
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

PMR: Fast Application Response via Parallel
Memory Reclaim on Mobile Devices

Wentong Li, MoE Engineering Research Center of Software/Hardware Co-Design
Technology and Application, East China Normal University, Shanghai, China; and
School of Computer Science and Technology, East China Normal University; Li-Pin

Chang, National Yang Ming Chiao Tung University, Taiwan; Yu Mao, City University
of Hong Kong, Hong Kong; and MBZUAI, Abu Dhabi; Liang Shi, MoE Engineering

Research Center of Software/Hardware Co-Design Technology and Application, East
China Normal University, Shanghai, China; and School of Computer Science and

Technology, East China Normal University
https://www.usenix.org/conference/atc25/presentation/li-wentong

PMR: Fast Application Response via Parallel Memory Reclaim on Mobile Devices ∗

Wentong Li1,2, Li-Pin Chang3, Yu Mao 4,5, Liang Shi1,2†

1MoE Engineering Research Center of Software/Hardware Co-Design Technology and Application,
East China Normal University, Shanghai, China

2School of Computer Science and Technology, East China Normal University
3National Yang Ming Chiao Tung University, Taiwan

4City University of Hong Kong, Hong Kong, 5MBZUAI, Abu Dhabi

Abstract
Mobile applications exhibit increasingly high memory de-
mands, making efficient memory management critical for
enabling fast and responsive user experiences. However, our
analysis of Android systems reveals inefficiencies in the cur-
rent kernel-level memory reclaim design, which struggles
to meet the performance demands of modern apps and fails
to exploit upgraded storage devices. To address this chal-
lenge, we propose PMR, a parallel memory reclaim scheme.
PMR introduces two key techniques: proactive page shrink-
ing (PPS) and storage-friendly page writeback (SPW). PPS
enhances the memory reclaim process by decoupling the time-
consuming steps of page shrinking and page writeback for
parallel execution, while SPW optimizes write I/O operations
through batched unmapping of victim pages for bulk, effi-
cient writeback. Experimental results on real-world mobile
devices demonstrate that PMR can improve application re-
sponse times by up to 43.6% compared to the original Android
memory reclaim approach.

1 Introduction

The memory requirements of mobile applications are grow-
ing significantly, imposing high pressure on modern mobile
devices [19, 28, 34]. Many applications now require giga-
bytes of memory, including popular social networking apps,
video streaming apps, and web browsers. By contrast, the
physical memory capacity of mobile devices has seen only
modest increases, with flagship models such as the latest
iPhone 16 series offering just 8 GB of DRAM [15], and the
upcoming Samsung Galaxy S25 Ultra series equipped with
16 GB [16]. Running just a few such apps can quickly create

∗This work is supported by the Shanghai Science and Technology Project
(22QA1403300). This work is also partially supported by the National Sci-
ence and Technology Council, Taiwan (Grant No. NSTC 113-2221-E-A49-
188-MY3).

†The corresponding author is Liang Shi (shi.liang.hk@gmail.com).

significant memory pressure on mobile devices. If this pres-
sure is not properly managed, the applications may experience
slowdowns, restarts, or crashes, severely affecting the user
experience [10, 20, 32].

To effectively alleviate memory pressure, Android-based
mobile systems employ various memory reclaim mechanisms,
the most notable being kernel-level memory reclaim (includ-
ing memory swapping and direct reclaim) and user-space
Low Memory Killer Daemon (LMKD) [13]. Specifically, first,
when the amount of free memory falls below a pre-defined
low watermark, the kernel wakes up a memory swapping
thread (i.e., kswapd) for asynchronous memory reclaim in
background [12]. Second, if kswapd fails to provide sufficient
free memory for incoming requests, the kernel performs a di-
rect reclaim for synchronous, blocking memory reclaim until
the pending memory requests are satisfied [35]. Finally, if
neither of these can recover the system from critically low
memory, the system resorts to an LMKD process to release
memory through selective process killing. However, once an
app process is killed, the next time when the app is relaunched,
users may notice a long restart latency and loss of all user
context [25,34]. In summary, LMKD termination can quickly
relieve memory pressure but has serious side effects. In con-
trast, kernel-level memory reclaim is transparent to users and
more cost-effective for mobile systems that emphasize inter-
active experience [19, 28, 34].

While LMKD should be avoided whenever possible, ap-
plying kernel-level memory reclaim in current systems is
challenging. Our experiment reveals that current kernel-level
memory reclaim is surprisingly sluggish in practice, failing to
keep up with the growing memory demands of applications
and being unable to fully utilize advanced mobile device hard-
ware. Specifically, we observe that dozens of LMKD events
can occur within just a few minutes (see Figure 2), suggesting
the heavy reliance of current systems on frequent LMKD to
alleviate memory pressure. As mentioned earlier, one of the
primary reasons for this aggressive killing is the inefficiency
of kernel-level memory reclaim. Also, while application mem-
ory footprints can easily reach several gigabytes, the memory

USENIX Association 2025 USENIX Annual Technical Conference 1569

reclaim throughput remains unexpectedly low, less than 150
MB/s at most (see Figure 3). The consistent upgrades for
mobile devices have failed to reverse this trend, further con-
firming the existence of bottlenecks in kernel-level memory
reclaim.

To this end, we are motivated to conduct in-depth analysis
to illustrate the reason for the inefficient kernel-level memory
reclaim. Experiments show that the current reclaim scheme
is limited by the rigid reclaim path, and therefore cannot ex-
ert the performance of evolving storage devices. Specifically,
the memory reclaim procedure follows a sequential execution
flow in which two key steps slow down the overall process: (1)
Page Shrinking, which extracts victim pages from the kernel
page list for subsequent reclamation, and (2) Page Writeback,
which checks whether the victim page is reclaimable and then
writes them back to the flash-based storage device. Intuitively,
the selection of the victim page should be very fast, and the
bottleneck of memory reclaim is more on the I/O operation of
page writeback. However, the time breakdowns of memory re-
claim suggest that page shrinking and page writeback account
for 55% and 45% of the total reclaim latency, respectively.
Each round of memory reclaim spends more than one-half of
the time waiting for the result of the page shrinking. The cur-
rent page shrinking step uses multiple conditions to classify
reclaimable pages, leading to pessimistic victim selection and
repeated iterations to meet memory requirements. For page
writeback, the unmapping operations are slow and create frag-
mented pages, limiting the use of the high write throughput of
modern flash-based storage devices. This design can neither
meet the demand for fast memory reclaim nor maximize the
performance of storage devices.

Motivated by these observations, we propose PMR, a par-
allel memory reclaim method for fast application response on
mobile devices. The core idea of our method is to redesign
the kernel’s existing memory reclaim path to improve page re-
claim efficiency. Specifically, we decouple selected key steps
in the reclaim process and parallelize them, thereby acceler-
ating memory reclaim. PMR consists of two parts: proactive
page shrinking (PPS) and storage-friendly page writeback
(SPW). PPS enables asynchronous execution of page shrink-
ing, preparing an adequate amount of victim pages ahead of
memory reclaim bursts. SPW performs unified page unmap
on an application-by-application basis and batches I/O opera-
tions to exploit the internal parallelism of flash storage devices.
Our evaluation results show that PMR prevents LMKD from
terminating processes and guarantees quick response time for
the running applications compared with the original kernel.

The major contributions of this paper are as follows.

• We firstly benchmark the memory reclaim on mobile
devices and reveal the sluggish kernel-level memory re-
claim. And then we identify the root cause: (1) sequential
execution of page shrinking and page writeback intro-
duces unnecessary delays; (2) page shrinking does not
prepare sufficient victim pages, incurring frequent mem-

ory reclaim calls; (3) the page unmap mechanism gen-
erates fragmented page write I/Os, which under-utilizes
the internal parallelism of flash storage.

• We introduce PMR to enhance the original memory re-
claim process, involving proactive page shrinking and
storage-friendly page writeback. The former decouples
page shrinking and page writeback, and the latter per-
forms storage-friendly I/Os to accelerate page writeback.

• We deploy PMR on real mobile devices. The experimen-
tal results show that when enabled PMR, the application
response time is reduced by 43.6% compared to the orig-
inal system memory reclaim approach.

2 Background and Motivation

2.1 Memory Reclaim on Mobile Device

Linux-based Android mobile devices have three memory re-
claim schemes to manage memory pressure: memory swap-
ping, direct reclaim and LMKD. First, when the system de-
tects that the free memory watermark is lower than a pre-
defined threshold (watermarklow), memory swapping is trig-
gered to perform asynchronous memory reclaim with a kernel
thread kswapd. Second, if the free memory level is still criti-
cally low, direct reclaim is activated to perform synchronous
memory reclaim. Third, if the kernel-level memory reclaim
(memory swapping and direct reclaim) fail to relieve the mem-
ory pressure, Android provides LMKD to release memory by
killing processes selectively.

direct reclaim kswapd

page shrinking page writeback

reclaimable

…active

page list

inactive

page list

isolated

page list

shrink

shrink

…

…

page check

add to swap cache

except file page

page unmap

page out/page free

page DRAM page page page… …

Flash-based Storage device

swap partition data partition

write I/Os

…

●1 ●2

Figure 1: Traditional kernel-level memory reclaim path on
mobile device

1570 2025 USENIX Annual Technical Conference USENIX Association

Although LMKD effectively alleviates memory pressure,
killing processes cause loss of the application context and
long restart of applications. By contrast, kernel-level memory
swapping and direct reclaim are preferred [29, 31, 34]. Re-
cently, mobile device manufacturers, such as Samsung [43],
Huawei [21], have included flash-based memory swapping
for memory expansion [1,21,43,54]. Figure 1 shows that both
memory swapping and direct reclaim follow the two steps for
page reclaim: (1) Page Shrinking and (2) Page Writeback.

Page Shrinking. The kernel organizes memory pages into
four LRU page lists per memory zone for each NUMA node:
inactive anonymous page list, active anonymous page list,
inactive file page list, and active file page list. When memory
reclaim is triggered, the kernel demotes infrequently used
pages from the active page list to the inactive page list, as
well as takes out infrequently used pages from the inactive
page list for page writeback. Whenever memory reclaim oc-
curs, the kernel calculates the scan ratio for each page list.
The nr array logs the scanned page count for each page list.
Specifically, the kernel executes page shrinking in two steps:
First, memory swapping or direct reclaim determines the total
number of pages to be reclaimed (nr_to_reclaim) and the
number of pages to be scanned for each round nr_to_scan.
Second, the kernel scans all four LRU lists for nr_to_scan
pages. The scan continues until the array nr is empty or the re-
claimed pages (nr_reclaimed) reach the reclaim target. The
victim pages found during the scan are added to the temporary
page_list to be written back later.

Page Writeback. Once the pages are collected, the ker-
nel performs page-by-page writeback, involving the follow-
ing steps: First, the kernel performs a page check to con-
firm whether it can enter the subsequent reclaim process,
including page references, page locks, etc. Second, when the
page passes the check, the anonymous page is added to the
swap cache and allocated a page table entry of swap space.
Third, the system performs page unmap and page out for both
anonymous and dirty file pages. Specifically, page unmap
sets the page table entry mapping the anonymous page to
the previously allocated swap type table entry or clears the
process page table entry mapping the file page. Page out calls
page->mapping->a_ops->writepage in the page descrip-
tor to write back the page asynchronously. Finally, the page
reclaim is complete, and the memory space occupied by the
page is free.

2.2 Preliminary Study of Memory Reclaim

To understand the performance characteristics of the memory
reclaim process, we performed extensive experiments on mul-
tiple mobile devices equipped with different sizes of memory
and storage, including Google Pixel 5, Redmi Note 11 and
Google Pixel 6 pro, as shown in Table 1. The experiments
involve popular applications to reflect realistic user scenar-
ios. Detailed experimental settings can be found in Section

5. We enabled flash-based swapping with a 2 GB swap par-
tition on all these mobile devices. Our evaluation consists
of two parts: First, we measure the frequency of the LMKD
process and its impact on application response time. The time
refers to the system’s duration on transitioning from one ap-
plication running in the foreground to another, showing the
need for efficient memory reclaim. Second, we demonstrate
the limitations of the current memory reclaim performance
by showing that it fails to keep pace with the growth of app
memory footprints.

Table 1: Mobile Devices Under Evaluation.

Model
Google
Pixel 5

Redmi
Note 11

Google
Pixel 6 pro

CPU
Qualcomm

Snapdragon 765G
MediaTek

Dimensity 810 Google Tensor

Memory 8 GB 6 GB 12 GB
Storage 128 GB/UFS 2.1 128 GB/UFS 2.2 256 GB/UFS 3.1

System
Android 13

(Kernel 5.10)
Android 13

(Kernel 5.10)
Android 13

(Kernel 5.10)
Announced 2020, September 2022, January 2021, October

2.2.1 Frequent, Expensive Process Killing

To quantify the execution behaviors of LMKD, we composed
a workload that switches back and forth among 36 appli-
cations with various app-use durations and employed the
logcat command [11] to collect LMKD killing events. To
avoid bias, we present the average of ten rounds of application
response time.

0

20

40

60

80

100

o

f
ki

lle
d

 b
y

LM
K

D

5 mins

10 mins

15 mins

0

500

1000

1500

YT FB A
Z

A
B X

U
B TT SY C
H

G
M

A
p

p
lic

at
io

n
R

es
p

o
n

se
 T

im
e

(m
s)

Cold launch

Warm launch

(a) Pixel 6 pro Pixel 5 Redmi Note 11 (b)

Figure 2: Frequent occurrences of LMKD have a large nega-
tive impact on application responsiveness. (a) Many processes
are killed among different mobile devices; (b) Applications
suffer from long restart latency when the processes are killed
on Pixel 6 pro. (YT: YouTube, FB: Facebook, AZ: Amazon,
AB: Angry Birds, X: Twitter, UB: Uber, TT: TikTok, SY:
Spotify, CH: Chrome, GM: Gmap.)

As shown in Figure 2(a), even though the newest Pixel 6 pro
has 12 GB of DRAM, it still experienced 26 process killings
after five minutes of workload replay, with more processes be-
ing killed by LMKD as the workload ran longer. By contrast,
because Pixel 5 and Redmi Note 11 feature small amounts
of DRAM, they experienced more LMKD killings under the
same workload. Here, switching to an application killed by

USENIX Association 2025 USENIX Annual Technical Conference 1571

(a)
0

40

80

120

160

R
ec

la
im

 T
h

ro
u

gh
p

u
t

(M
B

/s
)

Timeline (s)

Pixel 5
Redmi Note 11
Pixel 6 pro

0

200

400

600

800

1000

1200

M
em

o
ry

 F
o

o
tp

ri
n

t
(M

B
)

Timeline (s)

TT YT FB

(b)

Figure 3: Low memory reclaim throughput accompanying
growing memory requirements of applications. (a) Memory
reclaim throughput barely improves on fast storage; (b) Ex-
tremely high memory demands of applications.

LMKD requires a restart (cold launch). Figure 2(b) shows that
the application response time is 3.1 times longer on average
than the latency of the warm start of the application, that is,
switching to a live cached application. The frequent LMKD
killing events degrade application responsiveness and severely
impact user experience. Considering the triggering conditions
of LMKD mentioned above, frequent LMKD comes from the
ineffective kernel-level memory reclaim that fails to alleviate
memory pressure in time.

2.2.2 Sluggish Memory Reclaim

To confirm that kernel-level memory reclaim does not match
app memory demands, we measured kernel reclaim through-
put and app runtime memory footprint. Once the system per-
forms memory reclaim, the kernel writes dirty file pages and
anonymous pages back to the storage device. Considering
that other processes in the system will also perform write op-
erations for file pages during the memory reclaim, we employ
the write throughput of the swap partition as a reliable indica-
tor of the memory reclaim throughput, And there is indeed a
high percentage of reclaimed anonymous pages that need to
be written back to the swap partition [50].

Figure 3 shows our two findings. First, as shown in Figure
3 (a), memory reclaim throughput fluctuates below 80 MB/s
most of the time, and interestingly, reclaim performance re-
mains consistently low across different generations of mobile
devices. Specifically, while Pixel 6 pro features faster flash
storage than Pixel 5 (UFS 3.1 versus UFS 2.1), the average
reclaim throughput of Pixel 6 pro is only 10% higher than
that of Pixel 5. On the other hand, Figure 3(b) shows that the
memory footprint size of three popular applications expands
quickly during the initial startup phase, reaching between 400
MB and 1 GB. It is evident that the memory reclaim process
falls far behind the application memory demands.

In summary, while app memory footprint is increasingly
high, the hardware advance does not benefit the efficiency
of kernel memory reclaim. This inefficiency results in fre-
quent LMKD killings, which has a negative impact on the
user experience. These findings direct our further investi-
gation toward analyzing the memory reclaim procedure.

0

50

100

150

R
ec

la
im

 t
h

ro
u

gh
p

u
t

(M
B

/s
)

BG apps+FG app BG apps+memtester

Pixel 5 Redmi Note 11 Pixel 6 pro

0

400

800

1200

Seq.Write Rand.Write

Th
ro

u
gh

p
u

t
(M

B
/s

)

Pixel 5 Redmi Note 11 Pixel 6 pro

(a) (b)

Figure 4: (a) I/O performance w/ or w/o I/O conflict. (b)
Random and sequential write throughput with 4 KB I/Os.

3 Performance Bottleneck Analysis

As mentioned in Section 2.1, the kernel-level memory reclaim
involves scanning kernel pages and accessing the flash storage.
Based on these two key steps, we examine the root causes of
memory reclaim stalls.

3.1 I/O Utilization
Intuitively, the stagnant memory reclaim may be first at-
tributed to poor I/O performance, which includes two aspects:
I/O conflicts and the storage device itself. According to previ-
ous studies, the write I/Os of memory reclaim may conflict
with the read I/Os of other processes, and I/O conflicts are
considered to be an important factor affecting application
performance [18, 30, 39]. However, the storage bandwidth
determines the upper limit of the memory reclaim.

3.1.1 Low Impact of I/O Conflicts

To quantify the impact of I/O conflicts on memory reclaim,
we conducted two workload scenarios: (1) Saturating memory
pressure by running multiple background applications and
provoking memory reclaim by switching applications to fore-
ground (BG-apps+FG-app); (2) Running background applica-
tions and use the memtester command [48] to allocate mem-
ory and provoke memory reclaim (BG-apps+memtester).
BG-apps+FG-app represents a scenario in which memory
reclaim suffers from intensive I/O conflicts because switch-
ing applications to the foreground involves reads from the
storage. In contrast, memory reclaim requires writing pages
to the flash storage. BG-apps+memtester represents another
scenario in which memory reclaim is almost free from I/O
conflicts because memtester requests for memory without
generating additional read I/O operations.

Figure 4 (a) shows the peak memory reclaim through-
put under both workloads on different mobile devices. Tak-
ing Pixel 6 pro as an example, the peak reclaim throughput
with memtester (light conflict) is only 8.3% higher than the
throughput with switching applications to the foreground (se-
vere conflicts), and similar results are displayed by Pixel 5
and Redmi Note 11. In other words, I/O conflicts have a low
impact on memory reclaim throughput. This is because reads

1572 2025 USENIX Annual Technical Conference USENIX Association

Device write I/O

System time

(98.7%)

I/O time

(1.3%)

(4.48ms)

54.8%

(3.66ms)

45.2%

System …
scan system page lists;

prepare for reclaim

page shrinking

page check; add to swap;

page unmap; page out

page writeback

Figure 5: Average time breakdown of memory reclaim path.

are much faster than writes in flash storage, and under I/O con-
flicts, they only lightly affect the latency of swap writes [47].

3.1.2 Excessive Storage Bandwidth

Storage bandwidth is also a critical factor for overall I/O per-
formance. We measure the write throughput of flash storage
using the fio tool [2], with the results shown in Figure 4(b).
The internal 128 GB UFS 2.1 flash storage in the lowest pro-
file Pixel 5 achieves a random write throughput of 378 MB/s,
three times higher than the memory reclaim throughput re-
ported in the previous section. By contrast, the high-profile
Pixel 6 pro with UFS 3.1 flash storage demonstrates an even
greater capability, achieving throughput at around 1000 MB/s
for random and sequential writes. In other words, the mem-
ory reclaim process significantly under-utilizes the storage
bandwidth, suggesting the inefficiency lies within the system
software rather than the hardware.

3.2 Sub-optimal Memory Reclaim Path

To identify bottlenecks in the memory reclaim path, we dissect
the time overhead by measuring the delay of each major step
using the kernel command ktime [3].

3.2.1 Sequential Execution of Key Steps

Figure 5 shows a breakdown of the total memory reclaim
latency, contributed by page shrinking and page writeback:
First, for each round of memory reclaim, the page shrinking
step spends 4.48 ms on average, which accounts for 54.8%
of the total memory reclaim time. The page writeback step
contributed to the rest 45.2%, using 3.66 ms on average. In-
terestingly, although the page shrinking step does not involve
any I/Os, it uses more than one-half of the total latency just to
prepare victim pages for reclamation. Second, each round of
page reclaim goes through a serial flow of page shrinking and
page writeback, i.e., page writeback must wait until victims
have been prepared by page shrinking. In other words, this
sequential execution flow significantly limits the potential
benefits of enhanced flash storage performance in improving
memory reclaim efficiency.

The number of page shrinking

Pa
ge

s

32

10032

20032

30032

40032

1

1
9

3
7

5
5

7
3

9
1

1
0

9

1
2

7

1
4

5

1
6

3

1
8

1

1
9

9

2
1

7

2
3

5

2
5

3

2
7

1

2
8

9

nr_recliamed nr_to_reclaim

Figure 6: nr_to_reclaim vs nr_reclaimed when system per-
forms memory reclaim.

3.2.2 Inefficient Page Shrinking

As mentioned earlier, the kernel-level memory reclaim con-
sists of memory swapping and direct reclaim. For memory
swapping, the expected number of pages reclaimed in each
round of invocation is the maximum of SWAP_CLUSTER_MAX
and watermark_high (whose default value is 39340 pages,
approximately 154 MB). For direct reclaim, this value is
SWAP_CLUSTER_MAX, 32 pages by default.

Figure 6 illustrates the expected number of pages to be re-
claimed (nr_to_reclaim) versus the actual number of pages
reclaimed (nr_reclaimed) during runtime. When memory
swapping executes, although it is expected to reclaim 39,340
pages, the actual number it reclaims is far fewer than the ex-
pected value. This is because, during memory reclaim, the
page shrinking step examines nr_to_reclaim LRU pages in
the kernel page lists, but only a small portion of these pages
can be reclaimed. Specifically, pages that have been recently
referenced or are locked for page writeback cannot be re-
claimed. Additionally, page shrinking terminates early if it
experiences highly unbalanced scanning between anonymous
pages and file pages [14]. As a result, page shrinking is re-
peatedly invoked to gather sufficient reclaimed pages, making
the entire procedure inefficient.

3.2.3 Internally Blocked Page Writeback

Page writeback is responsible for performing the actual page
reclaim based on the page type, including page checking,
unmapping victim pages, and writing the pages to storage,
etc. Intuitively, I/Os for page writing may be the performance
bottleneck, but our analysis reveals a different result.

Figure 7 shows a breakdown of the page writeback step
into unmapping pages and writing pages (page out). Unex-
pectedly, the time overhead of page unmap is relatively high
and extremely unstable. This is because to unmap a page,
page table entries of all processes that share the page must
be modified through a reverse mapping mechanism, and this
procedure is prone to interruption, so its completion time is
extremely unstable [34]. Moreover, not only unmapping but

USENIX Association 2025 USENIX Annual Technical Conference 1573

0

100

200

300

1
1

8
3

5
5

2
6

9
8

6
1

0
3

1
2

0
1

3
7

1
5

4
1

7
1

1
8

8
2

0
5

2
2

2
2

3
9

2
5

6
2

7
3

2
9

0

Ti
m

e
(u

s)

The number of page writeback

page unmap
page out (write I/O)

Figure 7: Time breakdown of page writeback (the time of
page out is not zero but fluctuates under a few microseconds).

also writing of pages is performed page by page. Writing
flash at the page granularity is inefficient and slows down the
whole writeback step.

In summary, sluggish memory reclaim is mainly due to
the sub-optimal memory reclaim path, including three
aspects: (1) page writeback waits on the results of
page shrinking, introducing unnecessary delays; (2) page
shrinking suffers from inefficient reclaim and repeated
invocation; (3) page unmap latency is highly unstable and
produces small writes that cannot unleash the potential of
flash storage.

4 PMR Design

4.1 Overview
The basic idea is of PMR to parallelize key steps of memory
reclaim to fulfill application memory demand and thus im-
prove application response. Intuitively, there are two typical
ways to perform parallel memory reclaim. First, the kernel
can create multiple memory reclaim threads, e.g., Mutiplek-
swapd [36] wakes up multiple kswapd threads to perform
memory swapping to relieve memory pressure. Second, it is
possible to exploit the performance advantage of flash stor-
age through bulk I/Os. For example, SEAL [29] performs
memory swapping in units of applications, rather than page
by page. However, for the former, multi-threaded memory
reclaim is prone to conflict with each other and burden the
CPU because they occur simultaneously. For the latter, simply
increasing the I/O size still does not resolve the suboptimal
execution flow of memory reclaim. Unlike previous work,
PMR parallelizes key steps in the memory reclaim path based
on observations in Section 3.2.

To realize the basic idea, PMR consists of two components:
proactive page shrinking (PPS) and storage-friendly page
writeback (SPW). Figure 8 shows an overview of PMR. PPS
decouples page shrinking and page writeback to prepare suffi-
cient victim pages in advance, and it includes a kernel thread
kshrinkd and a victim page list to perform page shrinking
independently. Specifically, its operation involves three steps:

(❶) Based on pre-defined conditions, kshrinkd is activated.
(❷) An independent page shrinking procedure moves pages
from the system page LRU lists to the victim page list. (❸)
The new victim page list is carefully maintained to ensure
sufficient pages are provided for page writeback.

kswapd

UFS

page

page

page

page

…

…

…

DRAM

direct

reclaim

Proactive Page Shrinking

Decoupling Page Shrinking

and Page Writeback

Replenishing

Victim Pages

independent

shrinking
…

…

System page list

…
Victim page list

Storage-friendly Page Writeback

reclaimable

page check

add to swap cache

except file page

Application-aware

Page Unmap

Batch Write I/Os

kshrinkd

swap

partition

data

partition

●1

1

●2
●3

2
3

4

Figure 8: Overview of PMR.

SPW performs application-aware page unmap, and batches
write I/Os for efficient page writeback. It redesigns the page
unmap process to align with storage-friendly I/O sizes, en-
abling bulk writes that exploit the internal parallelism of flash
storage. Specifically, it works in four steps: (①) When the
system runs low on memory, kswapd or direct reclaim is trig-
gered for memory reclaim. (②) Unlike the existing design,
page writeback is triggered immediately since kshrinkd may
already have prepared sufficient pages in the victim list. (③)
Reclaimable pages undergo application-aware page unmap.
(④) A batch of unmapping pages are written to flash storage
through efficient bulk I/Os.

There are two key challenges in the implementation of PPS
and SPW. First, kshrinkd is supposed to prepare sufficient
victim pages, subject to the timing of the shrinkage and the
granularity of each. The shrinking must be carefully timed to
avoid conflicts between page shrinking and other processes
accessing pages. The shrinking granularity should meet the
need to reclaim memories without creating waste. And the
victim page list needs careful maintenance to control over-
head. Second, the batch size of the application-aware page
unmap must be carefully controlled. The batch size should
be sufficiently large to ensure efficient write I/Os, yet not so
large as to introduce unnecessary delays in page writeback.
The following sections detail the design of PPS and SPW.

4.2 Proactive Page Shrinking

To produce an adequate supply of victim pages for page write-
back at a low cost, PPS decouples page shrinking and page
writeback and carefully determines the timing and granularity
of page shrinking.

1574 2025 USENIX Annual Technical Conference USENIX Association

4.2.1 Decoupling Page Shrinking and Page Writeback

Existing kernel-level memory reclaim follows the sequential
flow of page shrinking first and then page writeback. When
the system suffers memory pressure, page shrinking first iso-
lates victim pages to the temporary page_list, and page
writeback performs subsequent page reclaim.

Two challenges arise regarding the decoupling of page
shrinking and page writeback. First, current page shrinking
and page writeback are operated by the same thread. Con-
current execution of the two steps is required to achieve the
decoupling. Second, the existing page shrinking design uses
function isolate_lru_pages to temporarily remove eligi-
ble pages from the system LRU page lists for subsequent page
writeback. With decoupled page shrinking and page write-
back, access to the eligible pages between page shrinking
and page writeback requires coordination. To address these
two challenges, firstly, page shrinking is offloaded to a new
kernel thread kshrinkd, and page writeback is left to mem-
ory swapping and direct reclaim. Secondly, the temporary
page_list isolated by page shrinking have been redesigned
as a new victim page list to coordinate the page production
and consumption between kshrinkd and page writeback.

Independent kshrinkd Thread. kshrinkd is designed to
perform page shrinking independently and prepare sufficient
victim pages in advance. We standardize kshrinkd runtime
rules to achieve this goal. First, the triggering of kshrinkd, no
longer depends on memory pressure, but on whether enough
victim pages are prepared. When the system faces memory
pressure, kernel-level memory reclaim directly accesses the
pages produced by kshrinkd to perform page writeback. Sec-
ond, unlike existing page shrinking, which may terminate
early without producing the expected number of victim pages,
such as when nr_anon or nr_file are zero, our enhanced
kshrinkd uses a continuous scanning loop to ensure the tar-
get is reached. Finally, to minimize changes to the kernel,
kshrinkd inherits the page shrinking algorithm from the ex-
isting memory reclaim, e.g., calculating the number of pages
that need to be scanned for each LRU page list.

Victim Page List Maintenance. When page shrinking
and page writeback can be done in parallel with the help of
kshrinkd, we need to consider how to preserve the victim
pages that were produced by kshrinkd. The traditional LRU
isolation mechanism is limited by factors such as lock con-
tention, and the number of pages that can be isolated each
time is limited. Based on this, we maintain a new victim
page list and filter eligible pages from the system LRU list by
kshrinkd, including those pages that are not locked and not
frequently referenced. Specifically, we use a reserved bit in
the page table entry to record these pages as isolated pages
(PG_ISOLATED). And kshrinkd will move these pages from
the system LRU list to the victim page list. Also, to avoid
access conflict to the victim page list, lightweight spinlocks
are used to ensure normal page accesses for kshrinkd and page

writeback. In this way, we can reserve sufficient pages in the
victim page list to perform efficient page isolation services
for subsequent page writeback.

Algorithm 1: Always Ready Page Shrinking
Input: nr_victim_page: the actual number of pages in the victim

page list (The initial value is 0);
nr_ideal_victim_page: the ideal number of pages in the victim page
list (The initial value is δ);
shrink_size: the number of page shrinking each time ;
if System Start then

while nr_victim_page < nr_ideal_victim_page do
kshrinkd starts;
shrink_size = nr_ideal_victim_page ;

kshrinkd sleep;

Once page writeback is required, provide victim pages;
if Memory Swapping or Direct Reclaim Start then

while nr_victim_page < nr_ideal_victim_page do
kshrinkd starts;
shrink_size = nr_to_reclaim ;

4.2.2 Replenishing Victim Pages

The decoupling of page shrinking and page writeback intro-
duces the challenge of ensuring that kshrinkd maintains an ad-
equate supply of victim pages for page writeback. To address
this challenge, a new control loop is introduced, as detailed in
Algorithm 1, which describes our always-ready page shrink-
ing procedure. At system startup, kshrinkd is activated, and it
continues the collection process until nr_ideal_victim_page
pages have been inserted into the victim page list. Once this
target is met, kshrinkd transitions to a sleep state. On memory
reclaim requests, the victim pages from the new page list are
isolated for page writeback, while in the meantime, the page
shrinking procedure is reactivated to replenish victim pages.
This ensures a consistent supply of victim pages for write-
back, maintaining system efficiency and readiness. Further
details are discussed below.

Page Shrinking Watermark. To ensure sufficient victim
pages, we set a page shrinking watermark. The parameter
nr_ideal_victim_page (i.e., δ in Algorithm 1) specifies the
target number of victim pages that should be maintained in
the new victim page list. To prevent delays in page writeback
due to insufficient victim pages, nr_ideal_victim_page must
be large enough, and its value should be carefully determined
through an analysis of application responsiveness. Our sensi-
tivity study in Section 5.5 recommends an empirical setting
of 462 MB, ensuring a sufficient supply of victim pages for
efficient memory reclaim.

Timely Page Shrinking. The efficiency of our page shrink-
ing design depends on both the timing of kshrinkd activation
and the batch size of page shrinking. Unlike the on-demand
approach of existing memory reclaims designs, which is trig-
gered by low watermarks or allocation rates, our design ac-

USENIX Association 2025 USENIX Annual Technical Conference 1575

tivates page shrinking ahead of memory bursts. At system
startup, kshrinkd collects victim pages until nr_victim_page
reaches nr_ideal_victim_page, then enters a sleep state.
Later, when system memory reclaim is invoked, even if the
victim page list is not yet empty, kshrinkd is reactivated for
parallel execution. In this case, the shrinking batch size is set
to nr_to_reclaim, one third of nr_ideal_victim_page, and
iterations continue until nr_ideal_victim_page victim pages
have been prepared in the list.

In the design of PPS, the system needs to maintain a victim
page list as a communication bridge between page shrinkage
and page writeback. To circumvent page thrashing (between
the system LRU list and the victim page list), a novel page
type, the isolated page, is introduced as the victim page selec-
tion criterion for page shrinking. This inevitably raises con-
cerns about the performance overhead of maintaining these
pages. However, PPS merely screens isolated pages in ad-
vance, which can enhance the efficiency of page isolation op-
erations. Furthermore, the parameter nr_ideal_victim_page
determines whether the system can provide sufficient victim
pages for writeback. The default setting of 462 MB is equiva-
lent to three times the fixed number of pages for each memory
swapping. Although different applications appear to require
different amounts of memory to be reclaimed, it is challeng-
ing to set different default settings according to the types of
applications. The current fixed default values are derived from
sensitivity experiments and are committed to ensuring the per-
formance of most applications. A more detailed maintenance
design of the victim page list will be the focus of future work.

U1 W1 U2 U3W2 W3

Time

page check

unified page unmap to

quickly serve write I/O

U1 + U2 + U3 W1 + W2 + W3

(a) Original page writeback

page writeback

time reduction

storage-friendly

write I/O size

page locked + interruptible overhead

page check

Time

(b) Storage-friendly page writeback

Figure 9: Page writeback scenarios with and without storage-
friendly page writeback. Ui is the ith page unmap, and Wi is
the corresponding write I/O. SPW expedites paged writeback
by exploiting the parallelism of flash storage devices.

4.3 Storage-friendly Page Writeback
A victim page must first be unmapped before being written
back to the flash storage. Even though our page shrinking de-
sign collects batches of victim pages (i.e., nr_to_reclaim),
with the existing page writeback procedure, pages are writ-

ten back to flash storage in a page-by-page manner (4 KB
each). In addition, as previously detailed in Section 3.2.3,
the page unmap process suffers from highly unpredictable
delays, affecting page writeback efficiency. To address these
performance issues, SPW introduces application-aware page
unmap followed by batched page-out (page writeback).

Figure 9 compares the original page writeback process and
our SPW design. Unlike the original approach, SPW sepa-
rately clusters page unmap operations and page write actions.
The clustered page unmap, called an application-aware un-
map, mitigates the cost of locking, avoids interference from
other contending processes, and accumulates multiple pages
for storage-friendly write I/Os. Subsequently, pages can be
written back through bulk write I/Os, which better exploits
the internal parallelism of flash storage.

4.3.1 Application-aware Page Unmap

There have been prior methods for resizing unmap job sizes
to avoid interference from other processes and kernel activi-
ties [34]. In contrast, SPW takes a different approach by intro-
ducing an application-aware page unmap to enable storage-
friendly write I/O operations. The core idea is to organize
pages based on their associated processes and determine the
unmap job size according to the performance characteristics
of the underlying flash storage. Specifically, the application-
aware unmap design must carefully handle interrupts to avoid
long tail latency and exploit the performance gains of bulk
write I/Os on flash storage, effectively balancing throughput
and latency.

To minimize interference from other processes and ker-
nel activities and improve the unmapping efficiency, SPW
exploits the big-LITTLE processor architecture commonly
found in modern mobile devices [46]. Specifically, in addi-
tion to increasing the job size for page unmap, SPW assigns
a high priority to the page unmap thread and affiliates the
thread with a big core, ensuring that the thread is not pre-
empted during execution. With the privileged execution of the
application-aware unmap procedure secured, the next focus is
on determining the optimal job size for the unmap procedure
based on the performance efficiency of flash storage.

4.3.2 Batch Write I/Os

Application-aware page unmap removes the obstacle for im-
plementing bulk write I/Os, which can improve the efficiency
of memory reclaim by utilizing the parallelism of storage
devices. Next, we analyze the characteristics of flash-based
storage devices to find the most cost-effective I/O size.

As shown in Figure 10, write throughput improves with
larger I/O sizes, though the improvement is non-linear. The
marginal gain saturates when I/Os are large enough to fully
utilize parallelism, but increasing the I/O size further intro-
duces high latency. On the Google Pixel 6 pro, a 10 MB I/O

1576 2025 USENIX Annual Technical Conference USENIX Association

size achieves 1261 MB/s, effectively balancing throughput
and latency. Interestingly, cumulative write throughput does
not benefit from additional threads due to lock contention.
Based on these insights, our design collects unmapped pages
from the new victim page list and composes them into bulk
write I/Os based on the device-specific size. To address po-
tential performance challenges with larger unmap sizes, a
sensitivity analysis of this parameter will be presented in Sec-
tion 5.5, to ensure an efficient balance between unmap and
writeback performance.

0

400

800

1200

1600

4KB 32KB 128KB 512KB 1MB 10MB 50MB 100MB

Th
ro

u
gh

p
u

t
(M

B
/s

)

I/O size

Threads=1 Threads=2 Threads=4 Threads=8

Figure 10: The throughput for random writes varies with
the sequential block size and the number of threads in flash
memory on Google Pixel 6 pro.

While the existing kernel handles pages individually, our
SPW technique batches page unmapping and submits groups
of pages to the block layer in bursts. As SPW simply increases
the granularity of page unmapping, it inherits the page check
and lock mechanisms from the existing kernel with minimal
modifications. Our SPW is also orthogonal to the I/O plugging
[24] mechanism, which operates at the block layer and is
opaque to the page reclaiming process. By contrast, our SPW
prepares batched I/O at the system software layer, allows
more precise timing control, accelerating I/O submission and
reducing merge latency.

4.4 Implementation and Discussions
Implementation Detail. Our implementation of PMR follows
the principle of a minimally invasive approach, reusing exist-
ing kernel functions whenever possible. This section focuses
on PMR’s implementation aspects.

To implement kshrinkd for page shrinking, the
kshrinkd_init function is executed as part of the
kernel initialization process within start_kernel. Within
kshrinkd_init, kthread_run is invoked to create a
kshrinkd thread for each memory node, similar to kswapd.
The page shrinking mechanism previously managed by
kswapd is transferred to kshrinkd, with its activation
now depending on the insufficiency of pages in the new
victim page list, rather than the original kswapd activation
conditions. Additionally, a new page list type, LRU_VICTIM,
is introduced as an intermediary between page shrinking and
page writeback. The kshrinkd thread scans the original LRU

page lists and moves eligible victim pages to the new list,
enabling page writeback to swap out these pages efficiently.
To further optimize performance, the page unmap mechanism
performs batch page writes based on the device-optimal
I/O size. Using the /proc interface, our implementation
allows for dynamic adjustment of the unmap unit size
(mem_unmap_unit) on-the-fly.
Orthogonality. To keep our design simple and focused, sev-
eral default memory reclaim settings are retained in this pa-
per. First, although studies have shown that LRU-based page
replacement strategies may not be optimal [32,34,51], our im-
plementation inherits the default LRU-based victim page se-
lection strategy. This decision is based on the fact that PMR is
compatible with any page selection strategy and achieves per-
formance improvements regardless of the strategy used. Sec-
ond, as previous studies have extensively explored optimizing
the trigger conditions for memory reclaim [19, 27, 30, 58], we
choose not to modify them. Instead, PMR focuses on acceler-
ating the execution of memory reclaim and serves as a com-
plementary approach to these efforts. Finally, despite research
on optimizing memory reclaim by adjusting its size [32, 50],
we do not modify the original kernel setting, as PMR operates
with its own job size for page shrinking and page writeback.
Future Use Cases of PMR. The deployment of large lan-
guage models (LLMs) [6, 37, 55] on mobile devices imposes
significant memory pressure on mobile systems, leading to
severe performance degradation for such memory-demanding
applications. On the other hand, the performance of mobile
storage devices based on NAND flash has seen significant
improvements, with the latest UFS 4.0 delivering a 1.8 times
higher I/O bandwidth compared with UFS 3.1 [4, 8, 38, 45].
With such a high flash storage bandwidth, there is great po-
tential to reshape the memory reclaim process.

5 Evaluation

5.1 Experiment Setup
Evaluation Platforms and Workloads. We adopt different
real mobile devices as our experiment platform, as mentioned
in Table 1, and flash-based memory swapping is enabled for
memory swapping on these mobile devices, and the swap
partition is set to 2 GB.

Experiments are conducted by following the three steps:
(1) We installed the pre-selected 36 applications (10 switch-
ing applications and 26 background running applications) on
the device to begin each experiment. (2) We used adb [9]
command to collect evaluation results while performing auto-
mated tests with UI Automator [53] that emulates UI touches
of users. adb is a versatile command-line toolkit, and we can
use the command "adb shell starts the app’s package name
(PKN)" to start apps and record the launch latency. UI Au-
tomator is adopted to generate pseudo-random streams of
user events, such as clicks, touches, or gestures, as well as a

USENIX Association 2025 USENIX Annual Technical Conference 1577

number of system-level events. The app’s PKN and the total
number of user events we want to generate are provided to
run this tool. Specifically, we use UI Automator to run back-
ground applications and adopt adb to switch the selected ten
applications and record the launch latency as response time.
We performed the same automated tests in ten rounds and
calculated the average to avoid basis. The order of application
switching is changed randomly in each round.

Table 2: Applications and automated user interaction.
Category Foreground Applications Auto user inputs
Browser Chrome Browse/Read posts

Social Network Facebook, Twitter Browse/Read posts
Multimedia YouTube, Tiktok Watch videos

Business Utility
Amazon, Gmap, Uber,

Spotify
Browse and search

Listen music
Game Angry Birds Play a stage

∗Background applications: Browser (Firefox, Opera), Social Network
(WhatsApp, Instagram, Skype, WeChat, LinkedIn), Multimedia (Spo-
tify, MXPlayer, Netflix, Capcut), Online shopping (Taobao, eBay, AliPay,
BOA, Paypal), Business Utility (Booking, Gmail, New York Times, BBC
News, OfficeMobile, GoogleDrive), and Game (Hill Climb Racing, Boom
Beach, ClashRoyale, Call of Duty).

Evaluated Schemes. Five schemes are implemented and
measured to show the effectiveness of PMR. 1) Original
Memory Reclaim (OriginalMR) represents the baseline of
evaluation, which is inherited from native Linux. Inefficient
memory reclaim results in memory pressure and cannot be
relieved in time, causing processes to be killed frequently. 2)
Acclaim [32] represents the state-of-the-art work that is clos-
est to this study, which relocates free pages from background
applications for foreground applications and adjusts the size
of kswapd according to the predicted allocation workloads. 3)
Fleet [19] represents the latest memory reclaim optimization
idea on mobile devices, which proposes a foreground-aware
GC-swap to combine Android Runtime (ART) GC and kernel-
based memory swapping. 4) PMR represents our proposed
framework, which combines PPS and SPW.

5.2 Application Response Evaluation

To understand the benefit of PMR on application performance,
application response time is evaluated among existing mem-
ory reclaim schemes. Application switching may expose
memory reclaim when the system is under memory pres-
sure. Different memory reclaim schemes can lead to different
application response times due to performance differences. It
is a critical performance metric for smartphone users.

Figure 11 shows the application response time of the evalu-
ated schemes. First, OriginalMR suffers the worst response
time, several times higher than other schemes. This is because
when the system is under memory pressure, original mem-
ory reclaim fails to relieve memory pressure in time, and the

0

500

1000

1500

CH X FB AZ TT YT AB GM SY UB

A
p

p
 R

es
p

o
n

se
 T

im
e

(m
s) OriginalMR Acclaim Fleet PMR PMR+Fleet

Figure 11: Application response time among different mem-
ory reclaim schemes on Google Pixel 6 pro.

system tends to kill the application. In this case, the appli-
cation response time is equivalent to a cold launch. Second,
Acclaim and Fleet reduce the response time by an average of
32.4%, 35.7% compared to OriginalMR, respectively. This
is because Acclaim reduces direct reclaim and page fault by
a foreground-aware page eviction and a dynamical size of
the kswapd. Fleet designs kernel-based memory swapping
and ART GC together to avoid mutual interference between
different levels of the system memory reclaim.

Unlike previous works, PMR achieves fast memory reclaim
to boost application response by proactive page shrinking and
storage device-friendly write I/O. The application response
time decreases significantly compared with OriginalMR, with
the decreases reaching 43.6%. Also, PMR also has significant
performance improvements over Acclaim and Fleet. More
importantly, thanks to PMR’s focus on improving the common
memory reclaim path, it is perfectly complementary to both
Acclaim and Fleet. For example, when PMR and Fleet are
used together, application response time is reduced by 67.4%
compared to OriginalMR and improved by 38.9% compared
to Fleet alone. This is because Fleet effectively improves
the accuracy of memory reclaim and avoids invalid memory
reclaim, while PMR can speed up memory reclaim.

5.3 Memory Reclaim Evaluation
To further understand the performance improvement brought
by PMR to application responsiveness, we separately evalu-
ated the memory reclaim throughput and other performance
indicators of the system during the following experiments, in-
cluding the number of LMKD, direct reclaim, and page faults.
On the one hand, memory reclaim throughput can intuitively
see the benefits of memory reclaim in ensuring system mem-
ory availability. On the other hand, the number of LMKD
indicates the efficiency with which the system memory pres-
sure is alleviated. In contrast, direct reclaim and page fault
indicate the impact of memory reclaim on the application [32].
Note that in this subsection, since Acclaim also focuses on
kernel-level memory reclaim optimization, we choose it as
the state-of-the-art work for comparison, rather than Fleet,
which focuses on the joint design of ART GC and memory
swapping.

1578 2025 USENIX Annual Technical Conference USENIX Association

5.3.1 Memory Reclaim Throughput

Figure 12 shows the memory reclaim throughput under dif-
ferent mechanisms. First, the memory reclaim throughput of
OriginalMR and Acclaim shows the same trend. That is, it
changes in a very low range. The reason why OriginalMR
suffers this performance loss has been revealed previously. Ac-
claim is committed to reducing the number of direct reclaim
and page faults and does not optimize the memory reclaim
path, so it also fails to improve memory reclaim throughput.
Secondly, compared with previous work, PMR benefits from a
parallelized memory reclaim path, which not only avoids pas-
sive waiting for page writeback, but also accelerates the tradi-
tional page writeback. The results show that the peak memory
reclaim throughput of PMR is increased by 82.8% and 75.5%
respectively compared with OriginalMR and Acclaim. The
huge improvement in memory reclaim throughput shows that
PMR can perform memory reclaim at a faster speed, which
explains the performance improvement of PMR in terms of ap-
plication response time. Also, since Fleet focuses more on the
accuracy of memory reclaim and does not essentially affect
the reclaim throughput, it was not chosen as the comparison
object in the following experiments.

0

50

100

150

200

250

300

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64Re
cl

ai
m

 T
hr

ou
gh

pu
t (

M
B/

s)

Timeline (s)

OriginalMR Acclaim PMR

Figure 12: Memory reclaim throughput among different
schemes.

5.3.2 Reduction of LMKD/Direct Reclaim/Page Fault

LMKD can cause applications to suffer long restart delays.
Direct reclaim, which is a synchronous memory reclaim, has
a direct impact on application allocation page requests. Page
faults can cause long page reads. To understand the improve-
ment of application response due to PMR, we further analyze
the above three performance indicators.

Figure 13 shows the number of LMKD, direct reclaim and
page fault under different memory reclaim schemes. First,
OriginalMR suffers the most from LMKD, direct reclaim,
and page faults. Acclaim benefits from foreground-aware
memory reclaim, which can effectively reduce the number of
direct reclaim and page faults. However, it essentially does not
effectively alleviate memory pressure, and LMKD still occurs
frequently. Secondly, unlike Acclaim, PMR can effectively
alleviate memory pressure with the help of fast memory re-
claim and avoid the frequent occurrence of LMK. Compared

0

20

40

60

80

100

120

140

of killed by LMKD Direct reclaim count Page fault count (x1000)

OriginalMR Acclaim PMR

Figure 13: The number of killed applications, direct reclaim
and page fault among different schemes.

with OriginalMR and Acclaim, PMR reduces LMKD by 82%
and 54% respectively. Moreover, when memory swapping
can effectively alleviate memory pressure, direct reclaim will
naturally decrease, PMR reduces it by 45% compared to Ac-
claim. Since PMR does not change the victim selection page,
the page fault rate remains the same as OriginalMR.

5.4 Storage Utilization Evaluation

In this subsection, we calculate the memory reclaim through-
put on different mobile devices under the same application
running condition to demonstrate the efficiency of PMR by
taking advantage of evolving storage devices to improve the
efficiency of memory reclaim. Specifically, Pixel 5 and Pixel
6 pro were selected as experimental platforms, with the for-
mer equipped with a 128 GB UFS 2.1 storage device and the
latter equipped with a 256 GB UFS 3.1 storage device. Simi-
lar to the previous experiment, 26 applications were running
in the background, and six applications were switched back
and forth in the foreground, including YouTube, Facebook,
Twitter, TikTok, Gmap and Camera. We collect the memory
reclaim throughput during the switching of these six applica-
tions.

(a) OriginalMR (b) Acclaim

(c) PPS (d) PMR(PPS+SPW)

0
50

100
150
200
250
300

1 7 13 19 25 31 37 43 49 55 61

Re
cl

ai
m

 T
hr

ou
gh

pu
t (

M
B/

s)

Timeline (s)

Pixel 5 Pixel 6 pro

0
50

100
150
200
250
300

1 7 13 19 25 31 37 43 49 55 61

Re
cl

ai
m

 T
hr

ou
gh

pu
t (

M
B/

s)

Timeline (s)

Pixel 5 Pixel 6 pro

0
50

100
150
200
250
300

1 7 13 19 25 31 37 43 49 55 61

Re
cl

ai
m

 T
hr

ou
gh

pu
t (

M
B/

s)

Timeline (s)

Pixel 5 Pixel 6 pro

0
50

100
150
200
250
300

1 7 131925313743495561

Re
cl

ai
m

 T
hr

ou
gh

pu
t (

M
B/

s)

Timeline (s)

Pixel 5 Pixel 6 pro

Figure 14: Memory reclaim throughput for different schemes
under different mobile devices.

USENIX Association 2025 USENIX Annual Technical Conference 1579

Figure 14 shows the memory reclaim throughput of differ-
ent memory reclaim mechanisms on different mobile devices.
First, OriginalMR and Acclaim pay little attention to the per-
formance improvements of storage devices. This is because
Acclaim only focuses on optimizing the victim page selec-
tion scheme and dynamically adjusting the size of kswapd
to reduce direct reclaim and page faults, lacking any design
for storage devices. Secondly, compared with the previous
mechanisms, the newly proposed PPS significantly improves
the memory reclaim throughput, especially the performance
of storage devices. For example, for Pixel 6 pro, the maxi-
mum throughput of PPS reaches 205 MB/s, which is an 45%
increase compared to Pixel 5. Finally, the integration of PPS
and SPW can not only provide sufficient victim pages for
page writeback in advance, but also enable storage-friendly
page writeback to maximize the storage device’s performance.
The results show that the average throughput on the Pixel 6
pro is 65% of that on the Pixel 5.

5.5 Sensitivity Study
To further understand PMR, several sensitive studies are per-
formed, including the ideal number of pages in the victim page
list (nr_ideal_victim_page: δ) and the size of the application-
aware page unmap.

0

100

200

300

400

500

YouTube Facebook Chrome Amazon

Ap
pl

ic
at

io
n

Re
sp

on
se

 T
im

e
(m

s) δ=154MB δ=308MB δ=462MB
δ=616MB δ=770MB

0

100

200

300

Pixel 5 Pixel 6 pro

Re
cl

ai
m

 T
hr

ou
gh

pu
t (

M
B/

s) size=4KB size=1MB
size=5MB size=10MB
size=20MB

(a) (b)

Figure 15: (a) Application responsiveness by varying δ (the
ideal number of pages in the victim page list); (b) Memory
reclaim throughput by varying the size of the application-
aware page unmap.

The ideal pages in the victim page list: δ aims to control the
capacity of the victim page list, which directly affects the per-
formance of memory reclaim. Figure 15 (a) shows the effect
of changing δ from 154 MB (equivalent to nr_to_reclaim)
to 770 MB on the application response time. First, as δ in-
creases, the application response time decreases and then in-
creases again. δ is not as large as it should be. This is because
a larger δ means that more pages are placed in the victim page
list, and pages may face repeated transfers between the victim
page list and the system LRU page list, which increases page
access overhead. Second, the change in δ has a limited impact
on the application’s responsiveness because the victim page
list is inherited from the system LRU page list, which does
not introduce new data structures or memory overhead.
The size of the application-aware page unmap: The size
of the application-aware page unmap affects both the perfor-

mance of the unmap and the efficiency of write I/O. Figure 15
(b) shows the effect of different sizes of the application-aware
page unmap on the memory reclaim throughput. First, the
optimal value for this size varies from one mobile device to
another, for example, the Pixel 5 is 1 MB while the Pixel 6
pro is 10 MB, depending on the underlying storage device.

5.6 Overhead Analysis

In this section, we evaluate PMR’s overheads: (1) the perfor-
mance overhead of PPS and SPW in the current design and (2)
the flash write overhead induced by proactive disk writeback.
Performance Overhead. The performance overhead of
PMR is broken down into three parts. First, PPS enables
an independent kshrinkd thread to be responsible for page
reduction. However, because shrink can only inherit some
of the functions of the original kswapd, while the kshrinkd
brings CPU overhead, the CPU overhead of kswapd will also
be reduced. Second, PPS maintains a separate victim page list.
Although these pages come from the system’s original inac-
tive page list, they will not cause new memory overhead. Also,
to maintain a sufficient number of victim pages, some addi-
tional lock protection needs to be added, which also brings
CPU overhead concerns. Finally, SPW adjusts the priority of
application-aware page unmap to avoid interference by pro-
cesses, which may also bring potential performance overhead.
As shown in Table 3, PPS increases CPU overhead by 2.0%
compared to OriginalMR, while PMR increases by 5.3%.

Table 3: Performance overhead.

CPU Overhead
kswapd kshrinkd Total

OriginalMR 24.31 0 24.31
PPS 13.94 10.97 24.91

PMR (PPS+SPW) 14.51 11.1 25.61

Flash Write Overhead. PMR is more effective in evicting
pages, which allows it to reduce application kills. This results
in more aggressive flash writes. To evaluate the possibility
that excessive flash writes may wear out the flash device,
we ran the system with and without PMR for half an hour
and collected the write volumes. The experimental results
show that PMR increases flash writes by 12.1% compared to
OriginMR. In fact, as the storage capacity of mobile devices
increases, the lifespan anxiety of storage devices has been
greatly alleviated. The impact of PMR on flash device lifespan
is negligible and worthwhile compared to the benefits.

6 Related Work

Memory Reclaim Optimization. Many previous works en-
hance the memory reclaim schemes [7, 20, 41, 44, 49, 52].
First, Fastswap [7] and Hermit [41] optimize how and where

1580 2025 USENIX Annual Technical Conference USENIX Association

page reclaim is executed (e.g., offloading to a dedicated CPU
or spawning threads), while our work improves what is ex-
ecuted, i.e., we redesign the reclaim path itself to make it
inherently more efficient. This deeper improvement makes
existing mechanisms like Fastswap and Hermit more effec-
tive. With our faster page reclaim, Fastswap no longer needs
a dedicated CPU, and Hermit requires fewer threads for the
same performance. Second, recent studies [27, 58] perform
ahead-of-swap to optimize memory swapping. For example,
SmartSwap [58] predicts the appropriate swap time based
on the design model, and Marin [17] swaps out objects in
advance by analyzing the objects working set. Unlike them,
PMR does not modify the timing of memory reclaim, but only
prepares the victim pages in advance.

Also, another method is to update the LRU-based victim
page selection criteria [32, 34, 56] Since PMR is dedicated to
accelerating the common memory reclaim path, it is compati-
ble with any effective victim page selection algorithm. Mul-
tiplekswapd [36] enables multiple memory reclaim threads
to perform proactive memory reclaim. However, blindly us-
ing multiple threads will induce mutual interference and will
not achieve the expected reclaim effect, especially on mo-
bile devices with limited resources. In contrast, PMR can
achieve the purpose of parallel reclaim by enabling an addi-
tional page-shrinking thread. Finally, researchers also focus
on coordination between ART garbage collection and kernel-
level page swapping [19, 27] to boost memory reclaim perfor-
mance. Unlike these studies, our work targets system-level
kernel reclaim logic directly. Combining our kernel-level im-
provements with Fleet [19] yields even more significant gains,
highlighting their orthogonality and the broader applicability
of our solution.
Storage-friendly I/O Management. Although the perfor-
mance of flash storage devices is improving rapidly, cur-
rent system software is still deficient in leveraging the per-
formance of storage devices. Many researches have been
devoted to the design of storage-friendly I/O management
[5, 23, 30, 34, 40, 42, 57]. Paralfetch [42] performed a pre-
scheduling of launch-related disk read requests for fast I/O
reads, and overlaps app execution with disk prefetching for
hiding disk access time from the app execution. Its basic idea
is close to our work, PMR also pre-schedules page shrink-
ing and page writeback in advance and achieves fast page
writeback. SWAM [34] dynamically modifies the size of page
unmap to avoid interference with high-priority operations for
fast swap-out. Differently, PMR performs bulk page unmap
to server storage-friendly page out, which organizes pages by
application and determines the size of the unmap based on
the performance characteristics of the storage device.
Application Response Optimization. There are a number of
strategies to optimize application responsiveness on mobile
device [18, 22, 26, 28, 33, 39, 46]. ASAP [46] performed pre-
paging by combining application switch footprint estimators
and minimizing resource waste for CPU cycles and disk band-

width during an application switch for fast application switch
on mobile devices. Fasttrack [18] proposed a foreground app-
aware I/O management scheme to accelerate foreground I/O
requests by preempting background I/O requests in the entire
I/O stacks, including the storage device, and preventing fore-
ground app’s data from being flushed from the page cache.
CacheSifter [33] classified cache files into three categories
online and greatly reduced the number of writebacks on Flash
by dropping cache files that most likely will not be reused to
boost application performance. Unlike them, PMR performs
parallel memory reclaim path to boost application response.

7 Conclusion

In this paper, we propose PMR, a parallel memory reclaim
scheme for fast application response on mobile devices. The
basic idea of PMR is to parallelize the memory reclaim path to
leverage ever-evolving storage devices and enhance memory
reclaim. Specifically, PMR firstly decouples page shrinking
and page writeback and prepares sufficient victim pages in ad-
vance to quickly serve subsequent page writeback. And then,
PMR performs application-aware page unmap and page out
in batches to achieve a storage-friendly page writeback. Ex-
perimental results demonstrate that PMR effectively improves
memory reclaim throughput and boost application response.

References

[1] Oppo introduces new memory expansion technology for
its reno5 series, a94 and a74 series smartphones, 2021.
https://www.oppo.com/sg/newsroom/press/opp
o-introduces-new-memory-expansion-technolo
gy/.

[2] fio - flexible i/o tester rev. 3.36, 2025. https://fio.
readthedocs.io/en/latest/fio_doc.html.

[3] ktime accessors, 2025. https://docs.kernel.org/
core-api/timekeeping.html.

[4] Universal flash storage (ufs), 2025. https://en.wik
ipedia.org/wiki/Universal_Flash_Storage.

[5] Mohammadamin Ajdari, Pouria Peykani Sani, Amirhos-
sein Moradi, Masoud Khanalizadeh Imani, Amir Hos-
sein Bazkhanei, and Hossein Asadi. Re-architecting i/o
caches for emerging fast storage devices. In Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’23),
pages 542–555, 2023.

[6] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko,
Karen Khatamifard, Minsik Cho, Carlo C Del Mundo,
Mohammad Rastegari, and Mehrdad Farajtabar. Llm in a
flash: Efficient large language model inference with lim-
ited memory. arXiv preprint arXiv:2312.11514, 2023.

USENIX Association 2025 USENIX Annual Technical Conference 1581

https://www.oppo.com/sg/newsroom/press/oppo-introduces-new-memory-expansion-technology/
https://www.oppo.com/sg/newsroom/press/oppo-introduces-new-memory-expansion-technology/
https://www.oppo.com/sg/newsroom/press/oppo-introduces-new-memory-expansion-technology/
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://docs.kernel.org/core-api/timekeeping.html
https://docs.kernel.org/core-api/timekeeping.html
https://en.wikipedia.org/wiki/Universal_Flash_Storage
https://en.wikipedia.org/wiki/Universal_Flash_Storage

[7] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K Aguilera, Aurojit
Panda, Sylvia Ratnasamy, and Scott Shenker. Can far
memory improve job throughput? In Proceedings of the
Fifteenth European Conference on Computer Systems
(EuroSys’20), pages 1–16, 2020.

[8] Muhammad Arbaz. Ufs 4.0 vs ufs 3.1 vs ufs 3.0 | speed
comparison, 2023. https://www.thephonetalks.co
m/ufs-4-0-vs-ufs-3-1-vs-ufs-3-0compariso
n/.

[9] Android Developers. Android debug bridge(adb), 2025.
https://developer.android.com/studio/comma
nd-line/adb.

[10] Android Developers. Keeping your app responsive,
2025. https://developer.android.com/trai
ning/articles/perf-anr.

[11] Android Developers. Logcat command-line tool, 2025.
https://developer.android.com/tools/logcat.

[12] Android Developers. Low memory management, 2025.
https://developer.android.com/topic/perfor
mance/memory-management.

[13] Android Developers Docs. Low memory killer daemon,
2025. https://source.android.com/docs/core/p
erf/lmkd.

[14] Linux Foundation. Vmscan, 2025. https://github.c
om/torvalds/linux/blob/master/mm/vmscan.c.

[15] GSMArena. Apple iphone 16 pro max, 2025. https:
//www.gsmarena.com/apple_iphone_16_pro_max
-13123.php.

[16] GSMArena. Samsung galaxy s25 ultra, 2025. https:
//www.gsmarena.com/samsung_galaxy_s25_ultra
-13322.php.

[17] Weichao Guo, Kang Chen, Huan Feng, Yongwei Wu,
Rui Zhang, and Weimin Zheng. mars: Mobile appli-
cation relaunching speed-up through flash-aware page
swapping. IEEE Transactions on Computers (TC), pages
916–128, 2015.

[18] Sangwook Shane Hahn, Sungjin Lee, Inhyuk Yee,
Donguk Ryu, and Jihong Kim. FastTrack: Foreground
App-Aware I/O management for improving user expe-
rience of android smartphones. In USENIX Annual
Technical Conference (ATC’18), pages 15–28, 2018.

[19] Jiacheng Huang, Yunmo Zhang, Junqiao Qiu, Yu Liang,
Rachata Ausavarungnirun, Qingan Li, and Chun Jason
Xue. More apps, faster hot-launch on mobile devices
via fore/background-aware gc-swap co-design. In Pro-
ceedings of the 29th ACM International Conference on

Architectural Support for Programming Languages and
Operating Systems (ASPLOS’24), page 654–670, 2024.

[20] Jian Huang, Moinuddin K. Qureshi, and Karsten
Schwan. An evolutionary study of linux memory man-
agement for fun and profit. In USENIX Annual Technical
Conference (ATC’16), page 465–478, 2016.

[21] Huawei. Huawei’s memory expansion technology: 8gb
ram works as 10gb and 12gb ram as 14gb: Huawei
community, 2020. https://consumer.huawei.com/
ae-en/community/details/NEWS-Huawei-s-Memo
ry-Expansion-Technology-8GB-RAM-works-as-1
0GB-and-12GB-RAM-as-14GB/topicId_121496/.

[22] Daeho Jeong, Youngjae Lee, and Jin-Soo Kim. Boosting
Quasi-Asynchronous I/O for better responsiveness in
mobile devices. In USENIX Conference on File and
Storage Technologies (FAST’15), pages 191–202, 2015.

[23] Yongsoo Joo, Junhee Ryu, Sangsoo Park, and Kang G.
Shin. FAST: Quick application launch on Solid-State
drives. In USENIX Conference on File and Storage
Technologies (FAST’11), pages 101–114, 2011.

[24] Linux Kernel. void blk_start_plug(struct blk_plug
*plug), 2025. https://docs.kernel.org/core
-api/kernel-api.html.

[25] Sang-Hoon Kim, Jinkyu Jeong, and Jin-Soo Kim.
Application-aware swapping for mobile systems. ACM
Transactions on Embedded Computing Systems (TECS),
16(5s):1–19, 2017.

[26] Sangwook Kim, Hwanju Kim, Joonwon Lee, and Jinkyu
Jeong. Enlightening the I/O path: A holistic approach
for application performance. In USENIX Conference on
File and Storage Technologies (FAST’17), pages 345–
358, 2017.

[27] Niel Lebeck, Arvind Krishnamurthy, Henry M. Levy,
and Irene Zhang. End the senseless killing: Improving
memory management for mobile operating systems. In
USENIX Annual Technical Conference (ATC’20), pages
873–887, 2020.

[28] Changlong Li, Yu Liang, Rachata Ausavarungnirun,
Zongwei Zhu, Liang Shi, and Chuan Jason Xue. Ice:
Collaborating memory and process management for user
experience on resource-limited mobile devices. In Pro-
ceedings of the Eighteenth European Conference on
Computer Systems (EuroSys’23), pages 79–93, 2023.

[29] Changlong Li, Liang Shi, Yu Liang, and Chun Jason Xue.
Seal: User experience-aware two-level swap for mobile
devices. Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 39(11):4102–
4114, 2020.

1582 2025 USENIX Annual Technical Conference USENIX Association

https://www.thephonetalks.com/ufs-4-0-vs-ufs-3-1-vs-ufs-3-0comparison/
https://www.thephonetalks.com/ufs-4-0-vs-ufs-3-1-vs-ufs-3-0comparison/
https://www.thephonetalks.com/ufs-4-0-vs-ufs-3-1-vs-ufs-3-0comparison/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/training/articles/perf-anr
https://developer.android.com/training/articles/perf-anr
https://developer.android.com/tools/logcat
https://developer.android.com/topic/performance/memory-management
https://developer.android.com/topic/performance/memory-management
https://source.android.com/docs/core/perf/lmkd
https://source.android.com/docs/core/perf/lmkd
https://github.com/torvalds/linux/blob/master/mm/vmscan.c
https://github.com/torvalds/linux/blob/master/mm/vmscan.c
https://www.gsmarena.com/apple_iphone_16_pro_max-13123.php
https://www.gsmarena.com/apple_iphone_16_pro_max-13123.php
https://www.gsmarena.com/apple_iphone_16_pro_max-13123.php
https://www.gsmarena.com/samsung_galaxy_s25_ultra-13322.php
https://www.gsmarena.com/samsung_galaxy_s25_ultra-13322.php
https://www.gsmarena.com/samsung_galaxy_s25_ultra-13322.php
https://consumer.huawei.com/ae-en/community/details/NEWS-Huawei-s-Memory-Expansion-Technology-8GB-RAM-works-as-10GB-and-12GB-RAM-as-14GB/topicId_121496/
https://consumer.huawei.com/ae-en/community/details/NEWS-Huawei-s-Memory-Expansion-Technology-8GB-RAM-works-as-10GB-and-12GB-RAM-as-14GB/topicId_121496/
https://consumer.huawei.com/ae-en/community/details/NEWS-Huawei-s-Memory-Expansion-Technology-8GB-RAM-works-as-10GB-and-12GB-RAM-as-14GB/topicId_121496/
https://consumer.huawei.com/ae-en/community/details/NEWS-Huawei-s-Memory-Expansion-Technology-8GB-RAM-works-as-10GB-and-12GB-RAM-as-14GB/topicId_121496/
https://docs.kernel.org/core-api/kernel-api.html
https://docs.kernel.org/core-api/kernel-api.html

[30] Wentong Li, Liang Shi, Hang Li, Changlong Li, and Ed-
win Hsing-Mean Sha. Iosr: Improving i/o efficiency for
memory swapping on mobile devices via scheduling and
reshaping. ACM Transactions on Embedded Computing
Systems (TECS), 22(5s):1–23, 2023.

[31] Wentong Li, Dingcui Yu, Yunpeng Song, Longfei Luo,
and Liang Shi. Elasticzram: Revisiting zram for swap-
ping on mobile devices. In Proceedings of the 61st
ACM/IEEE Design Automation Conference (DAC’24),
pages 1–6, 2024.

[32] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Riwei
Pan, Liang Shi, Tei-Wei Kuo, and Chun Jason Xue. Ac-
claim: Adaptive memory reclaim to improve user expe-
rience in android systems. In USENIX Annual Technical
Conference (ATC’20), pages 897–910, 2020.

[33] Yu Liang, Riwei Pan, Tianyu Ren, Yufei Cui, Rachata
Ausavarungnirun, Xianzhang Chen, Changlong Li, Tei-
Wei Kuo, and Chun Jason Xue. {CacheSifter}: Sifting
cache files for boosted mobile performance and lifetime.
In USENIX Conference on File and Storage Technolo-
gies (FAST’22), pages 445–459, 2022.

[34] Geunsik Lim, Donghyun Kang, Myungjoo Ham, and
Young Ik Eom. Swam: Revisiting swap and oomk for
improving application responsiveness on mobile devices.
In Proceedings of the 29th Annual International Con-
ference on Mobile Computing and Networking (Mobi-
Com’23), pages 1–15, 2023.

[35] linuxfan says Reinstate Monica. What is memory re-
claim in linux, 2025. https://stackoverflow.com/
questions/42358745/what-is-memory-reclaim-
in-linux.

[36] Buddy Lumpkin. mm: Support multiple kswapd threads
per node, 2018. https://lore.kernel.org/lkml/2
0180417090335.GZ17484@dhcp22.suse.cz/t/.

[37] Yu Mao, Weilan Wang, Hongchao Du, Nan Guan,
and Chun Jason Xue. On the compressibility of
quantized large language models. arXiv preprint
arXiv:2403.01384, 2024.

[38] Ivan Mehta. How the ufs 4.0 storage standard will
improve your phone’s performance, 2022. https://th
enextweb.com/news/ufs-4-0-samsung-phone-st
roage-analysis.

[39] David T. Nguyen, Gang Zhou, Guoliang Xing, Xin Qi,
Zijiang Hao, Ge Peng, and Qing Yang. Reducing smart-
phone application delay through read/write isolation.
In Proceedings of the 13th Annual International Con-
ference on Mobile Systems, Applications, and Services
(MobiSys’15), pages 287–300, 2015.

[40] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos
Saloustros, Manolis Marazakis, and Angelos Bilas. Op-
timizing memory-mapped {I/O} for fast storage devices.
In USENIX Annual Technical Conference (ATC’20),
pages 813–827, 2020.

[41] Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam
Belay, Qingda Lu, Yiying Zhang, Miryung Kim,
and Guoqing Harry Xu. Hermit: Low-Latency,
High-Throughput, and transparent remote memory via
Feedback-Directed asynchrony. In USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 23), pages 181–198, 2023.

[42] Junhee Ryu, Dongeun Lee, Kang G Shin, and Kyung-
tae Kang. Fast application launch on personal
{Computing/Communication} devices. In USENIX
Conference on File and Storage Technologies (FAST’23),
pages 425–440, 2023.

[43] SamMobile. Ram plus: Samsung’s extra ram feature is
arriving on more phones, both mid-range and flagship,
2025. https://www.sammobile.com/news/samsung
-galaxy-a52s-5g-virtual-plus-feature/.

[44] Kunal Sareen, Stephen M. Blackburn, Sara S. Hamouda,
and Lokesh Gidra. Memory management on mo-
bile devices. In Proceedings of the 2024 ACM SIG-
PLAN International Symposium on Memory Manage-
ment (ISMM’24), page 15–29, 2024.

[45] Arjun Sha. What is ufs 4.0 storage and how fast is it
compared to ufs 3.1?, 2022. https://beebom.com/w
hat-is-ufs-4-0/.

[46] Sam Son, Seung Yul Lee, Yunho Jin, Jonghyun Bae,
Jinkyu Jeong, Tae Jun Ham, Jae W. Lee, and Hongil
Yoon. ASAP: fast mobile application switch via adaptive
prepaging. In USENIX Annual Technical Conference
(ATC’21), pages 365–380, 2021.

[47] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh
Balakrishnan, and Ted Wobber. Extending ssd lifetimes
with disk-based write caches. In USENIX Conference
on File and Storage Technologies (FAST’10), pages 101–
114, 2010.

[48] Pyropus technology. Memory tester tool memtester,
2017. https://pyropus.ca/software/memteste
r/.

[49] Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Wen-
guang Chen, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Canvas: Isolated and adaptive swapping
for Multi-Applications on remote memory. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI’23), pages 161–179, 2023.

USENIX Association 2025 USENIX Annual Technical Conference 1583

https://stackoverflow.com/questions/42358745/what-is-memory-reclaim-in-linux
https://stackoverflow.com/questions/42358745/what-is-memory-reclaim-in-linux
https://stackoverflow.com/questions/42358745/what-is-memory-reclaim-in-linux
https://lore.kernel.org/lkml/20180417090335.GZ17484@dhcp22.suse.cz/t/
https://lore.kernel.org/lkml/20180417090335.GZ17484@dhcp22.suse.cz/t/
https://thenextweb.com/news/ufs-4-0-samsung-phone-stroage-analysis
https://thenextweb.com/news/ufs-4-0-samsung-phone-stroage-analysis
https://thenextweb.com/news/ufs-4-0-samsung-phone-stroage-analysis
https://www.sammobile.com/news/samsung-galaxy-a52s-5g-virtual-plus-feature/
https://www.sammobile.com/news/samsung-galaxy-a52s-5g-virtual-plus-feature/
https://beebom.com/what-is-ufs-4-0/
https://beebom.com/what-is-ufs-4-0/
https://pyropus.ca/software/memtester/
https://pyropus.ca/software/memtester/

[50] Yong-Xuan Wang, Chung-Hsuan Tsai, and Li-Pin
Chang. Killing processes or killing flash? escaping
from the dilemma using lightweight, compression-aware
swap for mobile devices. ACM Transactions on Embed-
ded Computing Systems (TECS), 20(5s):1–24, 2021.

[51] Zhuohao Wang, Lei Liu, and Limin Xiao. iswap: A new
memory page swap mechanism for reducing ineffective
i/o operations in cloud environments. ACM Transac-
tions on Architecture and Code Optimization (TACO),
21(3):1–24, 2023.

[52] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon
Yang, Hao Wang, Blaise Sanouillet, Bikash Sharma,
Tejun Heo, Mayank Jain, Chunqiang Tang, et al. Tmo:
Transparent memory offloading in datacenters. In Pro-
ceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’22), pages 609–621, 2022.

[53] Xiaocong. uiautomator, 2025. https://github.com
/xiaocong/uiautomator.

[54] Xiaomi. All Xiaomi that will have the RAM expansion
function, 2021. https://www.xiaomist.com/2021/
07/these-are-all-xiaomi-that-can-already.h
tml.

[55] Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xu-
anzhe Liu. Llm as a system service on mobile devices.
arXiv preprint arXiv:2403.11805, 2024.

[56] Yu Zhao. Multigenerational lru framework, 2022. http
s://lwn.net/Articles/880393/.

[57] Kan Zhong, Wenlin Cui, Xin Chen, Qiao Li, Zhe Yang,
Youyou Lu, Xiaodan Yan, Siwei Luo, Qizhao Yuan, and
Keji Huang. Revisiting swapping in user-space with
lightweight threading. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems(TCAD),
42(11):4205–4218, 2023.

[58] Xiao Zhu, Duo Liu, Kan Zhong, Jinting Ren, and Tao
Li. Smartswap: High-performance and user experi-
ence friendly swapping in mobile systems. In Proceed-
ings of the 54th Annual Design Automation Conference
(DAC’17), pages 1–6, 2017.

1584 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/xiaocong/uiautomator
https://github.com/xiaocong/uiautomator
https://www.xiaomist.com/2021/07/these-are-all-xiaomi-that-can-already.html
https://www.xiaomist.com/2021/07/these-are-all-xiaomi-that-can-already.html
https://www.xiaomist.com/2021/07/these-are-all-xiaomi-that-can-already.html
https://lwn.net/Articles/880393/
https://lwn.net/Articles/880393/

	Introduction
	Background and Motivation
	Memory Reclaim on Mobile Device
	Preliminary Study of Memory Reclaim
	Frequent, Expensive Process Killing
	Sluggish Memory Reclaim

	Performance Bottleneck Analysis
	I/O Utilization
	Low Impact of I/O Conflicts
	Excessive Storage Bandwidth

	Sub-optimal Memory Reclaim Path
	Sequential Execution of Key Steps
	Inefficient Page Shrinking
	Internally Blocked Page Writeback

	PMR Design
	Overview
	Proactive Page Shrinking
	Decoupling Page Shrinking and Page Writeback
	Replenishing Victim Pages

	Storage-friendly Page Writeback
	Application-aware Page Unmap
	Batch Write I/Os

	Implementation and Discussions

	Evaluation
	Experiment Setup
	Application Response Evaluation
	Memory Reclaim Evaluation
	Memory Reclaim Throughput
	Reduction of LMKD/Direct Reclaim/Page Fault

	Storage Utilization Evaluation
	Sensitivity Study
	Overhead Analysis

	Related Work
	Conclusion

