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Abstract

The scale of deep learning recommendation models (DLRM)
continues to grow, demanding increasingly vast computing
and storage resources. In production environments, improving
training efficiency and effectiveness has become the primary
goal to meet the needs of numerous model training jobs under
resource limitations. We introduce Primus, a unified training
system that unifies the training resources, data, and paradigms
to support high-performance DLRM training at ByteDance.
Specifically, ① Primus provides a unified abstraction of re-
sources and interoperates with multiple scheduling systems,
achieving a consistent training experience with horizontal
and vertical dynamic scaling strategies across resource pools.
② Primus offers a unified three-tier data definition and em-
ploys a data task graph generation approach to support data
orchestration of multi-source training samples composed of
batch and stream data. ③ Primus devises a new hybrid train-
ing paradigm for DLRMs that ensures high model timeliness
by controlling parameter updates and applying fine-grained
prioritization of mixed batch and stream data.

Primus has demonstrated its efficiency and effectiveness in
handling large-scale, enterprise-grade DLRM training over
five years of deployment at ByteDance. Evaluations show
Primus’s optimizations of resources, data, and paradigms.
Firstly, dynamic scaling reduces training cost by 17.1% at the
cluster level and increases CPU utilization from 50% to 80%
per job. Secondly, data orchestration accelerates task genera-
tion by 23× and achieves higher training throughput. Lastly,
after applying the hybrid training paradigm with 4 different
DLRMs, advertising revenue increases by 0.4%-2.4%.

1 Introduction

Deep learning has significantly impacted the internet indus-
try, particularly in applications such as search [63], advertis-
ing [14], and recommendations [16, 54]. As the user base and
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data volume continue to grow, the complexity and compu-
tational demands of deep learning recommendation models
(DLRM) [60] have increased substantially [11, 22].

As shown in Fig. 1, ByteDance’s internal DLRM daily
training jobs have grown tenfold in five years, with daily
training data per model increasing from 20 TB to 160 TB,
and daily CPU virtual core usage rising from 1.5 million to
9 million. As of 2025, ByteDance has employed more than
10 million CPU virtual cores, tens of thousands of GPUs,
and 7 EB of total training data for DLRM training. The total
training volume for a single model can exceed 20 PB of data
and involve more than 1 billion neural network parameters.
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Figure 1: Our DLRM Trends
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Figure 2: Training Systems

To support such large-scale training, efficient coordination
of training resources, data, and models is essential. As illus-
trated in Fig. 2, developers submit models via deep learning
frameworks, after which the training system requests nec-
essary training resources from resource scheduling systems
and concurrently loads relevant training data from distributed
storage systems. Training large-scale DLRMs requires sub-
stantial GPU resources for model parameter updates and CPU
resources for data preprocessing [26, 39]. The underlying
training system directly affects resource utilization, conver-
gence speed, and model quality [2, 27, 29, 38].

At ByteDance, DLRMs power core services, including
Douyin, Xigua, and Toutiao. Meeting the demands of high-
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Figure 3: Primus Architecture. ① Unified resource scheduling includes a training master that monitors new JobCRDs and utilizes
a unified resource controller to allocate or reallocate executors. ② Unified data orchestration provides a data task planner to
generate batch and stream tasks, which are then dispatched to data executors for data loading. Training executors load remote
data samples via RPC and construct minibatches for training. ③ Unified training paradigm allows developers to submit DLRM
training jobs to the API-Server, whether offline, online, or offline-online, by declarative JobCRDs and DataCRDs definitions.

frequency, large-scale training requires an efficient solution
capable of coordinating training resources, orchestrating data
processing, and supporting training paradigms. Therefore, es-
tablishing a unified training system is imperative [18, 21, 56]
to meet ByteDance’s needs for enhanced training efficiency
and effectiveness.
Challenges & Limitations. Although some existing studies
[3,25,32,45,64] have addressed one or more aspects of unified
training systems, the limitations of current solutions still fail
to fully resolve the following production-scale challenges.
① Complex and diverse environments, with resources hosted

in multiple scheduling systems. Modern large-scale deploy-
ments typically span heterogeneous resource pools man-
aged by different scheduling systems. However, current ma-
chine learning scheduling frameworks typically only sup-
port a single scheduling system, such as YARN [12, 19, 28]
or Kubernetes [27, 31]. Elastic training strategies lack the
capability to operate across different scheduling systems,
like [13, 26, 57, 65, 68] are restricted to GPU elastic train-
ing within Kubernetes. Others lack support for heteroge-
neous resources, for example, only adapting to GPU adjust-
ment [18, 26, 32, 55, 57] or being limited to CPU schedul-
ing [62]. Even systems [50, 64] consider multiple sources but
overlook the horizontal and vertical scaling mechanisms.
② Large-scale multi-source data, including stream and batch

processing data. DLRM training increasingly involves read-
ing samples from multiple data sources, stored across a variety
of systems and formats. The lack of a unified data descrip-
tion complicates orchestration, transformation, and integra-
tion. Moreover, the growing complexity of feature engineer-
ing pipelines [26, 60] imposes substantial preprocessing de-
mands on CPUs, resulting in a bottleneck in data reading
and processing during training [50, 66]. Existing training sys-

tems [47, 52, 66] rarely offer native support for orchestrating
data from both stream and batch data sources. In particular,
integrating emerging storage systems and data formats, like
Feature Store [43], require intrusive modifications to training
frameworks like TensorFlow [1] and PyTorch [44].
③ Further online model effectiveness improvement, con-

strained by catastrophic forgetting. Maintaining the timeli-
ness of DLRMs is critical for ensuring inference effective-
ness [36], given the continual evolution of user behaviors and
preferences over time. Timely training updates empower DL-
RMs to reflect current trends more accurately. While online
training approaches [28,33,35] directly train with stream data
to enhance model timeliness, relying solely on stream data
poses the forgetting problem. Specifically, data distribution
shifts [59], leading to inadequate utilization of historical sam-
ple space. Besides, online learning also does not solve the
problem of delayed feedback [30]. Even with the use of both
offline and online training modes [10], the lack of unified
training support in systems hinders high-frequency updates
due to the need for model dumping and loading.
Our Solution. To address the above challenges, we have de-
signed and developed Primus, a unified and production-ready
training system tailored for large-scale DLRM workloads. As
shown in Fig. 3, Primus is a layered yet centralized architec-
ture that provides unified resource scheduling, unified data
orchestration, and a unified training paradigm to integrate with
multiple resource scheduling systems and distributed storage
systems. Primus coordinates resources, data, and models in a
cohesive solution, achieving DLRM training efficiency and
effectiveness at the industrial scale.
Contributions. Using Primus, thousands of DLRM training
jobs across millions of CPU cores, and tens of thousands
of GPUs have been trained efficiently and effectively. We
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summarize the following four key contributions:

• We introduce a unified resource abstraction technique,
which leverages multi-cluster resources and achieves multi-
strategy dynamic scaling. We standardize DLRM training
jobs and heterogeneous resources through custom resource
definitions (CRDs), providing a unified API across schedul-
ing systems. It enables seamless resource scaling, reduces
the overhead of restarting training jobs, and improves clus-
ter resource utilization. (Sec. 3)

• We propose a unified three-tier data definition, comprising
dataset, data stream, and data source layers, to manage
DLRM’s training dataset effectively. With this definition,
we further optimize the data task graph generation for data
orchestration, enhancing the efficiency of processing batch
and stream data from multiple sources, and adapting to the
diverse data needs of training jobs. (Sec. 4)

• We present a unified offline-online mixture training
paradigm that meets the demands for both robustness and
timeliness in DLRMs. It leverages both batch and stream
data to continuously improve model performance. Primus
optimizes the logic for model parameter updates and en-
hances the integration of batch and stream data for DLRMs
at the system level. (Sec. 5)

• Primus has been actively supporting DLRM training within
ByteDance for five years. Through empirical evaluations
on production models and datasets, we showcase Primus’
capabilities in large-scale resource scheduling and data
orchestration. Notably, mixture training with Primus yields
up to a 2.43% increase in advertising revenue. (Sec. 6)

Open-Source. The open-source version of Primus is available
at https://github.com/bytedance/primus.

2 Primus Overview

The architecture of Primus is presented in Fig. 3. Primus is
designed as a centralized, layered architecture that addresses
the complexity and inefficiencies in large-scale DLRM train-
ing. Primus consists of three logical planes: unified resource
scheduling, unified data orchestration, and unified training
paradigm. We will briefly introduce the end-to-end training
workflow and core system components.

2.1 Workflow for DLRM Training

DLRM training typically consists of two phases: offline train-
ing and online training [41]. In the offline phase, training jobs’
data executors load batch data from offline storage systems
like HDFS and Feature Store. After decoding and transforma-
tions, the data is used in deep learning frameworks such as
TensorFlow or PyTorch to calculate model weights. Subse-
quently, online training is employed to improve model perfor-
mance [35] continuously. In the online phase, training jobs

use online data samples from stream sources instead of batch
sources to update model weights. These model weights are
synchronized to inference servers at regular intervals for on-
line service [48]. Due to the presence of high-dimensional
sparse features and large embedding tables, DLRM training
systems must sustain high data throughput while maintaining
training stability across distributed executors.

Developing, training, and deploying DLRMs involves coor-
dinating multiple complex systems [66]. Figure 3 illustrates
the DLRM training process within Primus. In the unified train-
ing paradigm plane, deep learning developers submit a DLRM
training job, defining the training mode as offline, online, or
offline-online. The configuration of the training job is stored
in the API-Server as JobCRD and DataCRD. In the unified
training resource plane, the Primus master initiates first, then
it monitors the status of JobCRDs, DataCRDs, and Metric-
CRDs in the API-Server in real-time, and requests resources
from the scheduling system based on JobCRD to build the
training topology. Typically, a training topology comprises
several data executors for data loading and training executors
for training. In the unified training data plane, the task planner
in the master constructs DataCRD into data tasks, which are
then dispatched to the executors via remote procedure calls
(RPC). The data executors read samples from HDFS, Kafka,
and Feature Store through the corresponding task runners.
These samples are then converted into minibatches and saved
to the data server. The training executors pull the minibatches
remotely and process them in the neural network to complete
model training. The intermediate states and results of the
model training are stored in HDFS or parameter servers (PS).

2.2 Component Design and Functionality

Following the concept of tri-unified training resources, data,
and paradigms, Primus implements three core components:
Primus APIs, Primus Master, and Primus Executors, which
collaborate to optimize training efficiency and effectiveness.

• Primus APIs: DLRM information is submitted to the API-
Server by deep learning developers via an API-Client. The
API-Server stores and records job and data details, that
describe each model’s requirements and configuration.

• Primus Master: Acting as the central unit for training, the
master is responsible for scheduling computational tasks
and managing training data. It requests resources from
various scheduling systems through the unified resource
controller. During execution, the dynamic scaling manager
adjusts resources. The task planner translates the DataCRD
into actionable tasks while the state/checkpoint manager
records the status of tasks. As a centralized design, Primus
adopts frequent checkpoints, resource reservation and sta-
ble constraints for fault tolerance and high availability.

• Primus Executors: Executors are responsible for executing
training tasks. Data executors handle data management,
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Table 1: Primus Component Design and Module Functionalities

Component Module Functionality

Primus APIs API-Server - Stores JobCRDs, DataCRDs, and MetricCRDs, provides API-Client to read/update/watch CRDs.

Primus Master:
Training Master

Data Task
Planner

- Compiles DataCRDs into dataset logical plans and optimizes them.
- Compiles dataset logical plans into dataset physical plans for batch/stream data task generations.

Unified Resource
Controller

- Unifies different resources belonging to various resource scheduling systems.
- Monitors JobCRDs, following the change requirements by request, release, and update resources.

Dynamic Scaling
Manager

- Monitors and loads training metrics through the API-Client, generating scaling strategies.
- Selects the optimal horizontal and vertical scaling strategies, changing JobCRDs accordingly.

State/Checkpoint
Manager

- Receives heartbeats from executors and records the status of batch tasks (running, finished)
into persistent storage.

Primus
Data Executor:

CPU

Task Runner
- Fetches tasks from the task planner output queue of the master.
- Parses and loads tasks as training samples according to their configurations.

Data Worker - Extracts, filters, and converts data into standard training samples, saving them locally.

Dataset Server
- Collects local outputs from different upstream task runners.
- Provides an RPC service endpoint for remote data reading by downstream training executors.

Primus
Training Executor:

GPU/CPU

Training Worker
- Loads models into deep learning frameworks, reads sample tensors, performs forward and
backward propagation, and then applies optimization to get final model parameters.

Dataset
Remote Reader

- Remotely reads data from data executors, and aggregates results from different upstream
sources, and constructs training minibatches.

while training executors perform complex model compu-
tations. Each data executor includes task runners reading
different format data from various storage systems, data
workers performing sample conversion, and the dataset
server aggregating the converted samples. The training ex-
ecutors retrieve data from the data executors via the dataset
remote reader and perform further training computations.

Table. 1 outlines the modules within each component, de-
tailing their associated entities and respective functionalities.

3 Unified Resource Scheduling

To fully utilize existing resources to meet the increasing de-
mands of large-scale DLRM training at ByteDance, Primus
integrates resources through the unified resource controller
and dynamic scaling manager, as shown in Fig. 4. Specifically,
the unified resource controller standardizes the semantics of
different resource scheduling systems with JobCRD. Addi-
tionally, the dynamic scaling manager enhances the capability
for elastic training through collaborative vertical and horizon-
tal scaling. Primus significantly improves training efficiency
through multi-cluster resource scheduling and multi-strategy
dynamic scaling capabilities.

3.1 Multi-Cluster Resource Scheduling

We design the unified resource controller to adapt to the two
most widely used resource scheduling systems, YARN [6],
and Kubernetes [9]. This allows developers to define a training
job topology independent of the underlying resource schedul-
ing systems using the standard JobCRD, ensuring a unified
user experience and reducing development costs.

The unified resource controller converts the JobCRD into
resource requests specific to each scheduling system, provid-
ing a container manager for each job on YARN or an operator
as a resource controller for each cluster on Kubernetes. When
running on YARN, an API-Server is started for each job to
provide read/write services for CRDs, whereas, on Kuber-
netes, the cluster’s API-Server is used directly. Primus can
automatically select resources from multiple YARN and Ku-
bernetes clusters for scheduling based on their idle status. It
leverages resources from underutilized clusters while releas-
ing resources when cluster resource utilization is high, thus
increasing overall resource efficiency.

Besides, the unified resource controller monitors JobCRD
changes and schedules resources accordingly without requir-
ing active user intervention. The dynamic scaling manager
modifies JobCRDs determined on optimal scaling strategies
using MetricCRDs. The unified resource controller facilitates
seamless implementation of horizontal and vertical scaling
across different scheduling systems. It addresses the issue of
insufficient resources on low-performance executors while
enhancing the cost-effectiveness of clusters.

3.2 Multi-Strategy Dynamic Scaling

The dynamic scaling manager combines multiple scaling
strategies to support distributed training within large-scale,
heterogeneous clusters. Motivated by production experience,
key metrics like CPU, memory, network, GPU, and dataset
pool size are monitored and aggregated into MetricCRDs.
Based on these metrics, the following scaling strategies are
automatically selected to increase training throughput and
improve resource utilization. For stability, only one scaling
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Figure 4: Unified Resource Scheduling

strategy is executed at a time, while it is still a minute-level dy-
namic scheduling decision. The selection involves validating,
sorting, and optimizing steps using previous scaling strategies,
resource type, adjustment range, etc.
Dynamic Horizontal Scaling: Primus’ horizontal scaling
capabilities are well-suited for large-scale cluster scenarios,
achieving dynamic parallelism. In CPU and GPU collabora-
tive training scenarios, tuning the ratio of data executors and
training executors is allowed.

• Efficient scaling of executors within large clusters: Gradu-
ally increasing the number of training executors has been
shown to improve AUC (area under the receiver operating
characteristic curve) performance [17]. However, schedul-
ing latency is challenging in large-scale scheduling systems
with over 1 million cores. Primus reduces scheduling la-
tency by deploying sharded operators for larger clusters
and assigning different training jobs to different operators
using hashed job names.

• Auto-tuning in collaborative CPU and GPU training: Pre-
determining the optimal ratio of data to training executors
for various jobs is challenging. Primus employs horizontal
scaling to dynamically adjust the ratio of data executors
to training executors based on a load value Lu calculated
using metrics from data executors. Let u = [ub,uc,um] rep-
resent the total buffer pool, CPU, and memory utilization of
data executors, respectively. Users can assign customized
weight vector w = [w1,w2,w3] for each utilization metric
based on their training job’s requirements. Primus offers
an intuitive interface and recommended weights.

Lu = w ·u (1)

A load threshold Lθ is predefined based on historical job
data and performance metrics. When Lu < Lθ, indicating a
higher training executor capacity than data executor capac-
ity, Primus increases the number of data executors. Con-
versely, when Lu > Lθ, Primus reduces the number of data
executors. This automatic adjustment improves training
throughput and efficiency without resource waste.

Dynamic Vertical Scaling: Primus uses real-time metrics to
dynamically adjust CPU and memory resources on individual
executors. Each executor has a metrics collector that regularly
gathers data on CPU and memory utilization, I/O throughput,
and network bandwidth. These metrics are collected from
each executor and made accessible through the API-Server.
The dynamic scaling manager calculates future resource re-
quirements based on these metrics and updates the JobCRD
accordingly. The unified resource controller then adjusts the
resource allocation as needed.

We gather NR historical resource metrics denoted by R,
and utilize function D(NR) to forecast resource changes in
the subsequent period, as expressed in Eq. (2). Recognizing
the temporal relevance of these metrics, we assign weights
wi =

1
NR−i+1 , emphasizing a stronger influence from more

recent metrics. To determine the adjustment range Rx, we
analyze resource changes over the past x minutes, maintaining
a small interval—typically 10 minutes—to enhance utilization
while ensuring stability. That is, Rx = D(x).

D(NR) = ∑
i∈[1,NR]

w(i) · (Ri−Ri−1)

NR

,w(i) =
1

NR− i+1
(2)

We use Ralloc to represent the currently allocated resources
for each executor, while Ruse denotes the maximum resource
used over the past x minutes. To ensure stability, a predefined
resource safety margin Rs guarantees resource redundancy,
preventing individual executors from encountering out-of-
memory (OOM) errors due to overly sensitive adjustments.
The sign of Rx determines the direction of resource adjust-
ment. We employ Eq. (3) to compute the updated resource
allocation R′alloc. Additionally, a minimum adjustment thresh-
old Rθ is set. Adjustments where |R′alloc−Ralloc| ≤ Rθ are not
implemented to avoid frequent minor adjustments.

R′alloc = Rused +Rx +Rs (3)

4 Unified Data Orchestration

At ByteDance, data sources are typically organized by busi-
ness units and stored across various storage systems, such as
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Figure 5: Unified Data Orchestraction

HDFS, Kafka, and Feature Store. Additionally, utilizing data
samples from multiple data sources can help DLRMs capture
more complete information. While existing data orchestration
solutions [7, 64] and modern ML frameworks [1, 44] support
diverse data types, challenges remain in efficiently managing
chronological data across multiple sources, particularly for
stream data in online training environments at production
scale. In pursuit of efficient data management for DLRMs, we
propose an integrated data component that abstracts both data
definition and acquisition logic, serving data to training jobs
in the desired order through streamlined APIs. This solution
optimizes data orchestration, improving both performance
and stability in DLRM training.

4.1 Three-Tier Data Definition

To facilitate training jobs for DLRM in our production envi-
ronments, there are three unique data orchestration require-
ments for optimizing model effectiveness: 1) scheduling train-
ing data among data workers with a sliding window over
data generation time, 2) supporting stream data sources to
minimize the time required for online training data to enter a
training topology, and 3) providing mixed training data from
stream and batch data sources for more sophisticated mod-
els. Therefore, to fulfill these requirements, Primus stratifies
the definition of training data into three tiers: Primus dataset,
Primus data stream, and Primus data source:

• Primus Dataset: A Primus dataset represents an unbounded
stateful data input for a training job. It manages the life-
cycle of one or multiple Primus data streams, which can
be served sequentially or simultaneously according to the
requirements of training models.

• Primus Data Stream: A Primus data stream is composed
of one or multiple Primus data sources. It serves data to
its designated data workers by mixing and scheduling the
Primus data sources with a sliding window in either hourly
or daily granularity.

• Primus Data Source: A Primus data source represents the
data of a given period persisted in a particular storage sys-

tem. This period could be either bounded or unbounded
for continuous online training. Additionally, Primus data
sources are responsible for converting data to the format
specified by training models to eliminate discrepancies in
data formats across different storage systems.

4.2 Data Task Graph Generation (DTGG)

Primus embraces data parallelism to harvest the performance
improvement from distributed training. Although existing
solutions are able to efficiently orchestrate data at scale [52],
they lack the support for mixing multiple data sources and
serving them chronologically. To address these needs, Primus
analyses the assigned Primus data streams and generates data
tasks, which are subsequently dispatched to the data executor
according to their generation order, where a data task specifies
the data from a Primus data source in a time window.

However, data task generation has become a bottleneck due
to the increasing data volume since naive implementations
may leave training workers pending for data and ultimately
lead to underutilized computational resources. Therefore, we
introduce data task graph generation (DTGG), a technique
designed to improve the performance of data task generation.
A DTGG comprises four types of operations (OPs) to serve a
Primus data stream, as shown in Fig. 5.

• Timer OPs: The timer OPs are populated for every time
window that can be derived from a Primus data stream, and
thus, timer OPs are populated indefinitely for unbounded
Primus data streams.

• Data Source OPs: The data source OPs are derived from
their corresponding Primus data sources and are respon-
sible for generating data tasks based on the time window
propagated from their depending timer OPs. For instance,
a Feature Store data source OP queries the designated Fea-
ture Store table with the propagated time window to locate
the relevant data files on storage, which are later built into
individual data tasks.

• Joiner OPs: The joiner OPs collect all the data tasks gener-
ated from their depending data source OPs. The completion
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of a joiner OP marks the successful generation of data tasks
for its designated time window.

• Sink OPs: The sink OPs are responsible for pushing the
generated data tasks into a buffer for future assignments
to data executors. Importantly, sink OPs always depend on
their predecessor to ensure the correct chronological order
in data task executions.

In addition to parallelization, DTGG can further accelerate
data task generation at runtime by caching data tasks for
repeated usages and fusing data source OPs derived from the
same Primus data sources to amortize the cost of interacting
with storage systems.

4.3 Data Component Architecture

To ensure stability, especially for online models, each training
job is assigned to a dedicated data component. As shown in
Fig. 5, the data driver generates data tasks for the configured
Primus data streams and orchestrates their execution among
data executors at the center. Meanwhile, the surrounding data
executors process the dispatched data tasks and serve the
acquired data to their corresponding data workers. Benefiting
from the centralized architecture [7], the data component can
load balance across data workers via dynamic sharding and
provides fault tolerance mechanisms.

4.3.1 Data Driver

In order to well orchestrate data tasks among data executors,
the data driver has to generate data tasks efficiently, distribute
them to data executors, monitor their status, and provide fault
tolerance mechanisms. Therefore, to fulfill these responsibili-
ties, the data driver is composed of five modules.

• Data Task Planner: The data task planner obtains the con-
figured Primus data stream for the training job from API-
Server and generates corresponding data tasks using DTGG.
The generated tasks from batch data sources and stream
data sources are then forwarded to the batch task queue and
stream task graph, respectively, for subsequent assignments
to data executors.

• Batch Data Task Queue: The batch task queue manages
the lifecycles of generated batch tasks, which are tracked
through four states: pending, running, succeeded, and failed.
Meanwhile, the batch task queue persists batch tasks on
remote storage to prevent batch task reconstructions in
cases of errors.

• Stream Task Graph: Similarly to the batch task queue, the
stream task graph manages the lifecycles of stream tasks.
However, since stream tasks run infinitely by binding a data
executor to a message queue topic and partition, there are
only two states for stream tasks: assigned and unassigned,
where the stream data loaded offsets are directly committed
to the message queue.

• Data Task Service: The data task service is RPC-based that
orchestrates data tasks among data executors by assigning
data tasks to them and tracking their status. Importantly,
to ensure alignment between batch and stream data serv-
ing time windows, the data task service may throttle task
assignments when necessary.

• Data Task Monitor: The data task monitor tracks the status
of assigned data tasks as reported by data executors. It also
periodically or on-demand creates checkpoints for fault
tolerance to accurately align with model checkpoints.

4.3.2 Data Executor

Data executors are initiated by the data driver to serve or-
chestrated data. Through the data task service, data executors
obtain data tasks and report both their own status and that of
the assigned tasks. Upon data task assignments, data execu-
tors launch a new data task runner to execute the assigned
data task and push the pre-processed data into an in-memory
sample buffer, which is finally served to its hosting training
worker in a standardized format such as Apache Arrow [4].
As shown in Fig. 5, multiple data task runners are employed
in parallel on each data executor to fully utilize the allocated
computational resources.

• Batch Task Runner: For every assigned batch task, the data
executor launches a new batch task runner, which executes
the batch task and terminates upon completion. Meanwhile,
the data executor periodically reports the status of the as-
signed batch tasks to the data driver.

• Stream Task Runner: Streaming task runners are launched
for assigned stream tasks. Nevertheless, pursuing better
stability in loading stream data sources, stream task runners
instead keep running without termination.

However, the static relationships between data executors
and the underlying topic and partition of message queues
make data component vulnerable to skewed data, which could
significantly impact the effectiveness of online models due to
the delays in learning stream data. Therefore, data component
supports a shuffle mechanism. By allowing data executors to
obtain data from each other, data component can well handle
skewed data with overheads on memory footprint and network
bandwidth in exchange for better overall stability in preparing
samples from stream data sources. To support various training
scenarios, Primus provides two different stream data loading
modes of data executors as listed in Tab. 2:

5 Unified Training Paradigm

To effectively combine online stream data with offline batch
data, leveraging the strengths of both online and offline train-
ing, we propose a unified training paradigm. Utilizing unified
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Figure 6: Unified Training Paradigm

Table 2: Stream Data Loading Modes of Data Executors

Mode Description

Forward
Fetch and pre-process data only from assigned
topics and partitions.

Rebalance Re-deliver fetched data to others for pre-processing.

resources and data, we delegate the complex resource schedul-
ing and data orchestration to Primus. This allows deep learn-
ing developers to focus primarily on model structure updating,
thereby facilitating model design. As shown in Fig. 6, we
design a mixture training recommendation model (MTRM)
that controls the learning sequence of batch and stream data
through different computational graphs for training. Addition-
ally, we introduce a mixture data prioritization mechanism,
which optimizes the logic for multi-source data retrieval and
provides row-level priority control. MTRM is one of the train-
ing paradigms supported by Primus, which also provides pure
batch, pure stream, and sequential batch-then-stream training.

5.1 Mixture Training Recommendation Model

Through statistical analysis and hypothesis testing, we iden-
tify two critical observations: 1) The non-MTRM suffers from
catastrophic forgetting, where the model prioritizes memo-
rizing the "current distribution". This leads to two primary
issues: first, it fails to retain samples over time, underutilizing
historical knowledge; and second, it becomes more suscepti-
ble to bias and delays in feedback, which results in instability.
2) Different batch data sources exhibit varying output delays
due to output strategies, such as label splicing goals (e.g.,
next-day retention, 7-day retention, etc.). Therefore, MTRM
requires controlling the sequence of multi-source data and
aligning batch data with stream data.

We propose the universal recommendation model frame-
work MTRM for mixture training, as shown in Fig. 6 (right).
The model comprises two key components: the memory tower
and the adapt tower. The memory tower focuses on long-term
parameter storage, processing historical data from batch data
sources to prevent catastrophic forgetting. The adapt tower
adapts to recent data from stream data sources, ensuring the
model remains updated with the latest trends. Typically, the

memory tower has a smaller network structure, minimizing
computational overhead. MTRM offers flexibility, allowing
the memory and adapt towers to be extended to various neural
network structures, supporting model innovation.

Algorithm 1: MTRM Training Process

Input: Continuous minibatches X from Dpri

Output: Updated MTRM with θnew
M and θnew

A

1 Initialize or load model parameters: memory tower θM ,
adapt tower θA;

2 Set learning rates α and loss functions LM , LA;
3 while Not all minibatches X are processed do

4 if X is Xbatch then

5 ebatch← Embedding(Xbatch);
6 hM ←MemoryTowerForward(ebatch,θM);
7 LM ← ComputeLoss(Xbatch,hM,θM);
8 θnew

M ← θM−α∇θLM;

9 else if X is Xstream then

10 estream← Embedding(Xstream);
11 haux←MemoryTowerForward(estream,θM);
12 hA← AdaptTowerForward(estream⊕haux,θA);
13 LA← ComputeLoss(Xstream,hA,θA);
14 θnew

A ← θA−α∇θLA;

15 return θnew
M or θnew

A

During training, the dataset remote reader maintains two
separate queues for batch and stream samples pushed by the
dataset service. The accumulation speed is dynamically de-
termined by the mixture data prioritization mechanism in
Sec. 5.2. Whenever samples in either queue reach the size
of a minibatch, the training worker executes a training loop
as outlined in Algorithm 1. The updated model parameters
are synchronized periodically between training workers. For
convenience, we denote a minibatch X of batch or stream data
samples as Xbatch or Xstream, respectively.

Each data sample from batch or stream sources is utilized
only once during training to avoid overfitting to the latest
data and to leverage long-term trends. We design the neural
network parameter update control logic as follows:

• Embedding Calculation: The input minibatch X passes
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through the embedding layers, generating the correspond-
ing feature embeddings ebatch or estream.

• Forward Propagation with Memory or Adapt Towers: 1)
The memory tower processes ebatch or estream, generating
hM = fθM

(ebatch) or haux = fθM
(estream), with θM as its pa-

rameters. 2) The adapt tower combines estream with haux to
generate hA = fθA

(ebatch⊕haux), using θA as its parameters.

• Loss Calculation and Parameter Updates: During backprop-
agation, the memory (or adapt) tower’s output hM (or hA

) are used to compute the loss LM (or LA). Its gradients
iteratively update the corresponding tower’s parameters.

Since batch data samples are processed several hours or
days after the corresponding stream data, the memory tower
has not yet encountered samples from the most recent time
period. Besides, haux is not used in the backpropagation of the
memory tower. This temporal and tower parameter separation
minimizes the risk of information leakage when haux is used
as auxiliary information for the adapt tower.

By leveraging this parameter update control logic, we aim
to balance overfitting concerns with the efficient handling of
delayed feedback, thus enhancing the robustness and effec-
tiveness of recommendation models.

5.2 Mixture Data Prioritization

Essentially, MTRMs are trained on data generated at different
times with constant offsets; therefore, the ability to effectively
orchestrate and integrate data from multiple sources is essen-
tial. By creating the prioritized data constructed from stream
and batch data sources configured with different offsets, the
required mixture data is served to model training. This design
is inspired by empirical observations of performance degra-
dation caused by stream data lag in production environments.

Due to the nature of production services, MTRMs are occa-
sionally struck by sudden surges in stream data, particularly
during peak hours or hot events. This can cause delays in
loading stream data and subsequently affect model effective-
ness. In such cases, merely scaling out data workers is not
ideal, as computing resources are limited and surge durations
are unpredictable. Therefore, an adaptive and resource-aware
prioritization strategy is essential.

To retain MTRMs’ effectiveness under high load condi-
tions, Primus enables data workers to prioritize data from
different data sources based on their importance and current
load. Algorithm 2 shows the detailed process of how data
are prioritized and served to the training workers. Data tasks
from multi-sources are executed by data workers with con-
trolled parallelism and pushed into their respective serving
buffers. When the dataset remote reader requests data, the
dataset server fetches data from the serving buffer with the
highest priority calculated by Eq. (4):

arg max
i∈1,2,...,n

pi = wi ·
1

1+ e−qi
(4)

Algorithm 2: Prioritized Data from Serving Buffers

Input: Serving buffers D = {D1,D2, . . . ,Dn}, buffer
weight W = {w1,w2, . . . ,wn}, and buffer
queued data length Q = {q1,q2, . . . ,qn}

Output: Continuous prioritized data queue Dpri

1 while Serving buffers D ̸= /0 do

2 maxIndex←−1, maxPri←−∞;
3 for i← 0 to bu f f erList.size−1 do

4 pi← wi · sigmoid(qi) ;
5 if pi > maxPri then

6 maxIndex← i, maxPri← pi ;

7 sample← DmaxIndex.pop();
8 Dpri.append(sample);

9 return Dpri;

where n is the number of severing buffer, pi is the priority
for the i-th buffer, wi is the weight assigned to the i-th buffer
indicating its importance, and qi is the length of the queued
data in the i-th buffer. The sigmoid function ensures that
buffer length contributes non-linearly to the priority score,
allowing Primus to flexibly balance data timeliness, buffer
backpressure, and source importance.

In production, the weights of stream data sources are much
higher than their batch counterparts due to their impacts on
model effectiveness. This flexible mixed data prioritization
can dynamically adjust the processing order of different data
sources to reduce data latency during high load periods.

6 Evalutions

We validate Primus’ capabilities within a large-scale dis-
tributed environment. The key highlights are as follows:

• Horizontal scaling saves over 17.1% of resources while
vertical scaling improves utilization from 50% to 80%.

• Generating around 4 million data tasks speeds up 23× in 1
thread and can be completed in 42s with 4 threads.

• Model effectiveness in advertising is significantly improved
by 0.03%-0.07% in AUC and 0.4%-2.4% in revenue.

As a large-scale, enterprise-grade DLRM training system
within ByteDance, we provide detailed information about
workloads currently undertaken by Primus in Tab. 3.

6.1 Unified Resource Evaluation

We assess Primus’ horizontal and vertical dynamic scaling
capabilities in different training scenarios. The evaluation
measures training throughput (minibatches/s), CPU/memory
utilization, and model effectiveness (AUC).
Dynamic Horizontal Scaling: To evaluate the performance
of large-scale dynamic parallelism, a baseline setup running
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Figure 7: Dynamic Horizontal Scaling
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Figure 8: Dynamic Vertical Scaling Improves Resource Efficiency

a fixed number of 400 data executors is compared with our
setup, where data executors are gradually scaled from 0 to
400 every 10 seconds. As shown in Fig. 7, Primus’s training
throughput is gradually increased to 210 minibatch/s, sim-
ilar to the baseline setup’s throughput of 205 minibatch/s,
while AUC is approximately 0.4% higher than the baseline,
improving training effectiveness with the scaling strategy.

To evaluate the impact of tuning the ratio of training execu-
tors and data executors, a baseline setup using 900 8-core data
executors and 8 training executors throughout the training pro-
cess is compared with our setup initially using 450 8-core
data executors and also 8 training executors. As shown in Tab.
4, the total training time and the training AUC of our setup
are comparable to the baseline. However, our setup eventually
uses 690 data executors, resulting in a 23.33% saving in CPU
cores compared to the baseline. The tuning improves resource
utilization without negatively affecting training performance
or speed. When the feature is enabled for a production cluster,
training throughput per core (ROI) gradually increases from
30.26 to 35.44, representing a 17.1% improvement.
Dynamic Vertical Scaling: We assess Primus’ vertical scal-
ing with two typical training scenarios. The first scenario
simulates an excessive CPU resource allocation to workers,
causing resource wastage. Both jobs are started with 400 10-
core data executors, with Primus’ vertical scaling expected to
adjust the CPU core allocation of the executors. As shown in
Fig. 8 (left), the baseline utilizes a fixed number of CPU cores,
while ours scales down by 1600 CPU cores, representing an
adjustment per executor from 10 to 6 cores. The effect is an
increase of CPU utilization from 50% to 80% and no impact
on both training throughput and AUC.

The other scenario simulates insufficient memory alloca-
tion for PS executors, leading to OOM errors, which cause
failovers and disrupt training progress. Both the baseline and
ours are initiated with 496 PS executors with 16 GB of mem-
ory each. Primus’ vertical scaling is expected to dynamically
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Figure 9: Data Task Generation Speed

adjust the memory of PS executors for our task to avoid OOM
errors. As shown in Fig. 8 (right), the baseline frequently
encounters PS executor OOM errors, resulting in periods with
low training throughput. Ours adjusts the allocated memory
to a total of 9920 GB from 7936 GB compared to the baseline,
which prevents the OOM issues. The effect is an increase in
throughput from 275 minibatch/s to 496 minibatch/s, and an
AUC increase from 0.62 to 0.78.

6.2 Unified Data Evaluation

We evaluate the performance of Primus data component,
which analyses the designated data sources and subsequently
serves the data to training workers. Therefore, the overall
performance is a collective result of the two major responsi-
bilities: data task generation and data loading.
Data Task Generation Evaluation: We evaluate the effi-
ciency of Primus’s data component in generating data tasks
from large-scale production data. The experiment is per-
formed on a single data driver with 8 CPU cores and 25
GB memory to eliminate the impact of memory pressure. The
input workload consists of 20-day production data from two
Feature Store tables, comprising over 56 million underlying
files and yielding approximately 4 million generated data
tasks. As shown in Fig. 9, DTGG achieves significantly faster
task generation compared to a naive single-threaded baseline
implemented with PyTorch. By fusing multiple scan requests
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Table 3: Characteristics of DLRM Training Workloads on Primus

Categories Types Details

Resource
General Data Workers 800 CPU data workers, each with 5 cores and 50 GB memory

General Training Workers 4 GPU training workers, each with 8 GPUs

Data
Data Tasks Ranging from 0 to 80 million tasks (∼ 180–540 days’ data)

Data Sources Spanning 2 to 18 sources, each with 10–20 PB data
Training Throughput Ranging from 200,000 to 600,000 samples per second

Model
Model Size Varying from 500 GB to 1 TB

Sample Features The 75th percentile of the number of features is ∼3200

Table 4: Dynamic Horizontal Scaling Comparision

Method
CPU Used

(cores)
AUC

Training

Time (days)

Cluster

ROI

Baseline 7200 0.9385 1.86 30.26
Ours 5520 0.9382 1.90 35.44+17.12%

to the underlying HDFS storage, the 1-thread DTGG reduces
the generation time from 58 minutes to 149 seconds (23×)
and further improves to 42 seconds with the 4-thread DTGG.
These results demonstrate DTGG’s efficiency in handling
multiple data sources and time windows.
Data Loading Evaluation: Compared to batch data sources,
stream data sources are widely adapted by online training jobs
which have higher performance requirements, especially in
production environments. Figure 10 shows the performance
comparison of serving stream data sources between Primus
and Flink [5] (a widely used online model training frame-
work). This experiment is performed on 40 executors on
machines equipped with 2 CPU cores and 4 GB memory
each, where 10 of them are configured extremely slower than
others to simulate anomalies such as hardware degradation
in production environments. Both Primus and Frink enable
shuffle mechanisms to balance load across executors dynam-
ically. Primus data component achieves 3.97 GB/s, which
is 1.25× to 3.17 GB/s with Flink. Since shuffling data with
Flink incorporates two layers of task managers for general-
ized usages, Flink is more fragile to defective machines, as
the back pressure induced by the latter layer could lead to
resource underutilization in the former layer. On the contrary,
Primus data executors are equal and thus will not impede the
performance of others. Therefore, though the resource utiliza-
tion of slow executors is similar, Primus’s shuffle mechanism
design allows for better overall utilization across all execu-
tors. This leads to higher effective throughput under unstable
environments or skewed data.

6.3 Unified Training Evaluation

To evaluate the performance of the unified training paradigm,
we use production data to conduct the effectiveness of MTRM

Table 5: Model and Resource Settings

Model Executors

No. Basis∗
Size
(GB)

Number
CPU

(cores)
Memory

(GB)

1 DSSM [24], LHUC [49] 600 60 13 45
2 FM [46], Transformer [51] 1200 40 6 30
3 FM, DIN [67], Transformer 800 50 12 35
4 EMSNet [20], LHUC 3700 50 8 30

∗Production DLRMs absorb and integrate the various model structures listed.

and mixture data prioritization.
MTRM Evaluation: We select four representative produc-
tion models for Conversion Rate (CVR) and Click-Through
Rate (CTR) estimation models to thoroughly assess the ef-
fectiveness of MTRM in various scenarios. Each model’s
structural information and resource specifications are detailed
in Tab. 5. Without MTRM (w/o), these baseline models can
be viewed as single-tower-like models that process both batch
and stream data without separation. When utilizing MTRM
(w/), these four models all employ a memory tower to learn
from 24-hour delayed batch data, while an adapt tower re-
mains the same structure as baselines but only updated by
stream data. Both the models with and without MTRM are
pre-trained on one year of historical data. Both the models
with and without MTRM are pre-trained on one year of his-
torical data. Since both models utilize the same stream data,
they share relatively comparable AUC values. AUC quantifies
the model’s ability to rank positive instances (e.g., clicks or
conversions) ahead of negative ones, and serves as a reliable
proxy for model quality prior to online deployment. As shown
in Tab. 6, the implementation of MTRM results in increased
AUC uniformity across the four production models, with an
average improvement of 0.03% to 0.07%. Additionally, we
conduct A/B testing, with the number of samples diverted by
each model presented in Tab. 6. After applying MTRM, the ad-
vertising revenue increases by 1.045%, 0.806%, 2.438%, and
0.397%, respectively. These results demonstrate that using
MTRM can effectively enhance the performance and revenue
of recommendation models.
Mixture Data Prioritization: For evaluating serving mixture
data under traffic pressure, we conduct an experiment with 60
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Figure 10: Primus Online Training VS. Flink Online Training with 25% Slow Executors

Table 6: Comparison of AUC and Revenue Performance for Various Models without (w/o) and with (w/) MTRM

Model
Evaluation (AUC) A/B Testing

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Avg. Samples Revenue

1
w/o 0.92411 0.91992 0.92538 0.92737 0.92187 0.92554 0.92642 0.92437 2,252,037 -
w/ 0.92439+0.03% 0.92018+0.03% 0.92559+0.02% 0.92758+0.02% 0.92212+0.03% 0.92582+0.03% 0.92660+0.01% 0.92461+0.03% 2,252,459 +1.045%

2
w/o 0.87125 0.86748 0.87103 0.86939 0.86885 0.86855 0.86887 0.86935 21,643,587 -
w/ 0.87173+0.06% 0.86804+0.06% 0.87156+0.06% 0.86987+0.06% 0.86930+0.05% 0.86907+0.06% 0.86945+0.07% 0.86986+0.06% 21,643,223 +0.806%

3
w/o 0.95333 0.95083 0.95175 0.95098 0.95070 0.95218 0.95141 0.95160 21,141,647 -
w/ 0.95380+0.05% 0.95131+0.05% 0.95220+0.05% 0.95143+0.05% 0.95122+0.05% 0.95269+0.05% 0.95188+0.05% 0.95208+0.05% 21,148,298 +2.438%

4
w/o 0.83299 0.83337 0.83471 0.83443 0.83380 0.83460 0.83608 0.83428 254,869,721 -
w/ 0.83352+0.06% 0.83395+0.07% 0.83527+0.07% 0.83500+0.07% 0.83438+0.07% 0.83513+0.06% 0.83666+0.07% 0.83484+0.07% 254,864,629 +0.397%
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Figure 11: Data Prioritization Reduces Loading Lag

data executors equipped with 11 CPU cores and 40 GB mem-
ory loading 1-day data of a production Kafka topic of 1,024
partitions with average traffic of 600 MB/s and its correspond-
ing historical copy persisted on Feature Store. As shown in
Fig. 11, the baseline result without mixture data prioritiza-
tion suffers badly from data loading lags during peak hours,
which eventually renders negative impacts on the model ef-
fectiveness. On the contrary, with mixture data prioritization,
the loading lags are hugely reduced, and thus, the model ef-
fectiveness is better protected, which verifies that Primus is
able to control the proportion of loaded data from different
data sources in a fine-grained manner, especially during peak
hours with limited computation resources.

7 Lessons

In this section, we share our experiences and lessons learned
during the design and implementation of Primus.
Road Towards Unified Resource Scheduling: In the early
stages of Primus, Kubernetes lacked sufficient pod scheduling
throughput and did not support gang scheduling semantics.
Consequently, training resources were primarily managed by

YARN, through a hybrid deployment of YARN NodeMan-
ager and Kubelet. As Kubernetes’ scheduling capabilities im-
proved, along with its support for gang scheduling semantics,
a greater portion of training jobs was migrated to Kubernetes.
During this migration, ensuring consistency in user experi-
ence became critical, as system changes could not impact
users. To address this, Primus services as an intermediary
layer, insulating users from the differences between schedul-
ing systems by the unified resource scheduling design. Over
time, Primus evolves to support more comprehensive dynamic
horizontal and vertical scaling capabilities.

Optimizing Data Access for Various Formats: The vast
quantities of sample data are stored in diverse formats (e.g.,
TFRecord, Protobuff, and 4mz) and compressed with multiple
algorithms (e.g., Snappy, ZSTD, and GZIP). Initially, a sepa-
rate Java process (using InputFormat) was used to read files
and pipe them to training executors which faced overhead in
cross-process communication and data format conversions.
To address this, Primus re-engineers the data access layer us-
ing Arrow for cross-language efficiency and NativeClient for
optimized stream data handling, reducing CPU usage by 40%.
Additionally, Primus master employs ClassLoader and other
isolation techniques to allow seamless integration of diverse
data lakes like Iceberg and Hudi, balancing data management
complexity with high retrieval efficiency.

Necessity of Mixture Data Prioritization: Initially, Primus
employed two distinct groups of executors to process batch
and stream data separately. However, we observed that batch
data processing occurred more rapidly, resulting in resource
wastage. Then, Primus was updated to handle both batch and
stream data within the same executors. While this approach
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increased resource efficiency, we found that the large volume
and fast arrival rate of batch data often consumed excessive
resources, delaying the processing of stream data, particularly
during peak hours. To address this, we design the continuous
prioritized data queue that ensures stream data is processed
first. It helps prevent MTRM performance degradation by
ensuring timely learning of stream data.

8 Related Work

Deep Learning Scheduler. Deep learning training optimiza-
tion with various resource schedulers has received attention
in recent years in recent years [34, 42]. Studies indicate that
YARN and Kubernetes are the mainstream training frame-
works at present [23]. Current optimization strategies like dy-
namic resource allocation [15] , face portability issues when
applied across heterogeneous environments. Systems like
Oobleck [26] and DynamoML [13] concentrate on elastic
GPU training but remain tightly coupled to Kubernetes, limit-
ing their applicability to more diverse production infrastruc-
tures.. GoldMiner [64] proposes a novel resource allocation
paradigm on Kubernetes, separating CPU and GPU and allo-
cating both resources automatically to improve the efficiency
of the cluster. However, GoldMiner is only adapted to Kuber-
netes, which cannot be extended to other schedulers. While
ElasticFlow [18] elegantly supports dynamic GPU realloca-
tion, it is not designed to accommodate heterogeneous execu-
tor configurations. Moreover, while horizontal pod autoscal-
ing leverages workload predictions to reduce unnecessary
resource allocation, discussions on machine learning-based
vertical pod autoscaling remain relatively scarce [61]. Primus
enables dynamic scaling and precise resource control for both
CPU and GPU workers, supporting collaboration with multi-
ple scheduling systems.
Deep Learning Data Loading. Along with the increase of
data amount, data reading and preprocessing become com-
plicated and critical [60]. tf.data [40] proposes a machine
learning preprocessing framework, which mainly concentrates
on throughput optimization during sample reading. However,
massive metadata training is not considered, and data frag-
mentation is not supported in elastic training scenarios. tf.data
service [7] maximizes GPU utilization to save training time
and implements sample concurrent preprocessing with CPU
data preprocessing. However, there is an additional loss in
RPC data transmission. Meanwhile, current training systems
such as Horovod [47], DLRover [52], and others [58] usually
only have a single data source, which fails to have built-in
support for multiple data sources with various storage sys-
tems and formats. Primus seamlessly integrates various data
sources, encompassing both stream and batch data stored in
HDFS, Kafka, and Feature Store.
DLRM Online Training. DLRMs are widely employed by
internet companies for various tasks such as ad CTR predic-
tion [41]. Due to the rapid increase in data scale, the training

of DLRM models in distributed memory and computing sys-
tems faces challenges [53]. cDLRM [8] implements training
large DLRM model with single GPU and pure data parallel
training by unique caching strategy. Monolith [35] and Per-
sia [33] focus primarily on innovations in model structures,
such as sparse-dense parameter separation and large model
efficient distributed updates. They are tightly coupled with
specific model structures and directly train online DLRM
with only stream data in homogeneous GPU-based training
environments. General stream processing systems, such as
Flink [5] and Ray [37], require a lot of user code modifications
to use batch data. Primus provides strong model-agnostic
support for DLRM training, providing features such as error
handling, dynamic scaling, and data orchestration.

9 Conclusion

We present Primus, a tri-unified training framework for
DLRM that encompasses three primary innovations. First,
Primus provides a unified resource scheduling abstraction
across multiple resource scheduling systems. To the best of
our knowledge, Primus is the first to offer a multi-strategy dy-
namic scaling mechanism utilizing a standardized API server
that interoperates seamlessly with both YARN and Kubernetes
clusters. Second, Primus introduces a three-tier data definition
that facilitates efficient offline and online training within a
single framework. It implements DTGG to enable parallel
task generation for orchestrating training data at scale. Third,
Primus features an offline-online mixture training paradigm,
allowing for continuous ingestion of historical offline batch
data during online model training, resulting in a significant
increase in advertising revenue. Since 2019, Primus has been
utilized for all ByteDance production DLRM training, lever-
aging a resource scale exceeding 10 million CPU cores and
tens of thousands of GPUs. We continue to enhance Primus to
achieve better efficiency and effectiveness in DLRM training.
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