
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

Chitu: Avoiding Unnecessary Fallback in
Byzantine Consensus

Rongji Huang, Xiangzhe Wang, Xiaofeng Yan, and Lei Fan, Shanghai Jiao Tong
University; Guangtao Xue and Shengyun Liu, Shanghai Jiao Tong University and

Shanghai Key Laboratory of Trusted Data Circulation, Governance and Web3
https://www.usenix.org/conference/atc25/presentation/huang-rongji

Chitu: Avoiding Unnecessary Fallback in Byzantine Consensus

Rongji Huang1*, Xiangzhe Wang1*, Xiaofeng Yan1*, Lei Fan1, Guangtao Xue1,2, and Shengyun Liu1,2#

1Shanghai Jiao Tong University
2Shanghai Key Laboratory of Trusted Data Circulation, Governance and Web3

Abstract
Most Byzantine-Fault Tolerant (BFT) consensus protocols

either pre-select a single leader with the help of additional
timing assumptions (i.e., partially synchronous ones) or resort
to random coins to achieve only probabilistic termination
(i.e., asynchronous ones). The single leader may become a
performance bottleneck and/or lead to availability problems,
while probabilistic termination increases latency.

We re-consider the consensus problem from its first princi-
ples, where neither synchrony assumption or any designated
role, nor randomization is intrinsic to consensus. We thus
formally study a framework for designing robust BFT pro-
tocols with low latency: nodes first try to achieve consensus
merely based on message exchange, but only resort to a fall-
back mechanism like random coin or leader election if correct
nodes have divergent opinions on a proposal. We further
present Chitu, an asynchronous DAG-based protocols follow-
ing this framework. Chitu in the best case commits proposals
in four message delays, even in the presence of faulty nodes
and/or under asynchrony. In the worst case, Chitu still ensures
predictable performance with O(1) time complexity in expec-
tation. Experimental results on Amazon EC2 show that Chitu
achieves a significant reduction in latency compared to two
representative DAG-based protocols that always put a leader
or randomization on the execution path.

1 Introduction

Blockchains [8,69], or Byzantine-Fault Tolerance (BFT) state-
machine replication (SMR) protocols [27, 44, 45, 80] are a
promising approach to providing robust services for decentral-
ized applications. Boosting the performance of BFT protocols
is thus becoming a hot topic in recent years [16, 71, 77, 79].
At the core of SMR protocols is a consensus algorithm that
reaches agreement among a group of replicas or nodes. Byzan-
tine consensus protocols [58] further assume faulty nodes can

*These authors contributed equally and are listed in alphabetical order
#Corresponding author: shengyun.liu@sjtu.edu.cn

exhibit arbitrary or malicious behaviors. Consensus protocols
are roughly categorized into three types according to their
timing assumptions: synchronous [34, 58, 67], partially syn-
chronous [22, 27, 37, 80] and asynchronous [21, 32, 62, 66].
Synchronous or partially synchronous protocols rely on net-
work synchrony to ensure safety or liveness property, while
asynchronous variants resort to randomization to achieve only
probabilistic termination due to FLP impossibility [40].

Many existing BFT protocols [22, 27, 44, 48, 56, 80] are
leader-based and designed assuming the partial synchrony
model, in which a single leader is elected by the help of net-
work synchrony assumption. The leader is responsible for
making a proposal and coordinating consensus process. If
the leader (and the network) is stable, non-faulty nodes can
reach consensus within a fixed number of communication
phases, achieving promising performance. However, partially
synchronous protocols rely on a complicated view synchro-
nization mechanism [28, 70] to keep every correct node in
sync with one another, and a predefined maximum network de-
lay ∆ to help trigger the replacement of a problematic leader
(a.k.a., view change). During view change (which lasts at
least ∆ time), no available service can be provided. Even
worse, if network synchrony assumption does not hold, par-
tially synchronous protocols may be involved in consecutive
view changes, forfeiting liveness property. Network prob-
lems can occur more often than not in Wide-Area-Network
(WAN) [38], which is the typical setting for blockchain sys-
tems [48].

Asynchronous protocols, in contrast, have no synchrony
assumptions and do not pre-select a leader [21, 25, 26, 32, 36,
47, 66]. Asynchronous protocols require every node to make
a proposal in each consensus instance, and participate in sev-
eral phases of message exchange. Finally, a coin-flipping
phase is used to help non-faulty nodes converge and reach
a final agreement. With probability one, every non-faulty
node outputs the same set of committed proposals. Recently-
proposed asynchronous protocols typically select a leader a
posteriori in order to achieve O(1) time complexity in expec-
tation [32, 47, 53].

USENIX Association 2025 USENIX Annual Technical Conference 923

Although asynchronous protocols are becoming prevalent,
they often incur more rounds of communications compared
to their partially synchronous counterparts [46, 63]. We argue
that the problem mainly comes from the coin-flipping phase
when it is located on the critical path. The appeal of partially
synchronous protocols is in their simplicity when the network
is stable most of the time, with predictable latency between
correct nodes, and when protocol execution path skips costly
timeout event and view change mechanism, achieving fast
termination.

Applying a fast path (often with optimistic assumptions) to
normal-case operations is a widely-used approach for boost-
ing system performance, and also has profound influence on
consensus protocols [30, 56, 57, 62]. Actually, several up-to-
date asynchronous protocols [63] adopt a fast path that mimics
the normal case operations of partially synchronous proto-
cols and a slow path that still provides liveness even under
asynchrony. We can view them as combining assumptions
and essential steps of both worlds. Therefore, the fast path
of these protocols still relies on some special role (e.g., the
single leader) and synchrony assumptions to move forward.
In other words, their fast path possesses both advantages and
disadvantages of partially synchronous protocols.

Meanwhile, we also found two recent works that enable fast
termination in a pretty different way: Red Belly [30] (using
DBFT [29]) under partial synchrony and MyTumbler [62]
under asynchrony. Red Belly requires every node to make a
proposal in each consensus instance. Unlike other partially
synchronous counterparts, Red Belly uses a binary agreement
(BA) protocol to determine the decision of each proposal
(either committed or aborted). By doing so, Red Belly resorts
to a lightweight coordinator in BA to break ties only if correct
nodes are divergent on some proposal1. In a similar vein,
MyTumbler (under asynchrony) skips random coins in its BA
protocol if most correct nodes are consistent on a proposal.

If we consider both leader (coordinator) election and coin
flipping a fallback mechanism that sidesteps FLP impossi-
bility [40], Red Belly and MyTumbler can entirely skip the
fallback via their fast paths. This departs from other fast path
design in the absence of any special role. Although the above
two mentioned protocols have such an appealing feature, Red
Belly still puts timers on its fast path, and both of them use
binary agreement (BA), meaning that they have to explicitly
resolve ambiguity of at most n BA instances.

Inspired by Red Belly and MyTumbler, we first formally
study a framework for designing robust BFT protocols with
low latency: correct nodes first try to reach agreement merely
based on message exchange (which we call the fast path),
but only resort to a fallback mechanism like random coins or
leader election when correct nodes have divergent opinions
on some proposal. Figure 1 depicts different frameworks. Par-
tially synchronous protocols (except Red Belly) pre-select a

1E.g., some nodes input 1 into a BA instance, while others input 0.

0Message
Exchange

Random
Coin

Message
ExchangeLeader

Timer

Message
Exchange

Leader/Coin/Timer…

Fast Path Y
N

Most
asynchronous

protocols

Most
partially

synchronous
protocols

The
framework
we study

YN

Y

Y

N

N

Figure 1: Frameworks for consensus protocols.

special role (such as the leader) with the help of additional
timing assumptions, while asynchronous BFT protocols (ex-
cept MyTumbler) either put randomization on the critical path
or re-introduce synchrony assumptions and some special role
in their fast path. In contrast, the framework we study has the
following unique features:

• In the fast path there is no special role (such as the leader)
used or elected, and thus no synchrony assumption is
re-introduced; and,

• there is no switch between fast and normal paths, as both
can proceed concurrently and in a unified manner.

From a different viewpoint, the model of the fast path be-
ing studied in this paper could be considered a variant of fair
schedulers [21]. Fair scheduler was proposed four decades
ago, but was somehow overlooked from engineering perspec-
tives. The main drawback of fair scheduler is that if the ad-
versary controls message scheduling at will, the protocols no
longer provide liveness. Hence, a fallback mechanism such
as leader election and/or randomization is essential for miti-
gating such attacks targeting the fast path.

We name the framework we study Fair-Fallback. Following
this framework, we further present Chitu, an asynchronous
BFT protocol designed on top of a well-structured Directed
Acyclic Graph (DAG). Each proposal in a DAG is represented
as a vertex. DAG-based BFT protocols are becoming preva-
lent in permissionless blockchains [11, 32, 53, 60, 76]. They
embed the consensus process in the dynamic construction
of a DAG structure without involving additional messages,
simplifying protocol design and implementation. Chitu is
largely inspired by Tusk [32] and DAG-Rider [53], two re-
cently proposed DAG-based protocols. Besides possessing
the same O(1) time complexity in expectation in the worst
case, Chitu further bypasses the fallback mechanism (i.e., the
single leader vertex in DAG) provided that most nodes have
observed the same set of vertices in a round (i.e., a consensus
instance), thus achieving fast termination.

Guided by the Fair-Fallback, the next challenge for Chitu is
to find a way to commit as many proposals as possible through
the fast path, which we found is a non-trivial task. After sev-
eral attempts at devising and evaluating different commit rules
and also according to the design of prior work [30, 62], we

924 2025 USENIX Annual Technical Conference USENIX Association

located a useful rule of thumb: a node should wait as long as
possible for a proposal to enter the fast path, provided that
this wait does not introduce significant costs or violate live-
ness properties. To this end, we further propose an adaptive
wait mechanism that helps Chitu dramatically increase the
chance of achieving fast termination.

Finally, we evaluate Chitu, Tusk and BullShark [76] on
Amazon EC2 platform. BullShark is another DAG protocol
designed under partial synchrony. The experimental result
shows that in fault-free case, Chitu can reduces end-to-end
latency, achieving up to 82.5% reduction compared to Tusk.
Under crash faults, Chitu can still go through the fast path,
while the performance of BullShark is significantly affected
by the faulty node. We also mimic an adversarial situation
under Byzantine attack, where each round is prolonged with
extra waiting and the fast path is disabled. Even if all the pro-
posals go through random coins in this case, the performance
of Chitu degrades gracefully.

2 Background

2.1 Model
We focus on the Blockchain or state-machine replication
(SMR) problem [73], a solution to which is a robust dis-
tributed system that coordinates a group of processes or nodes,
in order to mask a bounded number of failures. SMR protocols
order requests issued by clients, such that:

• (Safety) If two requests req1 and req2 are committed
in the same position (or with the same block height in
blockchain contexts), then req1 = req2;

• (Liveness) Eventually every request req issued by a cor-
rect client can be committed.

We target Byzantine faults, which may exhibit arbitrary behav-
iors even collusion attacks. For simplicity, we assume there
are a group Π of n = 3 f +1 nodes [37], in which at most f
nodes may be faulty. Thus, a Byzantine quorum consists of
⌈ n+ f+1

2 ⌉ = n− f = 2 f + 1 nodes. We assume reliable and
authenticated channels between each pair of correct nodes,
meaning that any message sent by a correct node will be
eventually delivered by every correct receiver. Asynchronous
protocols must rely on reliable channels to provide liveness,
so does the fast path of Chitu.

2.2 Fast termination and the leader’s bottle-
neck in partially synchronous protocols

Partially synchronous protocols are commonly separated into
two sub-routines: the normal-case operations that allow a
single leader (e.g., the primary in PBFT [27] or the leader
in HotStuff [80]) to coordinate consensus and make its pro-
posal (i.e., a batch of requests or transactions) committed,
and the view-change operations that elect a new leader when,
e.g., the previous one has crashed. The safety property of

𝑣ହ𝑣ଶ

𝑣ଷ

𝑣ସ

𝑣ଵ

𝑣

round
𝑟 𝑟 + 1 𝑟 + 2

node 0

node 1

node 2

node 3

𝑣

𝑟 + 3

leader

Figure 2: Example of commit rules in DAG-based protocols
like Tusk [32] when n = 4 and f = 1. Each circle represents
a vertex in the DAG. Dotted circles represent vertices com-
mitted by the leader (v5), while dotted lines represent edges
making the leader valid.

partially synchronous protocols is ensured by quorum-based
techniques [78]. The liveness property, however, is ensured
by further introducing network synchrony between the single
leader and others. Such timing assumptions also help trigger
the view-change operations. When the leader is correct and
the network is stable, partially synchronous protocols can
reach consensus within a fixed number of message exchange,
achieving deterministic and fast termination. In summary,

• partially synchronous protocols have normal-case op-
erations that rely on a single leader to reach consensus
without involving time-related steps;

• the leader and other 2 f correct nodes must remain in the
same view for a sufficiently long period of time, such
that consensus can be achieved before timeout.

Note that the second reason is critical in ensuring liveness
and providing good performance. Otherwise, partially syn-
chronous protocols may be involved in consecutive view
changes.

When the leader is slow or has crashed, partially syn-
chronous protocols incur more communication phases and
additional timeout events for electing a new leader. We argue
that the problem mainly stems from the existence of some
special role, which is always on the critical path regardless of
the system state.

2.3 Randomization in asynchronous protocols
Asynchronous protocols [13, 32, 36, 47, 53, 66, 72] work in
a somewhat leaderless manner, in the sense that no special
role (such as the leader) is pre-selected by the help of timing
assumptions. Asynchronous protocols are commonly round-
based, where in each round every node is required to suggest
a value and participate in several communication phases. The
value a node suggests in a round is influenced by message
exchange of previous rounds. To determine which value(s)
can be committed, asynchronous protocols introduce a coin-
flipping phase, which breaks ties and helps correct nodes
converge.

USENIX Association 2025 USENIX Annual Technical Conference 925

Figure 2 depicts how Tusk [32], a recently proposed DAG-
based asynchronous protocol, proceeds round by round. Each
round corresponds to a new consensus instance. Since con-
secutive rounds are connected by edges, the execution of
consecutive consensus instances is pipelined, similarly to the
way HotStuff [80] chains consecutive proposals.

In each round r, a node i makes a proposal, i.e., a vertex in
the DAG. Node i then propagates the vertex to others via a
Byzantine Reliable Broadcast (BRB) protocol [21, 24]. BRB
ensures that the delivered message (vertex) is the same for
all correct nodes despite f Byzantine faults. BRB in Tusk
takes three phases of message exchange. Each vertex of round
r+1 has exactly n− f edges connecting to vertices of round
r. For example, vertex v5 in Figure 2 connects to v1, v2 and v3
(but not v4). DAG is merely a partially ordered set, in which
vertices are not totally ordered. To this end, Tusk generates a
random coin in each odd round (e.g., round r+1 in Figure 2),
by which correct nodes collectively select a leader vertex (e.g.,
v5). Random coins can be instantiated using a deterministic
threshold signature scheme [19]. If the leader vertex is valid,
i.e., is connected by at least f +1 vertices of the subsequent
round (e.g., v5), it recursively commits all the ancestors in the
DAG in a deterministic manner. Such a validity check is used
to ensure there is a path (in the DAG) between a valid leader
vertex and any subsequent leader vertex. For instance, if v7 in
Figure 2 is selected as the leader vertex of round r+3, there
must be a path connecting v7 and v5 because v5 is connected
by f +1 vertices of round r+2 and v7 must connect to n− f
vertices of round r+2. By ensuring this property, no one may
miss or skip any valid leader vertex but commit them in the
same order.

The random coin of round r+1 is generated when n− f
nodes have entered round r+ 3,2 as the leader information
should not be revealed in advance. This is to ensure with non-
zero probability the selected leader vertex is valid. Otherwise,
if an adversary that controls message delivery knows the
coin in advance, it may always keep the corresponding leader
vertex connected by less than f +1 vertices, forfeiting liveness
properties. As the protocol proceeds round by round, with
probability 1 some new leader vertex and its ancestors can be
committed.

As we can observe, (1) compared to partially synchronous
counterparts like PBFT, Tusk involves more rounds of mes-
sage exchange, even in the absence of node/network failures;
and, (2) random coins are always located on the execution
path, thus making termination probabilistic. If the selected
leader vertex is not valid, at least another two rounds are in-
volved. In practice, such a delayed commit can happen when,
e.g., the proposer of the leader vertex is slow or has crashed.

The design choices of Tusk (and most asynchronous pro-
tocols) are solely based on a pessimistic assumption: an ad-
versarial scheduler can always control message scheduling at

2At the time when most edges between rounds r+1 and r+2 are con-
firmed.

will. Hence, Tusk has only one path for committing proposals,
i.e., by selecting a leader vertex with the help of random coins.
In practice, such an omnipotent adversary does not (always)
exist and the network performance is predictable most of the
time [43, 61].

3 The Fair-Fallback Framework

3.1 Motivation and first principles of consen-
sus

We simplify the discussion by focusing on one-shot consensus.
Any solution to the multivalued consensus problem requires
each proposer i to make a proposal Bi. After several phases
of message exchange, correct nodes eventually decide on a
single proposal or a subset of all proposals [65].

Generally, we can also consider any consensus protocol
running m Binary Agreement (BA) instances (implicitly or
explicitly), each of which determines the result of a given pro-
posal. Eventually, each proposal is either committed (output 1)
or aborted (output 0). Following the concept and terminology
used in the seminal FLP impossibility [40], once a decision
can be made, we say each proposal Bi becomes univalent, i.e.,
either 1-valent or 0-valent. Initially, every proposal is bivalent.
For leader-based protocols, only a single proposal becomes
1-valent, and it is also the final decision. Other proposals are
0-valent. For leaderless variants such as asynchronous proto-
cols, multiple proposals may become 1-valent and be included
in the final decision.

We observe that the general pattern discussed above neither
introduces a leader or any special role, nor does it rely on
random coins to break ties. In other words, neither any special
role (or the maximum network delay ∆) nor randomization
is intrinsic to the consensus problem. If correct nodes can
reach agreement of each proposal merely based on message
exchange, no additional assumptions or mechanisms should
be put on the execution path. If we target the more practical
multi-instance consensus problem (or SMR), where a series
of consensus instances are sequentially ordered, either we can
consider this order obtained out-of-band (e.g., pre-defined
sequence numbers), or for DAG protocols the edges in DAG
natively represent the partial order between proposals. In both
cases, no special role exists in consensus.

3.2 A strawman protocol

We present a simple strawman protocol to better illustrate
the fast path of our approach. To simplify our discussion, we
further assume (1) each node acts both as a proposer and
as a validator, and (2) there is no equivocation and every
node is benign (i.e., correct or crashed), though we still have
n = 3 f +1 nodes. In §4 we give full-fledged Chitu which also
tolerates Byzantine faults.

926 2025 USENIX Annual Technical Conference USENIX Association

node 0

node 1

node 2

node 3

𝐵

𝐵ଵ

𝐵ଶ

𝐵ଷ

{𝐵,𝐵ଵ, 𝐵ଶ}

{𝐵, 𝐵ଵ, 𝐵ଶ}

{𝐵, 𝐵ଵ, 𝐵ଶ}

{𝐵ଵ, 𝐵ଶ, 𝐵ଷ}
proposal notification

𝐵:3, 𝐵ଵ:3, 𝐵ଶ: 3
commit(𝐵, 𝐵ଵ, 𝐵ଶ)

{𝐵: 2, 𝐵ଵ: 3, 𝐵ଶ: 3, 𝐵ଷ: 1}

{𝐵: 2, 𝐵ଵ: 3, 𝐵ଶ: 3, 𝐵ଷ: 1}

{𝐵: 2, 𝐵ଵ: 3, 𝐵ଶ: 3, 𝐵ଷ: 1}

(a) Node 0 decides on B0, B1 and B2, while every node
selects B0, B1 and B2 as the candidates.

node 0

node 1

node 2

node 3

𝐵

𝐵ଵ

𝐵ଶ

𝐵ଷ

{𝐵,𝐵ଵ, 𝐵ଶ}

{𝐵, 𝐵ଵ, 𝐵ଷ}

{𝐵ଵ, 𝐵ଶ, 𝐵ଷ}

{𝐵ଵ, 𝐵ଶ, 𝐵ଷ}
proposal notification

{𝐵: 2, 𝐵ଵ: 3, 𝐵ଶ: 2, 𝐵ଷ: 2}

{𝐵: 2, 𝐵ଵ: 3, 𝐵ଶ: 2, 𝐵ଷ: 2}

{𝐵: 1, 𝐵ଵ: 3, 𝐵ଶ: 2, 𝐵ଷ: 3}

{𝐵: 1, 𝐵ଵ: 3, 𝐵ଶ: 2, 𝐵ଷ: 3}

(b) Nodes 0 and 1 select B0, B1, B2 and B3 as the
candidates, while nodes 2 and 3 exclude B0.

Figure 3: Example for the strawman protocol (n = 4).

First, 1 each (correct) node i makes a proposal Bi and
propagates Bi to others. As at most f nodes may be faulty, 2
after receiving n− f proposals, node i casts a vote on each
proposal by notifying others of all the proposals received.
Finally, 3 after receiving n− f such notifications (again, the
other f nodes may be faulty), node i selects the proposals
that have each obtained f +1 votes as the candidates for final
decisions.

For each proposal B, there are three cases, where the first
two are univalent:

• (1-valent) If at least n− f nodes have notified of B, we
say B is 1-valent;

• (0-valent) If at least n− f nodes have not notified of B
(if B exists), we say B is 0-valent; and,

• (bivalent) If neither of the above conditions is met, we
say B is bivalent.

Fast path. If for each proposal B, B is either 1-valent or 0-
valent, we can safely commit all the 1-valent proposals and
abort 0-valent ones. This works because every node in step 3
will select the same candidates (i.e., only 1-valent ones). Even
with further communication and/or any additional mechanism,
correct nodes will eventually commit the same set of propos-
als. For instance, in Figure 3a, node 0 immediately commits
B0, B1 and B2 upon observing they are 1-valent (as included
in n− f notifications) and B3 is 0-valent (as not included in
n− f notifications). Other nodes will only select B0, B1 and
B2 (but not B3) as the candidates for further negotiations.

On the contrary, if any proposal B is bivalent, more com-
munication and/or additional mechanism is needed in order
to determine the final result of each bivalent proposal. For
instance, in Figure 3b, B1, B2 and B3 are 1-valent, but B0 is
bivalent. Actually, the main challenge for any (multi-instance)
consensus protocol is to obtain a total order on committed
proposals. Thus, the fast path of our protocol may fail due to a
possible discrepancy in the final order. That is why a fallback
mechanism (like leader election or random coin) is needed.

3.3 The framework

There are several ways to reach final agreement on biva-
lent proposals. We can repeat the notification step described
in §3.2 (i.e., step 2), where each node only notifies of the
selected candidates. If with non-zero probability each repeat
results in a univalent status, the protocol can itself achieve
probabilistic termination. Such a model, a.k.a., fair scheduler,
was formally described in the seminal work of Bracha and
Toueg [21].

However, if Byzantine nodes precisely control the delivery
speed of their own messages, they may always keep their own
proposals bivalent (e.g., node 0 and proposal B0 in Figure 3b),
thus breaking liveness properties. To mitigate this problem,
we must rely on a fallback mechanism to break ties. We
first integrated a light-weight leader into the fast path. In
contrast to partially synchronous protocols, we do not rely
on synchrony assumptions (or any timer) but only leverage
a pre-selected leader to resolve ambiguity, which provides
probabilistic termination if Byzantine nodes only manipulate
the delivery speed of their own messages but not that of correct
nodes.

In the worst case, if the adversary also controls message
scheduling of correct nodes, some proposal may forever be
bivalent and the pre-selected leader may not work. To de-
fend against such a powerful adversary, existing asynchronous
protocols explicitly introduce random coins to make correct
nodes converge. Similarly, we further integrate random coins
into the fast path and obtain Chitu (in a similar vein as Tusk,
see §2.3), if the problem needs to be dealt with.

Maybe more interestingly, if we assume the adversary can
control message scheduling but cannot (always) break syn-
chrony assumptions, we can instead integrate ∆ (the maximum
network delay) into the fast path and obtain a partially syn-
chronous protocol. Thanks to the simplicity of DAG structure,
we can readily apply the fast path to Bullshark [76] by pre-
selecting a leader in a round-robin fashion and waiting ∆ time
for each leader vertex. We may even remove timeouts (but
keep leaders) and obtain an asynchronous protocol under fair
schedulers [21], which refrains from using a burdensome ran-
dom number generation protocol (e.g., threshold signature).
Since they share very similar features with Chitu, in this paper
we only focus on Chitu. Note that in all above-mentioned
protocols a fallback mechanism (i.e., random coins or pre-
selected leaders) is needed only if some proposals are bivalent.
The framework we use is depicted in Figure 4.
Generalization of the fast path. There can be different ways
to instantiate the fast path. In §3.2 (and §4) we only give one
concrete solution. Generally, assume the conditions for the
fast path to commit a proposal are denoted as CONC (e.g.,
1-valent ones in §3.2), while the conditions for the fast path
to abort a proposal are CONA (e.g., 0-valent ones in §3.2).
Further assume the conditions for the fallback to commit a
proposal are CONF . Then, the following two invariants must

USENIX Association 2025 USENIX Annual Technical Conference 927

node 0

node 1

node 2

node 3

…

propose(𝐵)

𝐵ଶ: 1-valent
commit(𝐵, 𝐵ଵ, 𝐵ଶ)

𝐵ଷ: 0-valent

𝐵ଵ: 1-valent

𝐵: 1-valent
propose(𝐵ଵ)

propose(𝐵ଶ)

propose(𝐵ଷ)

Fallback:
leader/
coin/

timer/
…

normal path fast path

Figure 4: The Fair-Fallback framework.

hold:
• If any proposal B satisfies CONC , then B must also sat-

isfy CONF ; and,
• If any proposal B satisfies CONA , then B must not satisfy

CONF .
These two variants guarantee that even if some nodes go

through the fast path, while others proceed by the fallback,
they still obtain the same result for each proposal.

There are two remaining questions: (1) how to ensure safety
properties under Byzantine faults; and, (2) how to efficiently
integrate the fast path into a fallback mechanism, such that
there is no switch between two paths and each path commits
the same set of proposals. For the first question, every message
in our strawman protocol (i.e., proposal and notification) is
disseminated through a Byzantine Reliable Broadcast (BRB)
protocol, such that a Byzantine sender cannot make correct
nodes deliver distinct messages. For the second question, our
full-fledged solution (see §4) is inspired by recently-proposed
DAG protocols [32, 53, 76]. The fallback mechanism (i.e., the
selected leader vertices) is embedded into the dynamic con-
struction of DAG, enabling consensus to be achieved without
sending extra messages, so is the fast path. With the same
DAG and the same leader selected by random coins, no matter
whether nodes proceed through the fast path or the fallback,
they commit the same set of (1-valent) proposals.

4 The Chitu Protocol

Chitu is inspired by Tusk [32] and DAG-Rider [53], both of
which adopt DAG as the underlying structure. Chitu differs
from Tusk and DAG-Rider in that it is further enhanced by
a fast path relying on no special role. In the best case, Chitu
takes only four communication phases to commit a proposal.
In the following, we first discuss the main idea of Chitu in
§4.1. We then describe the detail of Chitu in §4.2-§4.5 and
sketch its proof in §4.6. We postpone its pseudocode and
correctness proof to Appendices A and B due to space limit.

4.1 Main idea
Chitu dynamically constructs a DAG in a round-by-round
manner. In each round, every (correct) node proposes a vertex
in the DAG and propagates it to others via a Byzantine Reli-
able Broadcast (BRB) protocol (see §4.2 for details). BRB

guarantees that the sender can make at most one vertex deliv-
ered in a round. Hence, each round has at most n = 3 f +1 and
at least n− f = 2 f +1 vertices delivered via BRB. A vertex
v in round r has at least n− f edges connecting to vertices
associated with round r−1. For ease of explanation, we first
give the following definition:

Definition 4.1 (Observe). We say vertex v in round r observes
vertex u in round r′ < r, if there is a path (in the DAG) from v
to u.

The first challenge for Chitu is to embed the message pat-
tern of our strawman approach (§3.2) into a DAG structure,
as consensus instances in DAG are naturally pipelined. To
this end, a vertex v in round r simultaneously represents a
proposal (of round r) and a notification of the proposals (of
round r− 1) observed by v. Besides, as discussed in §2.3,
the selected leader vertices in DAG solely determine the set
of committed (or 1-valent) proposals, which are ancestors of
leaders. When the fast path is enabled, each leader must be
able to distinguish between 1-valent and 0-valent vertices and
commits only 1-valent ones.

Assume vertices u and u′ are in round r and vertex v is
in round r + 2. We note that when u is observed by n− f
vertices of round r+ 1 (denoted as group G), at least f + 1
of those are observed by v. This is because every vertex in
round r+2 (e.g., v) observes n− f = 2 f +1 vertices, among
which at least f + 1 are in G . On the contrary, if at least
n− f vertices of round r+1 have not observed u′, there exist
no f + 1 vertices (of round r+ 1) observing u′. The above-
mentioned properties provide us a way to distinguish between
1-valent and 0-valent vertices.

We say a node i decides a round r, if every proposal of
round r has been decided univalent from i’s perspective.
Round r can be decided in either of the following two ways:

1. (fast path) when vertices of round r+1 help decide round
r; and,

2. (normal path) when a selected leader of round r′ > r+1
helps decide round r.

To ensure the safety property, the following invariant must
hold:

Invariant 4.1. For any round r, if a group of vertices V is
decided 1-valent by node i via the fast path, while a group of
vertices V ′ is decided 1-valent by node j via the normal path,
then V = V ′.

We then give the following definition.

Definition 4.2 (Strongly observe). We say vertex v in round
r′ ≥ r+2 strongly observes vertex u in round r, if there are
(at least) f +1 vertices of round r+1 connecting v and u.

Correspondingly, we have the following important invari-
ants:

Invariant 4.2. if vertex u in round r is observed by 2 f + 1
vertices of round r+1, then every vertex of round r′ ≥ r+2
strongly observes u.

928 2025 USENIX Annual Technical Conference USENIX Association

𝑣

𝑣

𝑣଼

𝑣ଶ

𝑣ଷ

𝑣ସ

𝑣ହ𝑣ଵ

𝑣ଽ

round
1 2 3

node 0

node 1

node 2

node 3
leader

(a) Case I: all 1-valent

𝑣

𝑣

𝑣଼

𝑣ଶ

𝑣ଷ

𝑣ସ

𝑣ହ𝑣ଵ

𝑣ଽ

round
1 2 3

leader

node 0

node 1

node 2

node 3

(b) Case II: some 0-valent (v1)

Figure 5: Example for Chitu fast path (n = 4). Dotted circles
denote 1-valent vertices, while dotted lines denote edges en-
abling the leader vertex to commit the same set of vertices.

Invariant 4.3. if vertex u′ in round r is observed by less than
f +1 vertices of round r+1, then no vertex of round r′≥ r+2
strongly observes u′.

Invariants 4.2 and 4.3 play crucial roles in designing Chitu.
For each vertex u in round r, if either u is observed by at
least 2 f +1 vertices of round r+1, or u cannot be observed
by f +1 vertices of round r+1, round r can be decided. In
this case, if node i decides round r but node j (temporarily)
skips round r and decides r + 2, any vertex in round r + 2
can distinguish between those that are strongly observed and
those not, and only decide strongly observed ones in round r.
Generally, the leader of round r′ = r+2k (k ∈ N+) can help
decide round r in an indirect way. Figure 5 gives an example.

4.2 DAG construction

Each vertex v represents a proposal broadcast by a single
node. It contains basic information such as a round number r,
a source which identifies the node who created v, a block of
transactions, and, most importantly, a set of edges which refer
to vertices of the last round. Each node maintains a local copy
of the DAG according to messages it receives. A vertex v is
added into the DAG if v is delivered by BRB. A node i enters
round r+1 and makes a new proposal if node i has delivered
n− f vertices of round r.
Reliable Broadcast (BRB). In Chitu reliable broadcast proto-
col, a vertex goes through two communication phases. We de-
note two types of messages by VAL and PREPARE. Each node
i first broadcasts a VAL message when starting a new round
r, containing a new vertex v proposed by i. Upon receiving
VAL message or f +1 PREPARE messages for the same vertex
v, node i checks the validity and broadcasts a signed PRE-
PARE message. As an optimization, f +1 PREPARE messages
guarantee that the corresponding VAL message is received
by at least one correct node and hence can be received by i
eventually. Upon receiving n− f PREPARE messages for the
same vertex v, v can be delivered, i.e. added into the local
DAG. Note that if node i receives v from node j but has not

delivered some vertex v′ connected by v, it can ask j for v′

that must be in j’s local DAG. After each of n− f vertices in
round r collects n− f PREPARE messages, node i can advance
to the next round (§4.4 presents an optimization that delays
the advancement).
Weak edges. As n− f nodes may quickly move forward, ver-
tices proposed by other slow nodes may be constantly ignored.
To solve this problem, Chitu can also leverage weak edges
proposed in DAG-rider [53], enabling vertex v in round r to
weakly connect to vertex v′ in round r′ < r−1. Then, v′ can
be committed if v is committed. Since vertices proposed by a
single node are chained and totally ordered, each vertex only
needs to connect to at most n = 3 f +1 vertices in previous
rounds, each of which is from a different node.

4.3 Commit rules
Each node decides vertices round by round merely based on
its local view of the DAG. For a vertex v in round r, it connects
at least n− f vertices of round r−1, which can be considered
the proposer of v votes for vertices connected by v but vetoes
others not.
Fast path. Through the fast path, round r+ 1 helps decide
round r when node i delivers n− f or more vertices of round
r+1. We denote three statuses for a vertex v in round r:

• 1-valent: v is 1-valent if at least n− f vertices of round
r+1 observe v.

• 0-valent: v is 0-valent if at least n− f vertices of round
r+1 do not observe v.

• bivalent: v is bivalent if it is possible that more than f
but less than n− f vertices of round r+1 observe v.

Both 1-valent and 0-valent are univalent, while bivalent
indicates that v is temporarily unsettled and may need to wait
for decisions of subsequent rounds. The local DAG of node
i changes dynamically, so the status of each vertex may also
change as i keeps delivering new vertices. However, 1-valent
and 0-valent are incompatible, meaning that if some correct
node decides vertex v 1-valent, no correct node may ever
decides v 0-valent (but v can be bivalent temporarily). If every
vertex v in round r is decided univalent, node i can decide
round r with all the 1-valent vertices (due to Invariants 4.2
and 4.3 in §4.1).
Normal path. Chitu selects leaders by random coins (like
Tusk) to survive malicious schedulers that can totally control
message delivery. Leader vertices are used to (recursively)
decide preceding rounds, if the fast path does not work.

In the same vein as DAG-Rider and Tusk, we say a leader
vertex v in round r is valid, if (1) v is observed by at least
f +1 vertices of round r+1, or (2) v is observed by the next
valid leader vertex in round r′ = r+2k (k ∈N+). Note that in
Chitu leader vertices in odd (even) rounds only decide vertices
in odd (even) rounds, i.e., odd and even rounds are separated.
This is because two leader vertices in consecutive rounds, e.g.,
round r and r+1, may not have a path in the DAG. With a

USENIX Association 2025 USENIX Annual Technical Conference 929

valid leader vertex v in even (odd) round r, a node decides
all the previous even (odd) rounds that have not be decided.
Like Tusk, these rounds are decided recursively. Each round
is decided either by v, or by v′ that is made valid by v (i.e.,
observed by v). In each round, every vertex strongly observed
by v (or v′) is decided 1-valent while the others are decided 0-
valent. Such a rule ensures that every round is decided either
by the fast path or by the same leader vertex.

Finally, node i commits round r if (1) all the preceding
rounds are committed; and (2) round r is decided. That is to
say, each node must commit rounds sequentially, though odd
and even rounds are decided independently. Once round r is
committed, all the ancestors of the 1-valent vertices of round
r are also committed indirectly, thanks to DAG structure.
Leader selection. When n− f vertices in round r + 1 are
delivered, node i broadcasts its signature share (for threshold
signatures) and later determines the leader vertex of round
r. With the help of the leader vertex, node i tries to decide
round r−2 and all the preceding odd (or even) rounds recur-
sively. Finally, if round r and every preceding round r′ < r
are decided, node i commits rounds sequentially till round r.
Figure 6 depicts an example for Chitu commit rules.

4.4 Adaptive wait

Motivation. Consider the DAG construction stated in §4.2,
each vertex is, on average, connected by n− f vertices of the
next round, which is exactly the 1-valent condition via the
fast path. However, due to discrepancy in latency between
nodes, some vertices may be connected by more than n− f
edges while others are not. Those connected by more than f
but less than n− f edges cannot be decided via the fast path.
To mitigate this problem, intuitively more edges are needed
to help those vertices become 1-valent, by nodes trying to
wait for more than n− f vertices delivered to advance to the
next round. It is irrational to simply (re-)introduce a timeout
mechanism (i.e. waiting ∆ time) here, for a deterministic
timeout is always an inevitable barricade on the fast path. It is
also difficult to quantify ∆ in unstable asynchronous networks.
Besides, we must guarantee that such a wait will not prevent
correct nodes from proceeding.
Adaptive mechanism. We observe that any vertex v received
by f +1 nodes can be propagated to every correct node even-
tually (even with f faults). We say this kind of vertices are pre-
accepted. In our adaptive wait mechanism, a node i keeps wait-
ing for every pre-accepted vertex v to be delivered (through
BRB), so long as the sender of v does not broadcast two dis-
tinct vertices in a round. Such an adaptive mechanism creates
a gap between when a node i delivers n− f vertices of round
r and when i enters round r + 1, effectively increasing the
chance of connecting more vertices in round r. Besides, since
i keeps receiving new messages while waiting, i may notice
more pre-accepted vertices to wait for.

To guarantee that every pre-accepted vertex v can be de-

3

3

3

2

2

3

32

6

6

6

6

6

?

6

6

round
1 2 3 4 5

?

𝑣ଵ

?

?

fast fast

6

coin fast

node 0

node 1

node 2

node 3

Figure 6: An example for commit rules of Chitu. Dotted circles
denote strongly observed vertices in each round. The number
in each circle denotes the round after which the corresponding
vertex is committed. Rounds 1 and 2 are decided through
the fast path, and thus their strongly observed vertices are
committed immediately. In round 1, the vertex proposed by
node 3 is committed indirectly by round 2, as it is observed
by the strongly observed vertices of round 2. Since round 3
is decided through random coins, even if round 4 is decided
through the fast path, it cannot be committed until the leader
vertex v1 of round 5 is selected, which decides round 3. In
round 3, the vertex proposed by node 2 can also be committed
because it is observed by a strongly observed vertex (node 0)
in round 4.

livered or an equivocation can be detected, node i needs to
forward the VAL and f +1 PREPARE messages for v to all the
other nodes while waiting. This forwarding scheme enables
other (correct) nodes to vote for v or detect the malicious
behavior of the sender of v. In the first case, all correct nodes
eventually collect n− f PREPARE messages for v; in the sec-
ond case, all correct nodes stop waiting for v and enter the
next round if no other pre-accepted vertex exists.

4.5 Performance analysis
We first analyze the performance of Chitu and Tusk (see Ta-
ble 1). Chitu has a fast path that can quickly commit all ver-
tices in 2 rounds. Specifically, when f nodes crash, Chitu
always goes through the fast path. Through random coins, the
probability to select a valid leader vertex is at least f+1

3 f+1 > 1
3 .

Thus, in expectation, there exists a valid leader vertex in every
three odd (even) rounds. Chitu can commit a round r only if
both odd and even rounds after r select a valid leader vertex.
Therefore, Chitu commits a round in every six rounds through
random coins. Tusk has the same expected time complexity
(through random coins), though it selects a leader vertex in
every odd round. Chitu introduces an all-to-all message pat-
tern in its Byzantine Reliable Broadcast (BRB), and thus has
O(n2) message complexity and 2 message delays per round.
As for communication complexity, each vertex v in round
r+1 must connect to at least 2 f +1 vertices in round r, each
of which contains 2 f +1 signatures. The complexity of each
VAL messages is O(n2). Every node is allowed to propose

930 2025 USENIX Annual Technical Conference USENIX Association

a new vertex in each round, thus the total communication
complexity is O(n4) as the expected time complexity is O(1).
Tusk has the same communication complexity due to the same
reason.

Table 1: Performance analysis of Chitu and Tusk. Note that
the worst case indicates time complexity (message delays) in
expectation.

Best Normal Worst Message Communication
case case case complexity complexity

Chitu 4 9 15 O(n3) O(n4)

Tusk 14.5 14.5 25 O(n2) O(n4)

Furthermore, Table 2 compares Chitu, MyTumbler and Red-
Belly regarding their time complexities (message delays), as
they all adopt the Fair-Fallback Framework.

Table 2: Performance analysis of the protocols following the
Fair-Fallback framework.

Best case Worst case Timing model
Chitu 4 O(1) asynchrony

MyTumbler 4 O(log2 n) asynchrony
Red Belly 4 - partial synchrony

MyTumbler uses SuperMA, a multi-valued agreement pro-
tocol to commit proposals in three message delays in the best
case, and another one message delay to pass timestamps for
execution. If an adversary totally controls message schedul-
ing, however, MyTumbler explicitly runs n asynchronous bi-
nary agreement instances, each within a SuperMA instance
and has O(1) time complexity in expectation, resulting in
at least O(log2 n) time complexity in total. Red Belly also
commits proposals in four message delays in the best case,
i.e., Propose, Echo, Ready and Decide. Red Belly further uses
DBFT, a partially synchronous binary agreement protocol, to
resolve ambiguity. DBFT selects a weak coordinator to sug-
gest a value. It is not straightforward or fair to compare the
worst-case performance between partially synchronous (Red
Belly) and asynchronous (Chitu and MyTumbler) protocols
as they target different timing models. In summary, the key
advantages of Chitu over MyTumbler are the worst-case per-
formance and simplicity (thanks to DAG). Unlike Red Belly,
Chitu provides liveness under asynchrony and has no timers
on the execution path.

4.6 Sketch of proof

Safety. First, BRB guarantees that any node can make at most
one vertex delivered in a round and correct nodes will not
deliver different vertices proposed by the same node. Then,
since Chitu commits vertices round by round, we prove that
in each round the same set of vertices are decided 1-valent,

no matter via the normal path or the fast path. Assume nodes
i and j decide V and V ′ in round r, respectively.

Case I: Both i and j decide round r via the normal path.
W.l.o.g, assume i decides V by the leader vertex v1 in round
r1 ≥ r+2, while j decides V ′ by the leader vertex v2 in round
r2 ≥ r1 +2. v1 is observed by f +1 vertices of round r1 +1,
and v2 observes at least 2 f +1 vertices in round r1 +1. Since
(f +1)+(2 f +1)> 3 f +1, v1 is observed by v2. Recursively,
j must decide round r by the leader vertex v1 but not v2.

Case II: i decides round r via the normal path, while j
decides round r via the fast path. Assume i decides V by
the leader vertex vl in round r′ ≥ r + 2, which observes at
least 2 f + 1 vertices in round r + 1. For any v ∈ V ′, v is
observed by at least 2 f + 1 vertices in round r + 1. Since
these two groups of 2 f +1 vertices intersect at f +1 vertices,
by Definition 4.2 v is strongly observed by vl , i.e., v ∈ V . In
contrast, for any v′ /∈ V ′, v′ is obeserved by less than f + 1
vertices in round r+1, and thus v′ cannot be strongly observed
by vl , i.e., v′ /∈ V . Therefore, V = V ′.

Case III: Both i and j decide round r via the fast path.
Assume there exists a vertex v ∈ V but v /∈ V ′. In i’s view v
is observed by at least 2 f +1 vertices in round r+1, while in
j’s view v is not observed by at least 2 f +1 vertices in round
r+1. Since these two groups of 2 f +1 vertices intersect at
f +1 vertices, at least one correct node proposes two different
vertices in round r+1. A contradiction. For each vertex, any
two correct nodes must decide it with the same univalent
status, and thus all 1-valent vertices and their causal histories
are committed in the same order.
Liveness. We first argue that for every round r, there are at
least f +1 vertices strongly observed by the next valid leader
vertex vl in round r+ 2k (k ∈ N+). At least 2 f + 1 vertices
in round r+ 1 are observed by vl , denoted by G . The total
number of edges G provides to round r is at least (2 f +1)|G |.
By Definition 4.2, a vertex in round r is strongly observed by
vl if observed by at least f + 1 vertices in G . In round r, if
only f vertices are strongly observed by vl and observed by all
vertices in G using the most edges, and the rest 2 f +1 vertices
are observed by only f vertices in G , the total number of edges
is f |G |+(2 f + 1) f ≤ f |G |+ |G | f = 2 f |G | < (2 f + 1)|G |.
Thus, there are at least f +1 vertices strongly observed by vl ,
i.e., satisfying the rule of valid leaders. Since the adversary
cannot know the leader of round r until 2 f + 1 vertices of
round r + 1 are delivered, it is impossible to control their
edges to impede it becoming valid. Thus, the probability to
select a valid leader is at least f+1

3 f+1 > 1
3 . As the protocol runs

round by round, with probability 1 the leader of some round
r is valid, and then all rounds r−2k (k ∈ N+) are decided.

5 Performance Evaluation

We implement Chitu in Golang, using noise [7] for
asynchronous networking. We use SHA256 to com-
pute hash values and Ed25519 to sign and verify sig-

USENIX Association 2025 USENIX Annual Technical Conference 931

natures, implemented by Golang crypto library. Boneh-
Lynn-Shacham (BLS) threshold signatures are used
to construct random coins, computed by bls-eth-go-
binary [2]. GoGo Protobuf [5] library is used for serial-
ization. The code is available at https://github.com/
Decentralized-Computing-Lab/ChituBFT.

We compare Chitu to Tusk [32] and BullShark [76], two
representative DAG-based BFT protocols, with open-source
implementations [3, 6]. Tusk and BullShark have the same
structured DAG provided by Narwhal [32] but with different
consensus protocols. Narwhal introduces additional worker
nodes to disseminate blocks separately, leaving the primary
nodes only running consensus protocol.

We run experiments on AWS EC2, with t3.2xlarge in-
stances with 8 vCPUs, 32 GiB RAM and 5 Gbps Network
burst bandwidth, running Ubuntu 22.04.4 LTS. Nodes and
clients are deployed over 5 different regions across the globe:
Ohio, Singapore, Tokyo, Canada (Central) and Frankfurt. The
average RTT among 5 regions is 135 ms. For each node, there
is a client running in the same region and sending a given
number of requests to it per 50 ms (i.e. client rate). Each node
gathers requests into blocks and proposes them when a new
vertex is generated. We measure end-to-end latency as the
time elapsed from when the client sends its request till when
the client receives the confirmation from the same node. In
all experiments, we set request size to 1000 B, which rep-
resents the trend towards larger transactions for Blockchain
applications such as Bitcoin [1] and Ethereum [4].

5.1 Fault-free performance

We first compare the performance of Chitu, Tusk and Bull-
Shark when there is no fault. We gradually increase the rate
that clients send requests until the system is saturated. We run
experiments at different scales (n = 4, n = 10 and n = 100).
When n = 4, nodes and clients are deployed in Ohio, Singa-
pore, Tokyo and Frankfurt.

Figures 7 to 9 show the results. The end-to-end latency
of Chitu is around 500 ms when the system is not saturated.
Compared to Tusk, Chitu achieves up to 82.5% (440 ms versus
2519 ms) and 82.2% (485 ms versus 2729 ms) reduction in
latency when each client sends 100 requests for every 50 ms,
when n = 4 and n = 10 respectively. This is due to three
reasons. First, most vertices in Chitu are committed via the
fast path at small scales, where in the best case only four
communication phases (i.e. two DAG rounds) are taken and
random coins are bypassed. Second, in the normal path, the
probability to select a valid leader is higher in Chitu than in
Tusk and BullShark, for more edges are connected between
rounds thanks to the wait mechanism. Third, Chitu trades off
message complexity for less communication phases per round.
With the moderately large number of nodes, the latency of
Chitu is still much lower than that of Tusk and BullShark,
with around 50% vertices committed via the fast path when

n = 100.
Limitation. The percentage of fast-path commits becomes
lower as the scale grows. Assume the evolvement of each
vertex is an independent event, and the probability of a vertex
being connected by more than 2 f or less than f +1 vertices
(i.e., 1-valent or 0-valent) is p. As the number of nodes grows,
the probability that a round goes through the fast path is thus
pn, impeding larger-scale deployments. A possible solution
to mitigate this problem is to select a subset of nodes as
proposers while leaving others as validators, a typical way
permissionless blockchains adopt to achieve scalability [42,
49]. We however leave this direction to future work.

BullShark has lower latency than Tusk since BullShark pre-
selects a leader in each odd round and can commit vertices
within 3.5 DAG rounds, while Tusk has to go through random
coins and selects a valid leader every six rounds in expectation.
Chitu has the advantage over BullShark not only in taking
fewer rounds to commit vertices via the fast path, but also the
leaderless feature and the way of advancing rounds. Nodes in
BullShark additionally wait for a predefined leader to become
valid (or at most ∆ time), which may take longer time when
the proposer of such a vertex is slow.
Wait mechanism. To further analyze the effects of the wait
mechanism, we compare the average and 95%ile latency, and
the percentage of fast-path commits, of Chitu with and without
the wait mechanism. Figure 10 shows the result when n = 4
at four request rates corresponding to the points highlighted
in Figure 7. With the wait mechanism, almost all vertices are
committed through the fast path when the system is not satu-
rated, achieving 99.5% when the request rate is 100 requests
per 50 ms. In contrast, without the wait mechanism, only 12%
vertices are committed through the fast path at the same re-
quest rate, with 1.75x latency (772 ms vs. 440 ms). This is
mainly because the normal path takes eight communication
phases to commit vertices. As the request rate grows, each ver-
tex contains more requests and takes more time to propagate,
which directly increases latency. Without the wait mechanism,
it becomes more difficult to propagate vertices proposed by
slow nodes, and hence they can be decided 0-valent via the
fast path more easily. Thus, the percentage of fast-path com-
mits becomes higher under slightly heavier workloads, but
still much lower than that with the wait mechanism.

The wait mechanism helps a node observe as many ver-
tices as possible, except those propagated by very slow nodes.
These vertices may be observed by other f +1 but less than
n− f nodes also due to the wait mechanism, leading to the
failure of the fast path. Thus, with the wait mechanism, the
percentage of fast-path commits becomes a little lower under
the heavier workload (but still around 92.5%). Moreover, as
the scale grows, the probability of achieving fast termination
without the wait mechanism declines rapidly. When n = 10,
almost no round goes through the fast path without the wait
mechanism, even as the request rate increases, due to the simi-
lar limitation discussed above. Therefore, the wait mechanism

932 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/Decentralized-Computing-Lab/ChituBFT
https://github.com/Decentralized-Computing-Lab/ChituBFT

0 10 20 30 40 50
Throughput (ktps)

0

1

2

3

4

5

La
te

nc
y

(s
)

① ② ③

④

Chitu
Tusk
BullShark

Figure 7: n = 4, fault-free.

0 20 40 60 80
Throughput (ktps)

0

1

2

3

4

5

6

7

La
te

nc
y

(s
)

Chitu
Tusk
BullShark

Figure 8: n = 10, fault-free.

0 20 40 60 80 100
Throughput (ktps)

0

2

4

6

8

10

La
te

nc
y

(s
)

Chitu
Tusk
BullShark

Figure 9: n = 100, fault-free.

100 300 500 650
Client Rate (reqs/50ms)

0

1

2

3

4

La
te

nc
y

(s
)

0

20

40

60

80

100

Fa
st

 P
at

h
Pe

rc
en

t (
%

)

latency w/ wait
latency w/o wait
fast percent w/ wait
fast percent w/o wait

Figure 10: Performance with
and without wait mechanism.

is critical for enabling the fast path.

5.2 Performance under crash faults

We then measure the performance of Chitu, Tusk and Bull-
Shark when disabling f nodes in advance, as there is no
separation between normal case and view change in these
protocols, i.e., Tusk, BullShark and Chitu have no failover to
execute. The faulty nodes may crash or purposely keep silent.
We run the experiments at different scales (n = 4, n = 10 and
n = 100).

Figure 11 to 13 depict the results. Chitu has lower latency
and higher peak throughput in this scenario. When f nodes
crash, each vertex can observe only n− f vertices of the last
round. This implies that each vertex are observed by exactly
n− f vertices of the next round, and hence Chitu can com-
pletely skip random coins and terminate deterministically in
this particular scenario, as no vertex is bivalent. The fast path
takes four communication phases to determine that the rest f
vertices (if exist) cannot be observed by more than f vertices,
i.e., they must be 0-valent. However, in this scenario, each
node needs to deliver vertices from all the others to advance to
the next round, which may not be the fastest n− f nodes in the
fault-free scenario. Therefore, the latency of Chitu under the
light workload slightly increases to around 550 ms at small
scales. The peak throughput of all the protocols degrades in
this case, as f faulty nodes cannot make proposals anymore.
Nonetheless, it is noteworthy that the peak throughput of Chitu
decreases by the least and is higher than the other two. This is
because the wait mechanism cannot be triggered when there
are only n− f vertices in each round, and there is no need to
forward the votes for pre-accepted vertices.

Compared to Chitu, Tusk and BullShark suffer a larger
increase in latency under crash faults. Tusk always relies
on random coins to terminate. With f faults, the selected
leader is less likely to be valid, for with probability 1

3 it is
faulty. As for BullShark, such a high-latency problem even
gets worse. BullShark requires each node to additionally wait
∆ time, during which the pre-selected leader can be delivered.
However, if the proposer is faulty (with probability 1

3), such
a timeout is located on the critical path. The default value of
∆ is set to 5 sec in BullShark’s open-source implementation.

The average latency of BullShark increases to more than 5
sec at all scales. By this experiment we show the benefit of
offloading the fallback mechanism when correct nodes can
reach agreement leaderlessly.

5.3 Performance under Byzantine faults

Byzantine nodes may badly affect the performance of Chitu,
especially by purposely disabling the fast path. Since it is
difficult to manipulate message scheduling in practice, we
evaluate Chitu in a typical scenario: (1) the fast path is dis-
abled; (2) the wait mechanism is maliciously exploited by
the adversary, so that each node has to deliver n vertices to
advance to the next round; and, (3) Byzantine nodes dissemi-
nate their proposals with no payload and do not participate in
message exchange of any proposal.

We run the experiment with n = 10, where one node in
Canada Central and two nodes in Frankfurt are Byzantine
faulty. Figure 15 depicts the results. When the system is not
saturated (Figure 15a), the average latency under Byzantine
faults is about 2x more than that under crash faults. This is
mainly because the normal path takes 2x more communi-
cation phases than the fast path. The peak throughput (Fig-
ure 15b) moderately degrades under Byzantine faults com-
pared to the one with f crash nodes. This is because it takes
more bandwidth overhead for correct nodes to deliver the
vertices proposed by Byzantine nodes, i.e. more PREPARE
messages broadcast and forwarded. However, the wait mecha-
nism also plays a role in synchronization, making slow nodes
catch up with the pace of fast nodes. Therefore, the measured
degradation of the peak throughput is acceptable, decreased
by 5.78% (from 65.7 ktps to 61.9 ktps).

Note that one Byzantine node is sufficient to disable the fast
path if the node can make its proposal bivalent (i.e., observed
by more than f but less than n− f vertices of the next round).
In reality, initiating such an attack is a bit tricky because the
Byzantine node must send its proposal at an appropriate time.
Consider the all-to-all pattern of the Chitu broadcast, its adap-
tive wait mechanism, and even gossip-like communication in
large-scale blockchains, the attack is feasible but not trivial.
Nonetheless, even if the fast path is turned off, Chitu still has
the fallback that provides acceptable performance.

USENIX Association 2025 USENIX Annual Technical Conference 933

0 5 10 15 20 25 30 35 40
Throughput (ktps)

0

2

4

6

8

La
te

nc
y

(s
)

Chitu
Tusk
BullShark

Figure 11: n = 4, 1 fault.

0 10 20 30 40 50 60
Throughput (ktps)

0

2

4

6

8

10

La
te

nc
y

(s
)

Chitu
Tusk
BullShark

Figure 12: n = 10, 3 faults.

0 20 40 60 80
Throughput (ktps)

0

2

4

6

8

10

12

La
te

nc
y

(s
)

Chitu
Tusk
BullShark

Figure 13: n = 100, 33 faults.

N.Virginia Ohio N.California Sydney
Region

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(s
)

Chitu
Tusk
BullShark

Figure 14: Performance with
skewed distribution.

Ohio Singapore Tokyo Canada Frankfurt
Region

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
te

nc
y

(s
)

fault-free
3 crash faults
3 Byzantine faults

(a) latency on different regions

0 20 40 60 80
Throughput (ktps)

0

1

2

3

4

5

6

7

La
te

nc
y

(s
)

fault-free
3 crash faults
3 Byzantine faults

(b) latency vs. throughput

Figure 15: Performance under Byzantine faults (n = 10).

5.4 Performance with skewed distribution

Finally, we measure the performance of Chitu, Tusk and Bull-
Shark with more skewed node distribution. We run the exper-
iment with n = 4 nodes in N.Virginia, Ohio, N.California and
Sydney respectively. Three of them are in the US, with lower
round-trip latency among one another, while Sydney is far
away from them. We set the request rate to 50 requests per
50 ms (not saturated) and measure the average and 95%ile
latency of each region.

The results are presented in Figure 14. In this particular
setting, three nodes in the US are capable of pushing forward
DAG construction, while the node in Sydney fails to keep
pace with others. Even if Chitu has the wait mechanism, al-
most no vertices from Sydney are observed by those in the
US, as the physical distance brings too much delay. Similarly,
Tusk can move on with only three nodes in the US and hence
has no data in Sydney. In contrast, BullShark and Chitu further
leverage weak edges, which can connect to “outdated” ver-
tices of previous rounds, though with a significantly increased
latency.

The latency of Chitu is still lower than that of Tusk and
BullShark in all regions. The reason is similar to the case
when f nodes crash, where the fast path is enabled in Chitu,
but proposals from the node in Sydney are committed with the
help of weak edges. Tusk also outperforms BullShark in N.
Virginia, Ohio and N. California. This is because BullShark
periodically selects the node in Sydney as a leader, which
delays the progress of the whole system. This result further

demonstrates the effectiveness of the fast path in Chitu, as it
relies on no special role.

6 Related Work

Partially synchronous protocols. A big family of BFT pro-
tocols are designed under partial asynchrony, where addi-
tional timing assumptions are used for electing a special
role [17,22,27,44,56,76,80]. We argue that they prematurely
rely on leader election and timing assumptions to resolve
potential divergences among nodes, which are not necessary
when correct nodes can quickly reach consensus in a leader-
less manner. Our framework can also be applied to partially
synchronous protocols, e.g., integrating the fast path with
Bullshark [76] and treating leader election as a fallback mech-
anism.
Classical asynchronous protocols. Asynchronous protocols
ensure safety and liveness properties despite network asyn-
chrony. Asynchronous protocols can be traced back to the
1980s, when the seminal works of Rabin [72] and Ben-Or [13]
were proposed. HoneyBadgerBFT [66] is considered the first
practical solution, which makes use of a reliable broadcast pro-
tocol [20] and a randomized binary agreement protocol [68]
to construct a common subset among all correct nodes. Since
then, numerous variants [36, 46, 47, 79] are proposed, which
greatly improve the performance of asynchronous protocols.
However, they still put randomization on execution paths, and
thus only achieve probabilistic termination. One exception
is Bolt [63], a mechanism that explicitly switches between a
fast pah (i.e., Fastlane in the original paper) and a pessimistic
path. Bolt however reintroduces timer to trigger switching to
pessimistic path. A similar idea of fast termination in Chitu
can be applied to classical asynchronous protocols, which we
leave for future work.
Certified DAGs. In contrast to classical protocols, DAG-
based variants [11, 32, 53, 76] embed consensus into DAG
construction, which not only reduces the number of messages
needed, but greatly simplifies the design and implementa-
tion. Chitu, by leveraging the similar structure, also possesses
the simplicity feature. In contrast to DAG-Rider [53] and
Tusk [32], Chitu has the fast path that can bypass random
coins. Autobahn [43] is a recently proposed DAG protocol

934 2025 USENIX Annual Technical Conference USENIX Association

that incorporates a partially synchronous consensus mecha-
nism into an asynchronous DAG construction layer, such that
Autobahn can both reduce latency (compared to existing DAG
protocols) and maintain the seamlessness feature of DAG pro-
tocols. Autobahn still relies on a correct leader to quickly
reach consensus, while Chitu goes through the fast path in a
pure leaderless manner. Shoal [75] and Shoal++ [9] leverage
a reputation mechanism to select fast and stable nodes as an-
chors (leaders), in order to eliminate timeouts in most cases.
Shoal++ further introduces a fast commit rule to quickly com-
mit anchors. Sailfish [74] allows to select leader vertices in
every round (rather than once every two or more rounds), thus
reducing end-to-end latency.
Uncertified DAGs. Best Effort Broadcast (or uncertified
DAG) helps reduce the number of message exchanges per
round compared to certified DAG, but complicates fault han-
dling logic as malicious nodes may send distinct proposals
to different nodes. BBCA-CHAIN [64] leverages a variant
of Byzantine Consistent Broadcast (BCB) named BBCA to
broadcast only leader blocks, while non-leader blocks can be
propagated by Best Effort Broadcast. Mahi-Mahi [51] man-
ually configures the number of leader slots for each round
and selects leaders using a global coin (randomization). Mys-
ticeti [10] is a partially synchronous protocol that achieves
three message delays in the best case. Mysticeti and Chitu
share similarities in distinguishing between proposals that are
observed or supported by 2 f + 1 subsequent proposals and
that are not observed by 2 f +1 proposals, but Mysticeti still
waits timeout for a primary block of each round in order to
provide liveness. In contrast to uncertified DAGs, Chitu fol-
lows the paradigm of certified DAG (like Tusk and Bullshark)
and has no special role in its fast path but treats every proposal
equally. We envision that by integrating the idea of Chitu into
an uncertified DAG, we may further reduce commit delays
for both paths.
Fast path. In recent years, numerous BFT variants [10,18,31,
74, 75] are proposed with a fast path. Most of them rely on a
leader or some special role to coordinate consensus. Their fast
path inevitably assumes the correctness of the single leader
and puts ∆ on the critical path, thus incurring additional wait-
ing time if such a role crashes or be partitioned. Besides,
more message delays may be introduced if they resort to a
new leader to take over and move forward. The framework
we study in this paper, in contrast, can quickly skip faulty
or slow nodes in a responsive manner. There are three ex-
ceptions, which together motivate our study: Red Belly [30]
under partial synchrony model, and HashGraph [11] and My-
Tumbler [62] under asynchrony model. Hashgraph uses a
gossip protocol to disseminate proposals and derives consen-
sus results from a DAG of degree two. Although the general
idea of the fast path of Chitu shares similarities with Hash-
graph, it may incur exponential latency [32] when some nodes
are Byzantine. Therefore, integrating a fallback mechanism
is critical to mitigating adverse effects on performance dur-

ing an attack. Red Belly still puts timers on the fast path
for aborted proposals, while Chitu can quickly terminates
even if some proposals are 0-valent. MyTumbler sequences
proposals based on physical timestamps and bypasses ran-
dom coins when correct nodes input the same value into a
binary agreement protocol. Our idea also shares similarity
with MyTumbler in skipping random coins if correct nodes
are convergent on a proposal, but MyTumbler relies on a bi-
nary agreement protocol to reach consensus. In the worst case,
however, the time complexity of MyTumbler grows to at least
O(log n) [14, 47]. Dumbo-NG [41] is an asynchronous proto-
col that concurrently runs transaction dissemination and asyn-
chronous agreement, mitigating the tension between through-
put and latency.
Other related work. Some BFT protocols [12, 33, 52, 59]
make use of trusted hardware to prevent equivocation, so as
to ensure both safety and liveness with only n = 2 f +1 nodes.
Such a model can further simplify the design of Chitu. Al-
though we only gave the solution in permissioned settings,
Chitu would be a promising approach also for permissionless
blockchains [23,39,42,69] when integrating with a Sybil [35]
resistance measure such as Proof-of-Work [50] or Proof-of-
Stake [54]. As Chitu resorts to all-to-all communication to
disseminate and collect votes (PREPARE messages), its com-
munication complexity can be further reduced by using a
gossip protocol [15, 71] or threshold signatures [55].

7 Conclusion

In this paper we discussed a generic framework for reducing
latency in BFT consensus protocols. We then presented Chitu,
a DAG-based protocol following this framework. Chitu not
only retains the simplicity feature of DAG protocols, but can
also bypass expensive random coins and achieve consensus
efficiently, when most nodes are in consistency about their
observations. We implemented Chitu and conducted extensive
experiments on Amazon EC2 platform. Through evaluation
we showed that Chitu can effectively reduce latency in several
typical scenarios, compared to existing DAG protocols. Our
framework opens avenues for future work. Other partially
synchronous or asynchronous protocols, or protocols under
crash fault model, can also adopt a similar idea to achieve fast
termination.

Acknowledgments

We are very grateful to our shepherd, Zihao Zhang, and the
anonymous reviewers for their insightful comments and guid-
ance. This work was supported by the National Natural Sci-
ence Foundation of China (grant no. 62372293) and the
Shanghai Action Plan for Science, Technology and Innovation
(grant no. 24BC3201300).

USENIX Association 2025 USENIX Annual Technical Conference 935

References

[1] Bitcoin transaction size. https://bitcoinvisuals.
com/chain-tx-size.

[2] bls-eth-go-binary. https://github.com/herumi/
bls-eth-go-binary.

[3] Bullshark source code. https://github.com/
MystenLabs/narwhal.

[4] Ethereum statistics. https://ycharts.com/
indicators/sources/etherscan.

[5] gogoprotobuf. https://github.com/gogo.

[6] Narwhal and tusk. https://github.com/
facebookresearch/narwhal.

[7] noise package. https://github.com/
perlin-network/noise.

[8] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Laventman,
Yacov Manevich, Srinivasan Muralidharan, Chet Murthy,
Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith,
Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko
Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyper-
ledger fabric: A distributed operating system for permis-
sioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[9] Balaji Arun, Zekun Li, Florian Suri-Payer, Sourav Das,
and Alexander Spiegelman. Shoal++: High throughput
dag bft can be fast!, 2025.

[10] Kushal Babel, Andrey Chursin, George Danezis, Anas-
tasios Kichidis, Lefteris Kokoris-Kogias, Arun Koshy,
Alberto Sonnino, and Mingwei Tian. Mysticeti: Reach-
ing the limits of latency with uncertified dags, 2024.

[11] Leemon Baird. The swirlds hashgraph consensus algo-
rithm: Fair, fast, byzantine fault tolerance. Swirlds, Inc.
Technical Report SWIRLDS-TR-2016, 1, 2016.

[12] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Hy-
brids on steroids: Sgx-based high performance bft. In
Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, page 222–237, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[13] Michael Ben-Or. Another advantage of free choice
(extended abstract): Completely asynchronous agree-
ment protocols. In Proceedings of the Second Annual
ACM Symposium on Principles of Distributed Comput-
ing, PODC ’83, page 27–30, New York, NY, USA, 1983.
Association for Computing Machinery.

[14] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal
interactive consistency in constant time. Distributed
Computing, 16(4):249–262, 2003.

[15] N. Berendea, H. Mercier, E. Onica, and E. Riviere. Fair
and efficient gossip in hyperledger fabric. In 2020 IEEE
40th International Conference on Distributed Comput-
ing Systems (ICDCS), pages 190–200, Los Alamitos,
CA, USA, dec 2020. IEEE Computer Society.

[16] Alysson Bessani, Eduardo Alchieri, João Sousa, André
Oliveira, and Fernando Pedone. From byzantine replica-
tion to blockchain: Consensus is only the beginning. In
2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages
424–436, 2020.

[17] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri.
State machine replication for the masses with bft-smart.
In 2014 44th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, pages 355–
362, 2014.

[18] Erica Blum, Jonathan Katz, Julian Loss, Kartik Nayak,
and Simon Ochsenreither. Abraxas: Throughput-
efficient hybrid asynchronous consensus. In Proceed-
ings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’23, page 519–533,
New York, NY, USA, 2023. Association for Computing
Machinery.

[19] Dan Boneh, Ben Lynn, and Hovav Shacham. Short sig-
natures from the weil pairing. In Colin Boyd, editor,
Advances in Cryptology — ASIACRYPT 2001, pages
514–532, Berlin, Heidelberg, 2001. Springer Berlin Hei-
delberg.

[20] Gabriel Bracha. Asynchronous byzantine agreement
protocols. Inf. Comput., 75(2):130–143, nov 1987.

[21] Gabriel Bracha and Sam Toueg. Asynchronous consen-
sus and broadcast protocols. J. ACM, 32(4):824–840,
October 1985.

[22] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The
latest gossip on BFT consensus. CoRR, abs/1807.04938,
2018.

[23] Vitalik Buterin et al. A next-generation smart contract
and decentralized application platform. white paper,
3(37), 2014.

[24] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues.
Introduction to reliable and secure distributed program-
ming. Springer Science & Business Media, 2011.

936 2025 USENIX Annual Technical Conference USENIX Association

https://bitcoinvisuals.com/chain-tx-size
https://bitcoinvisuals.com/chain-tx-size
https://github.com/herumi/bls-eth-go-binary
https://github.com/herumi/bls-eth-go-binary
https://github.com/MystenLabs/narwhal
https://github.com/MystenLabs/narwhal
https://ycharts.com/indicators/sources/etherscan
https://ycharts.com/indicators/sources/etherscan
https://github.com/gogo
https://github.com/facebookresearch/narwhal
https://github.com/facebookresearch/narwhal
https://github.com/perlin-network/noise
https://github.com/perlin-network/noise

[25] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. Jour-
nal of Cryptology, 18(3):219–246, 2005.

[26] Ran Canetti and Tal Rabin. Fast asynchronous byzantine
agreement with optimal resilience. In Proceedings of
the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, page 42–51, New York, NY,
USA, 1993. Association for Computing Machinery.

[27] Miguel Castro and Barbara Liskov. Practical byzan-
tine fault tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398–461, 2002.

[28] Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert,
Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic,
and Manuel José Ribeiro Vidigueira. Byzantine consen-
sus is θ(n2): The dolev-reischuk bound is tight even in
partial synchrony! Number 11, pages 1:11–1:19, Han-
nover, 2022. Dagstuhl Publishing.

[29] T. Crain, V. Gramoli, M. Larrea, and M. Raynal. Dbft:
Efficient leaderless byzantine consensus and its applica-
tion to blockchains. In 2018 IEEE 17th International
Symposium on Network Computing and Applications
(NCA), pages 1–8, 2018.

[30] T. Crain, C. Natoli, and V. Gramoli. Red belly: A se-
cure, fair and scalable open blockchain. In 2021 2021
IEEE Symposium on Security and Privacy (SP), pages
1501–1518, Los Alamitos, CA, USA, may 2021. IEEE
Computer Society.

[31] Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren. Parbft:
Faster asynchronous bft consensus with a parallel opti-
mistic path. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’23, page 504–518, New York, NY, USA, 2023.
Association for Computing Machinery.

[32] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and tusk: A
dag-based mempool and efficient bft consensus. In Pro-
ceedings of the Seventeenth European Conference on
Computer Systems, EuroSys ’22, page 34–50, New York,
NY, USA, 2022. Association for Computing Machinery.

[33] Jérémie Decouchant, David Kozhaya, Vincent Rahli, and
Jiangshan Yu. Damysus: Streamlined bft consensus
leveraging trusted components. In Proceedings of the
Seventeenth European Conference on Computer Sys-
tems, EuroSys ’22, page 1–16, New York, NY, USA,
2022. Association for Computing Machinery.

[34] D. Dolev and H. R. Strong. Authenticated algorithms
for byzantine agreement. SIAM Journal on Computing,
12(4):656–666, 1983.

[35] John R. Douceur. The sybil attack. In Peter Druschel,
Frans Kaashoek, and Antony Rowstron, editors, Peer-to-
Peer Systems, pages 251–260, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[36] Sisi Duan, Michael K. Reiter, and Haibin Zhang. Beat:
Asynchronous bft made practical. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 2028–2041,
New York, NY, USA, 2018. Association for Computing
Machinery.

[37] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. J. ACM,
35(2):288–323, April 1988.

[38] Vitor Enes, Carlos Baquero, Tuanir França Rezende,
Alexey Gotsman, Matthieu Perrin, and Pierre Sutra.
State-machine replication for planet-scale systems. In
Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[39] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Rob-
bert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
45–59, Santa Clara, CA, March 2016. USENIX Associ-
ation.

[40] Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382,
April 1985.

[41] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing
Xu, and Zhenfeng Zhang. Dumbo-ng: Fast asyn-
chronous bft consensus with throughput-oblivious la-
tency. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
’22, page 1187–1201, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[42] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In Proceedings
of the 26th Symposium on Operating Systems Princi-
ples, SOSP ’17, page 51–68, New York, NY, USA, 2017.
Association for Computing Machinery.

[43] Neil Giridharan, Florian Suri-Payer, Ittai Abraham,
Lorenzo Alvisi, and Natacha Crooks. Autobahn: Seam-
less high speed bft. In Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Princi-
ples, SOSP ’24, page 1–23, New York, NY, USA, 2024.
Association for Computing Machinery.

USENIX Association 2025 USENIX Annual Technical Conference 937

[44] G. Golan Gueta, I. Abraham, S. Grossman, D. Malkhi,
B. Pinkas, M. Reiter, D. Seredinschi, O. Tamir, and
A. Tomescu. Sbft: A scalable and decentralized trust
infrastructure. In 2019 49th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks
(DSN), pages 568–580, 2019.

[45] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and
Marko Vukolić. The next 700 bft protocols. In Pro-
ceedings of the 5th European Conference on Computer
Systems, EuroSys ’10, page 363–376, New York, NY,
USA, 2010. Association for Computing Machinery.

[46] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang,
Jing Xu, and Zhenfeng Zhang. Speeding dumbo: Push-
ing asynchronous BFT closer to practice. IACR Cryptol.
ePrint Arch., page 27, 2022.

[47] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu,
and Zhenfeng Zhang. Dumbo: Faster asynchronous bft
protocols. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’20, page 803–818, New York, NY, USA, 2020.
Association for Computing Machinery.

[48] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mo-
hammad Sadoghi. Resilientdb: Global scale resilient
blockchain fabric. Proc. VLDB Endow., 13(6):868–883,
feb 2020.

[49] Timo Hanke, Mahnush Movahedi, and Dominic
Williams. DFINITY technology overview series,
consensus system. CoRR, abs/1805.04548, 2018.

[50] Markus Jakobsson and Ari Juels. Proofs of Work and
Bread Pudding Protocols(Extended Abstract), pages
258–272. Springer US, Boston, MA, 1999.

[51] Philipp Jovanovic, Lefteris Kokoris Kogias, Bryan Ku-
mara, Alberto Sonnino, Pasindu Tennage, and Igor
Zablotchi. Mahi-mahi: Low-latency asynchronous bft
dag-based consensus, 2024.

[52] Rüdiger Kapitza, Johannes Behl, Christian Cachin,
Tobias Distler, Simon Kuhnle, Seyed Vahid Moham-
madi, Wolfgang Schröder-Preikschat, and Klaus Stengel.
Cheapbft: Resource-efficient byzantine fault tolerance.
In Proceedings of the 7th ACM European Conference
on Computer Systems, EuroSys ’12, page 295–308, New
York, NY, USA, 2012. Association for Computing Ma-
chinery.

[53] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and
Alexander Spiegelman. All you need is dag. In Pro-
ceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, PODC’21, page 165–175, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[54] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer
crypto-currency with proof-of-stake. self-published pa-
per, August, 19(1), 2012.

[55] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexan-
der Spiegelman. Asynchronous distributed key genera-
tion for computationally-secure randomness, consensus,
and threshold signatures. New York, NY, USA, 2020.
Association for Computing Machinery.

[56] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative
Byzantine fault tolerance. In Proceedings of the Sympo-
sium on Operating Systems Principles (SOSP). ACM,
2007.

[57] Leslie Lamport. Generalized consensus and paxos.
Technical Report MSR-TR-2005-33, March 2005.

[58] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382–401, July 1982.

[59] Dave Levin, John R. Douceur, Jacob R. Lorch, and
Thomas Moscibroda. TrInc: Small trusted hardware for
large distributed systems. In 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
09), Boston, MA, April 2009. USENIX Association.

[60] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming
Wu, Guang Yang, Wei Xu, Fan Long, and Andrew
Chi-Chih Yao. A decentralized blockchain with high
throughput and fast confirmation. In 2020 USENIX An-
nual Technical Conference (USENIX ATC 20), pages
515–528. USENIX Association, July 2020.

[61] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien
Quéma, and Marko Vukolic. Xft: Practical fault tol-
erance beyond crashes. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, page 485–500, USA, 2016.
USENIX Association.

[62] Shengyun Liu, Wenbo Xu, Chen Shan, Xiaofeng Yan,
Tianjing Xu, Bo Wang, Lei Fan, Fuxi Deng, Ying Yan,
and Hui Zhang. Flexible advancement in asynchronous
bft consensus. In Proceedings of the 29th Symposium on
Operating Systems Principles, SOSP ’23, page 264–280,
New York, NY, USA, 2023. Association for Computing
Machinery.

[63] Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo
transformer: Asynchronous consensus as fast as the
pipelined bft. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’22, page 2159–2173, New York, NY, USA, 2022.
Association for Computing Machinery.

938 2025 USENIX Annual Technical Conference USENIX Association

[64] Dahlia Malkhi, Chrysoula Stathakopoulou, and Mao-
fan Yin. Bbca-chain: Low latency, high throughput
bft consensus on a dag. In Financial Cryptography
and Data Security: 28th International Conference, FC
2024, Willemstad, Curaçao, March 4–8, 2024, Revised
Selected Papers, Part I, page 51–73, Berlin, Heidelberg,
2025. Springer-Verlag.

[65] Darya Melnyk and Roger Wattenhofer. Byzantine agree-
ment with interval validity. In 2018 IEEE 37th Sym-
posium on Reliable Distributed Systems (SRDS), pages
251–260, 2018.

[66] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page
31–42, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[67] Nenad Milošević, Daniel Cason, Zarko Milošević, and
Fernando Pedone. How Robust Are Synchronous Con-
sensus Protocols? In Silvia Bonomi, Letterio Galletta,
Etienne Rivière, and Valerio Schiavoni, editors, 28th
International Conference on Principles of Distributed
Systems (OPODIS 2024), volume 324 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages
20:1–20:25, Dagstuhl, Germany, 2025. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[68] Achour Mostefaoui, Hamouma Moumen, and Michel
Raynal. Signature-free asynchronous byzantine consen-
sus with t < n/3 and o(n2) messages. In Proceedings of
the 2014 ACM Symposium on Principles of Distributed
Computing, PODC ’14, page 2–9, New York, NY, USA,
2014. Association for Computing Machinery.

[69] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Technical report, Manubot, 2019.

[70] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexan-
der Spiegelman. Cogsworth: Byzantine view synchro-
nization. CoRR, abs/1909.05204, 2019.

[71] Ray Neiheiser, Miguel Matos, and Luís Rodrigues.
Kauri: Scalable bft consensus with pipelined tree-based
dissemination and aggregation. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, page 35–48, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[72] Michael O. Rabin. Randomized byzantine generals. In
24th Annual Symposium on Foundations of Computer
Science (sfcs 1983), pages 403–409, 1983.

[73] Fred B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, December 1990.

[74] Nibesh Shrestha, Rohan Shrothrium, Aniket Kate, and
Kartik Nayak. Sailfish: Towards improving the latency
of dag-based bft. Cryptology ePrint Archive, Paper
2024/472, 2024. https://eprint.iacr.org/2024/
472.

[75] Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and
Zekun Li. Shoal: Improving dag-bft latency and robust-
ness. In Financial Cryptography and Data Security:
28th International Conference, FC 2024, Willemstad,
Curaçao, March 4–8, 2024, Revised Selected Papers,
Part I, page 92–109, Berlin, Heidelberg, 2025. Springer-
Verlag.

[76] Alexander Spiegelman, Neil Giridharan, Alberto Son-
nino, and Lefteris Kokoris-Kogias. Bullshark: Dag bft
protocols made practical. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’22, page 2705–2718, New York,
NY, USA, 2022. Association for Computing Machinery.

[77] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko
Vukolić. State machine replication scalability made
simple. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, page
17–33, New York, NY, USA, 2022. Association for Com-
puting Machinery.

[78] M. Vukolic. Quorum Systems: With Applications to
Storage and Consensus. 2012.

[79] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram
Kannan, and David Tse. DispersedLedger: High-
Throughput byzantine consensus on variable bandwidth
networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
493–512, Renton, WA, April 2022. USENIX Associa-
tion.

[80] Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC ’19, page 347–356,
New York, NY, USA, 2019. Association for Computing
Machinery.

USENIX Association 2025 USENIX Annual Technical Conference 939

https://eprint.iacr.org/2024/472
https://eprint.iacr.org/2024/472

Algorithm 1: Data structure and utilities for node i.
Local variables:

struct vertex v:
v.r - the round of v in the DAG
v.s - the node that proposes v
v.txs - a list of transactions
v.edges - a set of at least n− f vertices (of round v.r−1) linked by v

DAG[∗] - an array of sets of vertices with Quorum Certificate (QC)
txsToPropose - a queue, to which node i enqueues valid transactions from

clients

1: function path(u,v)
2: return ∃ a sequence of k ∈ N vertices v1,v2, · · · ,vk s.t. v1 = u,vk = v, and
∀ j ∈ [1 . . .k−1] : v j ∈ v j+1.edges

3: function createVertex(r)
4: wait until ¬ txsToPropose.empty()
5: v.r← r
6: v.s← i
7: v.txs← txsToPropose.dequeue()
8: v.edges← DAG[r−1]
9: return v

10: function getLeaderVertex(r)
11: j← chooseLeader(r) ▷ use a random coin
12: if ∃v ∈ DAG[r] s.t. v.s = j then
13: return v
14: else return ⊥

A Chitu Pseudocode

A.1 Data Structure and Utilities
The data structures and basic utilities of Chitu are specified in
Algorithm 1. Each vertex v represents a proposal broadcast by
a single node. It contains basic information such as a round
number r, a source which identifies the node who created v,
a block of transactions, and, most importantly, a set of edges
which refer to vertices of the last round. Each node maintains
a local copy of the DAG according to messages it delivers. For
each node i, we denote its local view of the DAG as DAG[∗].
DAG[r] for r ∈N+ stores a set of vertices that nodes generated
in round r and delivered by i. txsToPropose is a queue that
stores valid transactions from clients.

Function path(u,v) is used to check whether there is a
path from vertex u to vertex v in the DAG (Line 1), while
Function createVertex(r) is used to create a vertex with basic
information (Line 3). Function getLeaderVertex(r) computes
the selected leader of round r and returns the vertex if it is
delivered (Line 10). Otherwise, it returns ⊥. The leader of
round r is determined by a random coin.

A.2 DAG Construction
In Chitu Reliable Broadcast protocol, a vertex goes through
two communication phases. The pseudocode is given in Al-
gorithm 2. We denote two types of messages by VAL and
PREPARE. Node i first broadcasts a VAL message when start-
ing a new round r, containing a new vertex v proposed by it
(Line 1-3). Upon receiving VAL message or f +1 PREPARE
messages for the same vertex v, node i checks the validity
and broadcasts a signed PREPARE message (Line 4-5). Here,

Algorithm 2: Chitu DAG construction for node i.
Local variables: round← 1

1: procedure propose(r)
2: v← createVertex(r) ▷ see Alg. 1 Line 3
3: broadcast ⟨VAL,v,r⟩

4: upon receiving ⟨VAL,v,r⟩ from node p of round r or f +1 ⟨PREPARE,v,r⟩σ∗ for
the first time do

5: broadcast ⟨PREPARE,v,r⟩σi

6: upon receiving n− f ⟨PREPARE,v,r⟩σ∗ do
7: DAG[r]← DAG[r]∪{v}
8: if |DAG[r]|= n− f then
9: advanceRound(r)

10: procedure advanceRound(r)
11: if r ≥ round then
12: round← r+1
13: propose(round)

Algorithm 3: Chitu commit rules for node i.
Local variables: decided[∗]←{}

1: procedure tryFastPath(r)
2: one←{v ∈ DAG[r] : |{v′ ∈ DAG[r+1] : path(v,v′)}| ≥ n− f}
3: zero←{v ∈ DAG[r] : |{v′ ∈ DAG[r+1] : ¬path(v,v′)}| ≥ n− f}
4: if |one|+ |zero|= n then
5: decided[r]← one

6: procedure tryLeaderPath(r)
7: v← getLeaderVertex(r) ▷ see Alg. 1 Line 10
8: if v ̸=⊥ and |{v′ ∈ DAG[r+1] : path(v,v′)}| ≥ f +1 then ▷ valid
9: decideLeaderPath(v,r)

10: procedure decideLeaderPath(vl ,rl)
11: r← rl −2
12: decided[r]←{v ∈ DAG[r] : |{v′ ∈ DAG[r+1] :

path(v,v′)∧path(v′,vl)}| ≥ f +1}
13: v← getLeaderVertex(r)
14: if v ̸=⊥ and path(v,vl) then
15: decideLeaderPath(v,r)
16: else
17: decideLeaderPath(vl ,r)

f +1 PREPARE messages guarantee that the corresponding
VAL message is received by at least one correct node and
hence will be received by i definitely. Upon receiving n− f
PREPARE messages for the same vertex v, v can be delivered,
i.e. added into the local DAG (Line 6-7). Note that if node
i receives v from node j but has not delivered some vertex
v′ connected by v, it can ask j for v′ that must be in j’s lo-
cal DAG. Procedure advanceRound(r) is called after each of
n− f vertices in round r collects n− f PREPARE messages,
i.e., when |DAG[r]|= n− f (Line 8-9).

A.3 Commit Rules
The pseudocode of commit rules for node i is given in Al-
gorithm 3. Every time a new vertex is added in round r+1,
Procedure tryFastPath(r) is called to check whether round r
satisfies the rules for the fast path (Line 1-5). Moreover, i also
tries to decide round r− 2 and its preceding odd (or even)
rounds the with the help of the leader vertex in round r(Line 6-
9). When there exist n− f vertices in round r+1, node i can

940 2025 USENIX Annual Technical Conference USENIX Association

broadcast its signature share (for threshold signatures) and
later determine the leader vertex of round r (Line 7). Pro-
cedure decideLeaderPath(vl ,rl) recursively decides all the
preceding odd (or even) rounds by leaders (Line 10-17). Fi-
nally, if round r and all rounds r′ < r are decided, node i
commits rounds sequentially to round r.

B Chitu Correctness Proof

We formally prove the safety and liveness properties of Chitu.

B.1 Safety
We first give the agreement proof of the normal path in Chitu.

Lemma B.1. If a leader vertex v in round r is valid, then any
valid leader vertex v′ in the future round r+2k (k ∈ N+) has
a path to v.

Proof. The leader vertex v is valid only if v is observed by at
least f +1 vertices in round r+1. Since every vertex must
connect to at least 2 f +1 vertices in the previous round, there
are at least 2 f + 1 vertices in round r+ 1 observed by v′ in
round r+2. Considering the vertices in round r+1 have an
intersection by (2 f + 1)+ (f + 1) > 3 f + 1, v′ must have a
path via at least 1 vertex in round r+ 1 to v. By induction,
any valid leader vertex v′ in round r+2k (k ∈N+) must have
a path to v.

Lemma B.2. Let v1 and v2 be the valid leader vertices in
round r and r+2k (k ∈ N+), respectively. If a correct node
enters the decide phase by v1 before v2, then no other correct
nodes enter the decide phase by v1 after v2.

Proof. We prove this lemma by contradiction. Since v1 is
selected to decide before v2, there is no directed path from v1
to v2 in the DAG. If some correct node enters the decide phase
by v1 after v2, then there is no path from v2 to v1. However,
by Lemma B.1, there must exist a path from one of them to
the other. A contradiction.

Theorem B.1 (Agreement of the normal path). For each
vertex, any two correct nodes decide it to the same univalent
status through the normal path.

Proof. If a correct node enters the decide phase by some valid
leader vertex v in round r, by Lemma B.1 all valid leader
vertices in round r− 2k (k ∈ N+) are learned. Then, with
Lemma B.2, any two correct nodes enter the decide phase
by all valid leader vertices in the same sequence, for odd
rounds and even rounds respectively. Since it can be seen as
pipelining to decide odd rounds and even rounds, the decide
results on these two are independent. Therefore, any two
correct nodes decide each round by the same leader vertex,
and hence decide the same univalent status on each vertex in
each round.

Theorem B.1 guarantees the agreement of the normal path
in Chitu. Then we prove the agreement of the fast path and
the normal path.

Lemma B.3. If a correct node considers a vertex v in round
r 1-valent through the fast path, then no other correct nodes
consider v 0-valent through the fast path, and vice versa.

Proof. We prove this lemma by contradiction. a correct node
considers v 1-valent through the fast path only if at least 2 f +1
vertices in round r+1 observe v. Assume v is considered 0-
valent by some correct node through the fast path, then at least
2 f +1 vertices in round r+1 do not observe v. The number
of vertices in round r+1 is (2 f +1)+(2 f +1)> 3 f +1. A
contradiction.

Lemma B.4. If a vertex v in round r is considered 1-valent
through the fast path, then v is strongly observed by the next
valid leader vertex vl in round r+2k (k ∈ N+) through the
normal path.

Proof. We prove this lemma by contradiction. v is considered
1-valent only if at least 2 f +1 vertices in round r+1 observe
v. Denote by S the set of vertices in round r+1 observed by
vl , |S| ≥ 2 f +1. Assuming v is not strongly observed by vl ,
by Definition 4.2 there are less than f +1 vertices in S that
observe v. Thus, at least f +1 vertices in S do not observe v.
The number of vertices in round r+1 is (2 f +1)+(f +1)>
3 f +1. A contradiction.

Lemma B.5. If a vertex v in round r is considered 0-valent
through the fast path, then v cannot be strongly observed
by the next valid leader vertex vl in round r+ 2k (k ∈ N+)
through the normal path.

Proof. We prove this lemma by contradiction. v is considered
0-valent only if at least 2 f +1 vertices in round r+1 do not
observe v. Denote by S the set of 2 f + 1 vertices in round
r+1 observed by vl . Assuming v is strongly observed by vl ,
by Definition 4.2 there are at least f + 1 vertices in S that
observe v. The number of vertices in round r+1 is (2 f +1)+
(f +1)> 3 f +1. A contradiction.

We give the total agreement of Chitu through different com-
mit paths:

Theorem B.2 (Agreement of different paths). For each vertex,
any two correct nodes decide it to the same univalent status.

Proof. Let i and j be two correct nodes. We prove this theo-
rem in three cases.

Case I: Both i and j decide vertex v through the fast path.
By Lemma B.3, v is decided to the same status by i and j.

Case II: i decides vertex v through the fast path while
j decides v through the normal path. By Lemma B.4 and
Lemma B.5, if v is considered 1-valent (0-valent) by i through
the fast path, then v can (cannot) be strongly observed by the

USENIX Association 2025 USENIX Annual Technical Conference 941

next valid leader vertex in j’s view. Thus, v can be decided to
the same status as i by j through the normal path.

Case III: Both i and j decide vertex v through the normal
path. By Theorem B.1, v is decided to the same status by i
and j.

Theorem B.3 (Total order). Any two correct nodes commit
vertices with the same order.

Proof. Chitu commits vertices round by round consecutively.
By Theorem B.2, any two correct nodes have the same decide
result on each vertex, and hence can commit all vertices that
are decided 1-valent with the same pre-defined order in each
round. In the meantime, the causal history of these vertices are
also committed with the same order. Therefore, Chitu satisfies
total order.

B.2 Liveness
Lemma B.6. For every round r, there are at least f +1 ver-
tices strongly observed by the next valid leader vertex vl in
round r+2k (k ∈ N+).

Proof. A vertex must connect to at least 2 f +1 vertices in the
previous round. Denote by S the set of vertices in round r+1
observed by vl , |S| ≥ 2 f + 1. The total number of edges S
provide to round r is at least (2 f +1)|S|. By Definition 4.2, a
vertex in round r is strongly observed by vl if it is observed by
at least f +1 vertices in S. There are at most 3 f +1 vertices in
round r. Therefore, if only f vertices in round r are strongly
observed by vl , which are observed by all vertices in S using
the most edges, and the rest 2 f + 1 vertices in round r are
observed by only f vertices in S, the maximum total number
of edges is f |S|+(2 f + 1) f ≤ f |S|+ |S| f = 2 f |S| < (2 f +
1)|S|. Thus, there are at least f +1 vertices strongly observed
by vl .

Lemma B.6 shows that for every round r there are at least
f + 1 vertices each observed by at least f + 1 vertices in
round r+1. This connection feature is the same as the rules
of valid leaders, i.e., a leader vertex vl in round r is valid if vl
is observed by at least f +1 vertices in round r+1. Then the
following lemma is simply derived.

Lemma B.7. For every round r, there are at least f +1 ver-
tices that satisfy the rules of valid leaders.

Theorem B.4 (Termination of leader selection). In expecta-
tion, Chitu selects a valid leader vertex for odd (even) rounds
every 6 rounds in the DAG under an asynchronous adversary.

Proof. To select a leader vertex in round r, the random coin
is generated when 2 f + 1 vertices in round r+ 1 are added
to the DAG. Only after the DAG of the next round is fixed
can the adversary identify the leader of the round before, so
that it is impossible to manipulate the edges connected to
the leader. Since by Lemma B.7 at least f + 1 vertices in

each round satisfy the rules of valid leaders and the coin is
uniformly distributed, the probability to select a valid leader in
each selection is at least f+1

3 f+1 > 1
3 . Thus, in expectation, there

exists a valid leader every 3 selections. Since each selection
takes 2 rounds, and Chitu selects leaders for odd rounds and
even rounds respectively, in expectation, a valid leader for
odd (even) rounds is selected every 6 rounds in the DAG.

Lemma B.8. If a leader vertex v in round r is valid, then
any vertex in round r−2k (k ∈ N+) is decided to a univalent
status.

Proof. By Lemma B.1, all valid leaders in round r−2k (k ∈
N+) can be learned, and hence all vertices in round r−2k (k∈
N+) are decided to a univalent status.

Theorem B.5 (Termination). In networks with random mes-
sage delays, in expectation, Chitu decides each vertex to a
univalent status within less than 5 rounds in the DAG.

Proof. Let vl be the leader vertex in round r selected through
random coins. Since message delays are distributed uniformly,
each vertex in round r + 1 connects to at least 2 f + 1 ver-
tices in round r independently of other vertices in round
r + 1. Therefore, the probability that each vertex in round
r + 1 observes vl is at least 2 f+1

3 f+1 > 2
3 . Considering vl is

valid if it is observed by at least f + 1 vertices in round
r + 1, the probability that an selected leader can be valid
is at least ∑

2 f+1
k= f+1

(2 f+1
k

)(2
3

)k (1
3

)2 f+1−k
. Since this probabil-

ity increases as f grows, we can compute that the minimum
probability is 12

27 +
8
27 = 0.74 when f = 1. Thus, in expecta-

tion, an selected leader is valid every 1
0.74 = 1.35 selections,

i.e. 1.35× 2 = 2.7 rounds, at most. Then, by Lemma B.8
each vertex in odd (even) rounds can be decided by the
nearest subsequent valid leader in odd (even) rounds. In
expectation, each vertex is decided by a valid leader after
1×1+0.35×1.35

1.35 × 2 = 2.18 rounds. Combining the above re-
sults, in expectation, Chitu decides each vertex to a univa-
lent status within 2.7+2.18 = 4.88≈ 5 rounds (or less when
f > 1) in the DAG. Moreover, if the fast path is achieved, each
vertex is decided every 2 rounds in the DAG, which reduces
the expectation of rounds to decide each vertex further.

Theorem B.6 (Validity). In each round, at least one vertex
proposed by a correct node is decided 1-valent.

Proof. By Lemma B.6, for each round, at least one vertex
from a correct node can be strongly observed by the subse-
quent valid leader and decided 1-valent. Therefore, the adver-
sary can not fully occupy the 1-valent vertices. Chitu satisfies
validity.

942 2025 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background
	Model
	Fast termination and the leader's bottleneck in partially synchronous protocols
	Randomization in asynchronous protocols

	The Fair-Fallback Framework
	Motivation and first principles of consensus
	A strawman protocol
	The framework

	The Chitu Protocol
	Main idea
	DAG construction
	Commit rules
	Adaptive wait
	Performance analysis
	Sketch of proof

	Performance Evaluation
	Fault-free performance
	Performance under crash faults
	Performance under Byzantine faults
	Performance with skewed distribution

	Related Work
	Conclusion
	Chitu Pseudocode
	Data Structure and Utilities
	DAG Construction
	Commit Rules

	Chitu Correctness Proof
	Safety
	Liveness

