
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

Z-LFS: A Zoned Namespace-tailored Log-structured
File System for Commodity Small-zone ZNS SSDs
Inhwi Hwang, Seoul National University; Sangjin Lee, Chung-Ang University;

Sunggon Kim, Seoul National University of Science and Technology;
Hyeonsang Eom, Seoul National University; Yongseok Son, Chung-Ang University

https://www.usenix.org/conference/atc25/presentation/hwang

Z-LFS: A Zoned Namespace-tailored Log-structured File System
for Commodity Small-zone ZNS SSDs

Inhwi Hwang
Seoul National University

Sangjin Lee
Chung-Ang University

Sunggon Kim
Seoul National University of

Science and Technology

Hyeonsang Eom
Seoul National University

Yongseok Son∗

Chung-Ang University

Abstract
This paper presents a novel zoned namespace (ZNS) tailored
log-structured file system (LFS) called Z-LFS for commod-
ity small-zone ZNS SSDs. Specifically, Z-LFS first enables
append-only updates on metadata while leveraging the unique
metadata characteristic of LFS on ZNS SSDs. Second, Z-LFS
devises speculative log stream management according to the
workload temperature to maximize active zone utilization.
Finally, Z-LFS adopts conflict-aware zone allocation to mini-
mize resource contention within ZNS SSDs while consider-
ing LFS features. We implement Z-LFS based on F2FS in the
Linux kernel and evaluate it with commodity ZNS SSD. Our
evaluations show that Z-LFS achieves higher performance by
up to 33.44× and 3.5× compared with F2FS and a state-of-
the-art interface for commodity ZNS SSDs, respectively.

1 Introduction

The zoned namespace (ZNS) SSD is a new storage device
and has received significant attention from researchers and
enterprise storage vendors [7,19,42,52]. In contrast to legacy
SSDs (i.e., conventional namespace (CNS) SSD), the ZNS
SSD divides the physical address space into fixed-size zones.
Each zone must be written sequentially (i.e., append-only
update) and reset explicitly for reuse while shifting the re-
sponsibility of data management to the host (e.g., garbage
collection) [8, 44, 55]. This minimizes the DRAM usage
and over-provisioning space inside SSDs [9, 45, 53, 57], re-
solves the log-on-log issue [17, 56], and mitigates I/O inter-
ference [10, 18, 33, 51].

Unfortunately, adapting an existing mature file system on
the ZNS SSD is not trivial due to the ZNS constraints. For
example, in-place updating file systems (e.g., EXT4 [40]
and XFS [54]) cannot be utilized on ZNS SSD. Meanwhile,
out-of-place updating file systems including log-structured
file systems (LFSs), such as SpriteLFS [49], F2FS [29], and

∗Corresponding Author: Yongseok Son (sysganda@cau.ac.kr).

NILFS2 [27], can naturally be utilized on ZNS SSD by per-
forming out-of-place updates. Specifically, F2FS [29] is a
representative LFS supporting the utilization of ZNS SSD.
Accordingly, F2FS has been widely adopted to utilize ZNS
SSD in previous studies [1, 17, 30, 50]. Nevertheless, current
Linux LFSs with multiple log streams (e.g., F2FS) may meet
two issues due to their CNS-based designs on ZNS SSD.
Specifically, 1) LFS has a potential inability to use ZNS SSD
as a standalone SSD [1] resulting from CNS-based metadata
design and its in-place updates and 2) there can be a per-
formance issue due to CNS-based data placement and I/O
operations.
CNS-based metadata design and update: The existing LFSs
manage metadata in block-level granularity and perform in-
place updates for the metadata in a fixed location to handle
well-known LFS issues such as update propagation (i.e., wan-
dering tree problem [13,23,25,29,41,49,59,60]). For example,
F2FS performs in-place updates for its metadata stored at a
block-aligned and fixed location to solve the wandering tree
problem [29]. Accordingly, when utilizing a commodity ZNS
SSD, the LFSs require an additional CNS SSD to support the
in-place updates. However, this leads to an increase in the
cost of a storage system.
CNS-based data placement and I/O operations: The ex-
isting LFSs place data on sequential logical block addresses
(LBAs) to fully utilize the high sequential write performance
of CNS SSD while minimizing GC overhead [16, 34]. Mean-
while, the LFSs may encounter potential under-utilization
issues in ZNS SSDs, especially small-zone ZNS SSDs.
Specifically, small-zone ZNS SSDs have two main fea-
tures [15,21,42]: 1) fine-grained mappings between zones and
internal resources [43, 46] such as channels and dies and 2) a
large number of zones that support parallel write operations
(i.e., active zones [44]) at the cost of reduced internal paral-
lelism within a zone (i.e., intra-zone parallelism). Accord-
ingly, to maximize the ZNS SSD performance, the LFSs with
multiple log streams should efficiently utilize active zones
based on their log streams and consider the mappings to avoid
the conflicts among zones that share identical SSD internal

USENIX Association 2025 USENIX Annual Technical Conference 547

resources (e.g., dies and channels).
Previous studies have introduced different techniques to

efficiently utilize ZNS SSDs on various layers [9, 17, 42, 43].
ZenFS [9] is a storage backend for running RocksDB on ZNS
SSDs. ZNS+ [17] introduces a new customized ZNS SSD
design and interface which enables offloading data copy oper-
ations to the SSD. eZNS [42, 43] is an elastic ZNS interface
that allocates active zones based on the application workloads
and enhances performance isolation through an I/O scheduler.
Our study is inspired by these studies and in line with them
in terms of efficiently exploiting ZNS SSDs or maximizing
the utilization of active zones for ZNS SSDs. In contrast,
our study focuses on designing ZNS-tailored metadata and
logging strategies of LFS on a standalone commodity ZNS
SSD.

Our goal in this study is to design a ZNS-tailored LFS to
maximize 1) the cost-efficiency of the storage system and 2)
the resource utilization of small-zone ZNS SSDs. To this end,
we propose a novel ZNS-tailored log-structured file system for
small-zone ZNS SSDs called Z-LFS. Our key idea of Z-LFS
is to enable 1) ZNS-tailored metadata management to enable
standalone usage of ZNS SSD and 2) ZNS resource control
by leveraging log stream utilization and addressing resource
conflicts.

Specifically, Z-LFS first enables append-only updates on
metadata to efficiently store metadata on ZNS SSDs with-
out relying on CNS SSD. To do this, Z-LFS leverages the
unique metadata characteristics of LFS on ZNS SSDs, which
differ from those on CNS SSDs due to ZNS constraints. In
our observation, LFS metadata on ZNS SSD can be classi-
fied into two categories based on their life cycle: immutable
and mutable metadata. Immutable metadata is not updated
after being written, and its life cycle is identical to that of the
associated LFS segments. Meanwhile, mutable metadata is
updated frequently and has a distinct life cycle from the seg-
ments. With these characteristics, Z-LFS appends immutable
metadata to its corresponding segment and stores mutable
metadata separately using a delta logging approach.

Second, Z-LFS devises speculative log stream management
that dynamically coordinates active zones to maximize their
utilization. We observe that allocating zones without consid-
ering the write intensity of log streams can limit the effective
use of zone-level parallelism. To address this, Z-LFS specula-
tively determines the active zone quota for each log stream
based on its write intensity, which varies according to work-
loads. Finally, Z-LFS adopts conflict-aware zone allocation
designed to minimize contention among zones that share SSD
internal resources including dies and channels. In our analysis,
when a host uses zones mapped to the same die or channel,
zone-level parallelism is reduced due to the die or channel-
level conflicts. Based on this analysis, Z-LFS allocates zones
and distributes data across zones mapped to distinct internal
resources, thereby reducing the resource conflicts.

Note that our approach is a fully software-based and tar-

gets commodity devices to ensure broader applicability and
compatibility without requiring modification to ZNS SSDs.
By doing so, our file system can be easily deployed on mature
storage systems with commodity ZNS SSDs.

We implement Z-LFS with the three techniques based on
F2FS in Linux kernel 5.17.4. We evaluate Z-LFS with various
micro/macro benchmarks and RocksDB in a single-tenant
environment. The result shows that Z-LFS improves the per-
formance by up to 33.4× and 3.5× compared with F2FS
and a state-of-the-art interface for commodity ZNS SSD
(eZNS [42]) with F2FS, respectively. Finally, we open the
source code of Z-LFS at https://github.com/Z-LFS/Z-L
FS to aid future studies in file systems and storage stacks for
ZNS SSDs.

2 Background and Motivation

2.1 Small-zone and Large-zone ZNS SSDs
ZNS SSD has two main constraints [32, 35, 44]. Specifically,
1) data must be written sequentially within a single zone, and
once data is written, it cannot be overwritten until the zone
is reset. In addition, 2) ZNS SSD also restricts the maximum
number of active zones where write operations can be per-
formed in parallel [42]. A zone has one of six states (i.e.,
opened, closed, full, empty, read-only, and offline), which can
be changed according to operations such as write requests or
zone management commands [44]. Within the states, opened
and closed states represent active zones. The active zone shifts
to the full state when it is filled or through a FINISH zone
command, and shifts to the empty state through a RESET
zone command, allowing the active zone to be reclaimed.

A zone in the ZNS SSD is allocated across channels, and
the zone size is determined by the manufacturer [6, 7, 39].
Thus, the degree of internal parallelism can vary depending
on the zone size [11, 12, 20, 21]. In a ZNS SSD with a large-
zone (large-zone ZNS SSD), each zone spans more dies across
channels [42], supporting higher intra-zone parallelism. Mean-
while, since it provides only a few active zones (e.g., up to
14 zones [8, 9]), the large-zone ZNS SSD can limit flexibility
and show low performance isolation [15,42,46]. On the other
hand, a small-zone ZNS SSD exposes finer-grained physical
zones; each zone is contained within a die [15, 46]. Thus, the
small-zone ZNS SSD can support more active zones (e.g., up
to 384 zones), providing higher flexibility and performance
isolation. Meanwhile, the small-zone ZNS SSD can show
lower parallelism when only a small number of active zones
is utilized. To exploit the internal parallelism of the small-
zone ZNS SSD (zone-level parallelism), hosts should aim to
process I/O requests across a large number of active zones.

2.2 Challenges of LFS on ZNS SSDs
Considering ZNS SSD, the design of LFS based on CNS SSD
faces challenges, particularly in addressing three main issues

548 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/Z-LFS/Z-LFS
https://github.com/Z-LFS/Z-LFS

as follows. We will explain the details of the LFS challenges
using F2FS as an example since it supports the ZNS SSD and
is one of the representative and widely used LFSs.
Enabling append-only update metadata on ZNS SSD:
F2FS places its metadata in a block-aligned and fixed location
and updates them in place on CNS SSD. On the other hand,
in the case of a ZNS SSD, since it disallows random writes
and in-place updates within a zone, the metadata management
scheme in F2FS requires an additional CNS SSD, increasing
the overall cost of a storage system. To utilize the ZNS SSD
as a standalone SSD, we can adapt the existing CNS-based
metadata approach (i.e., F2FS) with minor modifications to fit
within the ZNS constraints. In this approach, each metadata
type has a pair of zones, and the metadata is written alter-
natively to one of the pair with zone granularity. However,
due to the ZNS constraint, when the metadata is randomly
updated, this approach may need to read the metadata from
one zone in one of the pair, modify the metadata, and write
the modified metadata to the other zone. This approach can
significantly decrease the performance (up to 9.32×) and in-
crease the amount of write (up to 7.8×) in our preliminary
evaluation. Therefore, it is a challenge to efficiently design the
metadata under the ZNS constraints and perform append-only
updates.
Maximizing utilization of active zone under ZNS con-
straints: In the case of node/data in the main area of
F2FS [29], the multi-head logging design separates the
node and data into six types based on their hotness (i.e.,
hot/warm/cold). F2FS allocates a zone for a log stream and
writes corresponding data or nodes sequentially in the zone.
When the zone becomes full, F2FS allocates a new zone. Con-
sequently, F2FS uses only six active zones at most, limiting
zone-level parallelism and under-utilizing the device band-
width, especially for small-zone ZNS SSDs. To make the best
use of the available active zones at maximum, there can be a
static and straightforward approach. For example, we can stat-
ically map six log streams to available active zones as much
as possible. However, the number of available active zones is
limited, and the I/O traffic on each log stream varies according
to the workloads. Specifically, when the I/O traffic becomes
skewed toward a particular log stream, the log streams with
low I/O traffic can waste active zones while the log streams
with high I/O traffic cannot harness the resources. Thus, this
approach may still have the issue of under-utilization of ac-
tive zones. Consequently, it is a challenge to optimally scale
the active zones in an opportunistic manner to maximize the
parallelism under the active zone constraints.
Mitigating SSD internal resource conflict among zones:
Small-zone ZNS SSD uses fine-grained mapping between
host-exposed zone and SSD internal resources such as chan-
nel and die. For example, the ZNS SSD used in our evaluation
maps each zone to a single die and a single channel, rather
than spanning a zone across multiple dies or channels. Ac-
cordingly, although an LFS may use multiple active zones

to improve zone-level parallelism, if these zones are mapped
to the same channels or dies, the LFS may fail to achieve
optimal performance due to limited parallelism. Therefore, an
LFS should consider and manage the mapping between zones
and the internal resources to avoid the resource conflicts.

3 Analysis of ZNS SSD performance
3.1 Basic performance of ZNS SSD
To demonstrate the impact of zone-level parallelism on read
and write performance with varying number of zones to issue
I/O, we evaluate the base read and write performance of small-
zone ZNS SSDs on the testbed described in §6.1. We use
FIO [22] to perform direct I/O operations on the raw device,
bypassing the page cache, with 16 threads and a queue depth
of 32. The number of zones issuing I/O (i.e., active zones for
writes) and the request sizes are varied during the evaluation.

As shown in Figure 1, write performance improves as the
number of active zones increases across all request sizes. How-
ever, the degree of performance improvement and the maxi-
mum throughput are significantly influenced by the request
size. Specifically, for 128KB requests, write performance sat-
urates at 128/256 active zones, reaching approximately 2.4
GB/s. In contrast, small (e.g., 4KB) and large (e.g., 2MB)
request sizes lead to performance degradation. For example,
with 128 active zones, the write performance for 4KB and
2MB requests is only 20% and 47%, respectively, of the peak
performance achieved. For small requests, the performance
degradation is primarily due to the excessive number of I/O
operations. For large requests, the I/O processing time within
a zone increases, delaying subsequent write requests on other
zones, thereby reducing zone-level parallelism and overall
performance. Similarly, read performance also increases as
the number of active zones increases but saturates with fewer
zones (i.e., 32) than write operations. Unlike write opera-
tions, read performance is not sensitive to request size. These
results highlight the importance of leveraging zone-level par-
allelism for both read and write operations, particularly given
the limited intra-zone parallelism of small-zone ZNS SSDs,
as discussed in §2.1.

3.2 Interference among internal resources
To evaluate the impact of interference among internal re-
sources and understand the internal structure of the ZNS SSD,
we measure the read performance using two threads to read
from two different zones. In this evaluation, one thread reads
data sequentially from zone ID 0, while the other reads data
sequentially from a different zone, varying from zone ID 1
to 256. Figure 2 illustrates the read throughput of the two
threads as the second thread’s zone ID changes.

As shown in the figure, we observe two conflict points (i.e.,
channel-level and die-level) that degrade the performance
compared with no conflict points as described in previous
studies [43]. The performance degradation occurs when the

USENIX Association 2025 USENIX Annual Technical Conference 549

0

250

500

0 64 128 192 256

T
h

ro
u

gh
p

u
t

(M
B

/s
)

Zone ID

No conflict

Channel-level
conflict

Die-level conflict

0

1

2

3

4

1 2 4 8 16 32 64 128 256T
h

ro
u

gh
p

u
t

(G
B

/s
)

Number of zones to issue I/O

4KB W 128KB W 2MB W
4KB R 128KB R Raw

F2FS

eZNS

0

1

2

3

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

eZNS
(+F2FS)
F2FS_SS

Figure 1: Raw write (W) and read (R)
performance of a small-zone ZNS SSD.

Figure 2: Performance of scenarios
with/without resource conflict.

Figure 3: Write performance of
various techniques.

zone ID is a multiple of 16, where throughput drops by 19%
compared with the no conflict scenario. This degradation re-
sults from channel-level conflicts, where I/O requests from
both threads contend for access to the same channel in the
ZNS SSD even if two different zones are utilized. Second,
the performance drops significantly when the zone ID is a
multiple of 128. At these points, die-level conflicts arise, re-
ducing performance by more than 50% compared with the
no-conflict scenario.

These results indicate that an LFS should allocate zones
while minimizing conflicts with the internal resources of the
ZNS SSD to achieve optimal performance. Based on these
observation, we infer that the ZNS SSD used in the evaluation
consists of 16 channels and 128 dies, with zones statically
mapped to internal resources in a round-robin manner. Lever-
aging this model, we design a conflict-aware zone allocation
technique described in §4.6.

3.3 File system performance on ZNS SSD

We evaluate the write performance of F2FS, eZNS with F2FS
(eZNS (+F2FS)), and F2FS with static stripping (F2FS_SS)
as shown in Figure 3. eZNS [42, 43] is a state-of-the-art
technique to exploit zone-level parallelism by distributing
the write operations to the active zones via logical zones
(i.e., v-zone [42, 43]). F2FS_SS represents an extension of
F2FS with a static striping approach that evenly distributes
active zones across log streams (e.g., 64 active zones per
log stream) to further utilize zone-level parallelism in F2FS.
For the evaluation, we use FIO with 16 threads performing
sequential writes. These threads issue direct I/Os for the raw
device and eZNS, while buffered I/Os are used for F2FS,
eZNS with F2FS, and F2FS_SS.

F2FS exhibits significantly lower performance compared
with the potential performance of the raw device, as described
in §2.2 due to a lack of awareness of limited intra-zone par-
allelism. Specifically, F2FS allocates a single zone for each
log stream, utilizing a total of six zones. eZNS delivers full
performance in scenarios without F2FS, as FIO threads write
uniformly to v-zones, ensuring balanced utilization. However,
when combined with F2FS, eZNS experiences write perfor-
mance degradation due to two main reasons from lack of

cross-layer awareness as follows. (1) Similar to standalone
F2FS, F2FS even with eZNS recognize v-zones as normal
zones. Therefore, F2FS allocates a single v-zone for each
log stream and cannot utilize more v-zones [43]. (2) eZNS
adjusts the number of active zones mapped to v-zones based
on whether write operations occurs in a v-zone, rather than
intensity of those operations in the v-zone. As a result, even
when a v-zone is heavily utilized, eZNS allocates the same
number of active zones to all v-zones regardless of the utiliza-
tion of each v-zone. Consequently, while eZNS with F2FS
improves active zone utilization compared with standalone
F2FS, it delivers sub-optimal performance when I/O traffic is
skewed toward a specific log stream.

The lack of cross-layer awareness may be addressed
through coordination between F2FS and eZNS layers. How-
ever, such cross-layer coordination necessitates additional
interaction mechanisms and tight coupling between the layers.
Specifically, this requires communication burden between
F2FS and eZNS whenever the write intensity of log streams
changes. For example, when the write intensity of a log stream
changes, F2FS transfers the intensity information to eZNS.
Using the information, eZNS can increase or decrease the
number of active zones mapped with the v-zone associated
with the log stream. Therefore, this cross-layer coordination
approach can increase system complexity and maintenance
overhead.

F2FS_SS demonstrates better performance than F2FS
and eZNS with F2FS. However, static striping exhibits sub-
optimal performance. It is because, similar to eZNS with
F2FS, static striping allocates the same number of active zones
to all log streams, regardless of their write intensity, thereby
limiting the utilization of zone-level parallelism. The per-
formance gap between eZNS with static stripping primarily
arises from differences in request size. eZNS issues small re-
quests (e.g., 4KB) for each v-zone to minimize latency while
static stripping issues larger requests (e.g., 2MB).

These results demonstrate that evenly distributing active
zones across log streams can waste active zones and limit the
zone-level parallelism of write-intensive log streams. To max-
imize zone-level parallelism across log streams, LFS should
dynamically allocate active zones based on the write intensity
of each log stream.

550 2025 USENIX Annual Technical Conference USENIX Association

Superzone

Log stream

Superzone Superzone

Log stream

Delta Log area

Metadata(meta) Cold data Hot data
User I/O request

Z-LFS

In
-m

em
or

y
O

n-
di

sk

Update in-memory meta

Zone Zone
Merge area
Zone

Merge

Mutable meta Immutable meta

Delta
logging

Main area

Figure 4: Overall architecture and procedure of Z-LFS.

4 Design and Implementation

4.1 Design Goals of Z-LFS
We design Z-LFS to meet the following three design goals:

• ZNS-tailored metadata management: To maximize
the cost-efficiency, Z-LFS should update metadata in an
efficient append-only manner while considering unique
characteristics and constraints of LFS on ZNS SSD.

• Speculative log stream management: To maximize
active zone utilization, Z-LFS should identify write in-
tensity of each log stream and optimally scale active
zones for that stream.

• Conflict-aware zone allocation: To avoid conflicts
among zones mapped to overlapping internal resources
(dies or channels), Z-LFS should track the mapping be-
tween them and allocate conflict-free zones as much as
possible.

4.2 Strategies of Z-LFS
We present the three key strategies and explain how they meet
the design goals of Z-LFS.
Strategy #1: To enable efficient append-only metadata up-
date while considering LFS features on ZNS SSD, Z-LFS
classifies metadata into immutable and mutable types based
on their alignment with segment life cycles. Z-LFS manages
the two types of metadata separately: it appends immutable
metadata to the corresponding segments and adopts delta
logging mutable metadata in a dedicated area.
Strategy #2: To maximize zone-level parallelism while con-
sidering workloads, Z-LFS speculates on and determines the
active zone quota for each log stream and dynamically scales
active zones to log streams as workload changes.
Strategy #3: To avoid channel-level conflict, Z-LFS orga-
nizes consecutive zones without channel overlap into a super-
zone. To prevent die-level conflict, Z-LFS groups superzones
mapped to the identical dies as a interference group and se-
lectively allocates superzones from different groups to a log
stream.

4.3 Overall Architecture of Z-LFS
Figure 4 shows the overall architecture of Z-LFS.

Architecture: Z-LFS manages six log streams categorized
by their types and temperature similar to F2FS. There are
two primary types of log streams: data and node. Data log
streams stores user data, while node log streams stores inode
or index information for data blocks. Each type is further
divided into hot, warm, and cold streams based on hotness.
For LFS metadata management, Z-LFS classifies metadata
into immutable and mutable metadata based on their life cy-
cle. Immutable metadata shares the same life cycles as their
corresponding segments, while mutable metadata has distinct
life cycle independent of segments.

In Figure 4, the on-disk layout of Z-LFS is organized into
three areas: the delta log area, the merge area, and the main
area. Delta log area is dedicated to logging mutable metadata,
while merge area stores tables of mutable metadata that is
arranged and consolidated from the delta log area. Main area
stores data and node log streams, along with their associated
immutable metadata. In the main area, considering resource
conflicts, Z-LFS organizes consecutive zones into a superzone,
which is further divided into multiple fixed-sized segments.
Procedure: As illustrated on the right side of Figure 4, when
handling user I/O requests, Z-LFS writes blocks to the appro-
priate data or node log streams. During this process, it specu-
lates on the write intensity of each log stream as workloads
change and dynamically allocates superzones. Specifically,
Z-LFS allocates the number of superzones to each log stream
in proportion to the ratio of its write requests to the total write
requests within a given time window (Strategy #2). This en-
sures that log streams with higher write intensity can utilize
more zone-level parallelism. To avoid resource contention,
Z-LFS also considers channel-level and die-level conflicts
when organizing and allocating superzones (Strategy #3).
Z-LFS then selects a segment from allocated superzones to a
log stream in a round-robin manner and writes blocks sequen-
tially to the chosen segments.

As data and node blocks are written, Z-LFS updates their
associated metadata as illustrated on the left side of Figure 4.
For immutable metadata, which shares the same life cycle as
its corresponding segment, Z-LFS appends the metadata to the
end of the segment within the same superzone (Strategy #1).
This ensures that immutable metadata is naturally cleaned
alongside its segment during GC, eliminating the need for
additional metadata operations such as metadata GC.

On the other hand, mutable metadata is managed via a
different mechanism from immutable metadata. As mutable
metadata entries are small (typically tens of bytes) and fre-
quently updated, Z-LFS buffers the changes (deltas) and logs
them to a dedicated delta log area. The delta log area oper-
ates as a circular log and is cleaned when half of the area is
filled. For cleaning, Z-LFS performs a merge operation which
consolidate logged deltas from the delta log area into a table
and then writes them to the merge area. To reduce the impact
on user I/O performance, this merge operation is performed
asynchronously.

USENIX Association 2025 USENIX Annual Technical Conference 551

4.4 Append-only metadata management
4.4.1 Life cycle based metadata management

In LFSs on CNS SSD, life cycles of metadata is distinct
from those of segments since segments can be updated after
being written. For example, slack space recycling [29, 47],
used in LFSs to reduce GC costs, enables writing new data
into invalidated space within already written segments. This
necessitates frequent updates to metadata associated with the
segment, resulting in metadata life cycles that diverge from
those of the segments.

LFSs on ZNS SSDs, unlike those on CNS SSDs, have
metadata that share the same life cycle as a segment due to
the sequential write constraints of ZNS SSDs. Specifically,
in LFSs on ZNS SSDs, once a segment is written, its blocks
cannot be updated until GC. Instead, the blocks can only be
invalidated, and the segment must be erased before reuse.
Accordingly, the life cycle of certain metadata is identical
to that of its associated segment. For example, a metadata
(e.g., segment summary (SS) in F2FS) stores reverse mapping
information of blocks within a segment, including 1) the IDs
of all nodes pointing to the blocks and 2) their offsets within
the nodes. This information is never modified once written,
as the blocks within the segment cannot be updated. Such
metadata is utilized during GC, and its life cycle ends when
the corresponding segment is cleaned by GC. After GC, the
metadata is always newly written. We classify such write-
once and never-updated metadata as immutable metadata. In
contrast, metadata like bitmaps indicating valid blocks in a
segment (e.g., segment information table (SIT) in F2FS) and
block addresses of nodes (e.g., node address table (NAT) in
F2FS) are frequently updated, which we categorize as mutable
metadata.

Leveraging the observation that the life cycle of immutable
metadata aligns with its corresponding segment, Z-LFS ap-
pends immutable metadata to the end of the segment and
stores them together in the same zone. this approach ensures
that the immutable metadata remains valid as long as the seg-
ment lives and is naturally cleaned together during GC. As
a result, Z-LFS eliminates the need for additional operations
such as metadata GC and over-provisioned area to perform
them for the immutable metadata. In addition, since the lo-
cation of the immutable metadata is fixed to the end of the
segment, Z-LFS avoids tracking metadata locations, typically
required when metadata is stored in an append-only manner.

4.4.2 Metadata delta logging

Z-LFS manages mutable metadata using an append-only ap-
proach with delta logging. Specifically, mutable metadata is
typically small, with most entries consisting of only a few
dozen bytes. In addition, since each entry holds independent
information, only some entries may be updated while others
remain unchanged. Thus, a block which contains mutable
metadata can be partially updated. To efficiently handle the

1Retrieve changed entry2

Add position of entry

Log block (4KB)

4
Insert entry
to log block

MD1MDlog0

Main memory
ZNS SSD

Merge area
3 Flush
metadataDelta log area

Zone
MD0

Read
metadata

Metadata entrypos

Metadata entrypos

5 Log metadata

Merge metadata

Merge procedureLog procedure

Version
Metadata entrypos Mutable

metadata

Mutable metadata
update

3

Z-LFS

1

2

MDlog1
Zone

Figure 5: Architecture and procedure of delta logging (MDx: one
side of metadata table pair, MDlogx: one side of metadata log pair,
pos: position of the metadata entry).

partial metadata updates, Z-LFS collects only the modified
entries (i.e., deltas), aggregates them into a new metadata log
block, and logs the block in delta log area. We demonstrate
that the write amplification of Z-LFS is comparable to that of
F2FS on CNS SSD, even under metadata-intensive workloads
with frequent fsync operations (see Figure 11).

Meanwhile, a pure log-structured approach that logs meta-
data blocks with a GC procedure could be a candidate for
managing mutable metadata. However, with this approach,
updating the metadata changes its location, causing the meta-
data to be dispersed across the ZNS SSD. As a result, the file
system should track and persist the location of each metadata
block. This can lead to the need for metadata of metadata and
add an additional complexity to metadata management. In
contrast, Z-LFS consolidates metadata locations to eliminate
the need to track the locations of individual metadata blocks.
Architecture: Figure 5 depicts the architecture and overall
procedure of delta logging in Z-LFS. For metadata delta log-
ging, a pair of logs consisting of zones (e.g., MDlog0, MDlog1)
is maintained in the delta log area. The metadata deltas are
written to the pair in a circular manner. To keep the consis-
tency of mutable metadata, Z-LFS maintains a pair of meta-
data tables (MD0, MD1) in the merge area. Z-LFS alternatively
updates one side of the metadata table pair, ensuring that
one side always contains valid metadata while the other may
contain outdated metadata. By combining circular logging
deltas in the delta log area with alternative metadata updates
in the merge area, Z-LFS prevents partial metadata updates
and ensures crash consistency, as described in §4.7.
Delta logging procedure: During user I/O requests pro-
cessing, mutable metadata are updated in memory (1). Only
when Z-LFS needs to perform a checkpoint1, the delta log-
ging is triggered. For delta logging, Z-LFS retrieves changed
entries (1) and appends their positions (pos) to each entry
(2). pos indicates the location of the metadata entry in the
metadata table, stored in the merge area, ensuring it can be
identified after system recovery. Then, Z-LFS inserts the en-

1The trigger condition of the checkpoint is the same as that in F2FS.

552 2025 USENIX Annual Technical Conference USENIX Association

Cold dataWarm data

zone0 zonekzone1
s3-0 s4-0 s4-1 s4-k

Free segment

...
zone2

s4-2 ...
zone3

s4-3 ...

seg3

Current segment

superzone1 superzone2 superzone3

s3-1 s3-2 s3-3 s3-k

Full segment

seg4

... s4-ks4-1s4-0 s4-2 s4-3

s3-ks3-3s3-2

seg4
superzone0 superzoneN

...

sz
on

e 1

Incoming pages1

Incoming pages
(High traffic)

6

Select szone2

Speculative
log stream managment

Write blocks3
Split and scatter

subsegments
4

seg9

Z-LFS

Trigger allocation

Allocate szone
without conflict

Add szone
to log stream

Conflict-aware
zone allocation

7

89

Persist
immutable metadata

5

Immuable metadata

Figure 6: Architecture and procedure to process user data in Z-LFS
(szone: superzone, segn: nth segment, sn-k: kth subsegment of nth

segment).

tries in a 4KB log block (4). When the log block becomes
full, it is written to the delta log area (MDlog0) (5). This pro-
cedure of 1 - 5 is repeated until Z-LFS logs all of changed
entries in the delta log area. If the current delta log areas
(MDlog0) overflows during logging, the remaining entries are
written to the next delta log area (MDlog1). During delta log-
ging, Z-LFS records a log version number in log blocks. The
log version increments whenever delta logging is invoked and
is used during system recovery to determine which log block
should be recovered, as described in §4.7.
Asynchronous merge procedure: When a delta log area
(e.g., MDlog0) becomes full during a log operation, Z-LFS
triggers an asynchronous merge operation to clean the area
and reclaim space for future logs. In this process, Z-LFS first
reads the valid side of the metadata table pair (MD0) into mem-
ory (1). It then merges this metadata with the entries logged
in the delta log area (2). To reduce overhead, Z-LFS buffers
the entries in memory when they are logged in the delta log
area. This allows Z-LFS to avoid scanning the delta log area
on the ZNS SSD when retrieving logged metadata entries,
at the cost of additional memory consumption (§6.3). How-
ever, the total size of memory buffer is limited by the total
size of the delta log area. After merging, Z-LFS flushes the
updated metadata table to the storage device (3). Once the
flush operation completes, Z-LFS safely resets the delta log
area (MDlog0) applied to the merge area (MD1), reclaiming the
space for future use.

4.5 Speculative log stream management
Figure 6 shows the architecture and overall procedure to pro-
cess user I/O requests.
Architecture: Z-LFS organizes all zones in the main area
into superzones. Superzones are logically divided into seg-
ments for finer space management, and the segments contain

subsegments. The subsegments in a segment are logically con-
tinuous but physically mapped to non-contiguous blocks (e.g.,
a distinct 128KB). The organization of superzones, segments,
and subsegments is determined during file system initializa-
tion. Z-LFS has six log streams (e.g., hot/warm/cold data and
node) and tracks the current segment, which indicates the last
written position for each log stream. For crash consistency,
the information of the current segments persists in checkpoint
blocks and can be recovered as in F2FS.
Procedure: In Figure 6, when Z-LFS flushes data and node,
it identifies the type of log stream (i.e., warm data) associated
with incoming pages (1). Then, to store the pages, Z-LFS
selects a superzone of the identified log stream (superzone1).
Subsequently, to initiate the I/O operation, it selects the first
free segment (seg4) within the superzone and then allocates
blocks from the segment (2). For a segment, Z-LFS splits
the segment (seg4) into smaller subsegments (s4-0-s4-k) and
scatters each subsegments across the zones (zone0-zonek)
in the superzone (3 , 4). Z-LFS keeps the order of segments
(seg3, seg4, ...) within each superzone as the order of sub-
segments (s3-0, s4-0, ...) within each zone. By doing so, it
can keep the sequential write constraint within each zone and
easily recover the mapping of subsegment and LBA. When a
segment becomes full, its corresponding immutable metadata
is appended to the end of the segment (5).

When the warm data log stream is speculated to be high-
traffic (6), Z-LFS scales up the active zones for the log
stream. Then, to allocate an additional free superzone to in-
crease active zones, Z-LFS triggers conflict-aware zone allo-
cation (7). Z-LFS allocates superzone without conflict with
previously allocated superzones (8) and adds the superzone
to the log stream (9). With the superzones (i.e., Superzone1
and Superzone3) allocated for the log stream, Z-LFS selects
a superzone in a round-robin manner (e.g., superzone3→
superzone1→superzone3) and selects the first free segment
(e.g., seg9) within the selected superzone (superzone3) to
provide higher zone-level parallelism.
Speculation of I/O utilization of log streams: To determine
the optimal number of active zones for each log stream, Z-LFS
employs a speculative, quota-based approach for managing
active zones. This approach speculates on write intensity
and allocates an appropriate quota of active zones to each
log stream. Additionally, Z-LFS performs the speculation
separately for data and node log streams. This separation is
based on our observation, as described in §4.6, that data and
node log streams are typically not used concurrently.

To do this, we define the total available active zones for data
or node log streams (A). A is determined as the smaller of the
following values: (1) the number of active zones required to
achieve peak throughput (Apeak) and (2) half of the maximum
number of active zones available after reserving zones for file
system metadata management (Aavail). Z-LFS uses the smaller
value to keep the maximum number of active zone constraint
of ZNS SSD. Thus, A is defined as A = min(Apeak,

Aavail
2).

USENIX Association 2025 USENIX Annual Technical Conference 553

Active list

Scale up active zone

Allocate active zone

Z

Deallocate
active zoneZ

HN

WN

CN

WD

CD

HD

Active zone pool
Z Z Z Z. . .

Cold Node (CN) / Data (CD)

Speculation of
log stream utilization

High→Scale upHN
WN
CN

Medium

CD

WD

HD

Low→Scale down

Medium

Medium

Medium

Z Active zone Active zone flow
Hot Node (HN) / Data (HD) Warm Node (WN) / Data (WD)

Scale down
active zone

(a) Overview of scaling active zones of multiple log streams

Active list
Scale up active zone

Scale down
active zone

. . .

FActive Szone Target Szone Free Full Szone

Finish SzoneForeground job
Background job

Allocate Szone from
free list

4 Garbage collect Szone
(GC worker)

Free list

F(reclaim worker)
3

1

Speculation of
log stream utilization

High Low

1 1

Inactive list
2 Demote Szone

to inactive list

1 2

(b) Procedure of scaling active zones within a log stream.

Figure 7: Dynamic scaling of active zones of log streams.

The number of active zones allocated to a specific log
stream i (Ai) is determined proportionally to its write request
volume (Wi) relative to the total request volume among log
streams of the same type (WT = ∑i∈T Wi, where T represent
either data or node) within a time window. This is expressed
as: (Ai = A× Wi

WT
). After each time window elapses, Z-LFS

tracks the write traffic for each log stream and adjusts the
allocation of active zones accordingly.
Scaling active zones of log streams: Figure 7a depicts an
overview of scaling active zones across log streams. Z-LFS
maintains a global active zone pool to keep the active zone
constraint of ZNS SSD while scaling active zones of log
streams based on the speculation. For each log stream, Z-LFS
compares the allocated number of active zones by the specu-
lation with the current number of active zones utilized by the
log stream. If the allocated number is greater than the current
utilization, Z-LFS determines that the log stream’s traffic to be
low. Conversely, if the allocated number is smaller, the traffic
of the log stream is considered high. As shown in the figure,
for a log stream speculated as high I/O traffic (e.g., hot node
log stream: HN), Z-LFS scales up active zones by allocating
them from the active zone pool to the log stream. Meanwhile,
when a log stream exhibits low utilization (e.g., warm data log
stream: WD), Z-LFS scales down and deallocates the active
zones occupied by the log stream.
Scaling up active zone: Figure 7b shows an example of a
procedure for scaling active zones within a log stream. As
shown in the figure, Z-LFS manages active, inactive, and free
lists of superzones for efficient active zone scaling. The active
list contains superzones where write requests are actively
performed. Z-LFS selects a superzone in the active list in a
round-robin manner and allocates a segment in the superzone.
In this example, as utilization of the log stream increases,

Z04 Z05 Z06 Z07 supezone1

Z00 Z01 Z02 Z03 supezone0
Z08 Z09 Z10 Z11 supezone2

Die0

Z12 Z13 Z14 Z15 supezone3

Die1 Die2 Die3

Die4 Die5 Die6 Die7

Channel0 Channel1 Channel2 Channel3

IG1

IG0

Figure 8: Superzone and IG organization for conflict-aware zone
allocation. (Zn: nth zone, IGn: interference group n)

Z-LFS tries to scale up the active zones allocated to the log
stream (1). To do this, it allocates a free superzone from
the free list and inserts the superzone into the active list (2).
Then, the allocated superzone is utilized by Z-LFS in a round-
robin manner, naturally increasing zone-level parallelism.
Scaling down active zone: As shown in Figure 7b, when
the utilization of the log stream decreases due to workload
change, Z-LFS scales down active zones (1). To do this,
Z-LFS demotes two superzones in the active list to the inac-
tive list (2) and reclaims the active zones of the superzones
in the inactive list by issuing FINISH zone commands in a
background manner (3). Finally, after a GC worker frees the
superzones according to the GC policy, the superzones are
shifted from the full state to the free state and are inserted
into the free list (4). Note that the reclaim and GC processes
are decoupled from the normal I/O path by the background
workers to minimize the overhead caused by the FINISH zone
commands and GC, respectively.

4.6 Conflict-aware zone allocation
Superzone and IG organization: Figure 8 illustrates the or-
ganization of superzones and interference groups (IGs) based
on the modeling of ZNS SSD internal resources, as described
in §3.2. Since zones are mapped to dies and channels in a
round-robin manner, allocating consecutive zones can help
avoid resource conflict. For example, in a ZNS SSD with 8
dies and 4 channels as shown in the figure, Z00 (zone00), Z01,
Z02, and Z03 are mapped to different channels, while Z00 and
Z04 are mapped to the same channel. Similarly, Z00-Z07 are
mapped to different dies, while Z00 and Z08 are mapped to the
same die.

Based on this model, to avoid conflict while reducing the
complexity of zone management, Z-LFS organizes consecu-
tive zones (Z00-Z03) into a superzone (superzone0) to avoid
the channel-level conflict. As a result, each superzone consists
of zones equal to the number of channels. Furthermore, Z-LFS
groups superzones mapped to the same die (superzone0 and
superzone2) into an interference group (IG0). This static
organization, in which the number of interference groups cor-
responds to the number of dies divided by the number of
channels, is determined by the zone IDs as well as the number
of channels and dies. Based on the analysis in §3.2, Z-LFS
organizes a superzone with 16 zones and groups superzones

554 2025 USENIX Annual Technical Conference USENIX Association

into 8 IGs for our testbed ZNS SSD.
Superzone allocation for log streams: To minimize the die
conflicts, Z-LFS allocates active zones in units of superzones
to the log streams and prioritizes the allocation of superzones
from non-overlapping IGs, avoiding overlap with superzones
from the previous IG. Furthermore, we observe that data and
node log streams are typically not used and written concur-
rently. Specifically, node log streams are primarily written
during checkpointing, while data log streams are blocked
during this process. Thus, enforcing non-overlapping IG al-
locations without differentiating between data and node log
streams may unnecessarily limit active zone utilization. For
example, if there are two IGs and a superzone is allocated
from one IG to a node log stream, data log streams can only
use a superzone from the other IG. This limits the number of
superzones that can be utilized even if no die conflicts occur.
As a result, this observation is incorporated into the allocation
strategy to further exploit active zone utilization.

To do this, Z-LFS maintains separate IG allocations for data
and node log streams by maintaining distinct IG lists. When
a superzone is allocated to a data or node log stream, Z-LFS
marks its corresponding IG in the respective allocation list
to prevent other concurrent log streams from being assigned
superzones within the same IG. By doing so, since blocks of
the same log stream are written to zones that do not overlap
at the die level, this approach avoids conflicts during write
operations. Similarly, it ensures conflict-free sequential reads,
since blocks were already written to non-overlapping zones.
We note that if all superzones within an IG become completely
exhausted, Z-LFS can allocate superzones from overlapping
IGs as a fallback. To minimize such cases, Z-LFS prioritizes
selecting a superzone from the IG with the fewest remaining
free superzones as a victim during a GC procedure.

4.7 Crash Consistency
Z-LFS recovers the file system state against a system crash
with roll-back and roll-forward recovery mechanisms, simi-
lar to F2FS. Roll-back restores the state to that after the last
committed checkpoint (CP), meanwhile, roll-forward restores
the state to that after the last fsync() call from the last com-
mitted CP. We focus on explaining the roll-back recovery of
metadata since other recovery procedures are performed in
the same way as F2FS.

Immutable metadata is appended directly to the end of its
corresponding segment. However, if a segment is partially
written, its corresponding immutable metadata is written to
the checkpoint block during checkpointing. As a result, Z-LFS
ensures the consistency between segment and its metadata
through the checkpoint process as F2FS does.

To recover mutable metadata, Z-LFS scans deltas in all the
log blocks in the delta log area and merges the deltas with
the valid metadata tables to the outdated merge area. Specif-
ically, Z-LFS first references checkpoint blocks. In Z-LFS,
these blocks store information about which of the mutable

metadata tables in pairs in the merge area is valid. This al-
lows Z-LFS to read the valid sides of metadata table pairs
and identify the valid mutable metadata table. During the
recovery procedure, Z-LFS scans log blocks in the delta log
area and retrieve valid log blocks. Specifically, the check-
point blocks in Z-LFS store the latest log version when the
checkpoint is performed. Thus, Z-LFS can compare the ver-
sions in log blocks (i.e., log version) with the version in the
last committed checkpoint (i.e., checkpoint version). If the
log version is equal to or less than the checkpoint version,
Z-LFS considers it valid. Otherwise, Z-LFS ignores the log
block since the corresponding checkpoint for the log block is
not committed. Then, Z-LFS identifies the position (pos) of
each metadata entry (delta) from the valid log blocks. Using
these positions, Z-LFS merges the deltas with the valid meta-
data table. Finally, Z-LFS flushes the merged metadata table
to the outdated merge area and proceeds to other recovery
procedures, including roll-forward.

After Z-LFS recovers from the system crash with roll-back
and roll-forward, Z-LFS does not recover the active zone pool.
Instead, it initializes the active zone pool while reclaiming the
active zones within ZNS SSD, starting with a clean and con-
sistent active zone state. To reclaim the active zones, Z-LFS
changes the zones from the closed state2 to the full state.
Specifically, Z-LFS scans the states of zones in the ZNS SSD
via a REPORT zone command and finishes the zones in the
closed state via a FINISH zone command. We note that this
recovery does not affect the consistency of Z-LFS since FIN-
ISH zone commands do not change the contents of blocks.
Similarly, IG allocation lists are initialized since allocated
superzones for log streams are reclaimed.

4.8 Implementation
We implement Z-LFS based on F2FS and categorize metadata
in F2FS into immutable and mutable metadata. For example,
Z-LFS classifies segment summary (SS) as immutable meta-
data, and segment information table (SIT) and node address
table (NAT) as mutable metadata. Since SS, which stores re-
verse mapping information, is write-once and never-updated
metadata, Z-LFS considers SS as immutable metadata. On the
other hand, SIT includes bitmaps indicating valid blocks in a
segment and NAT includes the logical address of node blocks,
which are frequently updated regardless of segment life cycles.
Z-LFS manages these metadata as mutable metadata through
delta logging and merge.

Since SIT and NAT may have different lifetimes, managing
them together can lead to unnecessary merge overhead. For
instance, if SIT is updated more frequently than NAT, NAT
may experience unnecessary merges as SIT exhausts the delta
log area. To avoid this, Z-LFS allocates separate delta log
areas, merge areas, and memory buffers for SIT and NAT, and

2After a system crash, the ZNS SSD changes zones from the opened state
to the closed state. However, the zones with closed state still occupy active
zones [30, 44].

USENIX Association 2025 USENIX Annual Technical Conference 555

performs delta logging and merging independently for each.
This approach allows Z-LFS to efficiently handle metadata
updates according to each metadata type, minimizing write
amplification and performance degradation.

5 Discussion and limitation
Large-zone ZNS SSDs: Z-LFS can be adopted for large-
zone ZNS SSDs. Since append-only metadata management
of Z-LFS requires a small amount of active zones, it can be
adopted on a large-zone ZNS SSD even if it has a more strict
constraint on active zones than a small-zone ZNS SSD. Fur-
thermore, Z-LFS can use the small random writable area in
the large-zone ZNS SSD [9] by placing mutable metadata
and updating it in-place. On the other hand, speculative log
stream management and conflict-aware zone allocation may
not be beneficial for the large-zone ZNS SSD even if adopted,
because the large-zone ZNS SSD we used already leverages
zone parallelism at the device level. However, if a large-zone
ZNS SSD has sufficient active zones for higher flexibility
at the cost of intra-zone parallelism, Z-LFS can leverage the
active zones, increasing zone-level parallelism.
Single-stream LFS: All Z-LFS techniques are effective in an
LFS with multiple log streams. However, in an LFS with a sin-
gle log stream, speculative log stream management may not
yield meaningful performance improvements since it scales
active zones across multiple log streams. Meanwhile, the other
techniques of Z-LFS, such as append-only metadata manage-
ment and conflict-aware zone allocation, still are effective,
since issues caused by CNS-based metadata design and SSD
resource conflict persist even in the single-stream LFS.
Multi-tenant environments: While Z-LFS is designed and
evaluated in a single-tenant environment, it can also be de-
ployed in a multi-tenant environment. However, Z-LFS can
be further optimized to better support multi-tenancy. For in-
stance, we can incorporate I/O scheduling and rate-limiting
mechanisms in Z-LFS as in prior studies [38, 42]. This can
improve performance and fairness, especially under bursty
write workloads. We leave such optimization and evaluation
as future work.
Space overhead of Z-LFS: Z-LFS can reduce the storage
system cost by append-only metadata management. How-
ever, Z-LFS introduces additional space overhead to manage
LFS metadata on a standalone ZNS SSD due to the ZNS
constraints. In the delta log area, Z-LFS requires at least two
zones to circularly log mutable metadata. In the merge area,
similar to an existing LFS (e.g., F2FS), Z-LFS maintains a
pair of metadata table. However, since the pair should be
managed by a zone granularity, the space overhead increases.
By appending immutable metadata to the end of its associ-
ated segment, Z-LFS reduces the space overhead by 10.7×
compared to performing delta logging for both immutable
and mutable metadata. The total space overhead of Z-LFS,
including both delta log and merge areas, accounts for ap-

proximately 0.02% of the total ZNS SSD capacity. This result
demonstrates that the space overhead of Z-LFS is negligible.

6 Evaluation

6.1 Experimental setup
Testbed: We use a machine equipped with i7-13700K 3.4GHz
CPU (16 physical cores) and 32GB main memory. We use
a commodity ZNS SSD [5] and its equivalent CNS SSD [3].
The ZNS SSD consists of 40,704 zones, each with a size of
96MB, providing a total space of 3.92TB. The maximum
number of active zones is 384. We use Linux kernel 5.17.4
and f2fs-tool 1.15.0 for the mkfs tool.
Comparison: We compare Z-LFS with F2FS [29], F2FS with
static striping (F2FS_SS) as described in §3.3, ZenFS [9],
eZNS [42, 43] which is the state-of-the-art ZNS interface
for commodity ZNS SSDs, and eZNS with F2FS. F2FS and
F2FS_SS are mounted on ZNS SSD with CNS SSD, denoting
F2FS (+CNS SSD) and F2FS_SS (+CNS SSD), respectively.
To evaluate eZNS without any file system (i.e., raw device),
we denote it as eZNS. To evaluate the performance of eZNS
with a file system, we mount F2FS on ZNS SSD with eZNS
and denote it as eZNS with F2FS (+CNS SSD), since it also
requires an additional CNS SSD. We configure a namespace
in eZNS to allow all threads in the namespace to utilize all
available active zones (384) regardless of the namespace.

6.2 Workloads
Micro-benchmark: We employ FIO [22] to evaluate Z-LFS
using the sequential and random read/write workloads with
16 threads. With file systems (e.g., F2FS, F2FS_SS, eZNS
with F2FS (+CNS SSD), and Z-LFS), each thread performs
10GB I/O to its dedicated file with a 4KB request size3. For
comparisons without any file system (e.g., Raw, eZNS), each
thread issues 10GB I/O with a 128KB request size. In this
case, we use the 128KB request size to demonstrate ideal
performance on a raw device and use it for comparison. Un-
less otherwise stated, we use this configuration in all the FIO
evaluations. We also evaluate file system-level garbage col-
lection (GC) to show the effectiveness of Z-LFS even in GC.
In this experiment of GC, to reduce the aging time, we create
a 150GB partition of a ZNS SSD, pre-fill 128GB in the parti-
tion, and then perform random writes for 10 minutes to trigger
file system-level GC. Furthermore, we use MDtest [36] to
evaluate Z-LFS, under the metadata-intensive workloads. For
the evaluation, we create 1 million files with various file sizes
of 4/32/128KB and fsync after each file creation.
Macro-benchmark: We use Filebench [2] with four work-
loads including fileserver, varmail, webserver, and videoserver.
We use 16 threads, 16MB file size in fileserver, 1MB in var-
mail and webserver, and 1GB in videoserver.

3We mostly use 4KB as a request size since it is the default size and
usually used in most OS and applications [24, 31, 48].

556 2025 USENIX Annual Technical Conference USENIX Association

01
23
4

T
h

ro
u

gh
p

ut

(G
B

/s
)

Raw eZNS F2FS (+CNS SSD) F2FS_SS (+CNS SSD) eZNS with F2FS (+CNS SSD) Z-LFS

0

1

2

3

Random write
0

100

200

300

400

500

GC
0

200

400

600

800

1000

Random readT
h

ro
ug

h
pu

t
(M

B
/s

)

0

1

2

3

4

Sequential read
0

1

2

3

Sequential writeT
hr

ou
gh

pu
t

(G
B

/s
)

0.2 0.1

Figure 9: Throughput of sequential/random write/read and garbage collection (GC).

File system F2FS
(+CNS SSD)

F2FS_SS
(+CNS SSD)

eZNS with F2FS
(+CNS SSD) Z-LFS

Average latency 626 us 31.9 us 89.4 us 24.5 us
Tail latency 47 ms 103.9 us 39 ms 45.3 us

Table 1: Write average and tail latency (99.9%)

RocksDB: To evaluate Z-LFS with the real-world application,
we use RocksDB [14] and its benchmark tool, db_bench with
fillseq, fillrandom, readrandom, and overwrite workloads as
in Figure 14. We use 16 threads, 50 million operations, and
1KB value size.

6.3 Micro-benchmark
Write throughput: In Figure 9, Z-LFS achieves higher per-
formance by up to 12.4×/25.2× and 47%/30% compared
with F2FS and F2FS_SS in the case of sequential/random
writes, respectively. The performance gap between F2FS and
Z-LFS results from the better exploitation of zone-level par-
allelism by utilizing multiple active zones per log stream.
Z-LFS further improves utilization of zone-level parallelism
and performance over F2FS_SS by speculative log stream
management technique. Specifically, Z-LFS utilize up to 128
active zones for the most intensive log stream (i.e., warm data
log stream) while the static striping in F2FS_SS limits the
maximum utilization as 64 zones.
Z-LFS improves performance by up to 3.5× on both se-

quential and random write workload compared with eZNS
with F2FS. As described in §3.3, due the lack of cross-layer
awareness of F2FS, eZNS achieve sub-optimal utilization of
active zone, leading to performance degradation. On the other
hand, since Z-LFS is the file system itself, it can measure the
current utilization for each log stream at the file system level,
identify the intensively utilized log streams, and allocate more
active zones to them than less utilized log streams.
Read throughput: In Figure 9, interestingly, Z-LFS improves
the sequential read performance by 50% compared with F2FS.
It is because Z-LFS scatters data across multiple zones while
leveraging internal parallelism, even in the read operation.
Similarly, F2FS_SS and eZNS with F2FS also achieve higher
performance compared with F2FS. Furthermore, Z-LFS im-
proves performance by 22% over F2FS_SS, resulting from the
conflict-aware zone allocation of Z-LFS as described in §4.6.
The random read performance of the file systems is overall
low due to low locality, and Z-LFS exhibits similar random

050001000015000200002500030000350004000045000
4KB file 16 32KB file 64 128KB file

IO
P

S

F2FS (+CNS SSD) F2FS_SS (+CNS SSD)
eZNS with F2FS (+CNS SSD) Z-LFS

0

20

40

60

4KB file

K
IO

P
S

0
5

10
15
20

32KB file

0.3 0.8
0

4

8

12

128KB file
Figure 10: Throughput of metadata-intensive workloads

read performance to F2FS without additional overhead.
Write latency: Table 1 presents the average and 99.9th per-
centile tail latency in the random write workload. As shown in
the table, Z-LFS reduces the average latency by up to 96.1%,
23.23%, and 72.63% and tail latency by up to 99.90%, 56.4%,
and 99.88% of F2FS, F2FS_SS, and eZNS with F2FS, re-
spectively. This result demonstrates that Z-LFS successfully
improves the write latency as well as throughput. This is
because Z-LFS can quickly flush the page cache by exploit-
ing zone-level parallelism. Thus, upcoming application write
requests can be cached in the page cache with reduced delay.
GC-intensive workload: In Figure 9, Z-LFS exhibits up to
3.3× higher throughput compared with F2FS on ZNS SSD
under file system GC operations, while showing similar per-
formance to eZNS with F2FS. The performance improvement
over F2FS is attributed to speculative log stream management
of Z-LFS, which distributes GC operations of log streams
across multiple active zones similar to the normal write op-
erations. Meanwhile, the overhead from the file system GC
operations limits the GC performance of Z-LFS. These results
indicate that Z-LFS can leverage zone-level parallelism even
in the scenario involving frequent file system GC operations.
Metadata-intensive workload: Interestingly, a metadata-
intensive workload (e.g., file creation) in F2FS frequently
writes the metadata (i.e., inode or dentry blocks) in ZNS SSD
instead of CNS SSD. Thus, even in metadata intensive work-
loads, the efficient utilization of active zones can considerably
impact performance. Accordingly, as shown in Figure 10,
Z-LFS achieves a significant improvement of up to 27.7× and
11.4× compared with F2FS and F2FS_SS in the file creation
workload in MDtest, respectively. Compared with eZNS with
F2FS, Z-LFS achieves up to 1.6× higher performance since
it can scale up the node log stream via speculative log stream
management. This highlights the importance of managing
active zones for LFS log streams more flexibly. These results

USENIX Association 2025 USENIX Annual Technical Conference 557

0

1

2

3

4

FIO MDtest

W
A

F

0

2

4

6

8

FIO MDtestM
em

. c
on

s.
 (

G
B

)
0

2

4

6

FIO MDtest

F2FS_SS (+CNS SSD) Z-LFS

(a) WAF. (b) Peak Mem. (c) Avg. Mem.
Figure 11: Write amplification factor and memory consumption.

demonstrate that Z-LFS can improve the performance even in
the metadata-intensive workloads.
Write amplification: To evaluate write amplification factor
(WAF) impact of Z-LFS in both data and metadata-intensive
workloads, we measure WAF using random write of FIO and
MDtest with a 4KB file size. Figure 11a represents that the
WAF of Z-LFS is similar to that of F2FS_SS on both work-
loads. This result demonstrates that the append-only metadata
management of Z-LFS minimizes the metadata WAF.
Memory consumption: We measure the average and peak
memory consumption of Z-LFS. In Figure 11b, the peak
memory consumption of Z-LFS is higher by up to 38% and
3% compared with F2FS in FIO and MDtest, respectively.
Figure 11c shows that the average memory consumption of
Z-LFS is higher by up to 22% and 6% compared with F2FS
in FIO and MDtest, respectively. Although this result shows
Z-LFS has a higher memory consumption than that of F2FS
due to the memory consumption from memory buffers used
in delta logging, the absolute amount of consumed memory is
relatively low. Specifically, Z-LFS consumes an extra 250MB
and 380MB memory compared with F2FS in FIO and MDtest,
respectively. Furthermore, the amount of memory required in
Z-LFS does not grow indefinitely since the maximum mem-
ory consumption of all the memory buffer is bounded by
the size of all the delta log areas. Consequently, this result
demonstrates that Z-LFS achieves append-only metadata man-
agement at the cost of memory consumption but the additional
absolute amount of memory is relatively small and limited.
Effectiveness of active zone scaling: We evaluate the ef-
fectiveness of scaling active zones of log streams compared
with the four static allocation schemes (static) in Z-LFS as in
Figure 12. For static (even), we use F2FS_SS which allocates
even number of active zones for all log streams. For each
static (hot/warm/cold) scenario, we allocate 128 active zones
for each hot/warm/cold data log stream and 32 active zones
for the others, respectively. We use an FIO random write
workload to configure three phases (hot, warm, cold) and gen-
erate data for each phase by varying file extensions. During
each phase, each data is written to its corresponding data log
stream. Each phase is executed for 100 seconds, resulting in a
total of 300 seconds. Z-LFS with active zone scaling achieves
comparable performance compared with each optimal static
scheme for each phase. Consequently, the results indicate that
Z-LFS optimally scales active zones in response to varying
workloads at runtime.

0

1

2

3

4

0 100 200 300T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Execution time (s)

Static (even) Static (hot) Static (warm) Static (cold) Z-LFS

Hot phase Warm phase Cold phase

Figure 12: Write throughput of active zone scaling of log streams.

F2FS (+CNS SSD) F2FS_SS (+CNS SSD)
eZNS with F2FS (+CNS SSD) Z-LFS

0

0.5

1

1.5

K
IO

P
S

0.5
0

5

10

15

20

0

4

8

12

0.2
0

1

2

3

T
hr

ou
gh

pu
t

(G
B

/s
)

(a) Fileserver (b) Varmail (c) Webserver (d) Videoserver

Figure 13: Throughput of various filebench workloads.

6.4 Macro-benchmark
Fileserver: Figure 13a shows Z-LFS improves the perfor-
mance by up to 7.21×, 1.6×, and 2.47× compared with F2FS,
F2FS_SS, and eZNS with F2FS, respectively, in the fileserver
workload. The result shows Z-LFS yields a significant im-
provement even in a realistic data-intensive workload.
Varmail: Figure 13b shows that Z-LFS achieves improve-
ments of up to 33.44×, 6.30×, and 2.04× compared with
F2FS, F2FS_SS, and eZNS with F2FS, respectively. Since
varmail generates and flushes nodes frequently, Z-LFS can
accelerate the flushing of the nodes to the main area, similar
to the MDtest result.
Webserver: In Figure 13c, Z-LFS outperforms F2FS and
F2FS_SS by up to 2.09× and 1.62×, respectively, even if
webserver is a read-intensive workload. It is because the read
operations can benefit from the high utilization of multiple
zones, similar to the read cases depicted in Figure 9. Further-
more, Z-LFS improves performance over F2FS_SS, resulting
from the conflict-aware zone allocation similar to the result
of read throughput in §6.3. eZNS with F2FS also shows high
read performance since it can leverage the internal parallelism
from multiple zones where data is scattered.
Videoserver: In Figure 13d, Z-LFS improves the perfor-
mance by up to 13.7×, 1.62×, and 3.33× compared with
F2FS, F2FS_SS, and eZNS with F2FS, respectively, in the
videoserver workload. Since videoserver includes more data-
intensive operations compared with fileserver, Z-LFS can
achieve higher performance.

6.5 Real-world Application
In this evaluation, we compare Z-LFS with a recent RocksDB
optimized file system, ZenFS [9], F2FS, F2FS_SS, and eZNS
with F2FS. We note that we use a CNS SSD for ZenFS to
support the in-place updates for RocksDB’s log/lock files

558 2025 USENIX Annual Technical Conference USENIX Association

0.0

0.5

1.0

1.5

fillseq

M
IO

P
S

0.0

0.1

0.2

0.3

fillrandom
0.0

0.1

0.2

0.3

overwrite
0

1

2

3

4

readrandom

ZenFS (+CNS SSD) F2FS (+CNS SSD) F2FS_SS (+CNS SSD)
eZNS Z-LFS

Figure 14: RocksDB performance under various workloads.

using F2FS. Figure 14 shows that Z-LFS improves the perfor-
mance by up to 25.0×, 7.83×, 1.20×, and 1.27× in fillseq;
9.28×, 7.83×, 1.20×, and 1.55× in fillrandom; and 9.01×,
8.12×, 1.19×, and 1.52× in overwrite compared with ZenFS,
F2FS, F2FS_SS, and eZNS with F2FS, respectively. As ex-
pected, in readrandom, Z-LFS achieves similar performance
compared with F2FS, F2FS_SS and eZNS with F2FS. These
results demonstrate that three techniques in Z-LFS can also
be effective even in real-world applications.

7 Related Work
Interfaces on ZNS SSDs: eZNS [42] proposes an elastic
ZNS interface which allocates active zones based on the appli-
cation workload profile and enhances performance isolation
with an I/O scheduler. CSAL [61] is a storage acceleration
layer to take advantage of high-density QLC SSD by adopt-
ing ZNS interface on the QLC SSD in a cloud environment.
ZMS [20] is a zone interface on mobile flash storage to ad-
dress the lack of on-device memory and the frequent fsync.
Our study is in line with these studies [20, 42, 61] in terms
of improving ZNS-based storage systems while we focus on
devising a ZNS-tailored file system instead of an interface.
Storage backend of RocksDB for ZNS SSDs: Bjørling et
al. [9] claim advantages of ZNS SSDs and propose ZenFS for
RocksDB [14] on ZNS SSDs. Im et al. [21] and ZenFS+ [46]
are enhanced versions of ZenFS as backend IO engines to
maximize the parallelism of ZNS SSDs. WALTZ [32] is also
an enhanced version of ZenFS to provide tight tail latency
by leveraging ZONE APPEND commands. WA-Zone [37]
suggests wear-aware zone management to balance inter-zone
and intra-zone wear considering the access pattern of LSM-
tree. These studies [9, 21, 32, 37, 46] are in line with our study
in terms of improving the performance on ZNS SSD. Mean-
while, Z-LFS is a general and ZNS-tailored log-structured file
system to run any application instead of specific applications.
Linux kernel subsystems on ZNS SSDs: ZNSwap [8] is
a swap subsystem optimized for ZNS SSDs. It introduces
a host-side GC mechanism which is co-designed with the
swap logic to reduce GC overheads and improve the per-
formance. RAIZN [26] is a logical volume manager which
exposes a ZNS SSD array as a single ZNS interface to ap-
plications. BIZA [58] is also an interface for ZNS arrays to
further improve endurance and performance by exploiting

the zone random write area and internal parallelisms within
ZNS SSDs. Our study is in line with them [8, 26, 58] in terms
of investigating a Linux kernel component while we target
designing a suitable file system for ZNS SSDs.
File systems for ZNS SSDs: ZoneFS [4, 28] is a simple
file system exposing each zone of a ZNS SSD as a file.
OPRW [30] leverages the write pointer of ZNS SSDs to ac-
celerate the fsync() performance. Our work is in line with
these works [4, 28, 30] in terms of supporting or optimizing
file systems for ZNS SSDs. On the other hand, we redesign
the metadata of LFS to enhance its compatibility with ZNS
SSDs by considering LFS features on ZNS SSD. Further-
more, we efficiently scale the active zones of log streams to
maximize the internal parallelism of ZNS SSD.

8 Conclusion
This paper presents a ZNS-tailored log-structured file sys-
tem called Z-LFS for commodity ZNS SSDs. Z-LFS enables
standalone usage of ZNS SSDs by an append-only meta-
data approach, leveraging the unique characteristics of LFS
metadata to minimize write amplification. Z-LFS efficiently
utilizes active zones for log streams via speculative log stream
management. Z-LFS resolves conflicts between zones shar-
ing internal resources within ZNS SSD via conflict-aware
zone allocation. In our evaluations, Z-LFS achieves higher
performance by up to 33.44× and 3.5× compared with F2FS
and a state-of-the-art interface for commodity ZNS SSDs,
respectively.

Acknowledgments
We sincerely thank our shepherd, Ming-Chang Yang, and the
anonymous reviewers for their invaluable feedback. This work
was supported by the National Research Foundation of Korea
(NRF) (No. RS-2025-00554650) and in part by the Brain
Korea 21 (BK21) FOUR Intelligence Computing funded by
NRF (No. NRF-4199990214639) (Corresponding Author:
Yongseok Son).

References

[1] File systems. https://zonedstorage.io/docs/lin
ux/fs.

[2] Filebench - A Model Based File System Workload Gen-
erator. https://github.com/filebench/fileben
ch.

[3] Samsung PM1733 NVMe SSD. https://download
.semiconductor.samsung.com/resources/broch
ure/PM1733%20NVMe%20SSD.pdf.

[4] Zonefs. https://www.kernel.org/doc/html/v5.1
7/filesystems/zonefs.html.

USENIX Association 2025 USENIX Annual Technical Conference 559

https://zonedstorage.io/docs/linux/fs
https://zonedstorage.io/docs/linux/fs
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://download.semiconductor.samsung.com/resources/brochure/PM1733%20NVMe%20SSD.pdf
https://download.semiconductor.samsung.com/resources/brochure/PM1733%20NVMe%20SSD.pdf
https://download.semiconductor.samsung.com/resources/brochure/PM1733%20NVMe%20SSD.pdf
https://www.kernel.org/doc/html/v5.17/filesystems/zonefs.html
https://www.kernel.org/doc/html/v5.17/filesystems/zonefs.html

[5] Samsung pm1731a review from sth., 2022. https:
//news.samsung.com/global/samsung-introduce
s-its-first-zns-ssd-with-maximized-user-c
apacity-and-enhanced-lifespan.

[6] Abdul R Abdurrab, Tao Xie, and Wei Wang. Dloop: A
flash translation layer exploiting plane-level parallelism.
In 2013 IEEE 27th International Symposium on Paral-
lel and Distributed Processing, pages 908–918. IEEE,
2013.

[7] Hanyeoreum Bae, Jiseon Kim, Miryeong Kwon, and
Myoungsoo Jung. What you can’t forget: exploiting
parallelism for zoned namespaces. In Proceedings of
the 14th ACM Workshop on Hot Topics in Storage and
File Systems, pages 79–85, 2022.

[8] Shai Bergman, Niklas Cassel, Matias Bjørling, and Mark
Silberstein. Znswap: Un-block your swap. ACM Trans-
actions on Storage, 19(2):1–25, 2023.

[9] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Ar-
avind Ramesh, Damien Le Moal, Gregory R Ganger, and
George Amvrosiadis. Zns: Avoiding the block interface
tax for flash-based ssds. In USENIX Annual Technical
Conference, pages 689–703, 2021.

[10] Chandranil Chakraborttii, Vikas Sinha, and Heiner Litz.
Ssd qos improvements through machine learning. In
Proceedings of the ACM Symposium on Cloud Comput-
ing, pages 511–511, 2018.

[11] Feng Chen, Binbing Hou, and Rubao Lee. Internal
parallelism of flash memory-based solid-state drives.
ACM Transactions on Storage (TOS), 12(3):1–39, 2016.

[12] Feng Chen, Rubao Lee, and Xiaodong Zhang. Essential
roles of exploiting internal parallelism of flash memory
based solid state drives in high-speed data processing.
In 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, pages 266–277.
IEEE, 2011.

[13] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-
soo Han. Libnvmmio: Reconstructing software IO path
with Failure-AtomicMemory-Mapped interface. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 1–16, 2020.

[14] Facebook RocksDB team. A persistent key-value store
for fast storage environments, 2021. https://rocksd
b.org.

[15] Jin Yong Ha and Heon Young Yeom. zceph: Achieving
high performance on storage system using small zoned
zns ssd. In Proceedings of the 38th ACM/SIGAPP Sym-
posium on Applied Computing, pages 1342–1351, 2023.

[16] XYHR Haas and X Hu. The fundamental limit of
flash random write performance: Understanding, analy-
sis and performance modelling. IBM Research Report,
2010/3/31, Tech. Rep, 2010.

[17] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. Zns+: Advanced zoned namespace in-
terface for supporting in-storage zone compaction. In
OSDI, pages 147–162, 2021.

[18] Jian Huang, Anirudh Badam, Laura Caulfield, Suman
Nath, Sudipta Sengupta, Bikash Sharma, and Moinud-
din K Qureshi. Flashblox: Achieving both performance
isolation and uniform lifetime for virtualized ssds. In
FAST, volume 17, pages 375–390, 2017.

[19] J Hwang. Towards even lower total cost of ownership
of data center it infrastructure. In Proceedings of the
NVRAMOS Workshop, Jeju, Korea, pages 24–26, 2019.

[20] Joo-Young Hwang, Seokhwan Kim, Daejun Park, Yong-
Gil Song, Junyoung Han, Seunghyun Choi, Sangyeun
Cho, and Youjip Won. ZMS: Zone abstraction for mo-
bile flash storage. In 2024 USENIX Annual Technical
Conference (USENIX ATC 24), pages 173–189, 2024.

[21] Minwoo Im, Kyungsu Kang, and Heonyoung Yeom. Ac-
celerating rocksdb for small-zone zns ssds by parallel
i/o mechanism. In Proceedings of the 23rd International
Middleware Conference Industrial Track, pages 15–21,
2022.

[22] J.Axboe. Fio benchmark. https://github.com/axb
oe/fio.

[23] Dongwon Kang, Dawoon Jung, Jeong-Uk Kang, and
Jin-Soo Kim. µ-tree: An ordered index structure for
nand flash memory. In Proceedings of the 7th ACM &
IEEE international conference on Embedded software,
pages 144–153, 2007.

[24] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Yang-
Suk Kee, and Moonwook Oh. Durable write cache
in flash memory ssd for relational and nosql databases.
In Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’14, 2014.

[25] Juwon Kim, Minsu Kim, Muhammad Danish Tehseen,
Joontaek Oh, and YouJip Won. IPLFS: Log-Structured
file system without garbage collection. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages
739–754, 2022.

[26] Thomas Kim, Jekyeom Jeon, Nikhil Arora, Huaicheng
Li, Michael Kaminsky, David G Andersen, Gregory R
Ganger, George Amvrosiadis, and Matias Bjørling.

560 2025 USENIX Annual Technical Conference USENIX Association

https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://rocksdb.org.
https://rocksdb.org.
https://github.com/axboe/fio
https://github.com/axboe/fio

Raizn: Redundant array of independent zoned names-
paces. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 660–
673, 2023.

[27] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hi-
fumi, Seiji Kihara, and Satoshi Moriai. The linux imple-
mentation of a log-structured file system. ACM SIGOPS
Operating Systems Review, 40(3):102–107, 2006.

[28] Damien Le Moal and Ting Yao. zonefs: Mapping posix
file system interface to raw zoned block device accesses.
2020.

[29] Changman Lee, Dongho Sim, Joo Young Hwang, and
Sangyeun Cho. F2fs: A new file system for flash storage.
In FAST, volume 15, pages 273–286, 2015.

[30] Euidong Lee, Ikjoon Son, and Jin-Soo Kim. An effi-
cient order-preserving recovery for f2fs with zns ssd. In
Proceedings of the 15th ACM Workshop on Hot Topics
in Storage and File Systems, pages 116–122, 2023.

[31] Eunji Lee, Seunghoon Yoo, Jee-Eun Jang, and
Hyokyung Bahn. Shortcut-jfs: A write efficient
journaling file system for phase change memory. In
Mass Storage Systems and Technologies (MSST), 2012
IEEE 28th Symposium on, pages 1–6. IEEE, 2012.

[32] Jongsung Lee, Donguk Kim, and Jae W Lee. Waltz:
Leveraging zone append to tighten the tail latency of lsm
tree on zns ssd. Proceedings of the VLDB Endowment,
16(11):2884–2896, 2023.

[33] Minkyeong Lee, Dong Hyun Kang, Minho Lee, and
Young Ik Eom. Improving read performance by isolating
multiple queues in nvme ssds. In Proceedings of the 11th
International Conference on Ubiquitous Information
Management and Communication, pages 1–6, 2017.

[34] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. Max:
A Multicore-Accelerated file system for flash storage. In
2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 877–891, 2021.

[35] Renping Liu, Zhenhua Tan, Yan Shen, Linbo Long, and
Duo Liu. Fair-zns: Enhancing fairness in zns ssds
through self-balancing i/o scheduling. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 2022.

[36] G Lockwood. Ior and mdtest (2019), 2019. https:
//github.com/hpc/ior.git.

[37] Linbo Long, Shuiyong He, Jingcheng Shen, Renping
Liu, Zhenhua Tan, Congming Gao, Duo Liu, Kan Zhong,
and Yi Jiang. Wa-zone: Wear-aware zone management

optimization for lsm-tree on zns ssds. ACM Transac-
tions on Architecture and Code Optimization, 21(1):1–
23, 2024.

[38] Ricardo Macedo, Yusuke Tanimura, Jason Haga, Vijay
Chidambaram, José Pereira, and João Paulo. PAIO: Gen-
eral, portable I/O optimizations with minor application
modifications. In 20th USENIX Conference on File and
Storage Technologies (FAST 22), pages 413–428, 2022.

[39] Bo Mao, Suzhen Wu, and Lide Duan. Improving
the ssd performance by exploiting request character-
istics and internal parallelism. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 37(2):472–484, 2017.

[40] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The new ext4 filesystem: current status and
future plans. In Proceedings of the Linux symposium,
volume 2, pages 21–33, 2007.

[41] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and
Taesoo Kim. Understanding manycore scalability of file
systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 71–85, 2016.

[42] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind
Krishnamurthy. eZNS: An elastic zoned namespace for
commodity ZNS SSDs. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
23), pages 461–477, 2023.

[43] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind
Krishnamurthy. ezns: Elastic zoned namespace for
enhanced performance isolation and device utilization.
ACM Transactions on Storage, 20(3):1–41, 2024.

[44] NVM Express Workgroup. Nvm express zoned names-
paces command set 1.1b, 2021. https://nvmexpress
.org/developers/nvme-command-set-specifica
tions/.

[45] Gijun Oh, Junseok Yang, and Sungyong Ahn. Efficient
key-value data placement for zns ssd. Applied Sciences,
11(24):11842, 2021.

[46] Myounghoon Oh, Seehwan Yoo, Jongmoo Choi,
Jeongsu Park, and Chang-Eun Choi. Zenfs+: Nurtur-
ing performance and isolation to zenfs. IEEE Access,
11:26344–26357, 2023.

[47] Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee
Lee, and Sam H Noh. Optimizations of lfs with slack
space recycling and lazy indirect block update. In Pro-
ceedings of the 3rd Annual Haifa Experimental Systems
Conference, pages 1–9, 2010.

USENIX Association 2025 USENIX Annual Technical Conference 561

https://github.com/hpc/ior.git
https://github.com/hpc/ior.git
https://nvmexpress.org/developers/nvme-command-set-specifications/
https://nvmexpress.org/developers/nvme-command-set-specifications/
https://nvmexpress.org/developers/nvme-command-set-specifications/

[48] Alma Riska and Erik Riedel. Disk drive level workload
characterization. In USENIX Annual Technical Con-
ference, General Track, volume 2006, pages 97–102,
2006.

[49] Mendel Rosenblum and John K Ousterhout. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS), 10(1):26–
52, 1992.

[50] Dongjoo Seo, Ping-Xiang Chen, Huaicheng Li, Matias
Bjørling, and Nikil Dutt. Is garbage collection overhead
gone? case study of f2fs on zns ssds. 2023.

[51] Hojin Shin, Myounghoon Oh, Gunhee Choi, and Jong-
moo Choi. Exploring performance characteristics of zns
ssds: Observation and implication. In 2020 9th Non-
Volatile Memory Systems and Applications Symposium
(NVMSA), pages 1–5. IEEE, 2020.

[52] Theano Stavrinos, Daniel S Berger, Ethan Katz-Bassett,
and Wyatt Lloyd. Don’t be a blockhead: zoned names-
paces make work on conventional ssds obsolete. In
Proceedings of the Workshop on Hot Topics in Operat-
ing Systems, pages 144–151, 2021.

[53] Qiuping Wang and Patrick P. C. Lee. Zapraid: Toward
high-performance raid for zns ssds via zone append.
APSys ’23, page 24–29, New York, NY, USA, 2023.
Association for Computing Machinery. doi:10.1145/
3609510.3609810.

[54] Randolph Y Wang and Thomas E Anderson. xfs: A
wide area mass storage file system. In Proceedings of
IEEE 4th Workshop on Workstation Operating Systems.
WWOS-III, pages 71–78. IEEE, 1993.

[55] Denghui Wu, Biyong Liu, Wei Zhao, and Wei Tong. Zn-
skv: Reducing data migration in lsmt-based kv stores on
zns ssds. In 2022 IEEE 40th International Conference
on Computer Design (ICCD), pages 411–414. IEEE,
2022.

[56] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,
and Swaminathan Sundararaman. Don’t stack your
log on my log. In 2nd Workshop on Interactions of
NVM/Flash with Operating Systems and Workloads (IN-
FLOW 14), 2014.

[57] Junseok Yang, Seokjun Lee, and Sungyong Ahn. Se-
lective power-loss-protection method for write buffer in
zns ssds. Electronics, 11(7):1086, 2022.

[58] Shushu Yi, Shaocong Sun, Li Peng, Yingbo Sun, Ming-
Chang Yang, Zhichao Cao, Qiao Li, Myoungsoo Jung,
Ke Zhou, and Jie Zhang. Biza: Design of self-governing
block-interface zns afa for endurance and performance.
In Proceedings of the ACM SIGOPS 30th Symposium on

Operating Systems Principles, SOSP ’24, page 313–329,
New York, NY, USA, 2024. Association for Computing
Machinery. doi:10.1145/3694715.3695953.

[59] Jiacheng Zhang, Jiwu Shu, and Youyou Lu. ParaFS: A
Log-Structured file system to exploit the internal paral-
lelism of flash devices. In 2016 USENIX Annual Techni-
cal Conference (USENIX ATC 16), pages 87–100, 2016.

[60] Runyu Zhang, Duo Liu, Xianzhang Chen, Xiongxiong
She, Chaoshu Yang, Yujuan Tan, Zhaoyan Shen, and Zili
Shao. Loffs: A low-overhead file system for large flash
memory on embedded devices. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE,
2020.

[61] Yanbo Zhou, Erci Xu, Li Zhang, Kapil Karkra, Mariusz
Barczak, Wayne Gao, Wojciech Malikowski, Mateusz
Kozlowski, Łukasz Łasek, Ruiming Lu, et al. Csal: the
next-gen local disks for the cloud. In Proceedings of the
Nineteenth European Conference on Computer Systems,
pages 608–623, 2024.

562 2025 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/3609510.3609810
https://doi.org/10.1145/3609510.3609810
https://doi.org/10.1145/3694715.3695953

	Introduction
	Background and Motivation
	Small-zone and Large-zone ZNS SSDs
	Challenges of LFS on ZNS SSDs

	Analysis of ZNS SSD performance
	Basic performance of ZNS SSD
	Interference among internal resources
	File system performance on ZNS SSD

	Design and Implementation
	Design Goals of Z-LFS
	Strategies of Z-LFS
	Overall Architecture of Z-LFS
	Append-only metadata management
	Life cycle based metadata management
	Metadata delta logging

	Speculative log stream management
	Conflict-aware zone allocation
	Crash Consistency
	Implementation

	Discussion and limitation
	Evaluation
	Experimental setup
	Workloads
	Micro-benchmark
	Macro-benchmark
	Real-world Application

	Related Work
	Conclusion

