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Abstract
Compilation caches (CCs) save time, energy, and money by
avoiding redundant compilations. They are provided by means
of compiler wrappers (Ccache, sccache, cHash) or native build
system features (Bazel, Buck2). Conceptually, a CC pays
off if the achieved savings by cache hits outweigh the extra
costs for cache lookups. Thus, most techniques try to detect
a cache hit early in the compilation process by hashing the
(preprocessed/tokenized) source code, but hashing the AST
has also been suggested to achieve even higher end-to-end
savings, as the increased accuracy outweighs the additional
parsing costs. Technically, all these CCs are currently limited
to C or C-style languages.

In this paper we take the conceptual question of the “right”
lookup level for compiler caches one step further onto the IR
level. We provide IRHash, an IR-level CC for LLVM that not
only offers higher accuracy than the previous works but can
also support all languages with an LLVM backend.

We evaluate IRHash against Ccache and cHash based on
the development history of 16 open-source projects written
in C, C++, Fortran, and Haskell. With an average build time
reduction of 19% across all C projects, IRHash provides better
end-to-end savings than Ccache (10%) and cHash (16%),
while additionally supporting more languages.

1 Introduction

Software development involves the frequent (re-)compilation
of translation units (TUs) throughout the development cycle,
consuming a considerable amount of time and energy (for
both the developer and the machine).

To reduce these costs, content-based compilation caches
(CCs), such as Ccache [1] or sccache [2], aim to reuse build
artifacts from previous builds. Both tools calculate a hash
fingerprint of the TU (source file and included headers) and
query their object-file cache. While effective, the resulting
hash is sensitive to any source-code change, even superficial
changes (i.e., formatting, coding style, comments) in any of
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Figure 1: Build-time breakdown for a clean build of OpenSSL,
which takes about 187 s and invokes the compiler 2406 times.
A single compiler invocation takes 70.2 ms on average, mainly
comprising the duration for preprocessor, parser, IR genera-
tion, and optimizer. The markers show when different caching
methods would detect redundant recompilations and stop the
compiler invocation.

the involved files result in a cache miss and the reinvocation
of the compiler, even though the resulting object file would
not be different. For higher accuracy, Ccache offers an option
to calculate the hash after the C preprocessor has run, which
normalizes the TU regarding some changes (on token level,
e.g., white space formatting or commenting), but many su-
perficial changes still lead to a cache miss, resulting in costly
compiler invocations.

cHash [3] aims to overcome this issue by further normal-
ization of the TU by calculating the hash after parsing, that
is, on the level of the abstract syntax tree (AST), where syn-
tactically irrelevant changes are eradicated, and changes in
unreferenced AST nodes can simply be ignored (e.g., an un-
referenced type declaration). Due to its improved detection
accuracy, cHash outperforms Ccache in most cases [3], even
though the CC decision overhead is much higher: Fig. 1 shows
this for OpenSSL, for which AST generation takes about four
times longer than preprocessing. Apparently, further normal-
ization to increase detection accuracy pays off.
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About This Paper
In this paper we propose to go even further and solve the CC-
problem on the level of the intermediate representation (IR).
Modern compilers, such as GCC or LLVM, generate a register-
level IR from the AST to decouple language- and target-
specific code generation and optimizations. As we can see
in Fig. 1, this step takes only negligible extra time after AST
generation (at least for OpenSSL). On the other hand, it might
provide significant benefits: Besides providing higher accu-
racy (more superficial changes are eradicated), the IR is also
relatively simple and language-agnostic: An IR-level CC ap-
proach thereby provides generalizability over all program-
ming languages supported by the compiler suite. This is in
stark contrast to the existing approaches, which are either
bound to the C preprocessor (Ccache and sccache) or even the
concrete AST-node types emitted by the compiler frontend
(cHash). In particular, we claim the following contributions:

• We identify the IR-level as the most suitable level for CC
with respect to effectiveness (end-to-end savings), gener-
alizability (across languages), and maintainability (imple-
mentation effort).

• We propose IRHash, an IR-level compilation cache for
LLVM IR and demonstrate its applicability for four front-
end languages (C, C++, Fortran, Haskell).

• We demonstrate its accuracy and end-to-end savings in
comparison to Ccache and cHash on the development his-
tory of 16 open-source projects. With an average build time
reduction of 19% across all C projects, IRHash provides
better end-to-end savings than Ccache (10%) and cHash
(16%), while additionally supporting more languages.

The remainder of the paper is structured as follows: Sec. 2
describes the problem and limitations of existing caching
mechanisms. Sec. 3 outlines the design and implementation
of our IR-based caching approach. Sec. 4 evaluates its perfor-
mance and versatility. Sec. 5 discusses the implications of our
findings and potential improvements. Sec. 6 reviews related
work, and Sec. 7 concludes this paper.

2 Problem Description

Source-code changes, whether during interactive development
or condensed in a patch, are usually local and affect only a
small portion of the program. Therefore, it is close at hand
to recompile only the changed parts of the program while
retrieving the rest from a compilation cache (CC) populated
by previous compiler invocations. We define the build-artifact
reuse (BAR) problem as the task of avoiding or speeding up
unnecessary compilation steps by querying a CC.

However, in most programming languages, local changes
can have a non-lexical, non-local impact on the compilation
result. For example, changes to a C struct, which is declared
in a header file, influence the resulting binary at every usage

site. Also, if the BAR is too costly it can outweigh the savings
of avoiding compilation steps.

Timestamp-based BAR, as introduced by make [4], ad-
dresses the problem at the TU level: For each TU, the file
system timestamp of all compiler inputs is compared to the
timestamp of the last compilation result. If all inputs are older
than the last output, the compiler invocation is skipped and
the last output is reused. This BAR method induces very low
overheads, is entirely language agnostic, and has a high saving
potential. However, it comes with two important downsides:
(1) it is very sensitive to changes, especially with dense input-
dependency graphs, and (2) it is a local strategy that is not
able to reuse results across repositories or machines.

Content-based BAR [1]–[3], [5]–[7] addresses both short-
comings by calculating a fingerprint hash of the program that
changes whenever the result would change. By keeping and
querying a fingerprint–build-artifact CC we can skip compila-
tion (steps).

For example, the Ccache [1] tool hashes either the original
(direct mode) or the preprocessed source code (preprocessor
mode). These modes differ in their accuracy and their saving
potential: While the direct mode can skip the entire compiler
invocation (70 ms for OpenSSL, see Fig. 1), it is sensitive to
all textual changes. On the other hand, the preprocessed mode
can ignore changes in inactive CPP blocks but requires exe-
cuting the preprocessor, which takes 8.3 ms. More generally,
the relative end-to-end saving of a BAR methods is:

Tsaved
Ttotal

=
Popt ·Pacc ·Trem−Tover

Tbefore+Trem
(1)

The BAR method will run after Tbefore in the compilation
process, and it will always introduce an overhead of Tover. If
it can reuse a previous build artifact, it can skip the remain-
ing Trem of the compilation, thereby saving time. However, it
can only do so: (a) if the build artifact was produced before,
which we introduce by Popt, the probability that an optimal
BAR1 strategy with perfect accuracy would show, and (b) if
the changed fingerprint does actually indicate a changed com-
pilation result, for which we use the accuracy probability Pacc.
Please note, that Popt depends on the project, the encountered
change, the usage scenario, and the CC configuration (cache
size). Only Pacc is specific to the used BAR method.

A relevant question is, at which point in the compilation
process should a BAR method run to maximize the end-to-
end saving? For example, cHash [3] occupies another spot
in this trade-off space: By hashing at the AST level, cHash
can ignore changes to type declarations (e.g., in a header file)
if that type was not referenced. However, for OpenSSL, its
average Trem is only 31.3 ms per TU, while Ccache’s Trem is
at 62 ms per TU (89 %).

As the compiler progresses, Trem naturally decreases; how-
ever, as we get closer to the final binary, we expect Pacc to

1Assuming reproducible builds, an optimal BAR method would invoke
exactly those compiler runs that would result in a changed binary program.
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1 typedef int foo;
2 #if 1
3 int bar(int x) {
4 return x+1;
5 }
6 #else
7 int bar(int x)
8 { return x+1; }
9 #endif

@@ -1,7 +1,7 @@
#else
-int bar(int x)
+int XXX(int x)

A

@@ -1,2 +1,2 @@
-#if 1
+#if 0

B

@@ -1,3 +1,3 @@
-int bar(int x) {
+foo bar(foo x) {

C

@@ -1,3 +1,3 @@
-return x+1;
+return 1+x;

D

@@ -1,4 +1,4 @@
-return x+1;
+return x+2;

E

int bar(int x) {
return x+1;

}

int bar(int x)
{ return x+1; }

foo bar(foo x) {
return x+1;

}

int bar(int x){
return 1+x;

}

int bar(int x){
return x+2;

}

bar
ret +

1

x
int→int

bar
ret +

1

x
int→int

bar
ret +

1

x
foo→foo

bar
ret +

x

1
int→int

bar
ret +

2

x
int→int

define i32 @bar(i32 %0){
%2 = add i32 %0, 1
ret i32 %2

}

define i32 @bar(i32 %0){
%2 = add i32 %0, 1
ret i32 %2

}

define i32 @bar(i32 %0){
%2 = add i32 %0, 1
ret i32 %2

}

define i32 @bar(i32 %0){
%2 = add i32 1, %0
ret i32 %2

}

define i32 @bar(i32 %0){
%2 = add i32 %0, 2
ret i32 %2

}

bar:
addiw a0,a0,1
ret

bar:
addiw a0,a0,2
ret

1 Ccache 2 cHash 3 IRHash

true hit

true miss

false miss

Figure 2: Examples for capabilities and limitations of BAR methods when confronted with different source-code changes

improve accordingly. Therefore, Tover, which scales with the
amount of data and the complexity of the hash procedure, is
quite important.

Directly tied to the hash-procedure complexity, and also
deciding on its widespread adoption, is the language depen-
dence of a BAR method. For example, Ccache’s direct mode
only has to hash a byte array, while cHash requires a hash
rule for every language-specific AST-node type. This might
also be why cHash has not gained widespread adoption and
still only supports the C language.

3 IRHash: An IR-Based Compilation Cache

With IRHash, we solve the BAR problem at a different step of
the compilation process, right after the IR generation. In the
following, we will highlight the conceptual benefits, illustrate
situations where IRHash can outperform the other BAR tech-
niques, and touch on the implementation of our prototypical
LLVM plugin.

3.1 Conceptual Benefits
Using a hash of a program’s IR as a fingerprint to predict
changed compilations comes with four key benefits:
Negligible smaller Trem than cHash. Preprocessing and
parsing take a considerable share of the compilation process,
as we can see in Fig. 1. In comparison, as done by a single
tree traversal, generating the IR from the AST is quite fast,
reducing Trem only slightly. For example, for OpenSSL, Trem
is at 30.1 ms for the IR level and 31.3 ms for the AST-level.
We will discuss this in more detail in Sec. 4.3.

Higher Pacc At the IR level, many language constructs that
are only syntactic sugar (C: typedef) or act as type-level safe-
guards (C++: explicit) are removed by IR code generation.
The IR generation can also perform some ad-hoc optimiza-
tions (e.g., constant folding). Therefore, IR-level should have
a higher Pacc than AST-level hashing, which already outper-
forms source-level hashing. We will quantify this higher Pacc

in Sec. 4.2.

Low Tover overhead The data structures that store the
IR are designed for frequent traversal to speed up the opti-
mization steps. Also, they are conceptually simpler as they
are a sequential program (list of lists) for a virtual machine
compared to the AST, which captures the syntactic structure
of the program recursively (as a tree). Unlike source-level
hashing, which has to hash all (preprocessed) compiler inputs,
IR-level hashing can also be faster as only the relevant parts
of the input are hashed. In Sec. 4.3, we will demonstrate that
IR-level hashing actually has a lower Tover.

Simple and widely-applicable implementation Due to
the conceptual simplicity of the IR, which is comprised of
only a few instruction types, IR-level hashing is simpler to
implement than AST-level hashing. Since the IR is a language-
independent abstraction that connects language front-ends,
optimization steps, and machine-specific back-ends, IR-level
hashing is directly usable for different programming lan-
guages. We will argue for IRHash’s simplicity in Sec. 3.3
and justify our applicability claim with four programming
languages and 16 open-source projects (see Tab. 2).

Given these arguments, we believe that IR hashing is con-
ceptually the most suitable point in time to perform BAR.
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llvm::Module

llvm::Function

llvm::BasicBlock

llvm::Instruction

llvm::Constant

llvm::GlobalVariable

llvm::Type

27
25

4
71
93

24
109

C++ Classes Source Lines

Caching Logic 208

Total 561

Table 1: Implementation effort for IR-level hashing

3.2 Reasons for Better Accuracy
To give a better understanding of Pacc, we will exemplify
the capabilities and limitations of the different BAR methods
with the five source-code changes A - E in Fig. 2. We assume
that the original code on the left was already compiled and
inserted into the CC and we compile for RISC-V, as RISC-V
allows us to show a limitation of CCs. Please note, that Pacc

is (1− #false miss
#runs ).

A is a change to the dead preprocessor block (line 6-9). If
used in preprocess mode, Ccache can ignore the change
and correctly have a cache hit, reusing the previous result.
Naturally, all the following steps also have a cache hit.

B toggles the #if and selects the previously dead block. Since
the bar() function is formatted differently, Ccache will
falsely have a cache miss and continue compilation. As
such syntactic differences are not visible in the AST, cHash
has a cache hit.

C replaces the int type with the equivalent foo type alias.
While C typedefs are mere syntactic sugar, they are still
visible in the AST, provoking a false cache miss with cHash.
Due to type-alias erasure during IR generation, IRHash
correctly has a cache hit.

D swaps the terms of the sum. This change persists until the
IR level, provoking a cache miss for IRHash. However,
this is a false miss, as the RISC-V backend uses the add-
with-immediate instruction and swaps the operands to the
original order.

E is an actual semantic change that results in a different binary
output, requiring the full compilation process.

The different BAR methods remain, to a differing degree,
stable hashes in the presence of irrelevant changes.

3.3 Implementation
Our IRHash prototype comes as an LLVM plugin that in-
troduces a new IR-level compiler pass that has access to

LLVM’s internal data structures. Thus, IRHash can be loaded
into all LLVM-based compilers and our IRHash pass can be
scheduled at any point of the compilation process. For BAR,
IRHash should run directly after the IR generation to maxi-
mize Trem. Conceptually, the plugin consists of two parts: IR
hashing and CC logic.

IR Hashing LLVM IR captures the program semantic as
a set of per-function control-flow graphs with basic blocks as
nodes. The IR code generation already flattens all language-
level logic constructs (methods, lambdas, co-routines,. . . ) into
LLVM functions. Therefore, IR is stored as a shallow hier-
archy of nested C++ objects (see Tab. 1): A TU is a list of
functions and global variables. A function is a list of basic
blocks, which themselves are lists of instructions. Each in-
struction has an opcode and multiple operands. As LLVM IR
is always in SSA format [8], operands are either a literal con-
stant or (the result) of another instruction. Global variables,
functions, instructions, and constants have types, which only
describe the data layout.

In Tab. 1 we see that it only takes a few hundred source
lines to implement the necessary hash operators: For the TU
hash, we include the hash of global variables and functions.
The global-variable hash includes name, type, initializer, and
attributes. For functions we hash the name, the prototype, at-
tributes, and the hash of basic blocks and subsequently instruc-
tions. Besides opcode and operands, the instruction hash also
includes certain attributes that influence the binary (e.g., al-
location alignments, atomicity). With inline assembler we
hash the string representation, and complex types are hashed
recursively down to their scalar components.

We deliberately chose not to hash a serialized version of the
IR (in textual or LLVM bitcode form), as this has two signifi-
cant drawbacks: (1) We would lose the fine-grained control
over the data included in the hash. For example, IRHash by
default does not include debug information in the hash, which
means purely syntactical changes do not trigger a rebuild.
However, in scenarios where up-to-date debug information is
required, this could be adjusted easily.

(2) IR serialization takes a considerable amount of time
and is not necessary for many compiler runs. Nevertheless, if
LLVM serializes the IR anyway, for example, for ThinLTO [9],
an IR hash could be calculated using that.

Caching Logic With the IR hash at hand, the IRHash
pass performs the CC lookup: Like Ccache, IRHash stores
build artifacts (i.e., object files) in a cache directory with the
file name matching the hash. On a hit, the cached build artifact
is hard linked to the target location and the compilation is
terminated. Also, the timestamp of the object file is updated
to allow timestamp-based BAR methods to avoid downstream
operations (like linking). On a cache miss, the compilation
continues, and the resulting object file is put into the cache.

IRHash is implemented with a total 561 lines of C++ code,
while cHash requires 1200 source lines for the hash operator
alone [3]. Please note that IRHash supports multiple front-
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end languages, while cHash only supports C. As Ccache is a
production-ready CC with a multitude of features, its 19 000
source-code lines are not comparable. However, IRHash can
be combined with Ccache (see Sec. 4.5) or could act as a
fingerprinting module.

4 Evaluation

In the evaluation we demonstrate that IRHash works correctly
and efficiently across languages on the development history
of 16 open-source projects written in C, C++, Fortran, and
Haskell. We also show that the IR level is best suited to solve
the BAR problem by comparing IRHash with tools working
at the source code and AST levels. For this purpose, we chose
Ccache for the source-code level due to its popularity and
cHash for the AST level, as it is the only tool known which
works at this level. We determine the parameters of Equation 1
for these CCs and projects and conclude with a real-world
end-to-end-performance benchmark.

4.1 Test Cases
For our evaluation we selected the open-source projects listed
in Tab. 2. This selection spans a wide range of project sizes,
from smaller codebases, like ShellCheck (16 kLOC) and LA-
PACK (779 kLOC) to larger ones, such as PostgreSQL (1 019
kLOC) and Linux (26 256 kLOC). These projects also repre-
sent diverse domains, including interpreters (Bash, CPython,
Lua), database systems (PostgreSQL, SQLite), cryptography
libraries (Mbed TLS, OpenSSL), static analysis tools (Clazy,
GammaRay, ShellCheck), frameworks and toolkits (Asio,
SDL), a mathematical library (LAPACK), a lightweight C
library (musl), an x86 emulator (Bochs), and the Linux op-
erating system kernel. For comparison with the textual and
AST level, our evaluation focuses on C but to demonstrate
applicability to other languages, some of these projects are
written in C++ (Bochs, Asio, Clazy, GammaRay), Fortran
(LAPACK) and Haskell (ShellCheck).

For our experiments we examined the development history
of the projects up to the described version as a source of real-
world changes required for incremental builds. The number of
commits considered was limited to the 100 most recent ones.
Together with the selection of projects, this should result in a
diverse and representative set of changes. Commits failing to
build in the baseline (without any caches) were filtered out.
All measurements were performed on a system with an Intel®
Core™ i7-12700 processor with Turbo Boost disabled for re-
producibility and 32 GB of memory. The size of the CCs was
not limited. All projects were tested using their default con-
figurations, except for replacing the compiler with Clang and
enabling the tested CCs. For SQLite we disabled amalgama-
tion2, a process in which all source code is concatenated into a

2https://sqlite.org/amalgamation.html

Table 2: Overview of Evaluated Projects

Project Language Version LOC

Linux [12] C 6.11 26 255 658
OpenSSL [13] C 3.4.0 621 158
SQLite [14] C 3.47.0 297 234
Lua [15] C 5.4.7 21 879
PostgreSQL [16] C 17.0 1 018 762
CPython [17] C 3.13.0 672 595
Bash [18] C 5.2 130 759
Mbed TLS [19] C 3.6.2 166 172
SDL [20] C 2.30.8 351 683
musl [21] C 1.2.5 95 034

Bochs [22] C++ 2.8 289 270
Asio [23] C++ 1.32.0 182 108
Clazy [24] C++ 1.12 25 035
GammaRay [25] C++ 3.1.0 101 798

LAPACK [26] Fortran 3.12.0 779 202
ShellCheck [27] Haskell 0.10.0 15 672

single file. Amalgamation is mainly done for deployment and
optimization purposes and is not intended for development.
Asio as a header library is not compilable itself, which is why
we have compiled the example code, the default target of the
project. For LAPACK, written in Fortran, we compiled using
Flang, LLVM’s Fortran frontend [10]. ShellCheck, a project
written in Haskell, was compiled using the LLVM backend of
GHC 9.12.1 [11]. Due to an incompatibility with newer GHC
versions of the earlier commits in its history, ShellCheck has
only 59 successfully building (and therefore analyzed) com-
mits. In contrast, there are usually no failing (clean) builds
for the other projects and at most six for GammaRay. All in
all, based on this diverse selection of projects and commits,
we are confident that our results are representative of a wide
range of software projects.

4.2 Validation (Popt, Pacc)
First, we validated the implementation of IRHash by perform-
ing clean builds for 100 commits each across 16 projects.
We compared the predictions of Ccache, cHash, and IRHash
against object file hashes and measure the compilation time
with caching disabled to determine the overhead. In total,
1289086 translation units were compiled.

Most importantly, IRHash, like the other tools, did not
cause any false hits, which means that whenever an object
file changed, the IRHash was also different. The property of
correctness is mandatory for a CC. If developers cannot be
sure that their changes have been compiled, i.e., a CC leads
to incorrect results, it is practically useless. Consequently,
Ccache and cHash also offer this property. Full completeness,
i.e., no false misses (Pacc = 1), on the other hand, is desir-
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Table 3: The average accuracy (Pacc) and Popt per commit for
the evaluated projects, commits, and CCs. Values not available
due to lack of language support by a CC are marked with “-”.

Pacc (%)

Project Popt (%) Ccache cHash IRHash

Linux 99.91 97.89 98.14 99.99
OpenSSL 99.96 97.63 99.01 100.00
SQLite 98.86 93.66 99.01 99.82
Lua 97.23 85.26 97.03 99.21
PostgreSQL 99.88 97.99 100.00 100.00
CPython 98.97 98.74 99.48 99.78
Bash 97.09 93.23 99.58 99.97
Mbed TLS 99.37 93.62 99.76 99.97
SDL 99.31 95.78 99.94 99.93
musl 98.98 99.35 99.91 100.00

Average (C) 98.96 95.32 99.19 99.87

Bochs 98.95 97.29 - 98.81
Asio 96.08 59.92 - 96.72
Clazy 99.41 95.83 - 99.93
GammaRay 99.55 99.74 - 99.99

Average (C++) 98.50 88.20 - 98.86

LAPACK 99.80 - - 99.99
ShellCheck 75.26 - - 100.00

able but not claimed by any approach. As Tab. 3 shows, the
accuracy Pacc varies; the reasons are discussed in Fig. 2.

The results show that IRHash is generally one to two or-
ders of magnitude more accurate than Ccache, cHash is in
between but closer to IRHash. For example, for Mbed TLS
with Ccache, 6.38% redundant builds are performed, with
cHash 0.24%, and with IRHash only 0.03%. It is noticeable
that both Lua and Asio have a high rate of false misses. In
the case of Lua this is due to the fact that it was refactored
frequently, sometimes in such a way that the code was only
the same after optimization. Asio as a header library often
introduces functions that are not used, a weakness of Ccache.
Also, in the commit range we examined, implicit constructs
were made explicit, and std::move() was inserted in places
where the optimizer already had done so, leading to false
misses for IRHash. The fact that many of the false misses are
caused by semantic changes, which are only eliminated by
optimizations, underlines the high suitability of the IR level
for the accuracy of caching.

Another interesting observation is that cHash is more ac-
curate for SDL than IRHash. This is due to an optimization
of cHash: Unlike IRHash, cHash does not hash the types of
structs themselves but their use only, i.e., the offset of the
accesses and the size (for sizeof()). If a new field is added
at the end of a struct that is not used and the size of the struct

is not used or changed in a TU, the hash does not change
either. In the future this optimization could be implemented
in IRHash as well.

In contrast to the other CCs, IRHash also supports lan-
guages apart from C/C++. The last two experiments con-
firm that IRHash works for other compilers with an LLVM
backend (Fortran and Haskell). With a Pacc of 99.99% and
100.00%, it performs equally as well as for C/C++.

Note that Popt for ShellCheck (75.26%) is remarkably low.
There are two reasons for this. Firstly, ShellCheck has rela-
tively few translation units (27), thus modifying only a few
files is already a significant share. Secondly, the compiler
does not always work fully deterministically for each TU.
The main problem is that internal identifiers are made glob-
ally unique (across all TUs). This process is nondeterministic.
In addition, the identifiers are enumerated, which can lead to
changes in one TU changing identifiers in another. This is fur-
ther exacerbated in incremental builds where the number of
TUs to be compiled varies. The GHC maintainers confirmed
this behavior as a known bug and are, at the time of writing,
working on a fix. [28]–[31]

All in all, the results demonstrate that the IRHash approach
works correctly, effectively, and significantly more accurately
than Ccache, especially for C++ projects. Compared to cHash,
the difference in accuracy is less pronounced. This is primar-
ily due to two factors: (1) changes in the AST frequently
result in changes to the IR, and (2) the evaluated changes,
derived from the projects’ development history, often gen-
uinely alter behavior. Nonetheless, the experiment confirms
the expectation of IR Hashing providing a higher Pacc.

4.3 Performance Characteristics (Tover, Trem)

We performed clean builds with deactivated caching for the
same commits as before to quantify each CC’s overhead. Simi-
larly, 1289086 translation units were compiled. The resulting
Tover and Trem are summarized in Tab. 4.

The measurements show that Ccache’s overhead is consis-
tently the highest, with an average of 548.8 ms per commit for
Linux, followed by cHash (236.1 ms) and IRHash (2.0 ms).
The results for Linux highlight the limitations of Ccache. It
invokes the preprocessor during cache misses, which in Linux
entails resolving a multitude of complex and deeply nested
macros. By contrast, cHash benefits from the fact that the
macros are already resolved and a lot of code discarded. In
the code generation phase, further complexity is resolved,
enabling IRHash to process the IR code much faster. This pat-
tern is observed consistently across all tested projects, though
the specific performance characteristics vary.

However, it is noticeable that the absolute overhead of
IRHash for the C++ projects Asio (14.5 ms) and Clazy
(26.1 ms) is higher compared to C projects of their size,
e.g., SDL (1.1 ms). This difference stems from the exten-
sive code generated due to the use of templates. For instance,
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Table 4: The average overhead (Tover) and time remaining after hash calculation (Trem) per TU for the evaluated projects, commits,
and CCs. Values not available due to lack of language support by a CC are marked with “-”.

Tover
Tover
Ttotal

Trem
Ttotal

Project Ccache cHash IRHash Ccache cHash IRHash Ccache cHash IRHash

Linux 548.8 ms 236.1 ms 2.0 ms 34.8% 14.7% 0.1% 65.2% 1.4% 15.3%
OpenSSL 97.7 ms 8.7 ms 0.7 ms 38.0% 3.7% 0.3% 61.8% 36.1% 38.9%
SQLite 59.2 ms 4.4 ms 1.5 ms 17.0% 1.4% 0.5% 82.9% 76.5% 76.4%
Lua 52.0 ms 3.8 ms 1.2 ms 18.7% 1.5% 0.5% 81.2% 77.6% 76.7%
PostgreSQL 113.5 ms 9.1 ms 1.4 ms 29.2% 2.5% 0.4% 70.7% 51.9% 53.3%
CPython 151.1 ms 22.3 ms 3.3 ms 19.7% 3.0% 0.4% 80.2% 62.1% 63.2%
Bash 121.7 ms 3.8 ms 1.1 ms 28.8% 1.3% 0.4% 71.1% 62.0% 62.0%
Mbed TLS 63.4 ms 4.8 ms 0.9 ms 29.4% 2.6% 0.5% 70.4% 61.8% 62.9%
SDL 158.4 ms 36.8 ms 1.1 ms 31.9% 7.8% 0.2% 68.0% 31.9% 39.1%
musl 33.9 ms 0.9 ms 0.1 ms 52.9% 2.9% 0.4% 46.2% 50.2% 51.1%

Average (C) 30.0% 4.1% 0.4% 69.8% 51.1% 53.9%

Bochs 86.0 ms - 1.7 ms 17.3% - 0.4% 82.6% - 55.5%
Asio 447.5 ms - 14.5 ms 6.9% - 0.2% 93.1% - 30.7%
Clazy 510.0 ms - 26.1 ms 5.3% - 0.7% 94.7% - 53.5%
GammaRay 272.5 ms - 2.4 ms 11.4% - 0.1% 88.6% - 12.1%

Average (C++) 10.2% - 0.3% 89.7% - 37.9%

LAPACK - - 0.5 ms - - 0.2% - - 41.7%
ShellCheck - - 60.7 ms - - 1.5% - - 85.5%

Asio (182 kLOC) generates 387 MiB of IR code, while SDL
(352 kLOC) generates only 28 MiB. As this greatly increases
the total compiler runtime, it is not reflected in the relative
overhead, both for Ccache and for IRHash. Instead, it mainly
affects the compiler frontend, which has to expand the tem-
plates. The overhead for Asio is 6.9% and 0.2% respectively,
for Clazy 5.3% and 0.7% respectively, and for SDL 31.9%
and 0.2% respectively. ShellCheck is special in that Haskell’s
GHC generates textual LLVM IR and then calls LLVM’s opt
to optimize the generated IR. With 439 MiB even more code
is generated than with Asio, which explains the high overhead.
In addition, IRHash only runs as part of opt, which leads to
a Ttotal that consists mainly of optimizations, since the com-
piler frontend has been executed already and the lowering
happens in a later step. This leads to a comparatively high
relative overhead and the fact that only the optimization phase
(not the lowering) can be cached.

Regarding the saving potential Trem, Ccache performs best
because it starts the hash calculation the earliest. Interestingly,
IRHash often completes hash computation earlier than cHash
despite the latter starting earlier (as soon as the AST is gener-
ated). For example, for OpenSSL Trem is 61.8% when using
Ccache, for cHash it is 36.1%, and for IRHash 38.9%. This be-
havior is due to an implementation detail in modern compilers,
particularly Clang: To reduce memory usage, the compilation

process handles each top-level declaration independently and
sequentially. As a result, the code generation phase for the
first declaration begins even before the AST for subsequent
declarations is generated. Consequently, cHash starts exactly
as much earlier as the code generation phase for the last top-
level declaration takes and IRHash often compensates for this
by completing the hash computation more quickly. Again,
ShellCheck is special: Because its Ttotal consists only of opt,
the hashing pass runs directly at the beginning, leading to a
high Trem.

Overall, IRHash offers a trade-off: the hash is calculated
later than when using Ccache but is significantly more accu-
rate. Compared to cHash it is equally fast but more precise
and not limited to C. The low overhead of the hash calcula-
tion also shows that our implementation is sufficiently fast,
although there is still plenty of room for improvement. These
results are a strong indicator for IR being better suited to solve
the BAR compared to the AST.

4.4 End-to-End Performance (Ttotal, Tsaved)
The end-to-end performance benchmark is intended to reflect
the use case of a typical developer who frequently changes and
builds the project. To simulate this scenario, we incrementally
built 100 (+1 initial) commits from the development history of
each of the evaluated projects. Non-building commits, along
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Table 5: The optimization level, number of successfully building commits (in baseline) together with the average build time
(Ttotal) and relative end-to-end savings per commit for the evaluated projects, commits, and CCs. The fastest cache for each
project is highlighted in green. If a combination of caches is faster than this cache for a project, it is highlighted in gray. Values
not available due to lack of language support by a CC are marked with “-”.

−Tsaved
Ttotal

Project Opt Commits Ttotal Ccache cHash IRHash Ccache+cHash Ccache+IRHash

Linux O2 100 25.1 s 0.1% 3.0% −3.1% 3.2% −3.4%
OpenSSL O2 100 5.7 s −16.9% −9.5% −20.8% −18.8% −20.2%
SQLite O2 98 42.9 s −4.8% −3.8% −4.4% −4.3% −4.7%
Lua O2 100 1.0 s −44.9% −49.6% −52.8% −52.4% −56.1%
PostgreSQL O2 100 1.8 s −7.9% −11.5% −11.9% −8.4% −9.3%
CPython O3 100 2.3 s −14.9% −19.1% −22.0% −16.9% −20.2%
Bash O2 89 1.4 s −12.7% −29.5% −26.4% −18.8% −20.8%
Mbed TLS O2 98 1.1 s −2.1% −25.2% −23.3% −22.9% −21.8%
SDL O3 88 2.3 s 14.3% −7.5% −20.3% 10.6% −2.1%
musl O2 100 1.2 s −6.8% −4.6% −5.3% −7.1% −7.7%

Average (C) −9.6% −15.7% −19.0% −13.6% −16.6%

Bochs O3 98 1.9 s 3.6% - −12.6% - −8.0%
Asio O3 96 41.0 s −6.8% - −28.5% - −29.5%
Clazy O3 95 7.1 s −0.6% - −25.9% - −26.5%
GammaRay O3 94 5.8 s −20.2% - −10.6% - −26.4%

Average (C++) −6.0% - −19.4% - −22.6%

LAPACK O2 100 1.7 s - - −12.4% - -
ShellCheck O2 58 142.7 s - - 0.8% - -

with their subsequent commits used for a new clean build,
were excluded from the evaluation. Tab. 5 presents the average
performance improvements per commit for Ccache, cHash,
and IRHash, compared to builds without any CC.

Across all 16 projects, regardless of optimization level,
project size, or programming language, the results show that,
with few exceptions, IRHash consistently achieves the fastest
build times. In four of these exceptions, the fastest CC is
only marginally faster. For SQLite and musl, Ccache, with im-
provements of 4.8% and 6.8%, is slightly faster than IRHash
(4.4% and 5.3%). For Bash and Mbed TLS, cHash marginally
outperforms IRHash (29.5% vs. 26.4% and 25.2% vs. 23.3%).
In one other case, GammaRay, Ccache can utilize its higher
Trem and offer more pronounced improvements (20.2% vs.
10.6%).

ShellCheck with a 0.8% slowdown is the only project
where IRHash cannot improve the average build time. As
mentioned in Sec. 4.2, GHC is not fully deterministic, which
is amplified in incremental builds. This leads to frequent
changes and cache misses. In addition, GHC uses fingerprints
for the recompilation decision [29], which further increases
the probability that a compiler call will actually result in a
changed object file. Although IRHash still works absolutely

correctly, it does not make sense to use it under these cir-
cumstances. Due to very few cache hits, the savings cannot
outweigh the overhead.

In the end, it always depends on the time behavior of the
cache and whether it is accurate enough for a specific change.
If a change can be cached by a technique with higher Trem, this
will always be the fastest option. However, our evaluation has
shown that, for a wide range of software projects and changes,
caching at the IR level is the better choice. From these three
CCs, IRHash provides competitive results most consistently.

4.5 Combining Approaches (Ttotal, Tsaved)
Since a low Trem is a weakness of IRHash, combining it with
Ccache by using both Ccache’s compiler wrapper and the
IRHash compiler plugin at the same time might lead to even
better results. Therefore, Tab. 5 also presents the average
performance improvements per commit for the combinations
of Ccache with IRHash and, for comparison, Ccache with
cHash. We did not measure the combination cHash+IRHash,
as IRHash is superior to cHash both in terms of Pacc and Trem.
The following applies to the combined cache: A miss in the
first cache (Ccache) results in a query for the second cache
(cHash or IRHash), which means that the data is stored in both
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caches. If there is a cache hit in the first cache, the second
cache is not queried.

The results show that whenever IRHash was faster than
cHash, the combination with Ccache is also faster. Interest-
ingly, this also applies to Bash, where cHash is faster.

In six out of 16 cases, Ccache+IRHash’s improvements
are the best compared to all other CCs and combinations
thereof. In five of these cases (Linux, Lua, musl, Asio, Clazy)
the improvement is small, for example, 3.4% over 3.1% with
IRHash alone for Linux.

An interesting case is GammaRay, as Ccache alone speeds
up the build by 20.2% and IRHash only speeds up the pro-
cess by 10.6%, but together these tools achieve a speedup of
26.4%. While the speedup is more pronounced, this behavior
is fundamentally no different to the other cases in which the
combination is faster than the individual caches. However,
when combining caches, only the speed can increase, not the
hit rate. This is because a cache hit with Ccache means that
after preprocessing the compiler input has not changed. Con-
sequently, a deterministic compiler must always produce the
same AST and IR code so that a hit in Ccache must also al-
ways mean a hit for cHash and IRHash. The advantage must
therefore be that in cases where Ccache has a hit, calculating
the more precise hash of cHash or IRHash is skipped. In cases
where Ccache has a miss, the other methods may still save
time due to their higher accuracy.

In cases where Ccache+IRHash delivers the best improve-
ment, IRHash alone is often already highly effective and,
therefore, a safe bet to use. Depending on the project and
the change patterns (Popt), it may make sense to use Ccache
additionally.

4.6 Result Summary
At this point we want to conclude that IR-level hashing is
(a) effective (end-to-end savings), (b) generalizable across
languages, and (c) easy to implement and maintain.

IRHash outperforms Ccache and cHash or comes close for
most projects (see Tab. 5). The reason for this is its higher Pacc

(see Tab. 3). While it has a comparable Trem than cHash, its
Tover is significantly lower, allowing it to outperform Ccache
(see Tab. 4).

Our evaluation with 16 open-source projects across four
programming languages demonstrates its easy and broad ap-
plicability. As we argued in Sec. 3.3, IR-level hashing is also
easier to implement, for example, in the case of IRHash with
a few hundred lines of code.

All in all, we think that IR-level hashing should become a
standard extension to modern compiler frameworks.

5 Discussion

We have now described IRHash, our CC operating at the IR
level, and have demonstrated the advantages over approaches

operating at the source code and AST levels. In this chapter,
we will discuss potential threats to the validity of our results,
the generalizability of our approach, and open aspects in more
detail.

5.1 Threats to Validity
To help ensure the internal validity of our study, we evaluated
IRHash using the development histories of 16 open-source
projects. The projects were chosen from different applica-
tion domains: interpreters, database systems, cryptography
libraries, static analysis tools, frameworks and toolkits, a math-
ematical library, a lightweight C library, an x86 emulator, and
an operating system kernel. They are implemented in C, C++,
Fortran, and Haskell.

Due to the significant differences between them, a large
coverage of language constructs is given. In addition, IRHash
operates on IR, which is intentionally kept simple, thereby
considerably improving coverage further. In combination with
the number of 1289086 compiled TUs, a diverse set of IR
constructs was generated. IRHash has not missed a single
change as verified against the most exact metric of binary
equivalence.

To ensure external validity, we used the same variety of
projects for the performance measurements. The experiments
consistently yielded strong results, with IRHash not only be-
ing more precise than Ccache and cHash but also more ef-
fective in reducing compilation time. Moreover, due to the
significant differences between C/C++, Fortran, and Haskell,
we successfully demonstrated that the approach is language
independent.

Overall, we are confident that our results are both correct
and transferable to other projects and languages.

5.2 Open Questions
While we evaluated IRHash thoroughly, there are still possi-
bilities for further research.

Source-code changes have different extents and impacts
(reflected in different Popt values). For interactive develop-
ment, developers will benefit even more from IRHash’s faster
turnaround times, as usually only a few lines are changed
before recompilation. Commits or patches naturally require
more recompilation effort (medium Popt values) and in-
duce their costs, most importantly, on continuous-integration
servers [32]. While we expect even lower Popt values between
software versions, IRHash could help to reuse results between
the different variants of statically-configured software prod-
uct lines [33]. For our evaluation we deliberately chose to
test IRHash with commits from existing Git histories. These
changes have a medium scope and give us realistic change
sets developed by independent third-party developers.

Multiple IR levels are gaining importance in current
compiler design. For example, Rust’s rustc compiler uses
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three IR levels (High-, Medium-IR, and LLVM-IR) to per-
form incremental lowering. With MLIR [34], LLVM now also
provides a general means to express different IR levels. How-
ever, with multiple IR levels, the gap between AST generation
and LLVM-IR hashing increases, reducing Trem. Therefore,
the question arises at which IR level should results be cached.
We consider this a topic for further research.

More fine-grained caching We also considered whether
more fine-grained caching (i.e., function level) could lead
to even better results. While IRHash currently fingerprints
and caches the entire TUs, it can also provide per-function
hashes. However, per-function caching is challenging, as inter-
procedural optimizations, which LLVM’s fix-point optimizer
schedules early, cause information to flow between functions.
For example, if the compiler inlines function A into func-
tion B, a change to A will also change the binary form of
B. Without fine-grained tracking of such dependencies, per-
function caching, as already proposed by Sathyanathan et al.
[35], risks incorrect compilation results. Such tracking, how-
ever, requires substantial compiler modifications, that are not
necessary for IRHash, which is less intrusive and easier to
validate.

IR normalization Another interesting direction to ex-
plore could be to combine IR normalization3with IRHash. By
normalizing the IR (e.g., topological sorting of basic blocks)
before hashing, even more non-semantic changes could be
equalized, potentially leading to a higher Pacc. We refrained
from enabling normalization as (1) bugs in the IR normaliza-
tion would result in caching incorrect results, (2) normaliza-
tion itself induces considerable overhead (Tover), and (3) our
observed Pacc was already quite high (see Tab. 3).

6 Related Work

Reducing the end-to-end costs of software recompilation by
incremental builds is a decades-old mission that was even
once considered a motivating factor towards modularization
[36]. Yet the question which modules actually need to be re-
compiled based on a change in some other module remains an
ongoing challenge: C and its descendants delegate modular-
ization to an idiomatic usage of the preprocessor as well as the
file system and the task of incremental builds to a language-
agnostic build system (e.g., make [4]). Hence, changes are
only detected and handled on the granularity of whole files,
leading to many redundant recompilations. This has been iden-
tified as particularly problematic for so-called “God” header
files, which trigger many other modules to be (redundantly)
recompiled in case of a change [37], [38].

CCs, such as Ccache [1] and sccache [2] mitigate such
recompilation costs by stepping in as a proxy compiler that
detects a redundant build early in the compilation process.
FASTBuild [39] goes one step further and incorporates a CC

3LLVM: llvm/lib/Transforms/Utils/IRNormalizer.cpp

directly into the build system. All of these systems work on
(preprocessed) C/C++ source-code level and can skip redun-
dant builds only for irrelevant lexical changes. For languages
with true module support (i.e., modules as first-class syntac-
tic entities), several solutions have been proposed to prevent
redundant builds at higher accuracy [40]–[42] by tracking
the actual symbol-level interactions between exporting and
importing modules. cHash [3] achieves this for C by shift-
ing the detection onto the AST level. With IRHash, symbol-
level dependencies are basically dealt with automatically in a
language-independent way, as all symbol-level interactions
have already been resolved on the IR level.

Parallelizing the compilation process is another common
approach to reduce end-to-end build times. Systems like
distcc [43], Icecream [44], CloudBuild [7], Bazel [5], and
Buck2 [6] distribute compilation tasks over the local network
or cloud. While parallelization reduces waiting times, it does
not reduce the overall workload and energy costs. Therefore,
all of these systems also provide means to integrate hash-
based CCs, usually with the option to share the cache across
branches, projects, and developers. It would be relatively easy
to integrate IRHash into these settings if the respective com-
piler uses an IR.

For such larger continuous integration (CI) settings, AST-
based (i.e., symbol-level) redundancy detection has also been
suggested as a means to reduce the post-compilation overhead
by preventing redundant regression testing [45]. Here, IRHash
might further increase the accuracy and language support.

7 Conclusion

Compilation caches (CCs) reduce the costs of incremental
software builds by interrupting redundant compilations early
in the process in favor of a cached result from a previous build.
Where exactly in the multi-stage process of modern compilers
such caches should be implemented is a trade-off between
effectiveness (end-to-end savings), generalizability (across
languages), and maintainability (implementation effort).

In this paper, we have conceptually and experimentally
analyzed (with 16 open-source projects in four different lan-
guages) that implementing a CC on the level of the intermedi-
ate representation (IR) is beneficial for all three properties in
comparison to the previous approaches, which work either on
source-code level (Ccache) or AST level (cHash).

IRHash, our implementation of IR-level caching for LLVM,
provides, with 19% end-to-end savings, not only better ef-
fectiveness than Ccache (10%) and cHash (16%) across the
analyzed C projects but also generalizability over other lan-
guages supported by LLVM (we have shown this for C++,
Fortran, and Haskell) out of the box. Due to the structural
simplicity of the IR language, the implementation of caching
at this level can, furthermore, be kept simple and maintainable.
In the case of IRHash, we needed less than 600 lines of code
for the complete LLVM plugin. Overall, our results show that
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the IR level is the most beneficial level for implementing a
CC.

Please refer to the published artifacts to verify and repli-
cate the experiments [46]. The IRHash source code is also
available on GitHub [47].
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A Artifact Appendix

Abstract
IRHash is a multi-language compilation cache that operates
at the IR level. The artifact contains all the source code for
IRHash as well as its evaluation and the scripts to reproduce
the results of the paper. This comprises all measured values
in the paper, including validation and performance measure-
ment. For this purpose, 100 commits are built for each of the
16 projects, both incrementally and as clean builds. This pro-
cess runs fully automatically. As the procedure can take a very
long time (over a week), there are also instructions to reduce
the extent of the experiments. To ensure reproducibility, there
are also OCI images provided that can be easily executed.

Scope
The artifact is intended to reproduce all findings of the paper
by automatically executing the complete evaluation. Specif-
ically, it concerns the results in Fig. 1, Tab. 3, Tab. 4, and
Tab. 5, thereby validating the implementation of IRHash, ana-
lyzing its performance characteristics compared to Ccache
and cHash, and executing the end-to-end-performance bench-
mark.

Contents
The artifact includes instructions, the source code for IRHash,
its evaluation and scripts to reproduce the results of the paper.
OCI container images are also included so that the experi-
ments can be executed directly. Alternatively, Dockerfiles are
provided to build the images.

Hosting
The artifact together with detailed instructions is available
under the DOI 10.5281/zenodo.15367568 on Zenodo.

Requirements
Only the ability to run OCI image container is necessary,
e.g., Podman or Docker, since all steps run in containers for
reproducibility.

A.1 Installation
There is no installation required. A detailed guide on how to
obtain and run the containers can be found together with the
artifact.
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