2) for type messages (e.g., N” in <N,2>” in the Spec of Log-
Block1” indicates 35” and “34” are numbers): We record type
messages using a 6-bit vector [34], updating corresponding
bits when new character types occur. 3) for length messages
(e.g., 4” in <N,4>” in the Spec of LogBlock1” represents the

maximum length of 0009” and “0092” as four): We track the
maximum fragment length within a unit, updating it when a
longer fragment is ingested.

Since each variable may have multiple Sketches, we store
fragments of different Sketches in separate units. The main
Sketch’s units record the incoming order of variable values
that conform to backup Sketches. Each value is assigned
a number determined first by the global order of backup
Sketches and then by its ingestion sequence. Each fragment
unit of the main Sketch stores not only fragment values but
also a placeholder. For positions corresponding to backup
Sketch values, this placeholder holds the negative of the as-
signed number.
Used for filtering. During the analysis, if the to-be-aggregated
fragment is designated, we directly execute aggregation on
the corresponding unit in each log block. If the unit corre-
sponds to constant characters, we return the constant value
within the Spec rather than decompress units. If the to-be-
aggregated fragment is not designated, we combine Specs in
all log blocks with their corresponding Sketches to form pat-
terns and then match the query keyword against these patterns
to determine which unit to decompress, as shown in prior
work [33]. If a fragment within the backup Sketches is desig-
nated or the keyword matches a variable value conforming to
backup Sketches, we check one of the main Sketch units to
determine its original incoming order based on the assigned
number.
A concrete example. We provide an example of pattern de-
coupling in Figure 3. The variable from "LogBlock 1" in-
cludes six variable values, stored in four units: two for frag-
ments in the main Sketch and two for backup Sketches. We
also store placeholders for backup Sketch variables in the
main Sketch’s unit. In this example, the customization feature
of Spec is demonstrated by: 1) Selective Sketch Adoption:
Different log blocks can choose Sketches from the Sketch
warehouse. For example, "LogBlock 3" has variable values
conforming to the third backup Sketch, while the other two log
blocks use values conforming to the first and second backup
Sketches. 2) Spec Variability Across Log Blocks: Specs for
the same Sketch differ in constant, type, and maximum length
attributes across log blocks. For example, both "LogBlock 1"
and "LogBlock 2" use the first and second backup Sketches,
but their Specs are distinct.

3.3 Cache-friendly Ingestion Optimization

Based on two-phase extraction paradigm, pre-extracted
Sketches offer position messages for fragments, allowing us
to extract Specs in a pre-allocated and cache-friendly manner.
We thus introduce two optimizations to further enhance the
ingestion speed.
Cache-friendly position batching. During ingestion, pre-
extracted Sketches locate fragments, but Specs are deter-
mined only at ingestion completion. Specs dictate compres-
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sion strategies (e.g., units with constant fragments require no
compression). Thus, we need to record fragment positions
temporarily.

We represent each fragment position with a (offset, length)
pair and batch positions for the same unit. Each batch is sized
at 64 bytes (aligned with CPU cache lines), storing up to
seven sequential position pairs and a 4-byte pointer to the
next batch for the unit. This design enables the compressor
to retrieve seven sequential positions for a unit in a single
memory access by leveraging CPU cache locality.
Cache-friendly metadata maintaining. Each unit’s meta-
data includes the head/tail of the position batch list, the latest
ingested fragment, and type/length attributes for generating
Specs. Prior approaches [33–35] use hash tables or tree-based
indexes for metadata management, supporting dynamic unit
insertion during ingestion.

By contrast, our method pre-allocates and stores metadata
for all possible units (based on pre-extracted Sketches) in
contiguous memory. This allows seamless, cache-friendly
updates to all relevant metadata as each log entry is ingested.

4 Vectorized Query Processing

Pattern-based log storage methods break variables into frag-
ments and group fragments into units. This design choice
leads to a significant number of numerical units containing
only numerical characters. Based on our statistics on 15,402
units from 7 log types [18], approximately 53% of units are nu-
merical on average, accounting for about 60% of compressed
space (exceeding 80% on some logs).

This observation motivates previous works to encode these
units as integer vectors, aiming to improve compression ra-
tios and enable efficient arithmetic aggregation. However,
since logs are inherently in text format, performing pre/suffix
queries on them is common practice—and such queries
are naturally incompatible with integer-encoded units. Ex-
isting approaches either encode numerical units as plain
strings [33] or convert integers back to numerical characters
before pre/suffix queries [35].

We propose an efficient method to perform pre/suffix
queries on integer-encoded units, fully leveraging the vec-
torization potential offered by numerical units. As evaluated
in Section 6.2, this method is even more efficient than directly
executing pre/suffix queries on plain strings. Additionally, we
introduce a vectorized generation method for intermediate
query results to further accelerate analysis.

4.1 Vectorized Processing of Pre/suffix Queries
Prefix queries. Our key idea is to transform prefix queries
into multiple range queries. For example, checking if “502769”
has a prefix of “502*” is equivalent to verifying whether it
belongs to the range “[502000, 503000)”. We term this range
as the “compared range” of the encoded number. However,

the key challenge is how to efficiently determine the correct
compared range for each encoded number using vectorized
operations.

We propose to calculate a “squeezing range” for each en-
coded number to derive its compared range. Given a parame-
ter b (a power of 2), for any encoded number, there exists a
unique integer m such that the range [bm−1,bm) contains the
number. We term this range as the “squeezing range” of the
encoded number.

It can be proved as follow that when b is a power of two
smaller than 10, each squeezing range [bm−1,bm) contains at
most one compared range:

Proof. Consider a positive integer a within a compared range.
If its compared range is contained in a squeezing range
[bm−1,bm), then

a ∈ [bm−1,bm) (1)

Multiplying a by 10 yields another compared range. If this
new range were also contained in the same squeezing range,
we would have.

10∗a ∈ [bm−1,bm) (2)

For b < 10, Equations 1 and 2 cannot hold simultaneously.
Thus, each squeezing range contains at most one compared
range.

Based on this theorem, we design our vectorized pre-
fix query algorithm. The algorithm first performs SIMD
right-shifting operations (_mm256_srli_epi32) on all en-
coded numbers, shifting them by logb

2 bits per step. A num-
ber is within the squeezing range [bm−1, bm) if it becomes
zero after m shifts. Using a conditional blending instruc-
tion (_mm256_blendv_epi8), we load the identified compared
range (or [0, 0) if none is found) into corresponding slots
of the SIMD register. After loading ranges for all numbers,
SIMD comparison instructions check whether each encoded
number falls within the queried range, determining if the pre-
fix matches.

In the implementation, to avoid frequent loading of similar
compared ranges into the registers, we use the 16 YMM reg-
isters [9] to keep all alternative compared ranges stored in the
registers. We also maintain a map between squeezing ranges
and compared ranges in a table. Additionally, the value of
parameter b determines the total execution count of SIMD
right-shifting operations. Since a larger b reduces the number
of shifts, we choose b = 8, the largest power of 2 smaller than
10.

A concrete example is shown in Table 3. Here, we have
four encoded numbers. By shifting each number until it be-
comes zero (after m shifts), we determine its squeezing range.
Each squeezing range either contains no compared range
(e.g.,“3307”) or exactly one compared range. We load the cor-
responding range as the “queried range” and perform vector-
ized queries within it. Note that the queried range may differ
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Encoded Number Compared Range Moves to Zero Squeezing Range Queried Range Query Result
502769 [502000, 503000) 7 (>>21) [262144, 2097152) [502000, 503000) Hit
246532 [502000, 503000) 6 (>>18) [32768, 262144) [50200, 50300) Miss
3307 [5020, 5030) 4 (>>12) [512, 4096) [0,0) Miss
45237 [50200, 50300) 6 (>>18) [32768, 262144) [50200, 50300) Miss

Table 3: An example for vectorized prefix queries (query “502*” on integer-encoded units)

from the compared range if the number lacks the queried pre-
fix (e.g., “246532”), but this does not impact the final result.
Suffix queries. Suffix queries are much simpler than prefix
queries and only require determining whether the modulo
result of an encoded number matches the queried suffix. For
example, checking if “6927502” has a suffix of “*502” is
equivalent to determining whether “6927502” modulo 1000
equals 502. Since the modulo number (e.g., 1000 in this exam-
ple) remains constant for all encoded numbers, it is retained
as an immediate value to accelerate calculations.

Our algorithm computes modulo results for all encoded
numbers and performs vectorized point queries on these re-
sults. While the modulo operation itself is not vectorized,
the algorithm matches the performance of executing suffix
queries directly on plain strings. Vectorized optimization of
suffix queries is reserved for future work.

Mask Code Array Order Description
00000000 0 1 2 3 4 5 6 7 Original order
00000001 7 0 1 2 3 4 5 6 Move 7 to the head

.... ....
01001101 1 4 5 7 0 2 3 6 Move 1, 4, 5 and 7 to the head in turn

.... ....
11111111 0 1 2 3 4 5 6 7 Original order

Table 4: The shuffle rule to construct index

4.2 Vectorized Construction of Intermediate
Results

Since an aggregation can perform queries on multiple vari-
ables simultaneously, it needs to store intermediate query re-
sults so that subsequent queries can leverage previous results.
We adopt the Indexed Bitmap proposed in prior work [34]
to record intermediate results, consisting of a bitmap and an
index array tracking all positions marked “1” in the bitmap.
To further accelerate analysis, we propose a vectorized con-
struction strategy for this structure using SIMD shuffle in-
structions.

A SIMD shuffle instruction takes a “Mask Code” and an
original array as inputs; it then reorders elements in the array
according to the mapping defined by the Mask Code in a
shuffle matrix. In our case, the result bitmap serves as the
Mask Code, and the original array contains 32-bit natural
number sequences. A customized shuffle matrix is shown in
Table 4, designed to move positions corresponding to “1” in

the bitmap to the front of the array. For example, if the bitmap
(Mask Code) is “01001101”, indicating hits at the second,
fifth, sixth, and eighth positions, the shuffle instruction moves
indices “1”, “4”, “5”, “7” to the front. The array order becomes
“1 4 5 7 0 2 3 6”, with the first four numbers forming a segment
of the index array.

The vectorized construction process involves three steps:
1) Perform vectorized comparison operations on encoded data
to generate a bitmap of search results using the scatter instruc-
tion (_mm256_movemask_epi8). 2) Using the bitmap and
shuffle matrix, construct an index array segment via the shuf-
fle instruction (_mm256_permutevar8x32_epi32). 3) Gather
all segments to build the Indexed Bitmap using the gather
instruction (_mm256_storeu_si256).

An example of this process is illustrated in Figure 4. The
algorithm first performs a vectorized point check “(==2)” on
16-bit encoded data to obtain the corresponding bitmap. It
then loads the natural number sequence and bitmap into the
register, using the customized shuffle matrix to reorder ele-
ments. This process constructs an index fragment for every 8
numbers, with all indices corresponding to “1” in the bitmap
gathered at the front. These indices are written back to form
the Indexed Bitmap.

3 2 1 5 2 2 5 2 4 2 3 6 4 4 2 7Data

Vectorized Calculation (=2?)

0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0Bitmap

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Natural

NumSeq

Shuffle Matrix Shuffle Matrix

1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0

1 4 5 7 9 14

1 4 5 7 9 14Index

Write Back

16bit

32bit

3 vector instructions vs. 16 scalar instructions

Figure 4: Vectorized construction of Indexed Bitmap

5 Implementation

By integrating all discussed techniques, we implement a log
storage system named LogCrisp using approximately 15,000
lines of C++ code. LogCrisp simultaneously achieves high
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Figure 5: Overview of the LogCrisp system

compression ratios, fast ingestion speeds, and low analysis
latency. Figure 5 presents an overview of LogCrisp. The
workflow of LogCrisp can be summarized as follows:

Training. LogCrisp employs a Trainer to extract global infor-
mation, including output statements and Sketches, from a log
sample. It uses LogGrep’s log parser to identify output state-
ments. The specifics of Sketches are discussed in Section 3.1,
and the extraction process is detailed in Section 3.2.

Compression. For each log block, LogCrisp uses an Extrac-
tor to: 1) Parse log variables based on output statements. 2)
Locate fragments for encoding using pre-extracted Sketches.
3) Organize fragment positions into batches optimized for
CPU cache lines (§3.3). Each compression stream corre-
sponds to a batch group. The Extractor also extracts Specs for
each variable type during ingestion (§3.2). A Packer then com-
presses fragments into units using zstd [13]: numerical units
are encoded as integer vectors, while others use string vectors.
Specs and compressed units are packaged into a zipped file.

Analysis. LogCrisp supports aggregated analysis on desig-
nated numerical units using query results from multiple units
(e.g., Count * where IP=xxx” and ERROR”). Aggregation
types include counting, summing, and min/max operations;
query types include point, prefix/suffix, and range queries.
LogCrisp supports: 1) Grep-like full-text queries, similar to
prior works [29, 33, 34]; 2) Queries on specific units. Count-
ing, point, and prefix/suffix queries work in both modes, while
other aggregations and range queries require designated units.

The query process involves four steps: (1) Locate Variables:
Match output statements to identify queried variables (like
prior works [33]). (2) Filter Units (Steps ① and ②): Load
zipped files and combine Sketches/Specs to filter relevant
units (§3.2). (3) Execute Queries (Step ③): Perform vector-
ized queries on integer-encoded units and fixed-length queries
on string-encoded units (§4.1). Store intermediate results in
an Indexed Bitmap (§4.2). (4) Finalize Results(Step ④): Use
the Indexed Bitmap to execute subsequent queries and gener-
ate final results.

6 Evaluation

We evaluate LogCrisp on a vast volume of logs and compare
it with state-of-the-art works. Our evaluation answers the
following questions:

• How does LogCrisp ’s overall performance compare to
state-of-the-art works? (§6.1)

• In LogCrisp, how much benefit does each key technology
bring? (§6.2)

• How long is the training time of LogCrisp? How fre-
quently must LogCrisp execute the training process?
(§6.3)

• How does LogCrisp perform on different types of query
strings? (§6.4)

• What percentage of query latency does each sub-
operation in a single query account for? (§6.5)

The logs tested include three parts: 1) The four largest
log types from the LogHub Dataset [18]; 2) All log types
opened by the authors of CLP [37]; 3) Six types of real-world
production logs collected from Alibaba Cloud. The total scale
of these logs is nearly 7TB, with their names and sizes listed
in Table 5.

We compare LogCrisp with two state-of-the-art methods,
LogGrep and CLP:

• CLP [29]: the state-of-the-art global-pattern-based
method, CLP is tested by running its open-source
code [37] on all open logs. Due to our production envi-
ronment using a self-developed OS incompatible with
CLP, we exclude production log comparisons for CLP.
Like LogCrisp, CLP uses zstd for packing.

• LogGrep [33]: the state-of-the-art local-pattern-based
method, LogGrep is tested by running its open-source
code [4] on both open and production logs. While Log-
Grep defaults to LZMA for packing, we changed it to
zstd for fair comparison.

Since LogGrep does not support designating specific units,
we standardize the comparison across all methods by testing
counting analysis using grep-like full-text queries. We gen-
erated 22 query strings for production logs in collaboration
with Alibaba Cloud engineers and 28 query strings for open
logs to cover all execution paths of LogCrisp.

Before compression, a training process is required for each
log type. For all open logs, sampling 1% of logs suffices to
achieve over 99% Sketch matching rate. In practice, engineers
can re-run the training when matching rates decline. Log
ingestion uses a single thread for all logs except LogF (TB-
scale), which employs 8-thread parallel ingestion with results
normalized to a single thread.
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Testbed. Experiments on open logs were conducted on a
server with 2× Intel Xeon Silver 4210R (2.40GHz, 16 cores),
64GB RAM, and Ubuntu 11.3.0 kernel. Experiments on pro-
duction logs used an Alibaba Cloud server with 2× Intel Xeon
CPU E5-2682 v4 (2.50GHz, 32 cores), 188GB RAM, and a
self-developed kernel based on Linux 3.10.0.

6.1 Overall Performance

We compare the overall analysis performance, ingestion
speed, and compression ratio across all 13 log types. Detailed
results are listed in Table 5. LogCrisp consistently optimizes
analysis latency, compression ratio, and ingestion speed, out-
performing CLP and LogGrep by 15.32× and 4.65× on av-
erage in analysis performance. It ingests logs 2.43× faster
than LogGrep and achieves 95% of CLP’s ingestion speed
on average. Regarding compression ratio, LogCrisp matches
1.11× CLP and 96% of LogGrep’s ratios on average.
Analysis latency. LogCrisp outperforms other systems in
respect of aggregation analysis latency on all tested query
strings on all datasets. We list the average analysis latency in
the table.

To be concrete, on open datasets, the analysis latency of
LogCrisp is 4.03× to 40.11× (average 15.32×) lower than
that of CLP. We find LogCrisp outperforms CLP by 40.11×
on average on Windows logs. This is because the inverted
index on Windows is relatively simple since it does not have
many variables. This is good news for compression ratio
and ingestion speed but causes a high query latency by al-
most decompressing all compressed logs without any filtering.
Compared with LogGrep, the analysis latency of LogCrisp is
4.30× to 10.90× (average 4.29×) lower. This is mainly be-
cause LogCrisp can achieve comparably high efficiency with
the help of both Sketches and Specs and it can also achieve
efficient vectorized queries on integer-encoded units. For ex-
ample, LogCrisp can outperform LogGrep on Hadoop by
10.90×, since Hadoop includes many integer-encoded units,
these units may cause a reduction on compression ratio, but
can accelerate the analysis significantly by fully exploiting
the vectorization technique.

As for the production logs, LogCrisp outperforms LogGrep
by 2.50× to 7.27× (5.07× on average). Such result confirms
the efficiency of LogCrisp to achieve fast aggregation analysis
again.

To sum up, we find LogCrisp can outperform other com-
pared systems and achieve significant performance gain in
respect of analysis latency on both open and production logs.
Compression ratio. The compression ratio of LogCrisp is
89% and 95% of the highest compression ratio among three
systems on average on LogHub dataset and CLP-opened
dataset. LogGrep has the best compression ratio on these
two datasets by 96% and 97% of the highest compression
ratio on average.

We find LogCrisp achieves the highest compression ratio
on HadoopL and Hive. Its compression ratio is compara-
ble to LogGrep except Hadoop where LogGrep outperforms
LogCrisp by 16%. The compression ratio of LogCrisp is
higher than CLP on most logs except OpenStackC and Win-
dows where CLP outperforms LogCrisp by 20% and 33%
respectively. Our investigation reveals Hadoop includes many
numerical values that are close to each other semantically, as
a result, encoding them as strings has a lower storage over-
head than encoding them as integers. OpenStackC includes
many user-specific formats used by CLP. Windows includes
few variables and many entries are in fact totally common,
as a result, using global pattern is enough to achieve high
compression ratio while more processing may incur extra
overhead.

As for the production logs, the compression ratio of
LogCrisp is comparable to LogGrep. The compression ra-
tio of LogCrisp and LogGrep are 97% and 99% of the highest
compression ratio on average respectively.

To sum up, introducing two-phase pattern extraction and
encoding numerical units as integer vectors does not affect
the compression ratio on most logs and the compression ratio
of LogCrisp is comparable to other compatible systems on
the tested logs.
Ingestion speed. The ingestion speed of LogCrisp is 91% and
95% of the highest ingestion speed on average on LogHub
dataset and CLP-opened dataset respectively. CLP has the
highest ingestion speed on these two datasets.

LogCrisp outperforms LogGrep on all logs significantly
by up to 2.38×. LogCrisp outperforms CLP on 2 types of
logs (Thunderbird, HadoopL) by up to 1.61×. These two logs
has many output statements and variables, which incurs high
overhead for CLP to build the inverted index. As for other
logs, the ingestion speed of LogCrisp is within 99% of that
of CLP on 2 types and lower than CLP on other 3 types by
up to 79% (Windows). This is because many log entries in
Windows are common, CLP does not need to build complex
inverted index.

As for the production logs, the ingestion speed of LogCrisp
is significantly higher than that of LogGrep by up to 3.72×.

To sum up, we find the ingestion speed of LogCrisp is com-
parable to or even outperforms global-pattern-based method,
i.e. CLP, on most types of logs.

6.2 Individual Benefits of Proposed Techniques
We evaluate the impact of each proposed technique using
all open logs in Table 5. The effectiveness of our vector-
ized algorithm correlates strongly with query type; we an-
alyze its impact using representative Hadoop log queries:
two point queries (Q1: “blk_1075557039_1816215”, Q2:
“134217728”), one prefix query (Q3: bytes: “1*”), one suffix
query (Q4: “*28,”), and one range query (Q5: “bytes > 1342”).
Similar trends are observed across other logs and queries.
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Source Size (GB) Compression Ratio Ingestion Speed (MB/s) Average Analysis Latency (s)
CLP LogGrep LogCrisp CLP LogGrep LogCrisp CLP LogGrep LogCrisp

Hadoop LogHub 16.04 27.63 33.48 28.85 97.16 40.45 96.59 45.09 26.37 2.42
HadoopL Opened by CLP 428.87 42.30 54.31 54.76 87.52 43.31 89.33 603.83 82.81 56.70

Hive Opened by CLP 1.36 44.63 47.39 47.76 116.19 46.47 99.59 1.08 1.48 0.25
OpenStackC Opened by CLP 32.93 36.13 33.93 30.71 101.56 52.11 100.35 60.86 15.90 6.15

Spark LogHub 2.71 21.49 29.10 28.63 77.04 30.48 64.50 7.05 1.48 0.36
Thunderbird LogHub 29.61 22.76 34.41 32.83 49.14 38.23 58.87 38.39 20.82 9.53

Windows LogHub 26.09 404.80 339.74 304.50 140.61 67.63 111.31 62.98 4.58 1.57
LogA Production Log 18.67 / 23.17 21.79 / 23.93 69.79 / 8.05 3.23
LogB Production Log 45.82 / 17.72 18.24 / 17.85 54.75 / 20.15 4.25
LogC Production Log 65.74 / 14.17 13.79 / 14.72 41.25 / 50.04 10.21
LogD Production Log 2.12 / 10.84 10.14 / 17.61 65.65 / 4.02 0.66
LogE Production Log 7.82 / 16.18 16.82 / 19.82 69.63 / 1.29 0.18
LogF Production Log 6149.34 / 14.46 13.93 / 6.20 10.73 / 6199.90 1268.54

Table 5: Overall performance comparison. The best result across the three systems for each log type and metric is highlighted in
bold.
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Figure 6: Impact of vectorized per/suffix queries and vector-
ized construction of indexed bitmap

Two-phase pattern extraction (§3.2). We implement a ver-
sion called “LC-global” by only extracting a global pattern
on our log sample. We use such pattern to ingest logs as well
as filter units during the query. We test “LC-global” on all 7
open logs and plot the results of 6 types of logs in Figure 7.
We do not put the result on HadoopL here since we do not
observe significant impact of such technique, which is mainly
because its patterns are relatively static on all log blocks and
a single global pattern is enough to filter most units. However,
on logs such as OpenStackC and Spark, global pattern will
be too general to serve for filtering. After we decouple the
Sketches and Specs within the pattern, we can eliminate the
average analysis latency by 2.59× on average and up to 5.55×
(Spark). Besides, two-phase pattern extraction can maintain
or even improve (by up to 7%) the ingestion speed, since
it can directly break the variables into fragments during the
ingestion without complex pattern matching. It also has less
effect on the compression, which only causes the compression
ratio to drop by 9% on windows since it has a relatively large
Sketch Warehouse. As a result, we need to record multiple
assigned numbers for backup Sketches in the units of main
Sketch.
Cache-friendly ingestion (§3.3). We implement a version

called “LC-w/o-cache” by recording positions in a list and
maintain metadata using a tree-based index like LogGrep.
According to Figure 7, we find by introducing the cache-
friendly design, we can improve the ingestion speed by 6%
to 43% (19% on average). Such method will have a more
significant improvement when each unit has many fragments
such as on Spark and Thunderbird.
Vectorized pre/suffix queries (§4.1). We first encode all
NUnits as plain strings and execute queries on them and mark
this version as “Str-encoded”. Then we change the encoding
format of NUnit into integer vector, execute our proposed
vectorized queries on them and mark this version as “Int-
encoded”. According to Figure 6, we find by encoding NUnits
as integer vectors and exploiting vectorization on such for-
mat, we can reduce the latency of point and pre/suffix queries
and support range queries additionally. Specifically, we can
eliminate the latency of point queries, prefix queries, and suf-
fix queries by 1.46×, 1.50×, and 1.22× respectively. The
results on prefix and suffix queries demonstrate by exploiting
vectorization properly, we can overcome the incompatibil-
ity between numerical encoding format and full-text queries
semantic.
Vectorized construction of indexed bitmap (§4.2). We
change the construction process of Indexed Bitmap in “Int-
encoded” version to our proposed vectorized manner, and
mark such version as “Int+Shuffle”. According to Figure 6,
we find the vectorized construction process of Indexed Bitmap
can eliminate the latency by 1.4× for Q1, 2× for Q3 and
1.85× for Q5. We find these three queries have dense results,
as a result, their construction processes of the Indexed Bitmap
take up a significant part.

6.3 Analysis of Training Overhead
Since the training process to extract Sketches is crucial for
delivering a global description in our design, we measure the
training overhead in terms of the training time, miss rate as
well as the training frequency.
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Figure 7: Impact of two-phase pattern extraction and cache-friendly ingestion (normalized to the best result in each dimension)

Training time. We evaluate the training time of different sam-
ple rates on an open log (Hadoop) as well as a production
log (LogA). The results are shown in Figure 8. We find the
training time of production log is relatively larger than that
of open log due to the higher number of Sketches in produc-
tion logs. Generally speaking, in our experiment (sampling
1% log), the relative training overhead, namely the training
time divided by the compression time, is 10% (Hadoop) and
5.9% (LogA) respectively. The training overhead is higher
on Hadoop since the compression time on Hadoop is shorter
than that on LogA.

Miss rate. Miss rates for different sample rates on sampled
logs are shown in Figure 8. Open logs exhibited higher sen-
sitivity to sample rate than production logs. Given the sharp
increase at 10% sampling, we chose 1% sample rate for ex-
periments to balance training time and miss rate.

Training frequency. To evaluate training frequency, we
sorted Hadoop and LogA logs by timestamp and split them
into 64MB blocks. We trained on 1% of the first block and
applied results to subsequent blocks, triggering retraining
(with 1% sampling of all processed blocks) when miss rate
exceeded 5%.

Figure 9 shows the miss rate per block and total training
counts. For Hadoop (16GB total), we train for 3 times (5.3GB
per training on average). For LogA (18GB total), we train for
6 times (3GB per training on average). We find the production
logs change more frequently and thus the training process
will be executed for more times.

6.4 Performance of Different Query Interfaces

We show the comparison between LogCrisp and other systems
across different query interfaces. We evaluate 13 point queries,
7 prefix queries, 5 suffix queries and 3 range queries in total
and plot their average analysis speed with maximum and
minimum values as error bars in Figure 11.

For CLP, we find it performs better on point queries than
prefix and suffix queries, which is due to the complex wild-
card processing in CLP’s algorithm. LogGrep exhibits nearly
identical average performance across query types. As for
LogCrisp, it performs better on point and range queries than
those on prefix and suffix queries on average, since the integer-
encoded units are more compatible with the former two types.
But we find LogCrisp still outperforms LogGrep in prefix and
suffix queries even though the string-encoded units used by
LogGrep are compatible with such queries.

Besides, compared to other systems, LogCrisp exhibits a
wider speed range. This is because compared to filtering using
only global or local patterns, filtering with decoupled patterns
varies more significantly for each queried string. Queried
strings containing NAU characters can use the locating mes-
sages within Sketches to filter units while other strings can
only rely on the Specs.

6.5 Breakdown of Query Latency

We plot a breakdown analysis of query latency for Q1-Q5 in
Figure 10. We find for different queries, the Sketch loading
and Spec loading latency remain the same. In practice, users
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Figure 8: The training time and miss rate for different sample rate
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Figure 9: The miss rate on different blocks in the time series (showing the training frequency)

can load them once and execute multiple query strings based
on them. We find the point queries and the suffix queries spend
much time (0.84 - 1.12 seconds) to match on the patterns,
as these queries need to match patterns across multiple log
variables. The prefix queries and the range queries can directly
find the related log variable based on the output statement and
their matching latency is thus as low as only 0.03 seconds.
We find the latency of the prefix queries and the range queries
is much lower than that of the point queries and the suffix
queries. This is because the point queries need to search
within more units and the suffix queries need to calculate
modulus result for each encoded number.
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Figure 10: Query latency breakdown
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Figure 11: Query performance for different interfaces. CLP
and LogGrep cannot support range query.

7 Conclusion

This paper presents LogCrisp, a log storage system designed
to enable fast aggregated analysis on large-scale compressed
logs. Our evaluation shows that by decoupling messages
within log patterns, LogCrisp efficiently generates global de-
scriptions while maintaining filtering effectiveness. The pro-
posed paradigm enhances ingestion speed through hardware-
optimized techniques (e.g., cache-line alignment). By leverag-
ing vectorization properly, LogCrisp overcomes the semantic
mismatch between numerical encoding and full-text queries,
enabling vectorized queries on log data for the first time.
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