
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

Katz: Efficient Workflow Serving for Diffusion
Models with Many Adapters

Suyi Li, Lingyun Yang, Xiaoxiao Jiang, Hanfeng Lu, and Dakai An, Hong Kong
University of Science and Technology; Zhipeng Di, Weiyi Lu, Jiawei Chen, Kan Liu,
Yinghao Yu, Tao Lan, Guodong Yang, Lin Qu, and Liping Zhang, Alibaba Group;

Wei Wang, Hong Kong University of Science and Technology
https://www.usenix.org/conference/atc25/presentation/li-suyi-katz

KATZ: Efficient Workflow Serving for Diffusion Models with Many Adapters

Suyi Li†∗, Lingyun Yang†∗, Xiaoxiao Jiang†, Hanfeng Lu†, Dakai An†, Zhipeng Di,
Weiyi Lu, Jiawei Chen, Kan Liu, Yinghao Yu, Tao Lan, Guodong Yang, Lin Qu, Liping Zhang, Wei Wang†

†Hong Kong University of Science and Technology Alibaba Group
{slida, lyangbk, weiwa}@cse.ust.hk

Abstract
Text-to-image (T2I) generation using diffusion models has

become a blockbuster service in today’s AI cloud. A produc-
tion T2I service typically involves a serving workflow where a
base diffusion model is augmented with many ControlNet and
LoRA adapters to control the details of output images, such
as shapes, outlines, poses, and styles. In this paper, we present
KATZ, a system that efficiently serves a T2I workflow with
many adapters. KATZ differentiates compute-heavy Control-
Nets from compute-light LoRAs, where the former introduces
significant computational overheads while the latter is bottle-
necked by loading. KATZ proposes to take ControlNet off the
critical path with a ControlNet-as-a-Service design, in which
ControlNets are decoupled from the base model and deployed
as a separate, independently scalable service on dedicated
GPUs, thus enabling ControlNet caching, parallelization, and
sharing. To hide the high LoRA loading overhead, KATZ
employs bounded asynchronous loading that overlaps LoRA
loading with initial base model execution by a maximum of
K steps, while maintaining the same image quality. KATZ fur-
ther accelerates base model execution across multiple GPUs
with latent parallelism. Collectively, these designs enable
KATZ to outperform the state-of-the-art T2I serving systems,
achieving up to 7.8× latency reduction and 1.7× through-
put improvement in serving SDXL models on H800 GPUs,
without compromising image quality.

1 Introduction

Text-to-image (T2I) generation using diffusion models is a
transformative AI technology that enables the creation of
high-quality, contextually accurate images from textual de-
scriptions. This technology has gained immense popularity,
with a plethora of commercial T2I services available in the
cloud, such as DALL·E [9], Midjourney [5], and Firefly [11].

A production T2I service is typically deployed as a work-
flow consisting of multiple components. At its core is a base
stable diffusion model [19, 32, 39]. This model is trained to
produce a coherent image through a reverse diffusion pro-
cess [40]: it starts with an image composed of random noises

∗Equal contributions.

Ref.w/o ControlNets
apply ControlNets apply

LoRA

Figure 1: Effects of ControlNet and LoRA in image gener-
ation with SDXL under the same prompt: racing game car,
yellow Ferrari. Left: without ControlNet, the generated im-
ages can have different compositions. Center: ControlNet
uses a reference image to control the composition. Right:
using LoRA to generate image in a papercut style.

0C/0L 1C/0L 0C/1L 1C/1L 2C/2L 3C/2L

5

10

15

L
a
te

n
c
y
 (

s
)

2.9
4.5

6.2
7.6

13.9
15.6

1.7 1.7 1.8 1.9 2.0 2.0

Diffusers
Katz

Figure 2: ControlNets and LoRAs introduce additional la-
tency overhead. In each workflow, a base SDXL [39] model is
augmented with m ControlNets and n LoRAs (mC/nL), served
by DIFFUSERS [50] and KATZ on H800 GPUs.

and progressively denoises this random input in iterations,
until the output image aligns with the provided text descrip-
tion. A base diffusion model is often augmented with various
adapters to better control the details of the output images,
such as shapes, outlines, poses, and styles. Fig. 1 illustrates
the effects of using ControlNet [69] and LoRA (Low-Rank
Adaptation [28]), the two most popular adapters used in pro-
duction. ControlNet allows users to input a reference image to
guide the spatial composition of the generated image; LoRA
produces an image with customized stylistic effects. In our
production platform, over 98% of requests demand at least
one ControlNet, and over 95% utilize at least one LoRA (§3).

However, the use of adapters poses new performance chal-
lenges. To illustrate this problem, we configure a T2I work-
flow where a base SDXL model [39] is augmented with a
varying number of ControlNets and LoRAs. We depict in
Fig. 2 the serving latency of these workflows (blue bar). Com-
pared with serving the base model alone (zero ControlNet and

USENIX Association 2025 USENIX Annual Technical Conference 1037

LoRA, or 0C/0L), serving it together with many adapters re-
sults in significant delay, which is increasing as more adapters
are in use. This delay comes from two sources. First, as the
desired ControlNets and LoRAs vary across requests, they
must be fetched from storage and loaded into GPU memory,
introducing non-trivial loading overhead. In our platform,
on average each request undergoes loading one ControlNet
and one LoRA, which accounts for 37% of the end-to-end
serving latency (§3). Given the large population and sizes of
these adapters, pre-caching all of them in GPU memory is
infeasible: our production trace reports nearly 150 distinct
ControlNets (∼3 GiB each) and 14,500 LoRAs (hundreds of
MiB each) requested by users for the SDXL model [39]. Sec-
ond, ControlNet serving is compute-intensive: on an H800
GPU, adding one ControlNet to the serving workflow extends
the generation latency by 1.6 seconds, which is 1.6× longer
than serving the base SDXL model alone (Fig. 2). As more
ControlNets are utilized, their computational overhead accu-
mulates, leading to a significant latency increase (Fig. 2).

Despite these challenges, efficiently serving a T2I work-
flow with many adapters has been largely unexplored; prior
works [12, 30, 50, 56] primarily focus on improving the serv-
ing latency and image quality of a single diffusion model. In
this paper, we propose KATZ1, a system that efficiently serves
a T2I workflow where a base diffusion model is augmented
with many ControlNets and LoRAs, a typical setting in pro-
duction deployment. Driven by a characterization study in a
production platform (§3), KATZ employs three key designs
to optimize the per-request serving latency [9, 12].

ControlNet-as-a-Service. Efficient ControlNet serving re-
quires addressing the GPU loading and computational over-
head. Our characterization study reveals that ControlNets
exhibit the skewed popularity; that is, a small number of Con-
trolNets (9–11%) are invoked frequently by a large number
of user requests (95–98%). Caching these popular Control-
Nets in GPU memory largely eliminates the loading overhead,
with only modest memory footprint. To accelerate computa-
tion, KATZ concurrently executes ControlNet(s) with the base
model on multiple GPUs, achieving close-to-ideal speedup
compared to the current sequential execution scheme [50].

KATZ proposes ControlNet-as-a-Service to enable Con-
trolNet caching and parallelization. It decouples ControlNets
from the base model and deploys them as a separate, inde-
pendently scalable service on dedicated GPUs. It only caches
a small number of top popular ControlNets in GPU memory,
eliminating the loading overhead by a large degree. To request
certain ControlNets, users simply invoke this service, which
executes the requested ControlNets in parallel with the base
model. This design additionally enables ControlNet sharing,
where a single ControlNet can be multiplexed by multiple
base models.

1Our system is named after Morris Katz, the world’s fastest painter ac-
cording to the Guinness World Record.

Bounded asynchronous LoRA loading. Unlike Control-
Net, LoRA is compute-light and LoRA loading is the main
performance bottleneck. Given their large populations, LoRA
adapters are usually maintained in storage (local disk or re-
mote memory) and must be brought into GPU memory on-
demand. Caching top popular LoRAs offers limited benefits as
LoRA popularity exhibits a heavy-tailed distribution (§3.2).

To address this challenge, we analyze the T2I generation
process and find that LoRA computations take effect largely
in the later stages of the denoising process (§6). Based on this
observation, we propose to hide the LoRA loading overhead
through bounded asynchronous loading (BAL). That is, while
the requested LoRAs are being loaded into GPUs, KATZ
simultaneously executes the base model to early start the
image generation process by up to K steps, after which the
LoRA adapters must be patched to the base model to continue
the remaining generation steps. By tuning the asynchronous
bound K, KATZ effectively overlaps LoRA loading with base
model execution, while achieving the same image quality as
synchronous loading (§9.2).

Latent parallelism for CFG computation. KATZ also ex-
ploits parallelization opportunities to accelerate base model
execution. As mentioned earlier, T2I generation is essentially
a denoising process, where the diffusion model progressively
refines a latent tensor through multiple steps [19, 32, 39].
Each step performs classifier-free guidance (CFG) [27], where
the input latent tensor is duplicated and the two replicas are
respectively denoised, one guided by the text prompt (con-
ditioned denoising) and the other unguided (unconditioned
denoising); the two denoised latent tensors are then aggre-
gated by computing a weighted sum. As conditioned and
unconditioned denoising have no dependency, KATZ paral-
lelizes them on two GPUs. This technique, which we call
latent parallelism, is also applied to accelerate CFG computa-
tion in ControlNet serving. Latent parallelism, together with
kernel-level optimizations, collectively accelerate base model
execution by 1.8× (§9.5).

We have implemented KATZ on top of HuggingFace
Diffusers [50] and evaluated its performance using text
prompts from PartiPrompts [64]. Our evaluation encompasses
SDXL [39], a popular UNet-based diffusion model [42] in
production [12,46], and two diffusion transformer (DiT) mod-
els [19, 32, 38]. Evaluation results demonstrate that KATZ
outperforms the state-of-the-art T2I serving systems, includ-
ing Diffusers, Nirvana [12], and DistriFusion [30], reducing
the average serving latency by up to 7.8× and improving
the throughput by up to 1.7× (§9.2). To comprehensively
assess the quality of the generated images, we engaged 75
human users and confirmed that KATZ produces images of
the same quality as Diffusers [50], a lossless baseline. Our
contributions are summarized as follows:
• We present the first characterization study in a production

T2I platform and identify new challenges of serving base
diffusion models with ControlNet and LoRA adapters.

1038 2025 USENIX Annual Technical Conference USENIX Association

Latent
Space

Pixel
Space
VAE

Decoder

Cross
attention

UNet

Skip
connection

Q
K
V

Q
K
V

1st step 2nd step 50th step

Q
K
V Interpolate

with CFG Latent
tensor

Figure 3: Image generation using a stable diffusion model.
Time and token embeddings are ignored for simplicity.

LoRA
Storage

LoRA (AB)Load Patch

UNet (W)
E M E M D

Ref. image

ControlNet UNet

Adapted UNet
(W+AB)

Encoder

Decoder

Middle
Block

Skip
connection

M

latents

Prompt

Figure 4: Serving a diffusion model with ControlNet (Left)
and LoRA (Right).

• We propose a holistic approach with three key designs to
systematically optimize the T2I serving workflow, includ-
ing ControlNet-as-a-Service, bounded asynchronous LoRA
loading, and latent parallelism for CFG computation.

• We develop KATZ, an optimized serving system for T2I
applications that achieves significant speedup without com-
promising image quality (Fig. 15).

KATZ and the production trace have been open-sourced at
https://github.com/modelscope/Katz.

2 Background

In this section, we give a primer to diffusion-based T2I gen-
eration and the use of two popular adapters, ControlNet and
LoRA, for enhanced generation control.

Diffusion model. A typical stable diffusion model [15, 39,
41] consists of three main components: a text encoder [40],
a convolutional UNet model [42], and a decoder-only vari-
ational autoencoder (VAE). The model generates images
through an iterative denoising process illustrated in Fig. 3.
Given a text prompt, the text encoder encodes the prompt
into token embeddings. The image generation process then
begins by initializing a latent tensor filled with random noise
(1), which is progressively refined by the UNet over multiple
denoising steps guided by the token embeddings. To steer
the image generation towards the desired outcome, the UNet
employs classifier-free guidance [27] (CFG). Specifically, at
each denoising step, the UNet duplicates the latent tensor
into two replicas (2); one replica is denoised conditionally,
taking into account the token embeddings, whilst the other
is denoised unconditionally. Intuitively, the unconditioned
latent representation captures the general image distribution,
whereas the conditioned representation incorporates specific
context given by the text prompt (3). The two latent tensors
are then combined by computing a weighted sum, yielding an

interpolated latent representation for further refinement in the
next step (4). Upon completion of the denoising process, the
final interpolated latent tensor is sent to the VAE decoder to
render the output image (5).

ControlNet. Users often find it challenging to control the
details of output images because text prompts alone are in-
sufficient to precisely specify complex layouts, compositions,
and shapes. ControlNet addresses this issue by augmenting a
base diffusion model with additional input conditions, such
as edge maps and depth maps, which specify the desired spa-
tial composition of the generated images. As illustrated in
Fig. 1-Center, ControlNet enables users to provide a reference
edge map, allowing the base model to generate a Ferrari that
adheres to the specified spatial composition.

Fig. 4-Left illustrates a simplified workflow of applying a
ControlNet in the image generation process. ControlNet has
a similar architecture to the UNet encoder blocks and middle
block, with additional zero convolution operators [69]. It is
applied to each encoder level of the UNet backbone. In each
denoising step (Fig. 3), ControlNet takes as input the text
prompt, the encoded reference image, and the latent tensor.
The outputs, which contain the processed features of the ref-
erence image, are then incorporated into the skip-connections
and middle block of the UNet backbone, guiding the image
generation process to conform to the reference image. In prac-
tice, users can apply multiple ControlNets to a single base
model, in which the outputs of these ControlNets are simply
summed up and applied to the corresponding backbone UNet
blocks [69].

Low-Rank Adaptation (LoRA) is another popular adapter
that allows for generating images in a customized style (Fig. 1-
Right). LoRA is a parameter-efficient approach to adapting
the base model for domain-specific tasks [28]. Specifically,
given a pre-trained base model with weight matrix W ∈
RH1×H2 , LoRA introduces two low-rank matrices A ∈ RH1×r

and B ∈ Rr×H2 , where r ≪ min{H1,H2} is the LoRA rank.
One can simply patch the LoRA weights to the base matrix,
i.e., W′ =W+AB, and use the adapted diffusion model W′ to
generate stylized output with the desired visual characteristics,
as illustrated in Fig. 4-Right.

Other adapters. Our work primarily focuses on Control-
Net [69] and LoRA [28], the two most popular adapters in pro-
duction environments (§3). Meanwhile, there are many emerg-
ing adapters [29, 52, 62, 68, 70] introduced by the research
community to enhance image generation. These adapters
can be broadly categorized into two classes. The first com-
prises adapters that operate in tandem with the base model
during inference, akin to ControlNet. Examples include IP-
Adapter [62] and BrushNet [29]. The second class consists
of adapters that augment the base model by incorporating
parameter-efficient patches, similar to LoRA [28], including
Fooocus Inpaint [68] and IC-Light [70]. Because of the simi-
larity, the techniques developed for expedited ControlNet and

USENIX Association 2025 USENIX Annual Technical Conference 1039

https://github.com/modelscope/Katz

Adapters Number Service A Service B

ControlNet

0 0 1.9%
1 30.5% 25.1%
2 69.5% 69.9%
3 0 3.1%

LoRA
0 0.2% 7.2%
1 8.8% 73.6%
2 91% 19.2%

Table 1: The distribution of the number of ControlNets and
LoRAs used by each request in two production services.

LoRA serving can be easily extended to the two classes of
emerging adapters, which we discuss in §10.

Limitations of current T2I serving systems. Diffusion-
based T2I workflow serving should provide low latency to
allow real-time user interaction to better support multi-round
prompt editing and image fine-tuning [9, 12]. DIFFUSERS is
the state-of-the-art system that supports T2I serving workflow
with ControlNets and LoRAs [50]. It generates images of
original quality but incurs significant latency overhead, es-
pecially as more adapters are being used (Fig. 2). Recently
proposed T2I serving systems, such as NIRVANA [12] and
DISTRIFUSION [30], focus solely on optimizing base diffu-
sion model inference. NIRVANA [12] proposes to skip the
first κ denoising steps by using a pre-cached image gener-
ated from a similar prompt to replace the randomly initialized
noise latent (Fig. 3). DISTRIFUSION [30] uses multiple GPUs
to a diffusion model to accelerate image generation. It splits
the latent (2 in Fig. 3) into small patches and parallelizes the
computation on multiple GPUs, outperforming tensor paral-
lelism [44] with improved communication efficiency [30]. We
will show in §9 that these systems, though efficient in base
model inference, fall short in workflow serving with many
adapters, resulting in extended latency and quality loss.

3 Characterization Study

In this section, we present a characterization study on a 20-day
workload trace collected in May and June 2024 on a produc-
tion platform2. The trace contains more than 500k inference
requests to two core T2I services for online retailing applica-
tions. Our characterization not only reflects the deployment
scenarios of diffusion models in production, but also reveals
the inefficiency of current T2I serving systems.

3.1 ControlNet Characterization
Prevalence. Table 1 shows the distribution of the number
of ControlNets utilized by each request in two services. Con-
trolNet is used by almost all requests for image generation
control; approximately 70% of these requests utilize two or
more ControlNets simultaneously.

2https://modelscope.cn/datasets/mental2008/T2I-Model-Serving-Request-Trace

0 5 10 15
Top-k popular ControlNets

0

50

100

In
vo

ca
tio

n
 P

er
ce

nt
 (%

)

Service A
Service B

0 1500 3000 4500
Top-k popular LoRAs

0
25
50
75

100

In
vo

ca
tio

n
 P

er
ce

nt
 (%

)

Service A
Service B

Figure 5: Left: ControlNet has a small population and exhibits
a skewed popularity; the long tail of the graph is truncated for
a better presentation. Right: LoRA has a large quantity and
exhibits a long-tailed distribution in popularity.

1 2 3 4 5 6 7 8 9 10
Cache size (# adapters)

0

2

Av
g.

 #

 lo
ad

in
g

tim
es

ControlNet
LoRA

1 2 3 4 5 6 7 8 9 10
Cache size (# adapters)

0

1

Av
g.

 #

 lo
ad

in
g

tim
es ControlNet

LoRA

Figure 6: Configuring a larger LRU cache effectively elimi-
nates the adapter loading overhead for ControlNets, but not
for LoRAs. Left: Service A; Right: Service B.

Skewed popularity. Compared to a large quantity of re-
quests, only 141 ControlNets are used in two services, where
Service A offers 47 distinct ControlNets and Service B pro-
vides 94. These ControlNets exhibit a severe skewness in
access frequency. As shown in Fig. 5-Left, the top-5 most
popular ControlNets (11% in population) account for 98%
of total invocations in Service A. When it comes to Service
B, the top-8 most popular ControlNets (9% in population)
contribute to 95% of total invocations.

The need for ControlNet caching. ControlNets are large in
size (3 GiB each) and usually maintained in remote storage,
introducing significant loading overhead. Given that Control-
Nets have a limited quantity and skewed popularity, caching
a small number of top popular ControlNets in GPU memory
effectively eliminates the loading overhead for most requests.
To illustrate this, we configure an LRU cache of varying size
for ControlNet caching. We replay the trace and measure
the average number of times that the desired ControlNets
are not resident on GPU and must be fetched from storage
(i.e., cache miss) when serving two consecutive requests that
desire different ControlNets. As illustrated in Fig. 6 (blue
curves), caching only a handful of top popular ControlNets
is sufficient to eliminate the loading overhead for both ser-
vices (top-5 for Service A and top-8 for Service B). Similar
results are observed if we replace the LRU cached with an
LFU (Least Frequently Used) cache.

Computational overhead. ControlNet is compute-heavy as
it shares a similar architecture to the UNet encoder and middle
block (§2). As illustrated in Fig. 2 (blue bars), augmenting the
base diffusion model with one ControlNet increases the serv-
ing latency by 1.6× (up from 2.9 seconds to 4.5 seconds). As
more ControlNets are utilized, their computational overhead
accumulates because current T2I serving systems [50] se-

1040 2025 USENIX Annual Technical Conference USENIX Association

https://modelscope.cn/datasets/mental2008/T2I-Model-Serving-Request-Trace

quentially compute the outputs of the requested ControlNets
before executing the base model at each denoising step.

3.2 LoRA Characterization

Prevalence. Similar to ControlNet, the majority of T2I re-
quests utilize one or two LoRAs to stylize the generated
image, as summarized in Table 1. Specifically, over 90% of
requests in Service A desire two LoRAs, while nearly 93%
of requests in Service B demand at least one LoRA.

Long-tailed popularity distribution. Compared to Control-
Nets, LoRAs have a significantly larger population but smaller
sizes. Our trace reports 6,980 distinct LoRAs for Service A
and 7,463 LoRAs for Service B. Each LoRA is a few hun-
dreds of MiB. Unlike ControlNets, the popularity of LoRAs
follows a long-tailed distribution; that is, a significant portion
of LoRA invocations are contributed by a large number of
less popular adapters, as illustrated in Fig. 5-Right. In Service
A, 6,968 LoRAs (99.8% of the total 6,980) each account for
less than 1% of invocations. Similarly, in Service B, 7,449
LoRAs (99.8% of the total 7,463) each contribute to less than
1% of invocations.

Ineffective LoRA caching. Given the long-tailed popularity
distribution of LoRAs, caching the top popular LoRA adapters
offers limited benefits. To demonstrate this, we configure an
LRU cache of varying sizes for LoRA caching. We replay
the trace and measure the average number of times that the
desired LoRAs are not available on GPU and must be brought
from storage (i.e., cache miss) when serving two consecutive
requests that demand different LoRAs. As illustrated in Fig. 6
(orange curves), configuring a larger LRU cache only slightly
reduces the loading overhead caused by cache misses. We
also measure the cache misses with an LFU cache and observe
similar results. For Service B with a cache size of 10, LRU
and LFU achieve comparable average loading times due to
cache misses, at 0.54 and 0.57, respectively. Intuitively, LFU
favors LoRAs with high long-term popularity and LRU prior-
itizes LoRAs with high short-term popularity. However, due
to the dynamic nature of LoRA invocation patterns and their
long-tailed distribution, predicting invocation traffic remain
challenging, making approaches fall short.

As another evidence, Fig. 7 depicts a scatter plot illustrating
the number of requests served on each node in the trace and
the number of unique LoRAs utilized by those requests on
that node. We observe the linear correlation between the two
numbers, invalidating the benefits of LoRA caching. Our
production system hence chooses not to cache LoRAs but
loads them from storage in an on-demand fashion.

LoRA loading and patching overhead. Compared to Con-
trolNets, LoRAs are compute-light and LoRA serving is bot-
tlenecked by the loading and patching overhead (Fig. 4-Right).
Our measurements show that fetching two LoRAs (total size
of approximately 800 MiB) from a remote distributed cache

0 2000
of requests

0

2000

of

 u
ni

qu
e

Lo
RA

s

0 2500 5000
of requests

0

1000

of

 u
ni

qu
e

Lo
RA

s

Figure 7: Scatter plots illustrating the number of requests
received on each worker node (X-axis) against the number
of unique LoRAs required by those requests (Y-axis). Left:
Service A; Right: Service B.

1 2 4 8 16
Batch size

0

50

100

La
te

nc
y

(s
)

15.2
29.6

59.9

8.6 15.9
32.0

62.3

123.8

3.0 4.8 8.8 16.5
32.9

A10
A100
H800

End2End

ControlNet
LoRA Base

0

10

L
a
te

n
c
y
 (

s
)

15.6

4.9

7.7

2.82.0
0.1 0.1

1.6

Diffusers Katz

Figure 8: Left: Ineffective Batching for SDXL inference.
Right: End-to-end latency and component breakdowns for a
3C/2L request, using Diffusers [50] and KATZ on H800.

takes more than one second, delaying the base model serving
by 34% (up from 2.9 seconds to 3.9 seconds). In addition,
simply patching LoRA weights to the base model, as imple-
mented in existing systems [37, 50], incurs high overhead,
which we elaborate in §6.

3.3 Characterizing Base Model Serving
Currently, UNet-based diffusion models, such as SDXL [39],
are predominately deployed to handle the majority of requests
in production platforms. These models are supported by a
plethora of well-trained ControlNets [69] and LoRAs [28].
In the meantime, there is an emerging trend of deploying
transformer-based diffusion models (DiT) [19,32], but the de-
velopment of corresponding adapters remains lagging behind
at the moment. In this paper, we primarily focus on UNet-
based models; our observations and optimization designs also
apply to the transformer backbone.

Ineffectiveness of batching. Diffusion model serving is
computationally intensive, as evidenced by our experiments
with varying batch sizes for a standard SDXL model [39] on
NVIDIA A10, A100, and H800 GPUs (Fig. 8-Left). Across
all three GPUs, doubling the batch size results in an approx-
imately 2× in serving latency, indicating minimal benefits
from batching. In fact, generating a single image already
saturates the computational resources of a high-end GPU.
According to [30], the computational cost of generating a
1024×1024 image with SDXL requires 676T FLOPS, where
the token length involved in SDXL’s transformer computa-
tions can reach up to 4096, resulting in a high computational
load. Consequently, production T2I services typically con-
figure a constant batch size of 1 to minimize serving latency.
That being said, we expect more performance gains from

USENIX Association 2025 USENIX Annual Technical Conference 1041

Notation Description
S Number of denoising steps
M Number of ControlNets used
N Number of LoRAs used

T Load
Ci

, T Comp
Ci

Time to load and compute ControlNet Ci

T Load
L j

, T Patch
L j

Time to load and patch LoRA L j

T Comp
Enc Time to compute the text encoder inference

T Comp
VAE Time to compute the VAE decoder inference

T Comp
B Time to compute the base model inference

T Comp
B∗ Optimized base model inference time

Table 2: Notations used to model T2I inference latency.

batching when using more powerful GPUs.

Dominated CFG computation. To understand the computa-
tion of the base diffusion model, we break down its execution
and find that over 90% of the inference time is spent on CFG
computation (§2). Current CFG implementation employs la-
tent batching. That is, at each denoising step, the latent tensor
is duplicated and the two replicas are fed into the base model
to perform conditional and unconditional denoising in one
batch on a GPU. However, as the two denoising operations
are compute-heavy, batch-executing them yields minimal ben-
efits. In fact, latent batching results in up to 1.7× slowdown in
base model serving compared to our optimized design (§9.5).

3.4 Latency Overhead of Current Systems

To sum up, current T2I systems serve the base model and the
associated adapters in a sequential execution pipeline. Specif-
ically, assume a request utilizing m ControlNets and n LoRAs.
Upon request arrival, the system loads all the desired Control-
Nets and LoRAs into GPU memory, followed by patching the
n LoRAs to the base model. The system then encodes the text
prompt and proceeds to the denoising process in S steps. At
each step, it sequentially executes the m ControlNets and the
LoRA-patched base model to generate a latent representation.
The final latent representation is then sent to the VAE de-
coder to generate the output image. The end-to-end workflow
serving latency is given by Eq. (1), where the notations are
defined in Table 2:

T =
M

∑
i=1

T Load
Ci

+
N

∑
j=1

(T Load
L j

+T Patch
L j

)︸ ︷︷ ︸
time to load and patch adapters

+T Comp
Enc +(

M

∑
i=1

T Comp
Ci

+T Comp
B)×S+T Comp

VAE .︸ ︷︷ ︸
computation time for multi-step image generation

(1)

Our characterization identifies efficiency issues concern-
ing ControlNet loading (∑M

i=1 T Load
Ci

), sequential ControlNet
execution (∑M

i=1 T Comp
Ci

), slow LoRA loading (∑N
j=1 T Load

L j
) and

patching (∑N
j=1 T Patch

L j
), and inefficient latent batching in base

model execution (T Comp
B), collectively accounting for up to

99% of end-to-end serving latency (Fig. 8-Right).

C.N.

C.N.

UNet

UNet

BAL Loader

Step 1 Step K+1

LoRA Storage

Ref. Image

Latent

C.N.

C.N.

UNet+LoRA

UNet+LoRA

LoRA

Time

Data flow
Load LoRA

CFG operator
Patch LoRA

Figure 9: KATZ utilizes 4 GPUs to serve a base model with
1C/1L, two for the base and two for the ControlNet (C.N.).

4 Design Overview

To address the efficiency issues identified in §3, we propose
KATZ, a system that efficiently serves a T2I workflow with
many adapters. KATZ employs three key designs. First, to
reduce the overhead of ControlNet loading and computa-
tion, KATZ introduces ControlNet-as-a-Service, enabling Con-
trolNet caching and parallelization in a unified design (§5).
Second, to mitigate LoRA loading and patching overheads,
KATZ overlaps LoRA fetching with base model execution for
a bounded steps (bounded asynchronous LoRA loading or
BAL), and uses an efficient method to quickly patch LoRA
adapters (§6). Third, KATZ accelerates CFG computation by
concurrently executing conditional and unconditional denois-
ing operations on two GPUs, a technique called latent paral-
lelism, together with kernel-level optimizations (§7). Fig. 9
illustrates an example of serving a base diffusion model with
one ControlNet and one LoRA (1C/1L). Latent parallelism is
applied to accelerate both the base model and the ControlNet,
each using two GPUs; LoRA is asynchronously loaded, in
parallel with initial base model execution for up to K steps
before patching to hide the loading overhead.

In practice, the loading and computational overhead asso-
ciated with ControlNets and LoRAs are virtually eliminated
in KATZ (Fig. 8-Right), reducing the end-to-end workflow
serving latency from Eq. (1) to

T = T Comp
Enc +T Comp

B∗ ×S+T Comp
VAE . (2)

Collectively, our designs achieve up to 7.8× reduction in
latency (Fig. 8-Right) and 1.7× throughput improvement,
without compromising image quality (more in §9.2).

While we present KATZ primarily based on diffusion mod-
els with the UNet backbone, our designs also apply to the
recently proposed diffusion transformers (DiTs) [19, 32, 38].

5 ControlNet-as-a-Service

For ControlNet serving, the main overhead comes from
adapter loading and computation, which is tightly coupled
with base model execution: as more ControlNets are utilized,
their overheads accumulate (§3.1). We address this problem
with a principled ControlNet-as-a-Service approach.

1042 2025 USENIX Annual Technical Conference USENIX Association

ControlNet-as-a-Service. Unlike existing systems, KATZ
decouples ControlNet execution from the base diffusion
model and deploys ControlNets as a separate, independently
scaled service on dedicated GPUs. This design provides three
benefits. First, by deploying ControlNets as an independent
service, multiple ControlNets can execute in parallel with the
base model on multiple GPUs and synchronize only at the end
of each denoising step (details to come), effectively hiding
their computational overhead. Second, the service can easily
track the popularity of each ControlNet and cache a small
number of top popular ones in GPU memory, which is suf-
ficient to eliminate the loading overhead given their skewed
popularity as identified in §3.1. Third, the separated Con-
trolNet service can be shared among many T2I workflows
in a multi-tenant system, enabling a single ControlNet to be
multiplexed by many base models and scaled out according
to the request load.

ControlNet parallelization. Without changing the data flow
between ControlNets and the base model, KATZ partitions the
entire compute graph of image generation into a serial part
and a parallel part. For the UNet-based SDXL model [39],
the serial part consists of the one-time computation of the
text encoder, one-time computation of the VAE decoder, and
UNet decoder computations of denoising steps (§2). The par-
allel part consists of the computations of UNet’s encoder and
ControlNet(s) at each denoising step (Fig. 4-Left). KATZ dis-
tributes the computation of the parallel part across multiple
GPUs. As illustrated in Fig. 9, it deploys the base UNet model
on one set of GPUs and each ControlNet on a different set, op-
erated as a separate service. At each denoising step, the UNet
encoder and ControlNet(s) initiate computation concurrently.
Upon completion of the UNet middle block inference, the
UNet decoder synchronously awaits the outputs from Control-
Net(s) before its computation, thereby preserving the original
data dependencies (Fig. 4-Left). The ControlNet(s) then be-
comes idle for next invocation.

Performance analysis and optimization. To achieve max-
imum speedup for parallel computing, it is important to (1)
balance the load of concurrent computing tasks and (2) min-
imize their communications to reduce the synchronization
overhead. The first requirement is naturally met in ControlNet
parallelization: given that ControlNet shares the same model
architecture as the UNet’s encoder block and middle block,
with the only difference being the additional zero convolu-
tion operators [69], their computation load is well balanced,
leading to almost the same execution time when running on
homogeneous GPUs. Regarding the second requirement, we
measure a medium to low data transfer between the base
model and the associated ControlNet, e.g., only 108 MiB for
SDXL. With high-speed interconnect, such as NVLink [7]
and InfiniBand [6], the communication overhead is negligi-
ble (e.g., less than 1 ms for SDXL over NVLink). In this
scenario, ControlNet parallelization achieves 1.42× speedup

Serial Sync. Pipeline
ControlNet execution

0

25

L
a
te

n
c
y
(s

)

20.9 18.9 15.2

Optimal Latency

0 20 40
Denoising steps

0.90
0.95
0.99

Co
sin

e
sim

ila
rit

y

Figure 10: Left: Image generation latency using various Con-
trolNet execution schemes on AWS g5.2xlarge instances
with 10 Gbps network bandwidth (Serial: no paralleliza-
tion; Sync: synchronous ControlNet parallelization; Pipeline:
pipelined asynchronous parallelization). Right: Average co-
sine similarities of ControlNet outputs between two adjacent
steps, which are calculated across the channel dimension.

ControlNet

Step t-1

Base
model

Step tStep t-1
Communication
overhead

ControlNet

Base model

C C C
C

E E E
E D

DDD

Standard ControlNet Pipelined ControlNet w/
async communication

C

E D

Step t+1

C

E D

Step t

Figure 11: An illustration of ControlNet parallelization (Left)
and its asynchronous pipeline implementation over slow links
(Right). The middle blocks are omitted for simplicity.

over NVLink and 1.34× speedup over InfiniBand 400 Gbps
link, either on A100 or H800 GPUs, closely matching the
ideal speedup of 1.45× given by Gustafson’s law [24].

However, when high-speed GPU interconnections are un-
available, communication may become a bottleneck (Fig. 10-
Left). In this scenario, we propose pipelined asynchronous
parallelization to hide the communication overhead. Our key
observation is that the output tensor generated by a Control-
Net in two adjacent denoising steps are nearly identical, with
cosine similarity over 0.99 almost all the time, as illustrated
in Fig. 10-Right. Based on this observation, we can relax
the synchronization requirement between the base model and
ControlNets to establish an asynchronous pipeline, while still
achieving the same image quality. That is, at each denoising
step t, the base model performs computation based on the stale
ControlNet output generated at step t −1, which have already
been transferred to the base model’s GPU during the previ-
ous step. Fig. 11 illustrates ControlNet parallelization and its
asynchronous pipeline implementation over slow links, where
the latter achieves close-to-ideal speedup in our experiments
(Fig. 10-Left). We will show in §9.3 that slightly relaxing the
synchronization requirement for ControlNet parallelization
leads to no quality loss.

Applicability to DiT. ControlNet parallelization is a generic
technique that also applies to the emerging DiT-based models,
such as SD3 [19] and Hunyuan-DiT [32]. This is because
ControlNets for the DiT backbone share the same model
architecture as the base model and their data dependencies
are analogous to that of their UNet counterparts. One can
hence expect the same efficacy for DiT-based models (§9.7).

USENIX Association 2025 USENIX Annual Technical Conference 1043

LoRA
loading

A request
arrives

Denoising
w/o LoRA

Denoising with
LoRA

Transfer weights via shared
memory and patch on

Time

Base model
inference

0 20 40
Denoising steps

0.70
0.80
0.90
0.99

Co
sin

e
Si

m
ila

rit
y

Bounded at step k

Figure 12: Left: Cosine similarities between the latents gen-
erated with LoRA and those without LoRA at each denoising
step. Right: Bounded asynchronous LoRA loading.

Inference Progress

Inference with LoRA

Inference with LoRAInference w/o LoRA

Inference w/o LoRA

Semantics-planning Stage Artistic-planning Stage

Figure 13: Images generated every 10 steps from the first
step using a papercut LoRA [48]. Prompt: an owl standing
on a wire. Top: Inference w/o LoRA. Middle: Inference
w/ LoRA. Bottom: Inference w/o LoRA during semantics-
planning stage and w/ LoRA during artistic-planning stage.

6 Efficient LoRA Serving

Motivation. As discussed in §3.2, LoRAs are stored in an
external storage (e.g., local disk or remote cache). To apply
a LoRA for stylizing the image generation, the system first
fetches the adapter from storage and loads it into host memory.
After that, it patches the adapter to the base diffusion model
by merging its weights with the parameters of the base model.
Both LoRA loading and patching incur significant overhead,
which accumulates as more LoRAs are utilized (Fig. 2). We
address these two problems in this section.

Bounded asynchronous LoRA loading (BAL). We analyze
image generation with LoRA and observe a general trend: the
effect of LoRA computation is initially imperceptible but, af-
ter certain steps, becomes increasingly significant. We empir-
ically validate this by executing the image generation process
twice, with and without LoRA. We calculate the cosine simi-
larity between the output tensors generated with and without
LoRA at each denoising step and depict the result in Fig. 12-
Left. The cosine similarity consistently exceeds 0.99 in initial
steps, indicating that LoRA exerts minimal effects during this
stage. However, after a certain step (20 steps in this case),
the similarity starts to plunge, a turning point at which LoRA

effects kick in and become increasingly significant moving
forward. Fig. 13 further visualizes the denoising process of im-
age generation with and without LoRA. The initial denoising
steps constitute a semantics-planning stage [12, 34, 45, 72],
wherein the model determines the image composition and
layout, generating visual semantics aligned with the text con-
ditions [12, 72]. LoRA computation is less relevant and can
be safely excluded during this stage (Fig. 13-Bottom). The re-
maining generation steps constitute an artistic-planning stage
with image details gradually emerging, e.g., color, texture,
and artistic style [12, 72]. LoRA plays a crucial role in this
stage and must be included (Fig. 13-Bottom).

Driven by this observation, KATZ proposes overlapping
LoRA loading with base model execution in the initial
semantics-planning stage, as shown in Figures 12-Right and
13-Bottom. When a request arrives, KATZ asynchronously
loads the requested LoRA(s). In the meantime, it early-starts
the base diffusion model inference to perform image genera-
tion without LoRA. To ensure no quality loss, KATZ imposes
an asynchrony bound K for overlapping LoRA loading with
base model inference: in the worst case, if the requested Lo-
RAs have not been loaded at the (K + 1)th denoising step,
the base model waits until the loading completes. The loaded
LoRAs are then patched to the base model to continue the
remaining generation steps.

Determining the asynchrony bound. Ideally, we should
choose a large asynchrony bound K to maximally overlap
LoRA loading with base model inference, subject to no qual-
ity loss. KATZ employs a profiling method to optimally de-
termine the asynchrony bound K. Given a base model and a
LoRA, KATZ offline calculates the cosine similarity between
the latent tensors generated with and without LoRA at each
denoising step, akin to those in Fig. 12-Left. It then sets K to
the step at which the similarity starts to drop below a prede-
fined threshold, e.g., 0.99. In our evaluation, we profile and
set K = 10. Our experiment on A100 and H800 GPUs shows
that LoRA loading completes mostly before the predefined
step K, effectively hiding the adapter loading overhead (c.f.
0C/0L and 0C/1L in Fig. 2).

Efficient LoRA patching. Existing systems [50] use the
PEFT [37] framework to merge LoRA weights with base
model parameters. For a layer in the base stable diffusion
model that will be patched with LoRA, PEFT creates a new
LoRA layer to replace the original layer in the base model.
The newly created LoRA layer augments the corresponding
base model layer by incorporating LoRA weights and config-
urations. However, this create-and-replace operation incurs
high overhead, taking 2 seconds for a LoRA of 341 MiB and
occupying additional GPU memory. Although maintaining a
separate copy of LoRA weights in the new augmented layer fa-
cilitates convenient LoRA training and efficiently patching off
LoRA weights after image generation, we find it unnecessary.
As a serving system, KATZ does not require the capability to

1044 2025 USENIX Annual Technical Conference USENIX Association

support LoRA training. Besides, our characterization study re-
veals that the time interval between two consecutive requests
is long enough (over 1 second) to patch off LoRAs. Therefore,
KATZ chooses to merge LoRA weights with base model pa-
rameters in place. This design eliminates the latency overhead
caused by the create-and-replace operation and saves GPU
memory without storing separate LoRA weights.

Applicability to DiT. Our design for efficient LoRA load-
ing and patching is agnostic to the architecture of the base
model, and can hence be applied directly to accelerate image
generation in DiTs [19, 32].

7 Optimized Base Model Execution

With the overhead of adapters effectively addressed in §5
and §6, we now turn to accelerating base model inference,
the last bottleneck in image generation. Given that diffusion
model serving is computationally intensive that saturates a
high-end GPU even with a small batch size of 1 (§3.3), we
explore parallelization opportunities to accelerate CFG com-
putation on multiple GPUs. We also incorporate kernel-level
optimizations tailored for diffusion model computation and
its interaction with adapters to further enhance performance.

Latent parallelism for diffusion model. As explained in
§2, diffusion model uses the CFG technique to better align
image generation with textual descriptions at each denoising
step, where an input latent tensor is duplicated and undergoes
two denoising operations, one conditioned on the texts and
the other unconditionally. The two latents are then combined
by computing a weighted sum, yielding an interpolated latent
as the output. As conditioned and unconditioned denoising
have no dependency, they can be performed in parallel on
two GPUs, which we call latent parallelism. As illustrated in
Fig. 9, KATZ maintains two instances of the base diffusion
model on two homogeneous GPUs. At each denoising step,
KATZ duplicates the input latent tensor (2 in Fig. 3) and
feeds the two replicas into the two base model instances to
perform conditioned and unconditioned denoising in parallel.
As the two computations have balanced load, they complete
at the same time, and their outputs are then interpolated as a
weighted sum through a synchronous communication.

The simple yet effective latent parallelism strategy can
accelerate the base diffusion model inference of a request
by 1.4–1.9×, depending on the GPU capability and model
size. The performance gains are more pronounced with larger
base models and lower-end GPUs (details in §9.5). Latent
parallelism incurs little overhead because 1) computations
on different GPUs are uniform and finish at almost the same
time, and 2) the communication overhead is minimal, mainly
comprising the transfer of a small latent (< 1 MiB). How-
ever, the speedup achieved by latent parallelism may come
at the expense of per-GPU throughput when the denoising
computation of a single latent does not saturate a GPU. Latent

parallelism also applies to the emerging DiT models as they
employ the same CFG technique in image generation.

Compatibility with adapter optimizations. Latent paral-
lelism can be naturally applied to accelerate CFG computation
in ControlNet serving, as ControlNets are architecturally simi-
lar to the base model (§5). Fig. 9 illustrates an example where
KATZ utilizes 4 GPUs to serve a base diffusion model and
one ControlNet, both with latent parallelism. Meanwhile, the
base model also utilizes BAL to overlap LoRA loading with
base model computation at each denoising step.

Kernel-level optimizations. KATZ includes several kernel-
level optimizations to further enhance performance, including
a customized CUDA Graph [21] implementation and spe-
cialized CUDA kernels tailored to diffusion models. CUDA
Graph is particularly suitable for T2I inference, as it uses a
constant batch size of 1 (§3.3). Given the nearly homoge-
neous requested image resolutions in our production platform,
we only need to maintain a small number of CUDA Graphs
resident in GPU memory. Furthermore, we adapt the origi-
nal CUDA graph to accommodate ControlNet parallelization.
Specifically, we tailor the base model and segment it as dis-
tinct CUDA Graphs according to its data dependencies with
ControlNets. Beyond existing optimized attention kernels [1],
KATZ provides kernel optimizations specific to UNet-based
diffusion models, including an optimized GEGLU activation
operator by fusing GELU and matrix multiplication operations,
and a fused operator that combines GroupNorm and SiLU op-
erators to mask the latter’s overhead.

8 Implementation

We have implemented KATZ on top of Diffusers [50], a
PyTorch-based diffusion model inference framework that inte-
grates state-of-the-art model optimization techniques. KATZ
is written in 5.5k lines of Python and 2.4k lines of C++/CUDA
code, where ControlNet-as-a-Service, BAL, and latent paral-
lelism are implemented in Python, whilst customized CUDA
operators are written in C++/CUDA. KATZ performs LoRA
loading in separate processes and utilizes shared memory to
transfer LoRA weights from the loading processes to the base
model serving process for efficient (parallel) data transfer.

9 Evaluation

We evaluate KATZ’s performance in terms of serving latency
and image quality. Evaluation highlights include:
• KATZ achieves efficient serving performance without de-

grading image quality, accelerating T2I generation by up to
7.8× compared with state-of-the-art baselines (§9.2).

• KATZ’s ControlNet-as-a-Service design decouples Control-
Nets from the critical path of a T2I workflow, achieving a
close-to-ideal speedup (§9.3).

USENIX Association 2025 USENIX Annual Technical Conference 1045

• KATZ effectively eliminates the LoRA loading and patch-
ing overheads, leading to consistent serving latency that
matches LoRA-free execution (§9.4).

• With latent parallelism and kernel optimizations, KATZ
achieves 1.7× speedup in base model inference (§9.5).

• KATZ increases the per GPU-minute throughput by up to
1.7× (§9.6) and generalizes to DiT-based models (§9.7).

9.1 Experimental Setup

Model and serving configurations. Unless otherwise spec-
ified, we use SDXL [39] as the base diffusion model. SDXL
and its variants are widely deployed in production sys-
tems [12], including ours, and have comprehensive support
for adapters. We use the default settings to generate images,
where the number of denoising steps is set to 50 and the
image resolution is 1024×1024. The ControlNets [3] and Lo-
RAs [47–49] used are provided by HuggingFace. By default,
we run experiments on NVIDIA H800 GPUs and configure
synchronous ControlNet parallelization for KATZ (§5).

Baselines. We consider the following three baselines:
• DIFFUSERS is a standard baseline for T2I workflow serving

with support of ControlNets and LoRAs [50].
• NIRVANA [12] is a strong baseline that skips the first κ de-

noising steps by using a pre-cached image given by a similar
prompt. We use two configurations, κ = 10 (NIRVANA-10)
and more aggressively κ = 20 (NIRVANA-20).

• DISTRIFUSION [30] is a strong baseline that utilizes multi-
ple GPUs to accelerate base diffusion model inference. We
extend it to support ControlNets on multiple GPUs. For a
fair comparison, we configure DISTRIFUSION to use no
fewer GPUs than KATZ.

Serving metrics. Our evaluation mainly concerns two met-
rics, serving latency and image quality. For serving latency,
we measure the end-to-end latency of generating an image
based on a given text prompt. For image quality, we use the
following quantitative metrics, which are considered essential
and widely used in measuring image quality [12,39,64,71,73].
• CLIP [25, 40] score evaluates the alignment between gener-

ated images and their corresponding text prompts. A higher
CLIP score indicates better alignment (↑).

• Fréchet Inception Distance (FID) score [26] calculates the
difference between two image sets, which correlates with
human visual quality perception [12]. A low FID score
means that two image sets are similar (↓).

• Structural Similarity Index Measure (SSIM) score [55] mea-
sures the similarity between two images, with a focus on
the structural information in images. A higher SSIM score
suggests a greater similarity between the images (↑).

Like [12, 39], we conducted a user study with 75 participants
to evaluate the image quality based on their visual perception.

Workloads. KATZ is designed to reduce the serving latency

0C/0L 1C/0L 0C/1L 1C/1L 3C/0L 2C/2L 3C/2L
Adapter settings

2

5

8

11

14

17

L
a
te

n
c
y
 (

s
)

2.9

4.5

6.2
7.6 7.9

13.9

15.6

1.7 1.7 1.8 1.9 1.8 2.0 2.0

Diffusers
Nirvana-10
Nirvana-20

DistriFusion
Katz

Figure 14: End-to-end serving latency with m ControlNets
and n LoRAs (mC/nL). GPU allocation for DISTRIFUSION
and KATZ is as follows: 0C/0L and 0C/1L configurations use
two GPUs, 1C/0L and 1C/1L use four GPUs, and 3C/0L and
3C/2L use eight GPUs. For the 2C/2L configuration, KATZ
uses six GPUs, while DISTRIFUSION requires eight GPUs.
All other baselines use a single GPU across all configurations.

of text-to-image requests associated with many adapters. To
evaluate this, we measure per-request serving latency across
different adapter configurations on provisioned instances,
eliminating the impact of request queuing and model scal-
ing due to load spikes. We configure the batch size to 1 due
to the limited batching effect (§3.3). The requests use text
prompts in Google’s PartiPrompts (P2) [64], a popular bench-
mark for image generation tasks [36, 39, 64]. P2 provides a
rich set of prompts, including simple and complex prompts
across various categories (e.g., Animals, Scenes, and World
Knowledge) and challenging aspects (e.g., Detail, Style, and
Imagination). We serve each request with several adapters,
following our production trace (Table 1).

9.2 End-to-End Performance
Serving latency. We vary the number of adapters in a work-
flow and compare the average serving latency of KATZ and
each baseline in Fig. 14. KATZ outperforms existing systems
in all settings, achieving up to 7.8× speedup over DIFFUSERS
and 5.7× speedup over DISTRIFUSION, the strongest base-
line. Compared to the four baselines, KATZ exhibits a largely
stable latency as more adapters are utilized in a workflow, the
result of its design that decouples adapters from the critical
path. In the absence of adapters (0C/0L), KATZ’s latent paral-
lelism and kernel optimizations (§7) accelerate base model
inference by 1.7× and 1.3× compared to DIFFUSERS and the
aggressive NIRVANA-20, respectively. Note that KATZ even
outperforms DISTRIFUSION, a system that also parallelizes
diffusion model inference on multiple GPUs, by 1.1× thanks
to the kernel optimizations. We further compare DISTRIFU-
SION’s parallelism with KATZ’s ControlNet parallelism with
the same number of GPUs in the settings of 1C/0L and 3C/0L.
KATZ outperforms as the ControlNet parallelism design is
based on the computation and communication characteristics
of ControlNets while DISTRIFUSION is adapter agnostic.

Image quality. We compare the quality of images gener-
ated by KATZ and each baseline. Since our ControlNets-as-a-

1046 2025 USENIX Annual Technical Conference USENIX Association

A helicopter
flies over
Yosemite

a peaceful
lakeside

landscape

a squirrel
driving

a toy car

an old-fashioned
windmill surrounded

by flowers

Katz
(ours)

Diffusers

Nirvana-10

Prompts

DistriFusion

Figure 15: Examples of images generated by each baseline.

Service design with synchronous parallelism makes no modi-
fication to image generation, we focus on evaluating the LoRA
effects. Two settings are considered: the first uses a single
LoRA to generate images in a papercut style [48], while the
second employs two LoRAs to generate images in a com-
bination of William Eggleston photography style and filmic
style [47, 49]. We use the prompts in P2 [64] that emphasize
vivid details in images.

1) Quantitative evaluation. Table 3 shows the CLIP, FID,
and SSIM scores achieved by each baseline. CLIP scores
measure the alignment between generated images and their
corresponding prompts [8]. The results indicate that DISTRI-
FUSION and KATZ exhibit good performance in terms of
alignment, rivaling DIFFUSERS’s standard lossless workflow.

FID and SSIM scores focus on comparing the generated im-
ages with the standard images (“ground truth”). Therefore, we
use the images generated by DIFFUSERS as the ground truth,
as it represents the original T2I serving workflow. We include
the NOLORA baseline for reference, which utilizes no LoRA
in image generation. In Table 3, DISTRIFUSION and KATZ
achieve comparable performance and outperform others, in-
dicating that they generate images highly similar to those
generated by DIFFUSERS. NIRVANA-10 and NIRVANA-20
fall short because they generate an image based on the con-
tents of a cached image, which is selected only based on the
prompt similarity. Even with the same prompt, the visual con-
tents in cached images can be drastically different (see Fig. 1-
Left) and may not align with the style of LoRAs. Fig. 15
presents real examples generated by each baseline, where im-
ages generated by DIFFUSERS, KATZ, and DISTRIFUSION
are almost visually indistinguishable, whereas NIRVANA-10
fails to match the quality of DIFFUSERS.

2) Qualitative evaluation. We conducted a user study in-

LoRA Setting System CLIP(↑) FID (↓) SSIM (↑)

One LoRA:
Papercut [48]

DIFFUSERS 34.1 - -
NOLORA 32.9 11.4 0.63
NIRVANA-10 33.5 9.5 0.45
NIRVANA-20 33.7 10.9 0.44
DISTRIFUSION 34.0 1.7 0.86
KATZ (ours) 34.1 2.1 0.83

Two LoRAs:
Filmic [47] +

Photography [49]

DIFFUSERS 34.2 - -
NOLORA 31.3 13.4 0.67
NIRVANA-10 33.3 9.0 0.51
NIRVANA-20 32.8 9.4 0.47
DISTRIFUSION 34.1 2.9 0.86
KATZ (ours) 34.1 3.1 0.82

Table 3: Quantitative evaluation on image quality.

0 1 2 3
ControlNets

0

5

L
a
te

n
c
y
 (

s
)

2.9

4.3

5.7

7.1

3.0 3.2 3.2 3.3

Katz
Diffusers

1 2
LoRAs

0

10

L
a
te

n
c
y
 (

s
)

Diffusers

Diffusers

Katz Katz

LoRA overhead
Inference

Figure 16: Left: Microbenchmark on ControlNets. Right:
Microbenchmark on LoRAs.

volving 75 participants to compare the quality of images
generated based on human visual perception. The partici-
pants are mainly university students. We consider DIFFUSERS,
NIRVANA-10, and KATZ in this part since quantitative evalu-
ation shows image quality of NIRVANA-20 is not nearly as
good as that of other baselines and DISTRIFUSION can match
the quality of DIFFUSERS. Inspired by Chatbot Arena [74],
we constructed an online arena that randomly presents a pair
of two images to users, offering four options: both images
are acceptable, neither is acceptable, image 1 is acceptable,
or image 2 is acceptable. Participants made their selections
based on both the degree of image alignment with the prompt
and their subjective aesthetic preferences. We collected over
1.2k data points. The findings indicate that KATZ is capable
of producing images of the same quality as DIFFUSERS, both
with 70% acceptance rate. In contrast, NIRVANA-10’s accep-
tance rate is below 50% due to its skipped denoising steps
and not considering the impact of adapters during its prompt
match process.

9.3 ControlNet-as-a-Service

We next evaluate the performance of KATZ’s ControlNets-as-
a-service design, with all other optimizations disabled. We
compare KATZ with DIFFUSERS, as NIRVANA and DISTRI-
FUSION lack specialized designs for ControlNets. Fig. 16-
Left illustrates the serving latency achieved by DIFFUSERS
and KATZ, where KATZ achieves up to 2.2× speedup by
distributing ControlNets computation across multiple GPUs.
Note that in this case, KATZ employs synchronous ControlNet
parallelization, generating identical images as DIFFUSERS.

USENIX Association 2025 USENIX Annual Technical Conference 1047

Sync. Async. Without Sync. Async. Without

a shiba inu wearing a beret and black turtleneck a squirrel in a field

Figure 17: Sample images generated using sync. and async.
ControlNet scheme, along with images without ControlNets.

To further analyze KATZ’s speedup, we apply Gustafson’s
law [24], which quantifies the theoretical speedup in execu-
tion time for a task that benefits from parallel computing. Let
N denote the number of processors, and let s and p represent
the time fractions spent executing the serial and parallel parts
of the program (s+ p = 1). The theoretical speedup S from
parallel computing is S = s+ pN [24]. In the context of T2I
generation with ControlNets, the serial parts comprise the
computation of decoder blocks in UNet, while the parallel
parts include the computation of UNet’s encoder blocks to-
gether with middle block and ControlNets (§5). When using
three ControlNets, the serial parts account for s= 0.55 and the
parallel parts take p = 0.45, leading to a theoretical speedup
of 2.35×. KATZ achieves 2.2× speedup and is near optimal.

Pipelined asynchronous parallelization. We next evalu-
ate the performance of pipelined asynchronous ControlNet
parallelization in the absence of high-speed GPU intercon-
nect. We deploy the base model and one ControlNet on two
AWS g5.2xlarge instances, each with one A10G GPU and
a 10 Gbps network [2]. Fig. 10-Left illustrates the serving la-
tency, where the asynchronous scheme achieves close-to-ideal
performance by pipelining communication and computation,
outperforming the synchronous scheme by 1.25×. Besides,
images generated by the two schemes are visually indistin-
guishable regarding composition and quality (see Fig. 17).
The synchronous and asynchronous scheme achieve CLIP
scores of 33.5 and 33.7, respectively. Compared to the sync
scheme, the async has an FID of 2.7 and an SSIM of 0.77.

9.4 Optimizations for LoRA Serving

We now evaluate KATZ’s design for efficient LoRA serving,
excluding other optimizations. We only include DIFFUSERS
because other baselines have no specialized design for LoRAs.
As described in §6, DIFFUSERS requires two steps to patch
on a LoRA: loading the adapter from storage and then merg-
ing its weights to the base model via a create-and-replace
operation [37]. This approach is inefficient. As shown in
Fig. 16-Right, with a single LoRA (341 MiB), it increases the
latency by 80%; with two LoRAs, one 341 MiB and the other
456 MiB, it results in 2.1× slowdown. KATZ addresses this
performance issue with BAL and efficient LoRA patching
(§6), collectively reducing the LoRA loading and patching
overhead to 230 ms, negligible in practice.

H800 A100 A10
1.0

1.5

2.0

S
p
e
e
d
u
p
 r

a
ti

o

1.36

1.58
1.71

1.63

1.81 1.82
1.70

1.87 1.85

SDXL SD3 Hunyuan-DiT

0C/0L 1C/1L 2C/2L 3C/2L
0

10

20

#
 i
m

a
g
e
s
 p

e
r

G
P
U

 m
in

u
te

21.0

8.9
5.1 4.5

17.6
11.7

8.9 7.4

Diffusers
Nirvana-10

DistriFusion
Katz

Figure 18: Left: Speedup ratio of latent parallelism on differ-
ent GPU types and base models. Right: Serving throughput
with m ControlNets and n LoRAs (mC/nL).

Diffusers Katz (ours) NoLoRA Diffusers Katz (ours) NoLoRA

a Diplodocus standing in a lake A plant growing on the side of a brick wall

Figure 19: Sample images generated by SD3 (left) and
Hunyuan-DiT (right) using LoRAs [4, 10].

9.5 Optimizations for Base Model Inference

We also evaluate the proposed optimizations for accelerating
base diffusion model inference without adapters. Fig. 18-Left
compares KATZ with DIFFUSERS and shows the speedup
ratios achieved by latent parallelism on different GPUs, ex-
cluding kernel-level optimizations. The gains of latent paral-
lelism are more pronounced on less capable GPUs, achieving
speedup ratios of 1.36×, 1.58×, and 1.71× on H800, A100,
and A10 GPU, respectively. Although the design of latent
parallelism results in imperfect scaling—achieving less than
a 2× speedup with 2× GPUs—when combined with other
optimizations, KATZ can deliver up to a 1.7× throughput im-
provement for LoRA-dependent requests (Fig. 18-Right). On
the basis of latent parallelism, enabling kernel-level optimiza-
tions (§7) additionally yields 1.24× speedup. Collectively,
these two optimizations enable KATZ to outperform all base-
lines regarding base model inference (0C/0L in Fig. 14).

9.6 Serving Throughput

KATZ is primarily designed to minimize serving latency, but it
also achieves superior serving throughput for workflows with
many adapters. Fig. 18-Right illustrates the request serving
throughput of each baseline, measured as the number of im-
ages generated per minute of GPU time. When the workflow
involves many adapters, KATZ achieves higher throughput
(up to 1.7×) compared to other baselines, benefiting from its
efficient design of LoRA loading and patching (§6). However,
when there is no adapter (0C/0L), KATZ and DISTRIFUSION
fall short in throughput as parallelizing base model inference
on two GPUs does not saturate their compute capabilities;
NIRVANA-20 sometimes achieves good throughput due to its
aggressive design, albeit at the cost of image quality loss.

1048 2025 USENIX Annual Technical Conference USENIX Association

9.7 Generalization to DiT-based Models

KATZ’s three designs naturally extend to the DiT backbone,
which we evaluate with SD3 [19] and Hunyuan-DiT [32].
First, ControlNet-as-a-Service leads to close-to-ideal speedup.
Compared to DIFFUSERS, KATZ achieves speedup ratios of
1.23× and 1.46× for SD3 and Hunyuan-DiT, each with one
ControlNet, closely matching the theoretical upper bounds of
1.27× and 1.50× given by the Gustafson’s law [24]. Second,
BAL effectively overlaps adapter loading with base DiT infer-
ence, eliminating the LoRA overhead. User study confirms
that images generated by KATZ and DIFFUSERS are visually
indistinguishable regarding quality with sample images pre-
sented in Fig. 19. Finally, latent parallelism accelerates CFG
computation of DiTs, as shown in Fig. 18-Left, achieving
even more significant speedup than that of SDXL (UNet).

10 Discussion and Related Works

Generalization to other adapters. As discussed in §2,
KATZ can support adapters beyond ControlNet and LoRA.
For adapters [29, 62] that share architectural similarities with
the base diffusion model, ControlNet-as-a-Service (§5) de-
couples them from the base and deploys them on dedicated
GPUs, enabling caching, parallelization, and sharing. For
adapters [68, 70] that incorporate parameter-efficient patches,
BAL (§6) can effectively mitigate the overhead associated
with model loading and patching. Latent parallelism (§7) ap-
plies to the base diffusion model and is adapter-agnostic.

T2I diffusion model inference. In §2, we have presented ex-
isting serving systems for T2I workloads [12,30,50]. Besides,
several works expedite image generation by reducing redun-
dant computations in the denoising process [35, 36, 57]. Yet,
these works only optimize the base model inference and over-
look the significant latency overhead introduced by adapters.
Our work is the first to analyze this problem and addresses
the system inefficiencies caused by the use of adapters in T2I
serving. It is hence orthogonal to the existing optimization
solutions for base diffusion models.

Serving systems with adapters. In the domain of LLMs,
pioneering research [16, 31, 43, 58] has designed efficient
systems to serve base LLMs with adapters. Despite their ef-
fectiveness, these LLM-focused systems are inadequate for
diffusion models due to their fundamental differences. First,
these systems focus solely on LoRAs, without considering
ControlNets which are specialized for diffusion models (§3.1).
Second, the LoRAs associated with diffusion models are sig-
nificantly larger in size and quantity than those for LLMs [16],
necessitating external LoRA storage and incurring orders of
magnitude higher loading overhead (§3.2). Third, these sys-
tems emphasize multiplexing a single base LLM to serve
multiple LoRAs simultaneously. Yet, batching yields minimal
benefits in diffusion model inference (§3.3). Consequently,

their optimizations become ineffective in our scenario.

Other model serving systems. Existing research on model
serving systems focuses on optimizing latency [17, 53],
throughput [14, 61], performance predictability [22, 67], and
resources efficiency [23, 51, 60, 65]. These studies apply to
various workloads, including graph neural networks [54] and
large language models [13, 18, 53, 63]. KATZ is orthogonal
to the aforementioned efforts, as T2I models have drastically
different computation intensity and workflow.

In the context of online model serving, there exists a se-
ries of works to address various challenges such as model
placement [33, 67], request scheduling [22, 67], and dynamic
scaling [20,59,66], which are designed to manage load spikes
in model serving systems. While KATZ focuses on per-request
latency optimization, these scheduling and scaling approaches
are complementary to KATZ and can be seamlessly integrated
to effectively handle diverse request arrival patterns.

11 Conclusion

We presented KATZ, the first system that efficiently serves a
T2I workflow with many adapters, such as ControlNets and
LoRAs. KATZ introduces three novel designs: (1) ControlNet-
as-a-Service that deploys ControlNets as a separate service
on dedicated GPUs to enable caching, parallelization, and
sharing, (2) bounded asynchronous LoRA loading and effi-
cient patching, and (3) latent parallelism that accelerates CFG
computation on multiple GPUs. Collectively, these designs
decouple adapters from the critical path of a T2I workflow,
while accelerating base model inference. Compared to exist-
ing systems, KATZ achieves up to 7.8× speedup and 1.7×
improvement in throughput, while maintaining image quality.

Acknowledgment

We thank our shepherd Yungang Bao and the anonymous re-
viewers for their valuable comments that help improve the
quality of this work. We also thank colleagues from Alibaba
Huiwa AI Team for their assistance. This work was supported
in part by the Alibaba Innovative Research (AIR) Grant,
RGC CRF Grant (Ref. #C6015-23G), RGC GRF Grants (Ref.
#16217124 and #16210822), and NSFC/RGC CRS Grants
(Ref. #CRS_PolyU501/23 and #CRS_HKUST601/24).

References

[1] Accelerate inference of text-to-image diffusion mod-
els. https://huggingface.co/docs/diffusers/en/tutorials/
fast_diffusion, 2025.

[2] Amazon EC2 G5 Instances. https://aws.amazon.com/
ec2/instance-types/g5/, 2025.

USENIX Association 2025 USENIX Annual Technical Conference 1049

https://huggingface.co/docs/diffusers/en/tutorials/fast_diffusion
https://huggingface.co/docs/diffusers/en/tutorials/fast_diffusion
https://aws.amazon.com/ec2/instance-types/g5/
https://aws.amazon.com/ec2/instance-types/g5/

[3] HuggingFace Diffusers SDXL ControlNets. https:
//huggingface.co/diffusers/controlnet-depth-sdxl-1.0,
2025.

[4] HunyuanDiT LoRA. https://huggingface.co/
Tencent-Hunyuan/HYDiT-LoRA, 2025.

[5] Midjourney AI. https://www.midjourney.com/explore,
2025.

[6] NVIDIA InfiniBand Switch Systems User Man-
ual. https://docs.nvidia.com/networking/display/
qm97x0pub/interfaces, 2025.

[7] NVIDIA NVLink: High-speed GPU interconnect.
https://www.nvidia.com/en-us/design-visualization/
nvlink-bridges/, 2025.

[8] OpenAI CLIP. https://huggingface.co/openai/
clip-vit-base-patch16, 2025.

[9] OpenAI DALL·E 2. https://openai.com/index/dall-e-2/,
2025.

[10] SD3 DreamBooth LoRA. https://huggingface.co/
BeQuiet94/trained-sd3-lora, 2025.

[11] Adobe. Create with Adobe Firefly generative AI. https:
//www.adobe.com/products/firefly.html, 2025.

[12] Shubham Agarwal, Subrata Mitra, Sarthak Chakraborty,
Srikrishna Karanam, Koyel Mukherjee, and Shiv Kumar
Saini. Approximate caching for efficiently serving text-
to-image diffusion models. In Proc. USENIX NSDI,
2024.

[13] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree
Mohan, Nipun Kwatra, Bhargav Gulavani, Alexey Tu-
manov, and Ramachandran Ramjee. Taming throughput-
latency tradeoff in LLM inference with Sarathi-Serve.
In Proc. USENIX OSDI, 2024.

[14] Sohaib Ahmad, Hui Guan, Brian D. Friedman, Thomas
Williams, Ramesh K. Sitaraman, and Thomas Woo. Pro-
teus: A high-throughput inference-serving system with
accuracy scaling. In Proc. ACM ASPLOS, 2024.

[15] Fengxiang Bie, Yibo Yang, Zhongzhu Zhou, Adam
Ghanem, Minjia Zhang, Zhewei Yao, Xiaoxia Wu, Con-
nor Holmes, Pareesa Golnari, David A. Clifton, Yuxiong
He, Dacheng Tao, and Shuaiwen Leon Song. RenAIs-
sance: A survey into AI text-to-image generation in the
era of large model. IEEE Trans. Pattern Anal. Mach.
Intell., 2024.

[16] Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis
Ceze, and Arvind Krishnamurthy. Punica: Multi-tenant
LoRA serving. In Proc. MLSys, 2024.

[17] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In Proc.
USENIX NSDI, 2017.

[18] Jiangfei Duan, Runyu Lu, Haojie Duanmu, Xiuhong
Li, Xingcheng Zhang, Dahua Lin, Ion Stoica, and Hao
Zhang. MuxServe: Flexible spatial-temporal multiplex-
ing for multiple LLM serving. In Proc. ICML, 2024.

[19] Patrick Esser, Sumith Kulal, Andreas Blattmann, et al.
Scaling rectified flow transformers for high-resolution
image synthesis. In Proc. ICML, 2024.

[20] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian
Brabete, Dmitrii Ustiugov, Yuvraj Patel, and Luo Mai.
ServerlessLLM: Low-Latency serverless inference for
large language models. In Proc. OSDI, 2024.

[21] Alan Gray. Getting Started with CUDA Graphs. https:
//developer.nvidia.com/blog/cuda-graphs/, 2019.

[22] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving DNNs like Clockwork: Performance
predictability from the bottom up. In Proc. USENIX
OSDI, 2020.

[23] Jashwant Raj Gunasekaran, Cyan Subhra Mishra,
Prashanth Thinakaran, Bikash Sharma, Mahmut Taylan
Kandemir, and Chita R. Das. Cocktail: A multidimen-
sional optimization for model serving in cloud. In Proc.
USENIX NSDI, 2022.

[24] John L. Gustafson. Reevaluating Amdahl’s law. Com-
mun. ACM, 1988.

[25] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan
Le Bras, and Yejin Choi. CLIPScore: A reference-
free evaluation metric for image captioning. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih, editors, Proc. EMNLP, 2021.

[26] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained
by a two time-scale update rule converge to a local Nash
equilibrium. In Proc. NIPS, 2017.

[27] Jonathan Ho and Tim Salimans. Classifier-free diffu-
sion guidance. In Proc. NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications,
2021.

[28] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language
models. In Proc. ICLR, 2022.

1050 2025 USENIX Annual Technical Conference USENIX Association

https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0
https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0
https://huggingface.co/Tencent-Hunyuan/HYDiT-LoRA
https://huggingface.co/Tencent-Hunyuan/HYDiT-LoRA
https://www.midjourney.com/explore
https://docs.nvidia.com/networking/display/qm97x0pub/interfaces
https://docs.nvidia.com/networking/display/qm97x0pub/interfaces
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://huggingface.co/openai/clip-vit-base-patch16
https://huggingface.co/openai/clip-vit-base-patch16
https://openai.com/index/dall-e-2/
https://huggingface.co/BeQuiet94/trained-sd3-lora
https://huggingface.co/BeQuiet94/trained-sd3-lora
https://www.adobe.com/products/firefly.html
https://www.adobe.com/products/firefly.html
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/

[29] Xuan Ju, Xian Liu, Xintao Wang, Yuxuan Bian, Ying
Shan, and Qiang Xu. BrushNet: A plug-and-play image
inpainting model with decomposed dual-branch diffu-
sion. In Proc. ECCV, 2024.

[30] Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang,
Han Cai, Junjie Bai, Yangqing Jia, Ming-Yu Liu, Kai
Li, and Song Han. DistriFusion: Distributed parallel
inference for high-resolution diffusion models. In Proc.
IEEE/CVF CVPR, 2024.

[31] Suyi Li, Hanfeng Lu, Tianyuan Wu, Minchen Yu,
Qizhen Weng, Xusheng Chen, Yizhou Shan, Binhang
Yuan, and Wei Wang. Toppings: CPU-assisted, rank-
aware adapter serving for LLM inference. In Proc.
USENIX ATC, 2025.

[32] Zhimin Li, Jianwei Zhang, Qin Lin, et al. Hunyuan-
DiT: A powerful multi-resolution diffusion transformer
with fine-grained chinese understanding. arXiv preprint
arXiv:2405.08748, 2024.

[33] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen,
Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Al-
paServe: Statistical multiplexing with model parallelism
for deep learning serving. In Proc. OSDI, 2023.

[34] Haozhe Liu, Wentian Zhang, Jinheng Xie, Francesco
Faccio, Mengmeng Xu, Tao Xiang, Mike Zheng Shou,
Juan-Manuel Perez-Rua, and Jürgen Schmidhuber.
Faster diffusion via temporal attention decomposition.
arXiv preprint arXiv:2404.02747, 2024.

[35] Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xin-
chao Wang. Learning-to-cache: Accelerating diffusion
transformer via layer caching. In Proc. NeurIPS, 2024.

[36] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deep-
Cache: Accelerating diffusion models for free. In Proc.
IEEE/CVF CVPR, 2024.

[37] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, Sayak Paul, and Benjamin Bossan.
PEFT: State-of-the-art parameter-efficient fine-tuning
methods. https://github.com/huggingface/peft, 2022.

[38] William Peebles and Saining Xie. Scalable diffusion
models with transformers. In Proc. IEEE/CVF ICCV,
2023.

[39] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. SDXL: Improving latent diffusion
models for high-resolution image synthesis. In Proc.
ICLR, 2024.

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable vi-
sual models from natural language supervision. In Proc.
ICML, 2021.

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution im-
age synthesis with latent diffusion models. In Proc.
IEEE/CVF CVPR, 2022.

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-Net: Convolutional networks for biomedical image
segmentation. In Proc. MICCAI, 2015.

[43] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper,
Nicholas Lee, Shuo Yang, Christopher Chou, Banghua
Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez,
and Ion Stoica. S-LoRA: Serving thousands of concur-
rent LoRA adapters. In Proc. MLSys, 2023.

[44] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[45] Chenyang Si, Ziqi Huang, Yuming Jiang, and Ziwei
Liu. FreeU: Free lunch in diffusion U-Net. In Proc.
IEEE/CVF CVPR, 2024.

[46] Kolors Team. Kolors: Effective training of diffu-
sion model for photorealistic text-to-image synthe-
sis. https://github.com/Kwai-Kolors/Kolors/commits/
master/imgs/Kolors_paper.pdf, 2024.

[47] TheLastBen. Filmic Style, SDXL LoRA. https://
huggingface.co/TheLastBen/Filmic, 2025.

[48] TheLastBen. Papercut Style, SDXL LoRA. https://
huggingface.co/TheLastBen/Papercut_SDXL, 2025.

[49] TheLastBen. William Eggleston Photography Style,
SDXL LoRA. https://huggingface.co/TheLastBen/
William_Eggleston_Style_SDXL, 2025.

[50] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pe-
dro Cuenca, Nathan Lambert, Kashif Rasul, Mishig
Davaadorj, Dhruv Nair, Sayak Paul, William Berman,
Yiyi Xu, Steven Liu, and Thomas Wolf. Diffusers:
State-of-the-art diffusion models. https://github.com/
huggingface/diffusers, 2022.

[51] Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang,
Bo Li, Xianchao Sun, Jian He, and Liping Zhang. Mor-
phling: Fast, near-optimal auto-configuration for cloud-
native model serving. In Proc. ACM SoCC, 2021.

USENIX Association 2025 USENIX Annual Technical Conference 1051

https://github.com/huggingface/peft
https://github.com/Kwai-Kolors/Kolors/commits/master/imgs/Kolors_paper.pdf
https://github.com/Kwai-Kolors/Kolors/commits/master/imgs/Kolors_paper.pdf
https://huggingface.co/TheLastBen/Filmic
https://huggingface.co/TheLastBen/Filmic
https://huggingface.co/TheLastBen/Papercut_SDXL
https://huggingface.co/TheLastBen/Papercut_SDXL
https://huggingface.co/TheLastBen/William_Eggleston_Style_SDXL
https://huggingface.co/TheLastBen/William_Eggleston_Style_SDXL
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

[52] Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony
Chen, Huaxia Li, Xu Tang, and Yao Hu. InstantID: Zero-
shot identity-preserving generation in seconds. arXiv
preprint arXiv:2401.07519, 2024.

[53] Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo.
Tabi: An efficient multi-level inference system for large
language models. In Proc. ACM EuroSys, 2023.

[54] Yuke Wang, Boyuan Feng, Zheng Wang, Tong Geng,
Kevin Barker, Ang Li, and Yufei Ding. MGG: Accelerat-
ing graph neural networks with fine-grained intra-kernel
communication-computation pipelining on multi-GPU
platforms. In Proc. USENIX OSDI, 2023.

[55] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: From error visi-
bility to structural similarity. IEEE Trans. Image Pro-
cess., 2004.

[56] Zijie J. Wang, Evan Montoya, David Munechika,
Haoyang Yang, Benjamin Hoover, and Duen Horng
Chau. DiffusionDB: A large-scale prompt gallery
dataset for text-to-image generative models. In Proc.
ACL, 2023.

[57] Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xi-
aoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache
me if you can: Accelerating diffusion models through
block caching. In Proc. IEEE/CVF CVPR, 2024.

[58] Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xu-
anzhe Liu, and Xin Jin. dLoRA: Dynamically orches-
trating requests and adapters for LoRA LLM serving.
In Proc. USENIX OSDI, 2024.

[59] Hao Wu, Yue Yu, Junxiao Deng, Shadi Ibrahim, Song
Wu, Hao Fan, Ziyue Cheng, and Hai Jin. StreamBox:
A lightweight GPU SandBox for serverless inference
workflow. In Proc. ATC, 2024.

[60] Lingyun Yang, Yongchen Wang, Yinghao Yu, Qizhen
Weng, Jianbo Dong, Kan Liu, Chi Zhang, Yanyi Zi,
Hao Li, Zechao Zhang, Nan Wang, Yu Dong, Menglei
Zheng, Lanlan Xi, Xiaowei Lu, Liang Ye, Guodong
Yang, Binzhang Fu, Tao Lan, Liping Zhang, Lin Qu, and
Wei Wang. GPU-disaggregated serving for deep learn-
ing recommendation models at scale. In Proc. USENIX
NSDI, 2025.

[61] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang,
Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li.
INFless: A native serverless system for low-latency,
high-throughput inference. In Proc. ACM ASPLOS,
2022.

[62] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang.
IP-Adapter: Text compatible image prompt adapter
for text-to-image diffusion models. arXiv preprint
arXiv:2308.06721, 2023.

[63] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for transformer-based generative models.
In Proc. USENIX OSDI, 2022.

[64] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, et al. Scaling au-
toregressive models for content-rich text-to-image gen-
eration. Transactions on Machine Learning Research,
2022.

[65] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. MArk: Exploiting cloud services for cost-effective,
SLO-aware machine learning inference serving. In Proc.
USENIX ATC, 2019.

[66] Dingyan Zhang, Haotian Wang, Yang Liu, Xingda Wei,
Yizhou Shan, Rong Chen, and Haibo Chen. Fast and
live model auto scaling without caching. In Proc. OSDI,
2025.

[67] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. Shepherd: Serving DNNs in the wild. In
Proc. USENIX NSDI, 2023.

[68] Lvmin Zhang. Fooocus. https://github.com/lllyasviel/
Fooocus, 2025.

[69] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
Adding conditional control to text-to-image diffusion
models. In Proc. IEEE/CVF ICCV, 2023.

[70] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. IC-
Light. https://github.com/lllyasviel/IC-Light, 2025.

[71] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effective-
ness of deep features as a perceptual metric. In Proc.
IEEE/CVF CVPR, 2018.

[72] Yuxin Zhang, Weiming Dong, Fan Tang, et al. Prospect:
Prompt spectrum for attribute-aware personalization of
diffusion models. ACM Trans. Graph., 2023.

[73] Haozhe Zhao, Xiaojian Ma, Liang Chen, Shuzheng Si,
Rujie Wu, Kaikai An, Peiyu Yu, Minjia Zhang, Qing
Li, and Baobao Chang. UltraEdit: Instruction-based
fine-grained image editing at scale. In Proc. NeurIPS
Datasets and Benchmarks Track, 2024.

[74] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, et al.
Judging LLM-as-a-judge with MT-Bench and Chatbot
Arena. In Proc. NeurIPS Datasets and Benchmarks
Track, 2023.

1052 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/lllyasviel/Fooocus
https://github.com/lllyasviel/Fooocus
https://github.com/lllyasviel/IC-Light

	Introduction
	Background
	Characterization Study
	ControlNet Characterization
	LoRA Characterization
	Characterizing Base Model Serving
	Latency Overhead of Current Systems

	Design Overview
	ControlNet-as-a-Service
	Efficient LoRA Serving
	Optimized Base Model Execution
	Implementation
	Evaluation
	Experimental Setup
	End-to-End Performance
	ControlNet-as-a-Service
	Optimizations for LoRA Serving
	Optimizations for Base Model Inference
	Serving Throughput
	Generalization to DiT-based Models

	Discussion and Related Works
	Conclusion

