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Abstract
Code-reuse attacks harvest reusable code gadgets from the

vulnerable program’s executable memory, posing a severe
threat to the widely deployed executable-space protection.
With the advent of address space layout randomization, a
more complicated tactic of code-reuse attacks, known as just-
in-time return-oriented programming (JIT-ROP), has emerged.
JIT-ROP relies on repeated memory disclosure to search for
available code gadgets in real-time. In response, a series of
techniques have surfaced to impede memory disclosure or
to prevent disclosed code from subsequently being executed.
The most representative countermeasures involve enforcing
a stricter memory permission policy, such as execute-only
memory or destructive code reads. However, existing methods
are either vulnerable to emerging code inference attacks or
disallow a mixture of code and data, which is a fundamental
property of the von Neumann architecture.

In this paper, we present MemoryTrap, a hardware-assisted
technique to counter direct memory disclosure attacks while
simultaneously allowing the mixture of code and data.
MemoryTrap sprinkles unreadable “booby traps” in the pro-
gram at compile time. Once JIT-ROP attackers land in a booby
trap area during memory disclosure at runtime, MemoryTrap
can immediately detect and stop the ongoing attack. We take
advantage of a hardware feature from Intel, Memory Protec-
tion Keys, to offer an efficient memory permission control
mechanism for booby traps. MemoryTrap supports the secu-
rity hardening of applications, shared libraries, and dynam-
ically generated JIT code. Our security evaluation demon-
strates that MemoryTrap can reliably thwart the threat of
disclosing executable memory in real JIT-ROP attacks and
synthetic code inference attacks. Performance experiments
with both microbenchmarks and macrobenchmarks show that
MemoryTrap only introduces negligible runtime overhead.

1 Introduction

System programs are often developed using memory-unsafe
languages (e.g., C/C++), making them prone to memory cor-

ruption vulnerabilities. The cyber arms race on this topic has
transformed into an intensive tug-of-war [1–4]. The widely de-
ployed Data Execution Prevention in modern OSs has pushed
cybercriminals to reuse the existing code snippets from the
vulnerable program to craft attacks. Adversaries gather the
code snippets, called “gadgets,” by searching through the
disassembled binary code [5]. With these gadgets, attackers
carefully chain them together to construct malicious payloads,
subsequently hijacking the normal control flow to these gad-
gets to complete the attack.

A precise implementation of Control-Flow Integrity
(CFI) [6–17] offers significant potential for protecting ap-
plications against ROP attacks by effectively preventing
control-flow hijacking. However, prior research has demon-
strated that CFI implementations can still be bypassed un-
der certain conditions [18–27], and may introduce perfor-
mance overhead [28]. Therefore, from a defense-in-depth
perspective [29], it is imperative for critical systems to in-
corporate a combination of security measures to effectively
mitigate potential threats. Address space layout randomiza-
tion (ASLR) [30–42] is one of the typical representatives of
defense-in-depth. ASLR frustrates the construction of gad-
gets by shuffling the code layout in memory. However, code
randomization has suffered from memory disclosure, which
makes the randomized code layout visible to attackers [43].
JIT-ROP (just-in-time return-oriented programming) [44] at-
tackers repeatedly abuse memory disclosure to harvest code
gadgets on the fly, based on the leakage of code pointers resid-
ing on code pages. Recent ASLR measurement [45] demon-
strates that even the expensive re-randomization still leaves a
time window for JIT-ROP attackers. The premise of JIT-ROP
is memory disclosure—attackers have to first traverse suffi-
cient executable memory pages to collect necessary gadgets.
Therefore, the key to JIT-ROP defense is to impede disclosing
memory pages or to prevent disclosed code from subsequently
being executed. To achieve this goal, many security solutions
enforce a stricter memory permission policy.

Execute-only memory (XoM) [46–49] emerges as a repre-
sentative defense against memory disclosure. XoM disallows
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the reading of executable memory, and thus attackers lose the
ability to disclose the code layout after randomization. XoM
methods typically require the strict separation of code and
data, so that the unreadable permission can be safely enforced
only on code areas. Unfortunately, the mixture of code and
data is not rare in practice. For example, libraries frequently
contain hand-written assembly routines that incorporate data
within their executable code segments [50–52], and JavaScript
JIT engines can generate native code containing both code
and data in the same memory pages. Later on, a new class of
memory permission enforcement policies, called destructive
code reads [53–56], are proposed to prevent the execution of
disclosed code. They allow memory pages to be disclosed
but forbid the disclosed code to be executed subsequently.
In particular, as soon as the code read occurs, the disclosed
code is garbled to avoid being executed. At the same time,
legitimate read operations for data embedded in the code still
operate correctly. However, the emerging code inference at-
tacks [57] can penetrate the defense of destructive code reads.
They enable the reuse of gadgets that have not been previously
read, highlighting the need for further research in restricting
adversaries’ ability to leverage memory disclosure.

In this paper, we continue the line of research on enforc-
ing memory permission from the perspective of cyber de-
ception [58–60]. The building blocks of our new defense
are booby traps, which are variable-size code snippets but
do not have the read permission. They stand aside from the
program’s normal execution paths and can only be triggered
by JIT-ROP attackers. Our research has led us to the critical
observation that, with the deployment of code randomization,
JIT-ROP attackers only have a small time window (e.g., a
few seconds [45]) to complete the search of the whole gadget
chain. By inserting booby traps where these attackers antic-
ipate a gadget, we can effectively detect a JIT-ROP attack
when it traverses the code page. In addition to stopping the
ongoing attack, we also save the context information for fur-
ther forensic investigation. Unlike previous XoM methods, we
do not revoke the readable permission on code pages except
for booby traps, and thus legitimate read operations to code
pages are completely unaffected. Compared with destructive
code reads, our approach is naturally resistant to various code
inference attacks caused by code cloning or implicit reads.

One of our design goals is to efficiently manage the un-
readable permission at a fine-grained control of booby traps
rather than memory pages. To this end, we capitalize on a
hardware feature provided by Intel, Memory Protection Keys
(MPK) [61, 62], to manage read requests to different areas
(i.e., the original code vs. booby traps) at the kernel level.
Our solution is more efficient than using the hardware virtu-
alization support (e.g., via Intel Extended Page Tables). In
addition, our study also answers another important question:
how to insert booby traps cost-effectively so that attackers
can trigger them with a high likelihood? We offer a practical

insertion strategy at compile time to strike a delicate balance
between security and performance penalty.

We develop our proposed solution, called MemoryTrap, to
offer a comprehensive security hardening for applications,
shared libraries, and JIT compiled code. With MemoryTrap,
we aim to address the limitations of existing methods and keep
our systems safe from JIT-ROP attacks. We first perform an
empirical study to measure the effectiveness of MemoryTrap
using the real-world exploits that leverage memory disclosure
vulnerabilities. We count the distribution of booby traps be-
tween gadget intervals to show that attackers are bound to trig-
ger booby traps under different code page traversal strategies.
Then, we use code cloning via JIT compilation as an example
to present MemoryTrap’s defensive ability against the more
sophisticated code inference attacks. At last, we conduct a
set of performance experiments with both microbenchmarks
and macrobenchmarks, including SPEC CPU 2017 [63], three
web servers, four database software, and a custom Chromium
browser running Kraken JavaScript Benchmark [64]. In con-
trast to prevailing XoM methods, MemoryTrap only incurs a
marginal runtime overhead, averaging from 0.74% to 1.85%.

In a nutshell, we make the following key contributions:
• We present a new cyber deception idea, MemoryTrap,

to detect memory disclosure attempts and eventually
prevent JIT-ROP attacks. MemoryTrap tolerates legiti-
mate data reads in executable memory while seamlessly
defending against powerful code inference attacks.

• We take advantage of Intel’s MPK feature to develop an
efficient, fine-grained memory permission control mech-
anism. Our work advances the proper use of hardware
features in systems security.

• We offer a versatile implementation of MemoryTrap
to secure regular ELF programs, shared libraries, and
JIT-compiled code. Our extensive evaluation shows that
MemoryTrap has the potential to tip the balance of the
memory war toward the side of defenders.

Open Source We have released MemoryTrap’s source code
and evaluation data sets to facilitate reproduction, replication,
and reuse, as all found at Zenodo.

2 Background, Related Work, and Motivation

We first provide the background about JIT-ROP attacks. Then,
we summarize the existing countermeasures against memory
disclosure. Their limitations motivate our research. At last,
we introduce the underlying hardware feature we leveraged.

2.1 Just-In-Time ROP
With the development of fine-grained randomization [30, 31,
36, 39, 42], traditional code-reuse attacks [65] have upgraded
to JIT-ROP to generate the ROP payload at runtime. As shown
in Figure 1, a typical JIT-ROP attack involves two stages: 1)
adversaries first leverage a memory disclosure vulnerability to
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Figure 1: Two stages of a typical JIT-ROP attack workflow and countermeasures on enforcing memory permission.

recursively scan code pages for usable gadgets collection ( 1
in Figure 1); 2) after that, they chain the collected gadgets to
build the payload and then trigger a memory corruption error
(e.g., buffer overflow, use after free, or double free) to hijack
the control flow ( 2 in Figure 1). In the first stage, attackers
can harvest code pointers in a direct way or an indirect way to
find executable memory pages. In a direct disclosure, attack-
ers are able to directly read code pointers from code pages.
These pointers are typically embedded in instructions such as
direct jumps/calls. In an indirect way, code pointers are read
from data pages such as stack and heap. This type of pointer is
usually the function pointer passed as a parameter of another
function or the return address in the stack. The key to the suc-
cess of a JIT-ROP attack is disclosing enough code pages to
find usable gadgets. Programs vulnerable to JIT-ROP attacks
primarily fall into two categories. The first category includes
server-side applications, which allow multiple user interac-
tions(e.g., web servers and database systems). The second
category encompasses client-side applications, which execute
user-provided scripts (e.g., Matlab and JavaScript engines).

2.2 Stricter Memory Permission Policies

A set of memory disclosure defense methods have surfaced
to combat JIT-ROP attacks. Next, we focus on two types
of papers that enforce stricter memory permission policies,
because they are the works most germane to our research.
Execute-only Memory The first type of preventative mea-
sures focuses on hindering the first stage of a JIT-ROP attack
( 1 in Figure 1). They try to disable the read permission of
code pages to enforce execute-only memory (XoM). XnR [46]
is the first one to achieve the XoM idea via software emula-
tion, without leveraging hardware features. XnR configures
the PTE_PRESENT bit in PTE (Page Table Entry) of code
pages as the “not_present” state, and thus all read operations

will be caught by XnR’s page fault handler. Then, XnR de-
tects memory disclosure attempts by checking whether a read
request is pointing to a code page. However, due to the large
overhead caused by XnR’s design, it makes a trade-off to
tolerate the co-existence of several code pages with the state
of present. As a result, XnR will miss read operations to
these co-existence code pages, leaving memory disclosure
opportunities for attackers. Readactor [47] and its follow-up
work [48] address the security and performance issues of
XnR by utilizing the hardware-assisted virtualization via Intel
Extended Page Tables [61]. They remove the read permis-
sion of all code pages when mapping the virtual machine
physical address to the host physical address. HideM [49] im-
plements the XoM idea by desynchronizing ITLB (Instruction
Translation Lookaside Table) and DTLB (Data Translation
Lookaside Table), so that the same virtual address of code
and data is mapped to different physical addresses. In this
way, HideM separates data from code pages by redirecting
the read operations targeting code pages to the separated data
page. KHide [66] uses Hardware Assisted Paging to enforce
XoM on kernel, and kRˆX [67] implements kernel level XoM
by using the Intel Memory Protection Extensions.

Mixture of Code and Data A common assumption of the
aforementioned XoM methods is the strict separation of code
and data. Such a prerequisite leads to false alarms in practice—
XoM will treat legal data-in-code reads as memory disclosure
attacks. Although modern GCC and LLVM favor separat-
ing code and data, non-code bytes, such as jump table data
and static read-only data, often appear in code sections [50].
Pang et al.’s recent study on mainstream binary disassembly
tools [52] also confirms that the mixture of code and data
is not rare in programs. For example, the authors find 295
hard-coded bytes from the code pages of three test cases and
21,586 jump tables embedded in the code pages of 57 pro-
grams. Another example is that handwritten assembly code
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in libraries often embeds data in code sections [51]. For ex-
ample, OpenSSL, BoringSSL, and FFmpeg use handwritten
assembly to accelerate their calculation, and VirtualBox uses
handwritten assembly for dynamic function loading and its
virtual extensible firmware interface. In addition, if a binary
dynamically links a library that mixes code and data, the code
section of this binary will also contain embedded data. At the
same time, XoM conflicts with some security mechanisms.
For example, KCFI [8] embedded some function signatures in
the code section, and requires read access to the code pages to
verify indirect function calls. As acknowledge by the author,
KCFI cannot work with execute-only memory.
Destructive Code Reads The second type of memory per-
mission policy, called destructive code reads (DCR) [53–56],
reacts against the second stage of a JIT-ROP attack ( 2 in
Figure 1). They allow memory disclosure but prevent execut-
ing the previously disclosed code by destroying the disclosed
code right after it is read. Heisenbyte [53] is the first approach
implementing the idea of DCR. It marks each executable
memory page as execute-only and maintains a duplicate copy
for each execute-only page. When a read operation occurs in
the execute-only page, Heisenbyte overwrites the read data
with random bytes and returns the corresponding data values
from the duplicate page. In this way, legitimate read opera-
tions for data-in-code work properly, but attackers cannot run
the disclosed executable memory. NEAR [54] and Wilson
& Arriaga’s work [55] share a similar idea with Heisenbyte.
However, the illusion of protection provided by DCR was
soon shattered by the emergence of code inference attacks
(a.k.a. ZombieGadgets) [57], in which attackers manage to
reuse code gadgets that have not been previously read, ren-
dering DCR’s protection ineffective. We provide more details
about code inference attacks in Appendix F. BGDX [56]
applies a hybrid approach combining DCR and XoM at the
byte-granular level and claims to effectively prevent code in-
ference attacks. However, BGDX requires a strict distinction
between code and data, and incorrect classification can lead
to program crashes. Consequently, BGDX compromises a key
advantage of DCR, which is the elimination of the need to dif-
ferentiate code from data, resulting in reduced compatibility.
CHERI [68] also implements a byte-granularity memory
permission control mechanism. However, CHERI requires
hardware redesign, including a redesign of the instruction
set architecture (ISA), the introduction of multiple new in-
structions, and the addition of several new registers. CHERI
increases the pointer size to 128 bits, resulting in greater
cache pressure. Moreover, it demands the integration of a
new coprocessor into the Memory Management Unit (MMU)
to support its newly introduced fine-grained memory per-
missions. Additionally, to support the redesigned hardware,
CHERI necessitates a CHERI-aware build toolchain and oper-
ating system. In contrast, MemoryTrap leverages the existing
hardware mechanism, MPK, to achieve fine-grained memory
permission control, requiring only minimal modifications to

the OS kernel and compiler, thus providing effective security
protection with much lower deployment complexity.

Indirect Memory Disclosure Readactor [47] indicates that
in some scenarios, attackers can harvest functions pointers
stored in data pages (e.g., the stack and heap) and use the
whole functions as gadgets to achieve JIT-ROP attacks. This
type of attack is called the indirect disclosure attack ( 3 in
Figure 1). Readactor and Readactor++ [48] have provided
a viable countermeasure against indirect JIT-ROP by redi-
recting code pointers to an XoM area to prevent function
pointer disclosure. However, Readactor and Readactor++, to-
gether with other XoM methods, have common limitations
to prevent direct JIT-ROP ( 4 in Figure 1). Therefore, our
work is dedicated to direct JIT-ROP defense by offering a new
fine-grained memory permission policy.

2.3 Memory Protection Keys

To enforce non-readable permission for our inserted booby
traps, we take advantage of Memory Protection Keys (MPK),
a hardware feature to support stricter permission control
on code pages, without requiring modification of page ta-
bles [61, 62]. MPK utilizes a protection key rights register
(PKRU) to maintain the access rights of individual keys asso-
ciated with specific pages, and it supports three different page
permissions: read & write, read-only, and no access. Note
that the execution permission is still controlled by the tradi-
tional permission management mechanism. We can leverage
the MPK mechanism to configure a memory page’s permis-
sion as execute-only by disabling the page’s read and write
permissions. MPK achieves superior performance because
processes only need to execute a non-privileged instruction
(WRPKRU) to update PKRU, which takes less than 20 cycles
and requires no TLB flush and context switching [69]. MPK
keys are thread-localized, which means each thread has its
own 16 MPK keys. This could lead to inconsistency of MPK
keys between different threads within the same process. We
use the inter-thread key synchronization primitive provided by
libmpk [62] to keep the execute-only MPK key synchronized
between different threads in the same process.

MPK Applications in Security Most of the current security
approaches rely on MPK for sensitive data isolation [70–74].
For example, ERIM [70] and Hodor [71], take advantage
of MPK for efficient intra-process isolation, allowing only
trusted code to access sensitive data areas. Jin et al. [73]
applies MPK to cryptographic functions to protect sensitive
key-related data. IskiOS [74] also uses MPK to revoke the
read permission of kernel’s code pages. Instead of using MPK
as isolation mechanism or simply revoking read permission,
we offer efficient fine-grained memory permission policy con-
trolling memory blocks within page.
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Figure 2: Overview of MemoryTrap.

3 Overview of MemoryTrap

Threat Model Throughout this paper, we assume the attack-
ers possess powerful arbitrary read and write capabilities to
the vulnerable program’s memory. We do not impose any
restrictions on embedding data in code areas. All the afore-
mentioned methods, except for DCR, require that there is no
embedded data within the code areas. We assume the target
system is equipped with the following protections:

• W⊕X: Memory pages cannot be both executable and
writable at the same time. This is the basic assumption of
ROP defenses. Otherwise, attackers can directly execute
the injected shellcode without performing ROP.

• Randomization: all static code from programs and li-
braries are randomized via load time fine-grained ran-
domization.

These two protections are also held by related works on mem-
ory permission enforcement, such as Heisenbyte [53], Readac-
tor [47], NEAR [54], and HideM [49].
Memory View of Booby Traps MemoryTrap aims to impede
the first stage of a JIT-ROP attack ( 1 in Figure 1). Different
from the existing XoM and DCR, our memory permission pol-
icy only works on booby traps, which are unreadable, variable-
size code snippets that we inserted into the protected program.
Figure 3 shows the memory view before/after MemoryTrap’s
protection. Our insertion strategy ensures that JIT-ROP attack-
ers will inevitably land in a booby trap area when searching
for gadgets, while the program’s normal execution will never
reach any single booby trap. When a read operation to a booby
trap happens, MemoryTrap’s protection will be triggered in-
stantly to respond to the attack: it terminates the compromised
process to prevent further memory disclosure and saves the
context information for the future investigation.
Architecture The target programs of memory disclosure
attacks cover applications (e.g., web servers and databases),
shared libraries (e.g., C standard library) [5], and dynamically

Code Pointerendbr64
push       rbp
push       rsp
mov        rax, [r14+1C8h]
lea          rbx, [rdi+68h]
mov        rdi, rbx

mov        rax, rbp
pop         rbx
pop         rbp
pop         r12
ret

endbr64
push       rbp
push       rsp
mov        rax, [r14+1C8h]

. . .

mov        rax, rbp
pop         rbx
pop         rbp
pop         r12
ret

Booby
TrapAttacker

(a) Unprotected 
Process

(b) MemoryTrap 
Protected Process

Gadget
Search

Gadget
Search

0x00000001
0x080dd660
0x00000002
0x0837db70
0x080df35a

Payload

. . .

(Gadget) (Gadget)

Figure 3: Memory view before/after booby trap insertion.

generated code by a JIT engine like V8 [75, 76]. Therefore,
we develop MemoryTrap to support the security hardening of
all three types of programs. Figure 2 shows MemoryTrap’s
architecture that bridges all layers of the software stack. At
the user lever, we modify LLVM and TurboFan (V8’s JIT
compiler) to place booby traps at strategic trigger points. After
that, we pass booby traps information (e.g., their numbers and
the scope of each booby trap) to kernel components, either
via a dedicated ELF section (“.mtrap”) for applications or via
our customized “mTrap” syscalls for shared libraries and JIT
compiled code. At the kernel level, MemoryTrap’s custom
loader loads the hardened applications into memory. With
booby traps information, MemoryTrap’s exception handler
interacts with the low-level MPK mechanism to manage the
unreadable permission at the level of booby traps, and it is
also responsible for the memory disclosure attack response.

The primary characteristic of JIT-ROP attacks is that the
attacker must search through a large amount of program code
within a limited timeframe to gather sufficient gadgets. The
key insight behind MemoryTrap is to strategically place booby
traps along the path attackers follow when attempting to dis-
close code. To achieve optimal protection, these booby traps
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must be distributed throughout memory at an appropriate
density. A density that is too high would negatively impact
performance, whereas a density that is too low would com-
promise security guarantees. In the following sections, we
describe our approach for establishing insertion strategies that
ensure booby traps are effectively distributed across memory
at a suitable density.
MemoryTrap’s Advantages As a new technique to achieve
fine-grained memory permission management, MemoryTrap
avoids the limitations of existing XoM and DCR methodolo-
gies and amplifies their benefits. Unlike the previous XoM
methods [46–49], MemoryTrap allows the mixed use of code
and data, and thus legitimate read to code pages works as
expected. Compared to DCR [53–56], MemoryTrap can nat-
urally withstand code inference attacks. As booby traps are
weaved into the program, a code inference attempt via ei-
ther code cloning or implicit reads cannot get rid of booby
traps in any way. MemoryTrap leverages the new hardware
feature MPK, which offers an efficient option to enforce fine-
grained memory permission policies. The previous works
either use software emulation that reveals high runtime over-
head [46, 49], or they rely on the hardware virtualization
support via Intel Extended Page Tables (EPT) [47, 48, 53],
which is still more costly than MPK [69].

4 Application Protection

In this section, we follow the workflow of hardening an appli-
cation to present MemoryTrap’s details.

4.1 Insert Booby Traps into Execution Paths

We insert booby traps in the protected program at compile-
time via a LLVM pass. We randomly generate a variable-size
code snippet as a booby trap, which consists of 5 to 30 NOP
instructions. We adopt variable sizes to further disrupt the
code layout, making it more difficult to detect the positions of
booby traps. We hide the booby traps from the protected pro-
gram’s normal execution paths by inserting a JMP instruction
in front of inserted code snippets. When the execution encoun-
ters a booby trap, it will skip the inserted code snippets and
follow the normal execution path. Please note that we set the
whole booby trap, including the prefixed JMP instruction, as
unreadable. This design enables booby traps to be seamlessly
integrated into legitimate code execution paths, making them
difficult to detect or circumvent. Because these traps are inher-
ently embedded within valid execution flows, attackers cannot
easily bypass them by simply tracking the program’s control
flow. Moreover, the opacity of inserted JMP instructions pre-
vents attackers from identifying trap locations through pattern
recognition or signature-based detection methods.

Table 1: The distance distribution of every two adjacent booby
traps in the hardened applications’ binary code.

0∼100B 100B∼1KB 1∼2KB 2∼4KB >4KB

Nginx 0% 73.2% 16.5% 10.3% 0%
Apache 27.5% 65.3% 3.6% 3.6% 0%
Lighttpd 16.0% 73.7% 4.7% 5.6% 0%
MySQL 30.6% 57.2% 6.5% 5.7% 0%
MongoDB 25.5% 62.3% 6.4% 5.8% 0%
Redis 26.1% 65.9% 4.1% 3.9% 0%
SQLite 20.9% 55.2% 7.1% 16.8% 0%

SPEC 2017 47.4% 44.6% 3.9% 4.1% 0%

Average 24.3% 62.2% 6.6% 6.9% 0%

4.2 Insertion Strategy of Booby Traps
We aim to sprinkle booby traps cost-effectively in execution
paths to capture memory disclosure attempts.
JIT-ROP’s Gadget Search Unlike offline ROP gadget
search [77,78], JIT-ROP requires “unfettered access to a large
number of the code pages” [44]. JIT-ROP attacks [44, 45]
first identify code pointers from data pages (e.g., the stack)
and then use these pointers as starting points to locate code
gadgets. To avoid disruptions caused by linear searches po-
tentially accessing unmapped memory regions, JIT-ROP in-
crementally discloses and disassembles code to track control
flow. When cross-page code pointers (e.g., long jumps and
long calls) are encountered, JIT-ROP employs breadth-first
or depth-first traversal strategies to explore memory pages, as
shwon in Figure 4. According to the gadget search strategies
of JIT-ROP, attackers use 4KB (one memory page’s size) as
the search granularity to avoid accessing unmapped pages.
As a result, if we ensure that the distance between every two
adjacent booby traps is small enough (e.g., less than 4KB),
JIT-ROP attackers will trigger them with a high probability
before they complete the search of all required gadgets. At
the same time, attackers often use a combination of pop and
ret instructions as gadgets to pass values from the stack into
general-purpose registers [65], and such combinations tend
to appear at the end of a function.
Insertion Strategy Therefore, our booby trap insertion strat-
egy contains two rules:

1. we insert at least one booby trap in each function.
2. for the function whose size is larger than 4KB, we insert

an additional booby trap for every 4KB code.
When adhering to these two rules, the insertion positions of
booby traps are randomized. This approach prevents attackers
from predicting the locations of booby traps based on fixed
positions. Considering the aforementioned factors, our inser-
tion strategy is effective in preventing disclosing sufficient
code. We count the distances between every two adjacent
booby traps after we apply MemoryTrap to real-world ap-
plications and SPEC CPU 2017. As shown in Table 1, the
distances between every two adjacent booby traps are all
within 4KB. Additionally, the percentage of distances within
1KB is 86.5% on average, representing a high distribution
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Figure 4: Code page traversal strategies.

density. We conducted an additional experiment to explore
the impact of booby traps distribution on security and over-
head. It was found that if a booby trap is inserted every 2KB,
the average overhead increases by 1.3% for SPEC CPU 2017
benchmarks. On the other hand, if a booby trap is inserted
every 8KB, the average overhead decreases by 0.7%, but it
leaves a larger memory disclosure window for attackers.

4.3 New ELF File Format

The compiler also needs to pass the number and scope of
booby traps to MemoryTrap’s kernel components. This re-
quires us to utilize the reserved field and optional section of
the ELF file format to embed such metadata in binaries. We
illustrate the new ELF file format with a figure provided in
Appendix H.

First, we define a reserved byte in the ELF header as the spe-
cific flag byte, called MTRAP_ENABLE, to indicate whether
this program is protected by MemoryTrap. This byte is the
first byte in the EI_PAD array, which is a field of e_ident
in the ELF header. By reading this byte, our custom loader
can decide whether to enable MemoryTrap protection for this
process. Then, we embed the number of booby traps and the
start and end addresses for each booby trap into an optional
section, called “.mtrap. ” The beginning of the .mtrap section
records the number of booby traps, followed by a booby trap
list—each list item stores each booby trap’s start and end
addresses. We modify LLVM’s backend to write booby trap
information to the dedicated “.mtrap” section and then set the
MTRAP_ENABLE flag to 1.

Please note that the new ELF format is backward compati-
ble with non-customized loaders because they will ignore the
MTRAP_ENABLE flag and the .mtrap section. The unmod-
ified kernel can still run the MemoryTrap protected binary
files properly as normal programs.

4.4 MemoryTrap’s Kernel Components

Our kernel components consist of a custom loader, an excep-
tion handler, and mTrap syscalls. We also modify the kernel
structures to support MemoryTrap. In this subsection, we in-
troduce the first two components and leave mTrap syscalls
in §5, because mTrap syscalls are specifically designed to
support shared libraries and JIT compiled code. Our kernel
modifications consist of only 312 lines of code, making our
approach lightweight and minimally invasive to the kernel.
Custom Loader We customize the binary file loader in the
kernel to load the applications protected by MemoryTrap and
initialize related structures in the kernel.1 The custom loader
first checks the MTRAP_ENABLE flag in the ELF header
to determine whether MemoryTrap’s protection is enabled.
If so, it will load the booby trap list stored in the .mtrap sec-
tion. Otherwise, the standard binary file loading process will
take over. After loading the booby trap list, the custom loader
starts to map the code segment into memory. When mapping
the code segment, the custom loader allocates an execute-
only PKey, which is a part of the MPK mechanism to set the
permission for a group of pages, to enforce the access permis-
sion as execute-only. Please note that this PKey is allocated
during the loading process, thereby ensuring its availability.
Consequently, the way the program utilizes PKeys at runtime
does not influence the implementation of MemoryTrap. In
this way, our exception handler component can capture every
read operation to code pages, and then it further determines
whether a memory disclosure attempt or a legitimate code
read is occurring.
Exception Handler We implement an exception handler
based on the original page fault handler for the MPK mech-
anism to prevent memory disclosure attacks. Since we have
removed the read permission of all code pages via the MPK
mechanism, any read request to a code page will trigger a
page fault and be caught in our exception handler. Then, the
exception handler checks whether the target address is located
in the areas of booby traps. If so, we can promptly determine
that the running program is under a memory disclosure attack,
and thus we terminate the compromised process and save the
context information for further forensics investigation. Note
that legitimate read operations for data embedded in the code
do not trigger MemoryTrap’s attack response. Instead, we
take the following actions to handle such data-in-code cases:
1) we restore the read privilege of the target page to allow the
page to be readable temporarily; 2) we set the single-step trap
flag to only execute the read instruction and stop at the next
instruction; 3) after the completion of the legal read operation,
we revoke the read permission of the code page and subse-
quently clear the single-step trap flag to enable the program
to resume its normal execution. Please note that MemoryTrap
only affects the permissions of code pages and primarily in-

1Regarding how we organize booby traps information in the kernel struc-
tures, please refer to Appendix A.
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troduces overhead during code page reads, without impacting
data pages. As a result, MemoryTrap does not affect the per-
formance of copy-on-write (CoW) operations because CoW
typically occurs on data pages.

4.5 Booby Traps Layout Randomization

MemoryTrap is compatible with load time fine-grained ran-
domization methods to shuffle booby traps’ location. We have
adapted MemoryTrap to a representative tool, CCR [79]. CCR
randomizes the code layout at the granularity of basic blocks
by patching the binary code. When CCR randomizes the code
layout, the locations of booby traps must be updated syn-
chronously. The randomization process of CCR contains two
phases: information collection at compile-time and binary
rewriting. In the first phase, we modify CCR to insert booby
traps first and then collect pointer and code layout information.
In the second phase, we modify CCR’s binary rewriter to up-
date the addresses of booby traps when CCR randomizes the
code layout. When shuffling a booby trap basic block, CCR
will also update the metadata stored in the “.mtrap” section
using the new shuffled addresses.

5 Shared Library & JIT Compiled Code

In this section, we discuss the security hardening of shared
libraries and JIT compiled code. They exhibit some different
challenges from the above application protection.
mTrap Syscalls The first challenge is that both the loader of
shared libraries and the JIT engines are user-level programs,
but the operations of booby traps, such as enabling Memory-
Trap’s protection and adding new booby traps, all happen
in the kernel only. Therefore, they have to rely on special-
ized system calls to interact with the kernel and perform the
booby trap operations. To this end, we have implemented
three new system calls: mtrap_enable, mtrap_add, and
mtrap_delete. The mtrap_enable enables MemoryTrap’s
protection explicitly, and the mtrap_add and mtrap_delete
are used to add and delete booby traps, respectively.
Shared Library Protection For shared libraries, their booby
trap insertion strategy and the new ELF file format are the
same as our application protection. The major difference is
that applications are loaded by the custom loader in the kernel,
while shared libraries are loaded by the GNU C Library loader,
a user-level program. We modify the GNU C Library in sev-
eral ways to achieve our goal. 1) When loading a hardened
shared library, the loader enables MemoryTrap’s protection
by invoking the syscall mtrap_enable. 2) Next, the loader
maps the code segments as execute-only memory and fixes
the addresses of booby traps due to the relocation of shared li-
braries. 3) At last, it loads the booby trap list from the “.mtrap”
section and registers the booby trap list to kernel by invok-
ing mtrap_add. After these steps, MemoryTrap’s exception

handler will promptly start to monitor memory disclosure
attacks.
JIT Compiled Code Protection MemoryTrap’s JIT version
is built on top of V8’s JIT compiler, TurboFan. As shown in
Figure 2, we modify the JIT engine to compile JavaScript into
the executable code with booby traps inserted. In particular,
TurboFan first runs the graph creation and optimization passes
to generate IR from source code, and then it compiles IR to
the platform-specific machine code. We insert booby traps
at the IR level using the same insertion strategy discussed
at §4.2. After compilation, the modified TurboFan enforces
the execute-only permission on the generated JIT code via
MPK. Then, it registers embedded booby traps to the kernel
by invoking mTrap syscalls so that the exception handler can
start to monitor memory disclosure.

Furthermore, we also adjust our memory permission man-
agement accordingly to support some aggressive optimiza-
tions of JIT compilers. For example, to save memory, JIT
compilers may write the new JIT code to the existing JIT
code pages, while the read and write permissions on these
pages have been removed to facilitate the booby trap checking.
In this case, the modified TurboFan will temporarily recover
read and write permissions on these code pages to allow the
JIT code update. After that, it will disable read and write per-
missions for the updated JIT code pages again and invoke the
mtrap_add syscall to register new booby traps. If TurboFan
plans to abandon a generated JIT code snippet, it will also in-
voke the mtrap_delete syscall to unregister all of the booby
traps in the abandoned JIT code.

6 Security Evaluation

We implement MemoryTrap on Linux kernel 5.10.11, LLVM
13.0.1, V8 9.7, and GNU C Library 2.31. The testbed is a
server machine with Intel i9-13900KF 24 cores CPU and
64GB RAM. We evaluate how well MemoryTrap can de-
fend against memory disclosure attacks under three different
scenarios: 1) JIT-ROP attacks on applications; 2) JIT-ROP
attacks on JIT compiled code; 3) code inference attacks [57].

6.1 Detect Memory Disclosure on Applications
We use a Nginx arbitrary memory disclosure vulnerability
(CVE-2013-2028) [80] to demonstrate MemoryTrap’s effec-
tiveness. This is a fairly powerful stack overflow vulnerability
that allows an adversary to perform arbitrary memory read.
We compile the vulnerable version of Nginx with Memory-
Trap protection enabled and run it as a web server. Then, we
leverage the JIT-ROP attack framework, jitrop-native [81], to
trigger the vulnerability and dynamically search for gadgets.

We collect all gadgets in the exploit of CVE-2013-2028 and
measure how gadgets and booby traps distribute in memory.
The gadget chain of this exploit consists of seven gadgets
to implement two functions: storing a value in memory and
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1. 0x0804b884: pop esi; pop ebp; ret;
... 192 Booby Traps …
2. 0x0805ddbb: push ecx; ret;
... 162 Booby Traps …
3. 0x0806e948: add ecx, [esi]; ret;
… 103 Booby Traps …
4. 0x0807b586: mov [ecx], eax; mov [ecx+4], edx; mov eax, 0; ret;
... 47  Booby Traps …
5. 0x08080a57: pop ecx; add al, 0x89; ret;
... 279 Booby Traps …
6. 0x0809a65b: pop eax; add al, 0x89; ret;
... 50  Booby Traps …
7. 0x0809ef79: push eax; add al, 0x83; ret;

Figure 5: Gadgets and booby traps distribution for the CVE-
2013-2028 exploit. Each line of assembly code is a gadget,
stating with its address. We show the number of booby traps
distributed between two adjacent gadgets.

dereferencing a pointer. As shown in Figure 5, our insertion
strategy ensures that booby traps spread over the interval
of every two adjacent gadgets. The number of booby traps
between two adjacent gadgets ranges from 47 to 279.

Next, we exhibit the attackers’ ability to find potential gad-
gets under MemoryTrap’s protection. We are interested in
measuring under different code page traversal strategies, how
much code can be disclosed, and how many usable gadgets
can be found before triggering the first booby trap.
Starting Point & Traversal Strategy The recent work [45]
demonstrates that the starting point of code traversal in a
page does not affect the disclosure result, because the authors
experimentally confirm that choosing any single random code
pointer allows attackers to identify all instructions and code
pointers in that code page. Besides, selecting which page to
start gadget search is not important as well, because code
pages are all very well connected [45]. Therefore, we start
code disclosure from 100 random positions in every code
page. Another factor we must consider is code page traversal
strategy, which can affect the disclosure result [44]. We utilize
Ahmed et al.’s traversal strategies [45], including depth-first
and breadth-first traversal, to find all required gadgets.

The code segment size of compiled Nginx is 815.8KB,
which equals 203.9 memory pages. Thus we start code page
traversal using two different strategies from a total of 20,390
different positions; once any booby trap is triggered, we
record how much code and how many usable gadgets are
disclosed. Table 2 shows the results of our code page traversal
attempts. When using the breadth-first policy, an average of
657 bytes of code can be disclosed before triggering booby
traps, and an average of 299 bytes of code when using the
depth-first search. Among all of our code page traversal at-
tempts (40,780 in total), only 25 attempts using the breadth-
first strategy and 14 attempts using the depth-first strategy can
find at most one gadget. The rest of code page traversals are
all trapped in booby traps before finding any usable gadget.
More Exploits We conduct a gadget distance statistical anal-
ysis on a set of real-world JIT-ROP exploits, which we collect

Table 2: Attackers’ ability to find potential gadgets when
MemoryTrap is enabled. The vulnerable program is Nginx.

Code Page Average Bytes # of Attempts to
Traversal Strategy Disclosed Find One Gadget

Breadth-first 657 25
Depth-first 299 14

from Metasploit [82] and Exploit-DB [83]. We use the same
code traversal strategies to measure how many bytes can be
disclosed under the protection of MemoryTrap, and the results
are consistent with the previous findings. The disclosed code
size ranges from 499∼687 bytes with breadth-first strategy,
and 273∼340 bytes with depth-first strategy. As a contrast,
the minimum distance from the first gadget to the last gad-
get is 94.0KB, indicating that the disclosed code is far from
enough to find all gadgets. Similarly, only a few code traversal
attempts get a chance to find at most one gadget. We provide
the detailed results in Appendix E.

6.2 MemoryTrap-Aware Disclosure Strategies

If attackers become aware that MemoryTrap has been de-
ployed, they may adopt more sophisticated code disclosure
strategies to bypass the inserted booby traps. For instance, at-
tackers might abandon continuous code disclosure and instead
attempt to read M bytes of code at intervals of N bytes, or ini-
tiate disclosure from leaked code pointers located in the stack
or heap. Therefore, we conducted additional MemoryTrap-
aware experiments using the same binary described in §6.1
to evaluate attackers’ capability to disclose code using these
advanced strategies. Specifically, we attempted to read 50-
byte code at intervals of 200 bytes, 300 bytes, and 500 bytes.
Under the breadth-first search approach, the average amounts
of disclosed code were 636 bytes, 649 bytes, and 678 bytes,
respectively. Under the depth-first search approach, the corre-
sponding averages were 319 bytes, 290 bytes, and 300 bytes.
We also collected code pointers and initiated code disclosure
directly from these pointers. Using this approach, breadth-first
and depth-first searches triggered booby traps after disclosing
an average of 672 bytes and 451 bytes, respectively. All the
results presented above are consistent with those shown in
Table 2, indicating that under the protection of MemoryTrap,
the choice of code disclosure strategy does not significantly
affect the probability of triggering a booby trap. In fact, be-
cause booby traps are opaque to attackers, the probability that
any given disclosure strategy triggers a booby trap follows a
hypergeometric distribution.

6.3 Retrofitting XoM for JIT Compiled Code

In this experiment, we evaluate MemoryTrap’s protection on
JIT compiled code by exploiting a recent vulnerability in V8
JIT engine, CVE-2020-16040 [84]. We modify the vulnera-
ble version of V8 and compile it with the latest version of
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function foo() {
    triggerVulnerability();
}

JIT Compiled Code 
of Function foo
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Figure 6: Using exploit of CVE-2020-16040 to disclose mem-
ory of JIT compiled code protected by MemoryTrap.

Chromium browser [85] to get a custom Chromium browser.
This custom browser can trigger CVE-2020-16040 and gener-
ate MemoryTrap-protected JIT code. After that, we use the
exploit of CVE-2020-16040 to trigger this vulnerability and
start to disclose the generated JIT code.

CVE-2020-16040 is an integer overflow vulnerability
caused by missing parameter type checking during the JIT
optimization phase, resulting in arbitrary memory read and
write. Figure 6 shows how we use the exploit to disclose the
code of JIT compiled JavaScript functions. We first write a
JavaScript function and a large JavaScript code chunk and
trigger the JIT compile mechanism of V8 ( 1 in Figure 6)
to get a JIT compiled code chunk with the size of 5,213 KB.
The modified JIT engine inserted a total of 7,025 booby traps
into this large JIT compiled code chunk. When compiling
the foo function, the foo function can trigger the vulnerabil-
ity in “VisitSpeculativeIntegerAdditiveOp” function ( 2 in
Figure 6), which is a function of V8 engine used to optimize
JIT compiled code. This vulnerability gives us the arbitrary
read capability, so we try to disclose the code in the large
JIT compiled code chunk. We use the breadth-first strategy to
disclose code pages of JIT compiled code, because in Table 2
we found that the breadth-first strategy can disclose more
code. When disclosing the JIT compiled code, the exploit
triggers booby traps in a very short time. The exploit script
only discloses 607 bytes of code before falling into booby
traps. Such 607 bytes is the distance from the beginning of
the large JIT compiled code chunk to the beginning of the
first booby trap, as shown in 3 of Figure 6.

To determine the amount of JIT compiled code that must
be disclosed to find the whole gadget chain, we search for the
necessary gadgets in the absence of MemoryTrap’s protection.
The findings indicate that a staggering 2,739 KB of code must
be disclosed to successfully identify the entire chain of gad-
gets, rendering the previously estimated 607 bytes woefully
insufficient for this task.

for (var i = 0; i < numCopies; i++) {
    eval(largeJSCodeChunk);
}

JIT Compiled Code
(Copy1, 5197 KB)

Offset1, Offset2 = MapJitLocations();
Destroyed = DiscloseGadgets(Offset1);
Available = AdjustGadgets(
    Destroyed, Offset2);
HijackControlFlow(Available);

JIT Compiled Code
(Copy2, 5263 KB)

Create

Disclose &
Destroy

Execute
Gadgets

Disclosed Code (595 Bytes)

Disclosed Code (653 Bytes)

Booby Traps

Booby Traps

Figure 7: JavaScript JIT cloning attack maintains two copies,
but our booby traps spread over in each copy.

6.4 Countering Code Inference Attacks
The first three types of code inference attacks described in [57]
operate by maintaining multiple copies of code and inferring
the contents of one copy through the disclosure of another. To
evaluate the effectiveness of MemoryTrap against these three
types of code inference attacks, we use the JIT-compiled code
cloning attack as a representative example. We follow the
detailed description in Snow et al.’s paper [57] to reproduce
the JavaScript JIT compiled code cloning attack. We main-
tain two copies of a large JIT-compiled code chunk, each over
5MB in size, using the same JavaScript source code as in §6.3.
The JIT engine compiles the first copy of code in 5,197KB,
and it compiles the second copy of code in 5,263KB, with
7,025 booby traps inserted in each of them. Each copy has
a different size due to the variable-size booby traps inserted.
We also use the breadth-first code page traversal strategy to
disclose these code chunks. Figure 7 illustrates how Memory-
Trap stops this type of attack. No matter how many code
copies the adversary maintains, our booby traps spread over
each code copy. Similar to the evaluation result shown in
Figure 6, our code page traversal attempt can only disclose
a very small piece of code: 595 bytes in the first copy and
653 bytes in the second copy, before the code read operations
were caught in a booby trap. Such little disclosed code is not
enough to construct a malicious payload.

The last type of code inference attacks reveals certain por-
tions of code in order to infer the content of related code and
thereby evade detection or destruction. MemoryTrap inher-
ently defends against this type of attack by distributing a large
number of traps throughout the code, which significantly al-
ters the original code layout. This approach invalidates the
attacker’s prior knowledge about the code structure, making
it difficult to infer the actual content of the code.

7 Performance Evaluation

We tested standard benchmarks and a set of real-world appli-
cations to measure the slowdowns caused by MemoryTrap.
We run microbenchmarks on the modified kernel to eval-
uate the overhead caused by kernel modification. We use
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Figure 8: Additional runtime slowdown (%) of MemoryTrap on SPEC CPU 2017 (ref workload).

macrobenchmarks to evaluate the overhead of MemoryTrap
on CPU-intensive programs. For real-world applications, we
use mainstream web servers (Nginx-1.20.1, Apache-2.4.49,
and Lighttpd-1.4.59), four popular databases (MySQL-8.0.26,
MongoDB-4.2.17, Redis-6.2.5, and SQLite-3.36.0), and a cus-
tom V8 engine. Please note that in subsequent experiments,
we run the standard version of benchmark or application on
the standard kernel and the MemoryTrap protected version
on the custom kernel. For the shared libraries that the real-
world applications depend on (e.g., PCRE and zlib for Nginx
and APR for Apache), we use their MemoryTrap protected
version for the performance evaluation.

7.1 Microbenchmarks
MemoryTrap modifies the Linux kernel’s binary loader, page
fault handler, and process context structure. To evaluate the
impact of these modifications on kernel operations, we run lm-
bench [86] on both the standard Linux kernel and our modified
version, and compare the operation latencies of the standard
kernel and the modified kernel.

Table 3 displays the running time of kernel operations re-
lated to process creation and page fault handling. The Fork
Proc and Exec Proc are process creation operations that use
fork and exec. These operations resulted in an overhead of
0.88% and 0.58%, respectively, due to the additional steps
required for loading XoM metadata. Page Fault shows the
overhead related to page fault handling, with a 0.52% over-
head. Prot Fault denotes the overhead related to protection
fault handling. MemoryTrap needs to scrutinize whether the
protection fault is enabled, causing a 0.83% overhead.

In order to store MemoryTrap’s metadata, such as MPK’s
PKey and executable data list, we included additional data
members in the process context structure. However, this modi-
fication may result in overhead during context switches in the
kernel. To evaluate the impact of our modification, we con-
ducted experiments measuring the context switching time for
two kernel versions, and results are presented in Table 4. The

Table 3: Time for kernel operations related to process creation
and page fault handling (in µs). Smaller is better. In the first
row are the names of benchmarks in lmbench.

Kernel Fork Exec Page Prot
Proc Proc Fault Fault

Standard 113 347 0.776 0.481
MemoryTrap 114 349 0.780 0.485

Overhead 0.88% 0.58% 0.52% 0.83%

upper half of the first row displays the number of processes
involved in the context switches, while the lower half shows
the memory usage of each process. For instance, “2p/16k”
represents a context switch between two processes, each uti-
lizing 16 KB of memory. All entries exhibit overhead values
distributed around zero, suggesting that MemoryTrap exerts
an insignificant impact on the performance of kernel context
switches. For additional lmbench results with limited correla-
tion to MemoryTrap, please refer to Appendix C.

7.2 Macrobenchmarks
SPEC CPU2017 is the latest generation of SPEC CPU bench-
mark with larger and more complex workloads than SPEC
2006. In the performance evaluation of macrobenchmarks, we
compile the standard version of SPEC 2017 and the Memory-
Trap protected version of SPEC 2017, and run them with the
ref workload on our test machine. We take the running time
of standard versions as the baseline to measure the overhead
incurred by MemoryTrap’s protection. We removed the pure
Fortran benchmarks from our experiment, because LLVM’s
Fortran frontend is still under testing and not ready for devel-
opers to use [87].

Figure 8 shows the overhead of MemoryTrap protection
for each benchmark in SPEC CPU 2017. The green and blue
bars on the rightmost side show the average and the geomet-
ric mean value of overhead, respectively. From Figure 8, we
can see that seven overhead values are very close to zero,
and the peak value (8.5%) happens in povray. Upon further
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Table 4: Context switch time (in µs). Smaller is better.

Kernel 2p 2p 2p 8p 8p 16p 16P

0K 16K 64K 16K 64K 16K 64K

Standard 2.09 2.10 2.61 2.43 2.59 2.64 2.83
MemoryTrap 2.13 2.15 2.48 2.49 2.62 2.66 2.79

Overhead 1.91% 2.38% -4.24% 2.47% 1.16% 0.76% -1.43%

investigation, povray has a lot of dispatch loop structures
that call numerous small handler functions. According to our
booby trap insertion strategy, all of these handler functions are
inserted with one booby trap. Povray spends most of its run-
ning time on executing handler functions, so the accumulated
overhead is relatively high. 505.mcf and 605.mcf are both
derived from MCF, a program used for single-depot vehicle
scheduling in public mass transportation. Similar to povray,
MCF spends most of its running time on iteratively execut-
ing three utility functions (getArcPosition, arc_compare, and
spec_qsort), causing a relatively high overhead. Nonetheless,
the average overhead of tested SPEC benchmarks is 1.85%,
and the geometric mean is 0.60%, indicating a limited perfor-
mance impact on CPU-intensive programs.

Real-World Applications In addition to SPEC CPU 2017,
we also evaluated the performance of MemoryTrap using
web servers, databases, and a JIT engine. For web servers,
we tested Nginx, Apache, and Lighttpd. The maximum over-
head observed for web servers is only 2.11%, with an average
overhead of 0.74%; most overhead values are very close to
zero. Regarding databases, we evaluated MySQL, MongoDB,
Redis, and SQLite, and the average overhead incurred by
these databases is merely 1.30%. Then we use Kraken Bench-
mark [64] to measure the overhead incurred by MemoryTrap,
and the average overhead is only 1.54%. Due to the page limit,
we put detailed performance results in Appendix B. We have
also conducted experiments to evaluate MemoryTrap’s disk
and memory overhead. Please refer to Appendix G for details.

Worst-Case Benchmark We employ a worst-case bench-
mark that cyclically reads the code area for 10,000,000 times
to trigger extensive embedded data accesses, causing the pro-
gram to spend most of its execution time performing embed-
ded data reads. This benchmark allows us to evaluate the per-
formance of MemoryTrap under worst-case conditions. We
compare the time required to complete this benchmark with
and without the deployment of MemoryTrap. With Memory-
Trap, the benchmark takes 3.23X longer to complete than
without it, which means that MemoryTrap incurs a 3.23 times
slowdown in this worst-case benchmark. However, the over-
all system performance is not significantly impacted by this
seemingly unacceptable overhead. This is attributed to the
fact that legitimate data-in-code reads are interspersed with
numerous other instructions. A more in-depth analysis of this
performance impact will be presented in §7.3.

7.3 Overhead Cause Analysis
There are two sources of performance overhead for Memory-
Trap: the data-in-code read legitimacy check and the jump
instructions introduced by booby traps. Next, we break down
each component of MemoryTrap to provide insights into the
causes of MemoryTrap’s overhead.

As discussed in §7.1, the data-in-code read legitimacy
check incurs a 3.23 times performance overhead. However,
MemoryTrap causes only a 1.85% overhead on SPEC CPU
2017 and a 0.74% overhead on web servers, which is negli-
gible compared to the read legitimacy check. Our further in-
vestigation reveals that this is because legitimate data-in-code
reads are interspersed among numerous other instructions. We
introduce the term “Read Intensity” here, defined by Equa-
tion 1, to assess the density of data-in-code read operations
among all instructions.

Read Intensity =
# o f Legitimate Reads

# o f Executed Instructions
(1)

We have gathered data on legitimate data reads and the total
number of executed instructions for SPEC CPU 2017, web
servers, and databases used in our evaluation. Additionally, we
gathered the same information for OpenSSL, which contains
significantly more data-in-code reads than other programs
due to the handwritten implementation of cryptographic algo-
rithms. The results show that the Read Intensities are 7.0E−11

for SPEC CPU 2017, 1.64E−10 for web servers, and 4.80E−12

for databases. Even for OpenSSL, it only has a Read Inten-
sity of 1.40E−7, which implies that one data-in-code read is
performed for every million instructions executed. The aver-
age Read Intensity across all programs is 3.51E−8, signifying
that, on average, one data-in-code read is performed after ex-
ecuting ten million instructions. This illustrates that while
data-in-code reads are not rare in practice, their frequency
is extremely low, which significantly mitigates the impact of
the legitimacy check overhead. We conducted another experi-
ment to evaluate the overhead caused by the read legitimacy
check. We ran each benchmark without booby trap insertion
and found that the read legitimacy check only causes a 0.45%
runtime slowdown on average. This indicates that most of
MemoryTrap’s overhead is caused by the jump instructions
introduced by booby trap insertion.

7.4 Performance Comparison
We compare the performance of MemoryTrap with represen-
tative approaches shown in Figure 1, including XnR [46],
Readactor [47], HideM [49], and Heisenbyte [53]. However,
we encountered a major challenge that none of the papers
listed in Figure 1 have made their tools publicly available,
with the exception of MemoryTrap. In light of this, we com-
pared their SPEC CPU 2006 performance data reported in
their papers with ours. Figure 9 shows the performance com-
parison result. XnR is the first XoM approach; it implements
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Figure 9: Performance comparison with XnR [46], Readac-
tor [47], HideM [49], and Heisenbyte [53].

XoM through software emulation, incurring 2.2% perfor-
mance overhead. Readactor uses Intel’s virtualization tech-
nique to enforce the execute-only permission, exhibiting 2.2%
overhead. HideM utilities the split-TLB to achieve XoM pro-
tection, which causes 1.4% overhead. Heisenbyte tries to
tolerate legitimate data-in-code reads, but it reveals signifi-
cantly higher overhead (18.3%) than other approaches due to
its code destruction and read request redirection operations. In
contrast, MemoryTrap exhibits the lowest overhead (1.21%)
among all prototypes in Figure 9.

7.5 Compatibility with Embedded Data Reads

Among real-world programs we tested, OpenSSL exhib-
ited the highest frequency of embedded data reads. There-
fore, we use OpenSSL to demonstrate the compatibility
of MemoryTrapwith embedded data reads. We compiled a
MemoryTrap-protected version of OpenSSL and executed it
using the openssl speed command [88], which is the of-
ficial benchmarking tool used to measure the performance
of cryptographic algorithms in OpenSSL. The compiled
OpenSSL binary contains a total of 827,604 bytes of em-
bedded data, distributed across 1,063 embedded data blocks.
During the execution of the openssl speed command, a to-
tal of 656,509,327 embedded data read operations occurred,
and the read intensity is 1.40E−7. All embedded data read op-
erations were executed successfully, and all benchmark tests
completed normally. This result demonstrates that Memory-
Trap has excellent compatibility with embedded data reads.
Notably, although OpenSSL contains a considerable amount
of embedded data, the average size of each embedded data
block is only 779 bytes. This implies that even if an attacker
successfully locates an embedded data block, they can only ac-
cess, on average, 779 bytes of embedded data. Such a limited
amount of embedded data is insufficient to be successfully
leveraged by a JIT-ROP attacker.

8 Discussion and Conclusion

Potential Security Problem of WRPKRU In the MPK
mechanism, the WRPKRU instruction can write the value
in EAX to PKRU to change the permission of page groups.
Skilled attackers may try to bypass MemoryTrap’s protection
by granting read permissions to all page groups using the
WRPKRU instruction. However, when executing the WRP-
KRU instruction, the value of ECX and EDX must be 0. Oth-
erwise, a general-protection exception (#GP) will occur. If
attackers change the page permission via WRPKRU, at least
four gadgets are needed: 1) write EAX, 2) write ECX, 3) write
EDX, and 4) execute WRPKRU. Fortunately, as we demon-
strated in §6, with MemoryTrap deployed, at most one gadget
can be disclosed before triggering MemoryTrap’s protection.
DoS Risk In our current response to a detected memory dis-
closure attempt, MemoryTrap will terminate the vulnerable
process immediately. While this measure can thwart attackers
from gaining control of the system, it also poses a poten-
tial risk of Denial of Service (DoS). An alternative strategy
is to combine MemoryTrap with re-randomization. Instead
of terminating the compromised process, we activate a new
randomization process to the code layout. This method can
prevent the use of collected gadgets and simultaneously avoid
the risk of DoS. However, the cost of doing so is the large
overhead that comes with the re-randomization process itself.
Multi-Platform Support Currently, MemoryTrap is imple-
mented based on Intel’s MPK mechanism. MPK is supported
on mainstream Intel and AMD desktop and server CPUs but
is unavailable on other platforms. Nevertheless, other plat-
forms provide similar mechanisms that can be used to imple-
ment MemoryTrap. For instance, ARM provides AP/XN [89],
RISC-V offers PMP [90], and PowerPC includes Protection
Keys [91]. These mechanisms can serve as alternatives to
implement MemoryTrap. We discuss details in Appendix D.
Conclusion This paper introduces MemoryTrap, a hardware-
assisted technique to counter memory disclosure attacks.
MemoryTrap inserts unreadable, variable-size code snippets
(booby traps) at strategic points to block unauthorized code
page reads, utilizing Intel’s MPK for efficient, fine-grained
memory permission control. Our experiments demonstrate
that MemoryTrap reveals a strong resistance to various mem-
ory disclosure attempts and negligible runtime overhead.
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Appendix

A Kernel Structure Modifications to Support
MemoryTrap

Figure A1 is the structures we defined in Linux kernel used to
store the basic information about MemoryTrap. Some fields
in kernel correspond to the fields in the newly defined ELF
format, and some fields are used to store the run-time informa-
tion for MemoryTrap protection. The mtrap structure stores
the start and end virtual address of a booby trap in mem-
ory. The mtrap_info_t structure stores the basic information
of a process protected by MemoryTrap: the enable flag, the
trap flag, the PKey assigned to enforce execute-only mem-
ory, the number of booby traps, and the booby trap list. The
mtrap_info_t structure is stored in the task_struct structure to
save the MemoryTrap information in current process context.
Figure A2 is the task_struct structure. We add a mtrap_info_t
member at the end of the randomized struct fields, so the
mtrap_info_t is compatible with the randomization protec-
tion.

1 t y p e d e f s t r u c t mtrap {
2 u i n t 6 4 _ t S t a r t ; / / S t a r t a d d r e s s o f booby t r a p
3 u i n t 6 4 _ t End ; / / End a d d r e s s o f booby t r a p
4 } MTrap ;
5
6 s t r u c t m t r a p _ i n f o _ t {
7 i n t e n a b l e d ; / / MemoryTrap e n a b l e f l a g
8 i n t t r a p _ a l l o w e d ; / / Read o p e r a t i o n l e g a l i t y f l a g
9 i n t pkey ; / / PKey ( i n MPK mechanism ) o f code pages

10
11 s i z e _ t mtrap_num ; / / Number o f booby t r a p s
12 s t r u c t mtrap * m t r a p _ l i s t ; / / Booby t r a p l i s t
13 } ;

Figure A1: The MemoryTrap structures in Linux Kernel.

1 s t r u c t t a s k _ s t r u c t {
2 v o l a t i l e l on g s t a t e
3 v o i d * s t a c k ;
4 r e f c o u n t _ t usage ;
5 u n s i g n e d i n t f l a g s ;
6 u n s i g n e d i n t p t r a c e ;
7 . . .
8 s t r u c t m t r a p _ i n f o _ t mtrap_info ;
9 . . .

10 } ;

Figure A2: The task_struct structure in Linux Kernel.

B Performance on Real-World Applications

B.1 Web Servers
We compile and run the standard and protected web server
versions, respectively. We use the ApacheBench [92] to simu-
late 500 clients to send HTTP requests 100,000 times asyn-

Table A1: Overhead of MemoryTrap protected web servers
using ApacheBench. The first row presents the request page
size, and the data show the overhead for each size.

Web Server 50KB 100KB 200KB 500KB 1024KB Avg.

Nginx 0.13% 0.54% 0.16% 1.01% 1.71% 0.71%
Apache 1.80% 0.05% 0.72% 0.23% 0.09% 0.58%
Lighttpd 2.11% 0.06% 1.14% 1.21% 0.16% 0.94%

Average 1.35% 0.22% 0.67% 0.82% 0.65% 0.74%

chronously, and we record their running time to complete
these 100,000 requests. To demonstrate the performance im-
pact of MemoryTrap when requesting different page sizes,
we tested five different page sizes: 50KB, 100KB, 200KB,
500KB, and 1MB. Table A1 shows the overhead of Memory-
Trap protection on each web server.

As shown in Table A1, the maximum overhead value is
only 2.11%, and the average overhead is 0.74%, and most
overhead values are very close to zero. This indicates that the
performance impact of MemoryTrap protection on I/O bound
web servers is negligible.

Table A2: Performance evaluation result for databases. For
each database, the first row is the insertion performance, and
the second row is the selection performance. The second
column shows the results of the original (unprotected) ver-
sions, and the third column shows the results of MemoryTrap-
protected version. The unit for the result of MongoDB is
second, while the unit of other results is request times per
second.

Database Original MemoryTrap Overhead

MySQL 2008.13/s 1969.70/s 1.95%
20053.05/s 19412.63/s 3.30%

MongoDB 11913.92/s 11905.58/s 0.07%
14379.11/s 14370.48/s 0.06%

Redis 136138.42/s 134777.04/s 1.01%
137691.20/s 137484.66/s 0.15%

SQLite 655.14/s 650.75/s 0.67%
85971.78/s 83298.06/s 3.21%

B.2 Databases & JIT Engine
Databases Performance Results Unlike ApacheBench,
there is no such unified performance benchmark for databases.
We have to run each database with a customized testing suite.

1. MySQL: We use MySQL’s official benchmark sys-
bench [93] to evaluate the insertion and query overhead.
We configure sysbench with the complex workload to
perform insertion and selection for 100,000 rows.

2. MongoDB: We use the official performance benchmark
of MongoDB, mongo-perf [94], to evaluate the impact
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Table A3: Result of Kraken benchmark. “SJCL” is short for
Stanford Javascript Crypto Library.

A* Audio Imaging JSON SJCL

Original 149.7ms 285.0ms 360.3ms 145.0ms 508.9ms
MemoryTrap 151.6ms 290.7ms 365.1ms 146.1ms 520.8ms

Overhead 1.27% 2.00% 1.33% 0.76% 2.34%

of MemoryTrap on MongoDB. We execute the simple
insert and simple query workload and record how long
the workloads can be completed to evaluate the insertion
and selection overhead.

3. Redis: For Redis, we also use the official benchmark,
redis-benchmark [95], to measure the overhead. We ex-
ecute the SET and GET operation 100,000 times and
record how many requests can be processed per second.

4. SQLite: Since there is no official benchmark for SQLite,
we design a custom benchmark for SQLite to simu-
late other database benchmarks’ workloads. We insert
100,000 rows of random data and select the inserted data
by their primary key. We record the execution time and
calculate how many requests that SQLite can process
per second.

Table A2 shows the results of database evaluation. For each
database, the first row shows the insertion performance, and
the second row shows the selection performance. The last
column shows the overhead incurred by MemoryTrap. As
shown in Table A2, most of the databases have a very low
overhead when enabling MemoryTrap’s protection, and the
average overhead is only 1.30%. This shows that MemoryTrap
has a negligible overhead on protecting databases.
JIT Engine Performance Result We compile the custom
V8 engine together with the latest Chromium to get a browser
that can generate MemoryTrap protected JIT compiled code
and run Kraken Benchmark. The benchmarks in the first row
of Table A3 are: 1) A* search algorithm [96]; 2) audio pro-
cessing using Corban Brook’s DSP.js library [97]; 3) image
filtering routines [98]; 4) JSON parsing [99]; 5) Stanford
Javascript Crypto Library (SJCL) [100]. Table A3 shows
the overhead of JIT engine protection using Kraken Bench-
mark. In all cases, the small overhead caused by MemoryTrap
ranges from 0.76% to 2.34%, and the average overhead is
only 1.54%.

Table A4: Time for process-related kernel operations in µs.
Smaller is better.

Kernel Null Null Stat Open Select Signal Signal sh
Call I/O Close TCP Install Handle Proc

Standard 0.09 0.14 0.46 1.11 1.60 0.14 1.03 760
MemoryTrap 0.09 0.14 0.47 1.13 1.60 0.14 1.02 764

Overhead 0.00% 0.00% 2.17% 1.80% 0.00% 0.00% -0.98% 0.53%

C Other Microbenchmark Results

Table A4, Table A5, and Table A6 show the lmbench results
for MemoryTrap low-correlation kernel operations.

Table A5: Local communication latencies in µs. Smaller is
better.

Kernel Pipe AF UDP TCP TCP
UNIX Conn

Standard 5.08 4.93 8.09 9.68 11.08
MemoryTrap 5.12 4.97 8.12 9.57 10.93

Overhead 0.79% 0.81% 0.37% -1.15% -1.37%

Table A6: File & system latencies in µs. Smaller is better.

Kernel 0K File 10K File Mmap 100fd

Create Delete Create Delete Latency Select

Standard 7.15 3.85 12.9 6.07 52.2K 0.78
MemoryTrap 7.18 3.90 12.5 6.11 52.6K 0.78

Overhead 0.42% 1.30% -3.20% 0.66% 0.77% 0.00%

D Applicability to Other Platforms

Windows Platform Support The user-space components
of MemoryTrap are OS-independent. However, the Windows
kernel currently does not yet provide APIs to support the
MPK mechanism. To transplant MemoryTrap to Windows
platforms, we can resort to the mature Intel hardware vir-
tualization mechanism EPT instead of MPK to remove the
read permission of code pages. Then, we reimplement the
exception handler in hypervisor to react to memory disclosure
attempts.
Transplant MemoryTrap to ARM A series of papers have
transplanted the idea of execute-only memory to various ARM
platforms using different hardware features [101–103]. The
diversity of ARM specifications offers multiple alternatives
to implement MemoryTrap on ARM. All we need to do is
to reimplement the fine-grained memory permission control
with different hardware features. For example, we can use
the unprivileged memory instructions and Memory Protection
Unit hardware feature to implement MemoryTrap on Cortex-
M [101]. On ARMv7-M and ARMv8-M, we can leverage the
hardware-supported debugging facilities [102] to implement
MemoryTrap. On AArch64, we can combine the Unprivi-
leged Execute Never bit, Privileged Execute-Never bit, and
two Access Permission bits [103], to implement MemoryTrap.
Even without any hardware support, we can still implement
the software-emulation version of MemoryTrap. For example,
we can use the most significant bit to mark booby traps as
non-readable memory. Then, we check if the targets of read
instructions land in booby trap areas via instrumentation [35].
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Table A7: The gadget distance distribution of real-world exploits. The data from Column 2 ∼ Column 6 indicate the count of two
adjacent gadgets’ distances within that range. “Avg.” and “Max.” represent “Average Distance” and “Max Distance ” of two
adjacent gadgets. “Fir.-Las.” represents the distance between the First gadget and the Last gadget.

<1KB 1∼2KB 2∼4KB 4∼8KB >8KB Avg. (KB) Max. (KB) Fir.-Las. (KB)

CVE-2013-2028 0 0 0 1 3 123.7 193.8 494.7
CVE-2014-2624 0 0 0 0 4 69.8 210.9 279.2
CVE-2014-8322 0 1 0 0 2 31.3 73.3 94.0
CVE-2014-4880 0 0 0 0 3 1494.1 2851.8 4482.2
CVE-2016-2384 0 0 0 0 5 322.4 673.3 1611.9
CVE-2017-6553 0 1 0 2 1 135.0 525.7 539.8
CVE-2017-1000112 1 0 0 2 8 356.1 2937.4 3916.8
CVE-2017-5815 1 0 0 0 15 441.2 2304.8 7060.0
CVE-2017-11176 2 1 1 1 13 1183.2 16127.8 21297.3
EDB-ID-45288 0 0 0 0 7 83.5 234.0 668.4
EDB-ID-44331 0 0 1 0 6 115.1 458.8 920.7
EDB-ID-47482 2 4 2 4 8 11.9 96.4 249.2
EDB-ID-46808 0 0 0 0 5 2291.0 8523.9 13745.9
EDB-ID-47122 0 0 0 0 8 272.3 1177.5 2450.5
CVE-2020-12352 0 0 0 0 5 1133.7 4767.0 5668.6
CVE-2021-22555 1 0 0 0 10 650.6 2105.1 7157.0

Total 7 7 4 10 103 N/A N/A N/A

The software-emulation approach is agnostic to the underly-
ing ARM architecture but at the cost of poor performance.

Table A8: Code page traversal results for other vulnerable
programs with MemoryTrap enabled. “# of AFOG” is short
for “Number of Attempts to Find One Gadget.”

CVE Number Average Bytes Disclosed # of AFOG

Breadth-first Depth-first Breadth-first Depth-first

CVE-2014-8322 687 340 26 9
CVE-2014-1303 670 273 29 15
EDB-ID-45288 536 311 20 10
EDB-ID-44331 501 289 19 13
EDB-ID-47482 499 322 23 15

Average 579 307 23 12

E Statistical Analysis of Real-world Exploits

We collect publicly available real-world exploits that can re-
produce JIT-ROP attacks from Metasploit [82] and Exploit-
DB [83]. For every two adjacent gadgets, we count the num-
ber of distances within different ranges, from less than 1KB,
1KB∼2KB, 2KB∼4KB, 4KB∼8KB, and greater than 8KB.
Table A7 shows the gadget distance distribution data for these
exploits. For the exploits without CVE number, we show their
Exploit-DB ID (EDB-ID) instead. In Table A7, there are 131
different distance types between two neighboring gadgets,
but only 18 of them are less than one memory page’s size
(i.e., 4KB), accounting for 13.7% of the total. This means
that the probability of having two available gadgets in one
memory page is less than 13.7%. In Table A7, the average
gadget number for an exploit is 8.2, and thus the probability

Code Copy 1

Exploit Script

Create/
Load

Disclose &
Destroy

Execute
Gadgets

Target Program

Code Copy 2

Copy1 = Create(CodeChunk);
Copy2 = Create(CodeChunk);

Free(Copy1);

DiscloseGadget(Copy1);

ExecuteGadgets(Copy2);

Figure A3: An example of code inference attacks. Code
copy 1 is only used for code disclosure, while code copy
2 is only used for gadgets execution.

that all gadgets are located in one memory page is at most
0.1378.2 ≈ 0.000000083%, an almost negligible number. In
all gadget chains we collected, the minimum distance from
the first gadget to the last gadget is 94.0KB, which means the
attackers have to disclose at least 94.0KB of code to build the
whole payload.

For the exploits we collected from public databases and the
vulnerable programs that can also be protected by Memory-
Trap, we use the strategies in §6.1 to measure code page
traversal results as well. Table A8 reveals a similar pattern
to that of CVE-2013-2028: MemoryTrap leaves adversaries
with little wiggle room to harvest all of the required gadgets,
and only a few attempts get a chance to find at most one
gadget. The data in Table 2 and Table A8 demonstrate that
our booby trap insertion strategy is effective in preventing
JIT-ROP gadget search.
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Figure A4: Disk size and memory overhead of MemoryTrap.

F Code Inference Attacks

Snow et al. [57] proposed four types of code inference at-
tacks, rendering DCR ineffective. The core principle of code
inference attacks is to disclose a segment of code without
executing it directly. Instead, another piece of code that is
strongly related to the disclosed code will be executed, such
as an exact copy of the disclosed code residing in a different
memory region, or relevant code that can be inferred based
on the disclosed segment. The core idea of code inference
attacks is to disclose a piece of code but not to execute it.
Instead, another piece of code that is strongly related to it
will be executed, such as an exact same copy of the disclosed
code in a different memory area, or the relevant code that
can be predicted based on the disclosed ones. As shown in
Figure A3, adversaries maintain two copies of the same code,
and they only disclose one copy to collect gadgets and execute
the other copy. The four code inference attacks are as follow:

T1. JavaScript JIT Cloning: Load two copies of the same
JIT code to disclose one copy and use the other.

T2. Shared Library Reloading: Disclose a library’s code
and let it be destructed, and then reload it to use the
previously disclosed code.

T3. Process Reloading: Disclose the code of an active pro-
cess and then reload it to use the refreshed code.

T4. Implicit Reads: Disclose some code to infer the content
of another code copy to avoid being destroyed.

G Other Overhead

Since we insert booby traps into the program and attach the
“.mtrap” section into the ELF file, the binary size will in-
crease naturally. When executing the protected binary, the
size of these contents are fixed after being loaded, and does
not change during program execution. We measure the disk

ELF Header

Program Header
Section Header
Symbol Tables

Sections

e_ident
e_type

...
e_shstrndx

EI_MAG0
EI_MAG1

...
EI_PAD

EI_NIDENT
.text

.rodata
.data

...
.mtrap

MTRAP_NUM

MTRAP_LIST

Figure A5: New ELF format to record booby traps metadata.

size and memory overhead for real-world applications and
SPEC CPU 2017 benchmarks that are protected by Memory-
Trap. Figure A4 shows the disk size and memory overhead.
The disk size overhead rages from 3.2% to 8.8%, and the
average disk size overhead is only 5.85%. Memory overhead
is smaller than disk size overhead due to the allocation of
stack and heap during the program execution. The memory
overhead varies between 0.3% and 2.1%, with an average
memory overhead that remains negligible at just 1.05%.

When employing MemoryTrap with code randomization,
in addition to code pointers, all booby trap pointers also need
to be fixed to their shuffled positions, allowing the kernel to
recognize the relocated booby trap positions. This introduces
overhead during binary loading. To measure this overhead,
we collect the booby trap count during compilation with our
toolchain and determine the number of pointers requiring
fixups using CCR’s toolchain [79]. The overhead is calculated
by dividing the number of booby traps by the total number
of pointers needing fixups. The average overhead for web
servers, databases, and SPEC 2017 benchmarks is 5.67%,
2.78%, and 4.01%, respectively, demonstrating a minimal
fixup burden. It is noteworthy that this overhead is a one-time
cost and does not impact runtime performance.

H New ELF Format

Figure A5 illustrates the new ELF file format we defined.
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