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Abstract
With the growing importance of personalized large lan-

guage models (LLMs) and fine-tuning techniques, parameter-
efficient fine-tuning (PEFT) has emerged as a mainstream
approach, offering reduced computational and storage de-
mands compared to full-parameter fine-tuning. Compared to
pre-training, we find memory efficiency more critical dur-
ing fine-tuning. Although the overall memory capacity of
fine-tuning hardware is typically limited, memory becomes
more precious since most parameters are frozen and can be
cached for performance optimization. To better utilize mem-
ory, we propose Elastic Tensor, an abstraction for dynamic
tensor management, enabling flexible control over their avail-
ability, accumulation, and release in memory. Elastic tensor
defines four key operations for static and runtime tensors
with tunable ratios: gather, discard, execute, and checkpoint.
With elastic tensors, a series of optimizations are enabled,
such as improving temporal memory utilization, relaxing data
dependence, and accumulating runtime tensors in a memory-
adaptive way. We implement mTuner, an end-to-end fine-
tuning system based on elastic tensors. Compared with state-
of-the-art training and fine-tuning systems, mTuner achieves
a throughput improvement of up to 51.2% and 24.8% (28.3%
and 14.5% on average) on PCIe and NVLink servers respec-
tively, for LLMs from 7B to 70B. mTuner is publicly available
at https://github.com/xxcclong/mTuner.

1 Introduction

Large language models (LLMs) [1,34,43,50] are becoming in-
creasingly prevalent across various applications. Meanwhile,
fine-tuning techniques for model personalization [9, 47, 52]
have emerged as a critical topic in large-scale model training.
Fine-tuning is typically conducted with limited data and mod-
est hardware resources [10, 11, 59], while often requiring the
rapid generation of multiple fine-tuned models [13, 17, 61].
However, the immense number of parameters in large lan-
guage models poses significant challenges to performing full-
parameter fine-tuning under these constraints [16, 44, 60].

To overcome this limitation, researchers have introduced
parameter-efficient fine-tuning (PEFT). Unlike full-parameter
fine-tuning, PEFT leverages pre-trained weights by updating
only a small subset of parameters while keeping the major-
ity of the model frozen [15, 22, 28, 37, 54]. This approach
significantly reduces computational overhead and storage re-
quirements, as only the updated parameters need to be saved,
yet it maintains competitive performance. As a result, PEFT
has become the predominant fine-tuning strategy [8, 16, 24].

Parallelization is essential for efficient fine-tuning of LLMs
across multiple GPUs and servers, as it enables the distribu-
tion of computation and data to meet the high memory and
computational demands. Various strategies, including data,
tensor, and pipeline parallelism, have been proposed to im-
prove distributed training performance [40, 45]. For better
performance, previous work tried to search for the optimal
parallel strategy [12, 51, 58] and improve communication ef-
ficiency [2, 3, 33, 62]. On the other hand, efficient parallel
execution relies heavily on available memory, which not only
stores weight parameters to reduce communication overhead
but also supports larger batch sizes for increased parallelism.
As shown in Figure 1a, fine-tuning throughput improves with
higher memory utilization, making it critical to maximize
memory usage while staying within hardware limits. There-
fore, previous works optimize memory efficiency using swap-
ping [3, 55], offloading [39, 41], and activation checkpoint-
ing [36, 42, 48]. However, memory efficiency still remains
a key challenge, hindering the full potential of distributed
fine-tuning.

The first challenge arises from low temporal memory uti-
lization, which stems from the inherent first-in-last-out pat-
tern of runtime tensor such as activations. This pattern creates
peaks and valleys in memory usage, where memory is heavily
occupied during peaks but is underutilized during valleys,
resulting in inefficient usage of available memory resources
(Figure 1c).

The second challenge comes from the data dependency be-
tween computation and communication. During fine-tuning,
communication is often required for runtime tensors, such
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Figure 1: (a) The throughput of fine-tuning models is directly
proportional to memory limit; (b) Existing fine-tuning sys-
tems have low time-average memory utilization; (c) Low
temporal memory utilization and high peak memory caused
by uniform memory accumulation; (d) Communication re-
source waste due to data dependence.

as performing all-gather for activations in tensor parallelism.
However, communication can only begin after the relevant
data is produced, leading to rigid data dependence. This de-
pendence limits opportunities for overlapping communication
with previous computation, causing inefficient utilization of
communication resource (Figure 1d).

The third challenge is related to memory accumulation and
peak memory consumption. Existing methods accumulate
memory without considering the different phases of memory
usage. As a result, memory accumulation strategies apply
uniformly in both the peak and valley phases, leading to ex-
tremely high memory pressure during the peak phases, thus
constraining other optimization space related to memory (Fig-
ure 1c).

As a result, existing frameworks have low time-average
memory utilization as shown in Figure 1b. The underlying
root cause of these challenges lies in the static deploying of
memory adopted by current parallelization frameworks. Their
static scheduling assumes a uniform and large-size pattern
of memory, which fails to accommodate the highly dynamic
nature of fine-tuning. This dynamism arises from several
factors: the runtime tensor being generated and accumulated
on-the-fly during computation, the dynamic availability of
computational and communication resources, and the variable
data dependence that must be resolved at runtime.

To address the above challenges, we propose elastic tensor,
an abstraction for dynamic tensor management. By defin-
ing four core actions and allowing flexible control of mem-
ory through tunable ratios, elastic tensor provides a unified
method for discovering memory optimizations.

With elastic tensor, a series of optimizations are enabled
for fine-tuning. First, we introduce a temporal memory man-
agement strategy that leverages frozen parameters in PEFT
to reuse idle memory during valley stages, significantly en-
hancing temporal memory utilization. Second, elastic ten-
sor facilitates the interplay of communication between static
and runtime tensors, thereby relaxing data dependencies and
improving communication-computation overlap. Third, we
propose an adaptive accumulation strategy that dynamically
adapts how runtime tensors are stored and accumulated, effec-
tively reducing peak memory pressure and improving overall
memory efficiency.

Based on elastic tensor, we develop mTuner, a fine-tuning
system with high memory utilization for better PEFT effi-
ciency. mTuner leverages elastic tensor at runtime to maxi-
mize memory utilization and reduce communication work-
load. We evaluate mTuner on transformer-based LLMs with
sizes ranging from 7B to 70B parameters on an eight-GPU
server. Results show that mTuner improves fine-tuning per-
formance by up to 1.51× (1.28× on average) compared to
state-of-the-art training systems, including DeepSpeed [40],
Megatron [21], and Flux [2].

In this paper, we have made the following contributions.

• We identify key memory efficiency challenges in LLM
fine-tuning and analyze their impact on performance.

• We propose elastic tensor, an abstraction for dynamic
tensor management. It supports four core actions with
tunable ratios, providing fine-grained control to enable
key optimizations in memory efficiency.

• We use elastic tensor to represent and apply three novel
optimizations that improve performance by enhancing
memory efficiency.

• We evaluate mTuner on various models with parameter
sizes ranging from 7B to 70B, achieving improvement of
up to 51.2% and 24.8% (28.3% and 14.5% on average)
on PCIe and NVLink servers.

2 Background

2.1 LLM Fine-tuning
LLM fine-tuning refers to the process of imparting domain-
specific knowledge to a LLM based on a small amount of
domain-specific data, building upon a pre-trained model. Fine-
tuning holds significant importance in applying LLMs across
various industries and domains.

Traditional fine-tuning is similar to pre-training, which up-
dates all parameters. The example is shown in Figure 2(b),
all weight parameters are trainable and need to be updated
during backward propagation. To make fine-tuning more
light-weighted, researchers propose Parameter-Efficient Fine-
Tuning (PEFT), which also starts with a pre-trained model,
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Figure 2: Illustration of (a) inference, (b) pre-training/full
parameter fine-tuning, and (c) parameter-efficient fine-tuning
(PEFT)

but does not update the whole parameters of the pre-trained
model. Instead, it introduces a small number of trainable pa-
rameters called adapters into the model structure1. As shown
in Figure 2(c), during training, the parameters of the pre-
trained model (base model) are involved in computations but
not updated (frozen); only the parameters of the adapters are
updated based on the loss and optimizer state.

Compared with full-parameter fine-tuning, PEFT has the
following advantages: 1). It significantly reduces the mem-
ory requirements for the optimizer state, needing only the
adapter’s optimizer state and not that of the base model; 2).
As it does not compute gradients for the majority of param-
eters during backward propagation, it saves computational
resources; 3) Since only the parameters of the adapter differ
after tuning, saving only the adapter’s parameters (along with
the original base model’s parameters) constitutes the tuned
model, facilitating propagation and serving. Consequently,
PEFT has become a commonly used method in current fine-
tuning practices and is the main focus of this paper.

2.2 Data Communication

In distributed fine-tuning, data communication plays a crucial
role in ensuring parallel efficiency across multiple GPUs. The
data involved in fine-tuning can be broadly categorized into
two types: static tensor and runtime tensor, each with distinct
characteristics and communication requirements.

Static tensor primarily consists of model parameters, such
as weights and biases, since these tensors persistently reside
in memory. Distributed fine-tuning often employs techniques
like data parallelism, where static tensor is either split across

1PEFT can also select some parameters from the pre-trained model and
set as trainable. It has the same pattern with a large number of weights frozen
and a small number of weights trainable

devices or replicated. For example, in fully-sharded data paral-
lelism (FSDP), each device holds a partition of the parameters,
and communication is required when executing a module to
get all its weights locally available to perform computation
on it.

Runtime tensor refers to intermediate activations, gradients,
and other temporary data produced during the forward and
backward passes. Unlike static tensor, runtime tensor is highly
dynamic, with its communication pattern depending on the ex-
ecution flow of the model. For instance, in tensor parallelism,
runtime tensors such as activations needs to be gathered or
scattered across devices during computation. Moreover, run-
time tensor communication is constrained by data dependence,
meaning communication can only occur after the relevant
computation has been completed, which limits opportunities
for overlapping communication with computation.

2.3 Memory Challenges in LLM fine-tuning
Fine-tuning involves dynamic memory patterns due to run-
time tensors, such as intermediate activations and gradients.
These runtime tensors often dominate memory consumption
and directly affect the achievable batch size, sequence length,
and ultimately the training throughput. On the other hand,
memory can be used for caching static tensor to reduce com-
munication overhead. To improve memory efficiency during
fine-tuning, it is essential to address several challenges arising
from the complex interplay of computation, communication,
and memory accumulation. Specifically, we highlight three
major challenges: inefficient utilization of idle memory during
temporal valleys, waste of communication resources caused
by data dependence, and high peak memory pressure due to
inflexible accumulation strategies.
Ignoring valley memory: Low temporal memory utiliza-
tion . One major challenge in LLM fine-tuning is the ineffi-
cient utilization of memory due to the fluctuating nature of
temporal memory usage. During fine-tuning, runtime tensor
follows a first-in-last-out pattern, which creates peaks and val-
leys in memory consumption. At peak moments, memory is
highly occupied, while during valleys, a significant portion of
memory remains idle. This inefficiency becomes even more
pronounced when larger contexts or batch sizes are used, as
runtime tensors occupy a larger fraction of the total mem-
ory. Without strategies to utilize idle memory during valleys,
overall memory efficiency remains suboptimal.
Runtime tensor dependence: Waste of communication
resources Another critical issue arises from the rigid data de-
pendence during fine-tuning, which leads to underutilization
of communication resources. Fine-tuning often requires com-
munication for runtime tensor, such as gathering activations
in tensor parallelism. However, communication resources are
heavily constrained during these phases, as communication
for runtime tensor can only occur after the corresponding
tensor has been produced. In contrast, during other phases
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that involve only computation, communication resources are
largely idle. This strict data dependence prevents preemp-
tive communication, resulting in significant waste of avail-
able communication resources. Efficiently addressing this
imbalance between computation and communication is key
to improving fine-tuning performance.
Inflexible memory accumulation: High peak memory con-
sumption . A third challenge is the rigid method used to
accumulate runtime tensor under different memory status.
Previous approaches do not account for the varying charac-
teristics of peak and valley phases in memory usage. As a
result, they apply the same memory accumulation strategy
throughout, leading to excessively high memory pressure dur-
ing peak phases. This accumulation method leaves little room
for optimization at peaks, where memory is already a criti-
cal constraint. Consequently, peak memory usage becomes a
major bottleneck, limiting the scalability of fine-tuning large
models. Addressing this challenge requires flexible memory
management strategies that adapt to the different phases of
memory utilization.

3 Elastic Tensor

We propose the concept of elastic tensor, an abstraction for
dynamic tensor management, where all tensors (e.g., weight
parameters, activations, etc.) are treated as dynamic entities, of
which real storage can be adjusted during execution. mTuner
enables elastic tensor management by providing the following
four actions for tensors. These actions control all changes to
tensor memory utilization during fine-tuning, thus affect the
overhead (computation and communication) related to tensor
memory changes.

1. Gather: For both static and runtime tensors, it makes
remote data partitions locally available. It calls cross-
device communication (all-gather) to fetch remote data
and increases the ratio that represents how much data is
locally available, which varies from 1

D (D is the number
of devices, indicating tensors evenly partitioned) to 100%
(tensors fully replicated on each device).

2. Discard: It drops gathered tensor to save memory and
decreases the ratio of it with no overhead.

3. Execute: It performs model computation and generates
runtime tensors. A ratio indicating the fraction of the
input batch processed, ranging from 1/B (processing a
single sample) to 100% (processing all samples).

4. Checkpoint: It saves generated runtime tensor for gradi-
ent computation. A ratio describes how many runtime
tensors of the module is saved, ranging from 0% (no ten-
sor is stored) to 100% (all runtime tensors in this module
are stored).

For dynamic elasticity, mTuner not only can perform these
actions with various ratio, but also flexibly set the time for
triggering. At the start and end of executing each operation,
mTuner can insert actions to change memory usage and utilize
communication resource.

mTuner performs operations such as partitioning and com-
municating tensors to achieve memory management for elas-
tic tensor, just like the existing works such as distributed ten-
sor representation, memory allocator, and different memory
caching policies. However, elastic tensor enables conversions
between operations that were previously unrelated. For exam-
ple, trading off between storage and communication efficiency.
This allows for a unified representation and transformation be-
tween memory, compute, and communication, which in turn
optimizes memory planning and execution strategies under
memory constraints.

4 Optimizations Enabled by Elastic Tensor

By leveraging elastic tensor, we can flexibly adjust the storage
ratio and execution behavior of static and dynamic tensors.
This enables further improvements in memory utilization un-
der strict memory constraints and allows memory to be used
for relaxing data dependence, thereby better utilizing commu-
nication resources and optimizing fine-tuning throughput.

4.1 Temporal Memory Adjustment
As discussed in Section 2.3, the first-in-last-out pattern of
runtime tensors results in peaks and valleys in memory usage,
which further leads to low temporary memory utilization.
mTuner uses elastic tensor to dynamically cache and reuse
tensors at the memory valleys to solve this problem.

Dev 0

Gather

Discard

Dev 1 Dev 2 Dev 3 Dev 0

Gather

Discard to 
new ra'o

Dev 1 Dev 2 Dev 3

OP

Weight

(a) (b) (c)

input

Figure 3: Illustration of Gather and Discard for weights.
When performing computation on an operator (a), FSDP im-
plementation will Gather all its weights, perform computation,
and Discard them to the original ratio (b); In mTuner, Discard
can be adjusted to other ratio (c);

For fully-sharded data parallel, as shown in Figure 3(a) and
(b), during the execution of an operator, each device acquires
its complete weights by gathering, which is then used for
computations. The gathered weights are discarded after that.
As the device possesses complete weight during computation,
mTuner can re-adjust the ratio of the weight without incur-
ring additional communication overhead. In the example
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of Figure 3(c), prior to computation, each device only possess
1
D of the weight for the operator, which is then adjusted to 2

D
after computation. Such dynamic adjustments can be made
each time when the weight is used for computation.

Iter k Iter k+1

M
em

or
y Memory limit

Pre-peak stage Post-peak stage
Pre-valley stage Post-valley stage

Figure 4: Memory stages resulted by generated runtime ten-
sors

mTuner schedules elastic tensors to improve temporary
memory utilization by dynamic adjustment according to cur-
rent and predicted memory usage trends. As illustrated in
Figure 4, during the valley region, frozen weights from the
pre-valley stage have a minimal reuse distance. Consequently,
mTuner discards less of these weights, thereby increasing the
ratio of tensors retained in the pre-valley stage. This strategy
facilitates the reuse of these weights and reduce the commu-
nication cost for gathering during forward computation in
the post-valley stage. To restore memory efficiency before
the pre-peak stage, mTuner compensates by discarding more
weights at this point, returning the memory state to its base
level.
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Figure 5: Filling memory valley with single size ((a) and (b))
and progressively changing ratio of elastic tensors (c)

As shown in Figure 5(a), caching frozen weights at a high
ratio (e.g., 100%) during the valley can quickly exhaust the
available memory, leaving insufficient space to cache other
tensors. Conversely, caching frozen weights at a low ratio
allows more tensors to be cached but fails to fully utilize
the available memory during the valley (Figure 5(b)). Ad-
ditionally, frequent memory allocation during the peak can
lead to fragmentation, increasing the risk of out-of-memory
(OOM) errors. To maximize the temporal utilization of avail-
able memory, elastic tensor gradually adjusts the discard ratio
in the pre-valley region. As in Figure 5(c), closer to the valley,
a higher ratio of tensors is cached, while nearer to the peak,
the caching ratio is reduced to ensure efficient memory usage
and minimize fragmentation risk.

4.2 Dependence-relaxed Communication
Another common parallel strategy in fine-tuning is tensor
parallelism (TP). Unlike data parallelism, TP does not re-
quire gathering weight parameters; instead, it partitions and
gathers activations for parallel execution, making activation
communication a main performance bottleneck. Though com-
munication resources are highly constrained during the TP
communication phase, they remain underutilized during other
phases dominated by computation.

This underutilization arises due to the data dependency of
activations: communication can only begin after activations
are generated, preventing it from being initiated in advance.
Prior works [2,33] attempt to mitigate this issue by fusing acti-
vation communication with computation, breaking workloads
into fine-grained tasks to enable partial overlap. However,
data dependency still limits the full utilization of available
communication resources.

Time

Comp

Comm

AG (A)
100%

Attention

RS (A)
100%

AG (A)
50%

MLP

RS (A)
50%

AG(W)
25%

AG(W)
25%

Attention module MLP module

(b) Communication resource utilized by inserting independent communication

Comp

Comm

AG (A)
100%

Attention

RS (A)
100%

AG (A)
100%

MLP

RS (A)
100%

TimeAttention module MLP module

(a) Communication resource wasted due to data dependence

Computation Communication
for Attention

Communication
for MLP

Communication
for further modules

Figure 6: Timeline for attention and MLP module w/ and w/o
dependence-relaxed communication

We find that, though data dependence for activation exists,
static data, which is independent from execution, can be used
to trade for activation communication. Therefore, mTuner can
relax the data dependence by elastically inserting communi-
cation for weight parameters. The enlarged weight parameter
can reduce the communication workload for activation. Fig-
ure 6 is an example for an attention module followed by an
MLP module in a Transformer layer. (a) shows the communi-
cation resource utilization constrained by data dependence of
activations. However, in (b), mTuner can insert the communi-
cation of weight while performing computation for attention
module. With a larger portion of local weights, it can reduce
the range and workload of communication for activation in
MLP module, thus leads to faster all-gather and reduce-scatter.
In MLP module, it can also insert communication for weights
of further modules.

Here is a quantitative analysis of the communication sav-
ings achieved by dependence-relaxed method. We take input
with batch size at B, sequence length at S, hidden size at H,
and FFN hidden size F for example. At the start of the MLP
module, original method performs a gather ranging from 8
GPUs to collect activations from [B,S, H

8 ] into [B,S,H], then
performs MLP on devices each storing weight parameters
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of [H, F
8 ] and [F

8 ,H], and performs reduce-scatter to reduce
the tensor [B,S,H] into [B,S, H

8 ]. However, with weight pa-
rameters prefetched into [H, F

4 ] and [F
4 ,H] (25% of the total

number of parameters), the communication range is reduced
from 8 GPUs to 4 GPUs. The communication at the start
and end of TP is the all-gather and reduce-scatter for tensor
size at [B

2 ,S,
H
4 ] and [B

2 ,S,H], which is reduced by 50%. For
scenarios that batch size is tightly constrained and cannot be
split, mTuner can split on the dimension of sequence for MLP
module.

The percentage of weight prefetched to reduce activation
communication is determined by the idleness of communi-
cation resource. The communication is fully overlapped and
leads to low overhead. On the other hand, with communi-
cation of weight and activation interchanged, the efficiency
of computation for TP module is improved: The reduction
dimension for matrix multiplication gets larger, benefitting
the parallelism and the use of TensorCore for GPU.

4.3 Adaptive Data Accumulation
Runtime tensors such as activations are generated and accu-
mulated during the forward phase, and they are consumed and
released during the backward phase. The accumulated ten-
sors are part of the memory usage bottleneck. Some methods
manipulate on the accumulated memory for better memory
utilization. However, as the manipulation uniformly regards
the memory at different stages (transformer layers), it causes
high activation memory peak usage, therefore limits other
optimizations related to memory. mTuner uses elastic tensor
to manage the generation and storage of tensors adaptively
using the action of execution and checkpoint.

We observe that runtime tensors generated by different lay-
ers exhibit varying lifespans: deeper layers, which are closer
to the loss computation, complete backward computations
and discard runtime tensors earlier, without affecting com-
putations in shallower layers. Consequently, initiating back-
ward computations sooner for these deeper layers can shorten
tensor lifetimes and enable earlier memory release, thereby
reducing their residency time. To enable earlier backward ex-
ecution, mTuner adopts a non-uniform prioritization strategy
for deeper layers: it can selectively prioritize partial execution
on input tensors (by splitting along the batch dimension) and
perform corresponding backward executions for those parts.

As shown in Figure 7(a), for training a 4-layer model on
four input samples, the typical procedure involves processing
them together, executing four forward computations followed
by four backward computations. Shown in Figure 7(b), this
process results in the accumulation of activations generated
by the four samples across the four layers of forward compu-
tations in memory, peaking at the end of the forward stage.
mTuner’s optimization is shown in Figure 7(c), it can divide
execution along the batch dimension, splitting the four sam-
ples into two groups of two samples each. From the third
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Figure 7: Increasing execution priority for samples to reduce
peak activation memory usage; (a) Input samples and compu-
tation workflow; (b) Uniform execution priority for all layers;
(c) Prioritizing execution priority for part of the samples

layer’s forward execution (F3), only a subset of samples firstly
perform forward computation. After completing the forward
computations for these samples, instead of executing the for-
ward computations for the remaining samples, mTuner pri-
oritizes the corresponding backward computations for the
completed samples, thereby reducing the duration for which
these activations are stored in memory. We can observe that
the height of the peak has been effectively reduced.

The peak memory usage can be arbitrarily adjusted using
this method. Let the total batch size be B, the batch size after
splitting be b, and the model consists of L layers. Among
them, the l layers closer to the peak adjust the backward
priority. Suppose the original peak height is H, then the new
peak height is calculated as:

Hnew =
l
L

b
B

H +(1− l
L
)H (1)

This formula indicates that as the ratio of b to B decreases,
the height of the portion with adjusted execution priority
becomes lower. Additionally, as more layers are adjusted in
terms of peak memory usage, the final peak memory usage
will also be reduced. When l = L and b = 1, it is equivalent
to running the entire model with a batch size of 1, resulting
in the lowest peak memory usage.

Moreover, this method enables fine-grained control over
the execution batch size. In cases where the specified batch
size cannot fully utilize available memory, it is possible to
modify the execution priority and batch size of only certain
layers, increasing the peak memory usage to fully exploit
available memory and further enhance memory utilization.

In terms of performance, the fine-grained data accumula-
tion impacts both computational efficiency and memory usage.
From a computational perspective, larger batch sizes generally
improve parallelism and enhance GPU utilization. However,
in fine-tuning large models, the batch dimension of most oper-
ators is determined by the product of batch size and sequence
length. Since the sequence length is already large (typically
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at least 4K), GPU resources are already well-utilized, and
increasing the batch size has limited additional benefit. On
the memory side, fine-grained batch splitting allows for more
efficient memory usage by better filling available memory and
reducing communication overhead. As for accuracy, batch
splitting has no impact on the final model performance. This
is because gradients from different samples are accumulated
before each optimization step. Whether gradients are com-
puted using a single large batch or multiple smaller batches,
the accumulation process remains mathematically equivalent.

5 Elastic Tensor Schedule Discovery

The elastic tensor significantly expands the optimization space
for memory management during fine-tuning. However, identi-
fying the optimal elastic configuration for a given hardware
environment and model setup is challenging due to the large
search space. To address this, mTuner adopts a profiling-based
approach to measure the time and memory overhead of each
module under various partitioning strategies. Additionally, it
introduces a search algorithm that simultaneously accounts
for peak and valley memory constraints to determine the glob-
ally optimal strategy.

5.1 Elastic Tensor Representation

1 Forward:
2 gather: 100% # get full MLP param from 50%
3 discard: 12.5% # fully partition MLP param
4 execute: 50% # execute half of a batch
5 checkpoint: 0% # store none of activation
6 Backward:
7 gather: 100% # get full param from 12.5%
8 discard: 50% # discard half of param
9 execute: 50% # execute half of a batch

10 # Forward_execute should equal to
Backward_execute

11 # The input ratio for Forward_gather is the
output ratio of Backward_discard (vice
versa)

Listing 1: Example elastic tensor representation on an MLP
module on an 8-GPU servers

mTuner represents the schedule for elastic tensor by setting
the actions and ratio for each module. To consider both peak
and valley memory, we represent elastic tensor for forward
and backward pass respectively.

Listing 1 demonstrates the elastic representation for an
MLP module on an 8-GPU system. During the forward pass,
the elastic tensor gathers the full MLP parameters from a par-
tial partition at 50%, discards part of the parameters to 12.5%
after computation, and processes half of the batch without
storing any activations to minimize memory consumption.
In the backward pass, it retrieves the full parameters from

a highly partitioned state of 12.5%, but discards 50% of the
parameters after computation, and processes the same batch
fraction (50%) as in the forward pass. As it discards less data
during backward pass, it has higher valley memory consump-
tion and leads less gathering workloads at forward pass (50%
→ 100%).

5.2 Holistic Schedule Searching

To find an elastic schedule that minimizes the iteration time
under memory constraints, the key challenge is that two kinds
of memory, peak memory and valley memory, are utilized
while constrained by memory limit. Peak memory is tradi-
tionally considered, as the runtime tensors are accumulated.
Valley memory is the new problem in mTuner, which indicates
how mTuner make use of idle memory as runtime tensors are
consumed in backward phase.

In addition to memory constraints, there are interdependen-
cies between transformer layers that complicate the schedul-
ing process. Specifically, data required by later layers can be
prefetched by earlier layers, meaning that a scheduling deci-
sion for one layer influences both memory availability and
execution time of subsequent layers. Furthermore, two distinct
types of resources—computation resources and communica-
tion resources—must be considered, and they can overlap.
The interplay of these factors makes it challenging to fully
utilize available memory and minimize execution time simul-
taneously.

To address these challenges, we propose a dual-memory
dynamic programming (DP) approach that searches for the
minimal execution time while respecting both peak and valley
memory constraints. This DP algorithm evaluates different
implementation options for each transformer layer and com-
putes the optimal schedule by tracking memory usage at each
step. We also improve resource utilization by overlapping
communication with computation. By allowing communica-
tion to be brought forward, we hide communication latency
behind computation.

Algorithm 1 shows the implementation of dual-memory
DP. At each layer, multiple implementation choices are avail-
able, each with a unique combination of execution time, peak
memory, and valley memory consumption. The dual-memory
DP approach explores these options recursively, keeping track
of both types of memory consumption at each step. For a
given layer, the algorithm evaluates every possible implemen-
tation choice and updates the schedule only if it results in a
lower execution time while respecting the memory limits. The
implementation choices includes different parallel strategies
and the ratio of stored weights and activations. It maintains
a multidimensional state space where each state represents
the cumulative execution time under specific peak and valley
memory usage. The state transition involves updating execu-
tion time by adding the time of the selected implementation
and adjusting memory consumption accordingly.
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Algorithm 1 Elastic tensor schedule search

1: Input: Number of layers L, total GPU memory Mtotal ,
peak memory Mi

p( j), valley memory Mi
v( j), execution

time T i( j) for each layer i and implementation j, number
of implementations Ni for each layer i

2: dp(i,mp,mv) ← ∞, ∀i ∈ {1, . . . ,L},mp,mv ∈
{0, . . . ,Mtotal}

3: dp(0,mp,mv)← 0, ∀mp,mv ∈ {0, . . . ,Mtotal} ▷ Initialize
4: for i ∈ {1, . . . ,L} do
5: for mp ∈ {0, . . . ,Mtotal} do
6: for mv ∈ {0, . . . ,Mtotal} do
7: for j ∈ {1, . . . ,Ni} do
8: if Mi

p( j)≤ mp and Mi
v( j)≤ mv then

9: m′p← mp−Mi
p( j) ▷ remaining peak memory

10: m′v← mv−Mi
v( j) ▷ remaining valley memory

11: dp(i,mp,mv) ← min(dp(i,mp,mv),dp(i −
1,m′p,m

′
v)+T i( j)) ▷ Update DP state

12: result←minmp,mv∈{0,...,Mtotal} dp(L,mp,mv)
13: Backtrack to determine the selected implementation xi

for each layer
14: Output: Selected implementations x1,x2, . . . ,xL and total

execution time

To reduce the search space of DP, we first prune the set of
possible implementations for each layer, retaining only those
that are likely to yield optimal efficiency. For example, when
balancing between communication and storage, although
mTuner supports a continuous range of communication-to-
storage ratios from 0% to 100%, we observe that significant
changes in communication efficiency occur only when the
number of involved devices changes. Thus, mTuner only con-
siders storage ratios of 1

N , where N is an integer greater than or
equal to 1. Furthermore, to further limit the number of states,
mTuner discretizes memory consumption by rounding it to
integer values. This discretization strikes a balance between
search efficiency and solution accuracy, significantly reduc-
ing the computational complexity of the DP search while
maintaining efficiency.

mTuner and its search method are applicable to models like
Transformers, which execute sequentially and perform back-
propagation of gradients. This applicability is independent of
the specific operators used in the model (e.g., different types of
attention mechanisms or operations like convolutions instead
of MLPs). Moreover, applications like PEFT, which involve
frozen parameters, provide mTuner with more opportunities
to cache parameters and reduce computation. In contrast,
full-parameter fine-tuning, where parameters are distributed
across multiple devices, introduces additional communication
overhead, which diminishes the optimization benefits of the
method.

6 Evaluation

mTuner is an end-to-end fine-tuning system based on Py-
Torch [35] and Torch-FSDP [57]. It statically and dynamically
modifies the model’s execution plan to transform a pre-trained
model into a distributed, memory-adaptive PEFT model. Be-
fore running the model, mTuner utilizes a wrapping method
to partition the weights at the granularity of modules (embed-
ding, MLP, and attention, etc.). It also adds trainable mod-
ules and parameters based on the user-defined PEFT scheme
while freezing other parameters. During runtime, mTuner em-
ploys hook methods using pre/post-forward/backward hooks
of each module to perform actions. As a result, mTuner can
be applied to any LLM model structure without requiring
additional modifications from the user.

We evaluate mTuner to answer the following questions:

• Can mTuner outperform existing fine-tune systems un-
der various conditions, including model size, sequence
length, and hardware settings?

• How elastic tensor influence the memory consumption
and performance?

• How searched elastic tensor schedule improve the fine-
tuning throughput, respectively for memory peaks and
valleys?

• How is the overhead of runtime adjustment of elastic
tensor?

6.1 Setup

Baselines and software configuration. We compare
mTuner with state-of-the-art training frameworks includ-
ing Torch-FSDP@2.1.0 [57], DeepSpeed@0.15 [40], Mega-
tron@0.9.0 [21], and Flux [2]. DeepSpeed employs various
levels of ZeRO optimizations to reduce memory consump-
tion and enhance performance. Torch-FSDP shares a similar
core idea with DeepSpeed, and is implemented with torch-
native components. Megatron is able to concurrently apply
3-D parallelization, including data parallel, tensor parallel,
and pipeline parallel, to partition the model and reduce com-
munication cost. Both systems are widely used and applied to
pre-training and fine-tuning. Flux overlaps computation and
communication by fine-grained partition, and is representative
for state-of-the-art communication kernels. For a fair com-
parison, we run all baselines by setting the maximum batch
size to saturate available device memory. They are all based
on PyTorch@2.5, CUDA@12.1, FlashAttention@2.4.2 [5, 6],
and NCCL@2.21.
Hardware configuration. We tested performance on two
types of typical servers equipped with PCIe and NVLink re-
spectively for cross-GPU communication. The PCIe server
has eight NVIDIA A100-PCIe-40GB GPUs. They are con-
nected via tree-like PCIe: Every four of them are connected
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Figure 8: Overall results on various sequence length; The higher throughput (Token/s) is better.

to the same NUMA, and cross NUMA communication goes
through QPI between NUMAs. The NVLink server has eight
NVIDIA H100-SXM-80GB GPUs connected via NVLink,
four servers in total. Compared with PCIe, NVLink has much
higher communication throughput.
LLMs and input data. We found that the scale of the LLM
(number of parameters) has the most impact on performance,
while other computational characteristics are similar across
transformer-based models. Therefore, shown in Table 1, we
tested different sizes of the Llama 2 model [50], with parame-
ters of 7 billion, 13 billion, 33 billion, and 70 billion. For the
input data, we tested samples with different sequence lengths
ranging from 1024 to 8192. We use LoRA [15] as the PEFT
config, which is commonly used [31] for PEFT.

Table 1: Information of tested models

num_layer hidden_size intermediate_size

Llama 2 7B 32 4096 11008
Llama 2 13B 40 5120 13824
Llama 2 30B 64 6656 17920
Llama 2 70B 80 8192 28672

6.2 Overall Results

Figure 8 illustrates the overall performance of mTuner across
different models, input sequence length, and hardware config-
urations. Figure 8(a) shows the performance on PCIe-server,
where the communication is the bottleneck. DeepSpeed is al-
ways the best among baselines due to its efficient computation-
communication overlapping and communication operators.
mTuner can improve the throughput by 28.3% over Deep-
Speed. On the other hand, mTuner can achieve an average

speedup of 4.15× over Torch-FSDP, on which mTuner is built
upon. In smaller models such as Llama 2 7B, where memory
is more abundant, mTuner can fully leverage the available
memory, resulting in a speedup of 40% and the throughput
exceeding 4000 tokens per second. Even in larger models like
30B and 70B, where the model parameters alone consume
a significant portion of the memory, mTuner still achieves
a 27% speedup, demonstrating the effectiveness of our pro-
posed method across various model sizes.

Figure 8(b) shows the performance on four NVLink-
servers. Compared with the best baseline, mTuner achieves
14.5% speedup. Flux is the best baseline on most scenar-
ios due to its efficient communication kernel designed for
NVLink. mTuner gets improvement over it due to its im-
plementation of better memory utilization and relaxed data
dependence.

We find mTuner more effective on inputs with larger se-
quence lengths. This is because they result in smaller batch
sizes and larger activation memory consumption, which fur-
ther leads to increased communication overhead for each sam-
ple with respect to weights. In the case of larger sequences
(≥4096), mTuner achieves an average acceleration of 34%.

When comparing PCIe-server and NVLink-server, we find
from Figure 8(b) that mTuner achieves a higher speedup ratio
in the PCIe-server configuration (28.3% vs. 14.5%). This can
be attributed to the more severe communication bottleneck
in the PCIe-server setup, while mTuner primarily reduces
communication overhead by increasing memory utilization.

6.3 Ablation Study

Ratio of local data influences communication efficiency.
Figure 9 shows how varying ratio of local data affects the com-
munication bandwidth of allgather operation. And it shows
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Figure 9: The communication bandwidth and time with grow-
ing ratio of local data on PCIe and NVLink servers

how different schemes to increase the local data ratio influ-
ence the overall communication time. For instance, in the case
of 12.5%-25%-50%-100%, the process begins by increasing
the local data ratio of elastic tensors in a module from 12.5%
to 25%. Once all tensors reach 25% local data, the ratio is
further increased to 50%, and so on. When all elastic tensors
achieve 100% local data, the communication time effectively
drops to zero.

As shown in Figure 9(a), communication bandwidth im-
proves significantly when the elastic tensor has a low initial
local data ratio (e.g., 12.5%). Increasing the local storage ratio
from 12.5% to 25% yields a 59% bandwidth improvement,
from 16GB/s to 26GB/s. However, further increasing the local
ratio from 25% to 50%, despite consuming more memory,
results in only a 54% speedup. Consequently, the schedule
12.5%-25%-50%-100% achieves the shortest communication
time by efficiently balancing memory usage and communica-
tion overhead. In contrast, for the NVLink server shown in
Figure 9(b), increasing the local data ratio provides minimal
improvement in communication bandwidth. Therefore, the
schedule 12.5%-100%, which directly minimizes communi-
cation by avoiding it for specific tensors, achieves the best
memory-to-communication efficiency.
Larger batch size leads to less per-sample communication
workload. Figure 10 shows how the memory of activation,
adjusted with batch size, influences the efficiency of compu-
tation and communication. The bars shows under different
batch sizes, the iteration time for communication and compu-
tation. We find that the communication time is invariant to the
batch size, as it is only related to the model size. Therefore,
the communication overhead averaged to each sample can
be reduced when increasing the batch size. The computation,
however, is proportional to batch size as the computational
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Figure 10: Computation and communication time with differ-
ent batch sizes on PCIe-server for Llama 2 70B; Per-sample
communication time decreases with batch size.
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Activation checkpointing saves memory and increases
batch size. Figure 11 demonstrates the effect and overhead of
activation checkpointing. Figure 11(a) illustrates the memory
consumption of all generated activations and the checkpointed
activations, with batch size of 1 and sequence length of 1024.
For models of different scales, mTuner can reduce the required
memory for activations by a factor of 10. This reduction is
particularly crucial for Llama 2 70B because preserving all
activations would require over 30GB of device memory. Com-
bined with the storage of weights on each device, this would
lead to out-of-memory (OOM) errors, making it infeasible
even with a batch size of 1.

Figure 11(b) presents the overhead introduced by activa-
tion checkpointing on 30B model. Both approaches can be
executed with a batch size of 1. However, as the batch size
increases, only the approach of checkpointing activations re-
mains viable. By comparing the runtime, the recomputation
overhead introduced by checkpointing activations is minimal.
This is primarily because the execution time is dominated by
communication. And mTuner mitigates the additional com-
munication introduced by activation checkpointing through
reuse distance, reducing the runtime overhead associated with
activation checkpointing.
Relaxed data dependence improves tensor parallel effi-
ciency. Figure 12 illustrates the benefits of using elastic
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tensor to relax data dependence, improving TP efficiency. As
shown, increasing the ratio of weights prefetched via early
gather results in performance gains across various scenarios.
Specifically, prefetching 25% and 50% of the weights reduces
the overall execution time to 87.6% and 79.0%, respectively.
Notably, even though Flux achieves overlapping of TP com-
munication and computation through fine-grained splitting,
relaxed data dependence further reduces execution time to
92.3% and 84.2% (corresponding to 25% and 50% prefetch
weight, respectively).
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Temporal memory adjustment increases overall memory
utilization. Figure 13 illustrates the changes in memory dur-
ing the runtime process, with each subfigure representing two
iterations. From Figure 13(a), we find that during the forward
phase of each iteration, the memory usage keeps increasing
because the activations used as checkpoints accumulate in
memory. However, during the backward phase, the memory
decreases in a zigzag manner. This is because when recomput-
ing based on checkpoints, a significant number of activations
that was discarded during the forward propagation is gener-
ated, and this memory is immediately consumed during the
backward computation.

From Figure 13(b), if mTuner caches and reuses the elastic
tensors at the ratio of 100% at the valley area, the memory at
the valley quickly fills up, resulting in only a small portion
of the operators’ weights being optimized, while a signifi-
cant amount of time is underutilized in memory. Figure 13(c)
demonstrates that by progressively filling the valley with elas-

tic tensors, most of the weights can be increased in size for
less communication while filling up the memory valley.
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Temporal memory adjustment decreases communication
overhead. Figure 14 illustrates the distribution of elastic ten-
sor ratio and communication time during the forward phase
for these three methods. Communication workload refers to
the total weights collected, so different filling methods (includ-
ing unfilling one) shows the same communication workload.
We find that the non-progressive filling method only makes
10.3% of the workload to be communicated with elastic tensor
at ratio of 100%, reducing the overall communication time
by 10% through these locally available weights. However,
by using the progressive method to fill the valleys, 80.2% of
the weights can be optimized with 25% elastic tensor with
18.0% optimized with 50% elastic tensor, reducing the overall
communication time by 41%.
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Figure 15: Max batch size and corresponding throughput
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Adaptive data accumulation can increase max batch size.
Figure 15 illustrates the maximum batch size achievable with
mTuner for Llama 2 70B. By adjusting the backward priority
of some layers in the pre-peak stage and reducing the peak
height, mTuner can increase the batch size per iteration. Addi-
tionally, to reduce the overhead of repeated computation for
small batches in the flattened peak stage, mTuner increases
the elastic tensor of the flattened peak section. Consequently,
when more layers are flattened, the memory overhead in-
creases, resulting in a decrease in the maximum batch size.
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Moreover, since the averaged communication workload is
related to the batch size, the throughput reaches its maximum
when the batch size is at its maximum, resulting in a 12%
improvement in throughput compared to unflattened peaks.

Increased elastic
weight size

Unflattened Peak (Simulated)
Flattened Peak

Prioritized backward
computation

M
em

or
y 

U
sa

ge
 (G

B)

25

30

35

40

Time (s)
0 5 10 15 20 25 30 35 40

Figure 16: Memory to time curve for training Llama 2 70B
at batch size of 10 with and without adaptive runtime tensor
accumulation; The unflattened curve suffers from OOM (over
40GB memory usage), and is simulated using profile results.

Peak memory usage is reduced by adaptive data accumu-
lation. As shown in Figure 16, the height of peak can be
effectively reduced by adaptive data accumulation. To reduce
the overhead of repeated execution at the peak, mTuner in-
creases the elastic tensor size at the pre-peak stage. Though
compared to the simulated normal execution, non-uniform
execution still introduces overhead and leads to larger execu-
tion time, the advantages, such as increased batch size and
reduced per-sample communication overhead, still contribute
positively to the overall performance.

Table 2: Schedule search time analysis

Time 7B 13B 30B 70B

Search (s) 20.3 25.3 34.5 147.9
Fine-tuning (h) 2.3 4.3 10.0 23.0

Schedule search overhead is acceptable compared with
fine-tuning time. Table 2 presents the time required for
schedule search. The search time scales with model size, but
grows only moderately. We compare the search time with the
overall fine-tuning time that tunes the model with one billion
tokens on H100 server. The fine-tuning takes hours to finish,
which makes the search overhead acceptable.

7 Related Work

Parameter-efficient fine-tuning. Parameter-efficient fine-
tuning (PEFT) [8,16,24] encompasses three main approaches:
adapter-based, prompt-based, and BitFit. Adapter-based meth-
ods [7,14,15,25,37] introduce a small set of trainable modules
into the model architecture. A prominent example is low-rank
adapters (LoRA) [7, 15], which inject low-rank matrix multi-
plications as bypasses to efficiently update the model. Prompt-
based methods [22, 23, 28] insert trainable tokens into the

input prompt, allowing fine-tuning by learning these tokens
without manually modifying the prompt. BitFit [54] takes a
minimalist approach by updating only the model’s bias param-
eters during fine-tuning. PEFT has demonstrated remarkable
effectiveness across various domains, including finance [53],
healthcare [29], code [20], and mathematics [27], establishing
itself as the leading approach for cost-efficient fine-tuning.
QLoRA [7], AdaLoRA [56], and similar approaches [26, 49]
differ in their specific definitions of trainable parameters, yet
they all fall within the broader framework of PEFT, where
only a subset of model parameters is updated. As such, our
proposed method is compatible with and can be applied to
optimize these techniques.

Systems for fine-tuning. To mitigate hardware limitations
during fine-tuning, systems such as FTPipe [10], MPress [59],
and Mobius [11] have proposed more efficient pipeline par-
allelism techniques tailored to the characteristics of PCIe.
PetS [60] improves serving efficiency by sharing a single base
model across multiple PEFT instances, while S-LoRA [44]
offloads PEFT adapters to CPU memory, enabling the deploy-
ment of multiple PEFT models on a single GPU. Despite
their advancements, these systems do not exploit the frozen
weight property inherent to PEFT for optimizing parallel fine-
tuning, nor do they provide fine-grained control over memory
utilization.

Optimizing static tensors in parallel training. Existing
approaches optimize static tensors, such as weight parame-
ters and optimizer states, by leveraging parallel training tech-
niques. DeepSpeed [39, 40, 46] introduces ZeRO, which en-
hances data parallelism by partitioning static tensors across
devices or offloading to CPU memory. To mitigate commu-
nication overhead, subsequent works [3, 30] enhance over-
lapping mechanisms to hide latency effectively. Gpipe [18],
Pipedream [32], and MPress [59] employ pipeline parallelism,
dividing weights at the layer level across devices and enabling
pipelined parallel execution with minimal communication
overhead. However, this approach is prone to pipeline bub-
bles, leading to device idleness. Zero-bubble-pipeline [38]
eliminates bubbles by adjusting the pipeline schedule, but
accumulated activations still cause significant memory pres-
sure. Tensor parallelism [2, 21, 33] takes a different approach
by partitioning weights along an additional dimension, al-
lowing multiple devices to collaboratively process the same
sample. Systems like Megatron [21, 45] and Alpa [58, 62]
combine data, pipeline, and tensor parallelism, either manu-
ally or through automated search, to identify optimal parallel
strategies. Despite these efforts, existing methods focus pri-
marily on static memory optimization through parallelism
and largely overlook dynamic memory constraints and uti-
lization caused by runtime tensors. Consequently, they lack
mechanisms for adaptive, fine-grained memory optimization.

Optimizing runtime tensors with checkpointing and of-
floading. Checkpointing activation [42] is an important tech-
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nique to optimize activation memory, which is also utilized
in mTuner for elastic tensor implementation. It is firstly pro-
posed in [4], and widely used in training frameworks like
Megatron [21] and MPress [59]. There are works [19] try-
ing to find optimal checkpointing strategy considering model
structure. However, these activation optimizations are inde-
pendent with static tensor optimization, while mTuner focuses
on the interplay between them.

8 Conclusion

In this paper, we first observed that memory plays a crucial
role in the performance of parameter-efficient fine-tuning.
However, existing approaches have low memory utilization
due to static scheduling of memory. To address this, we pro-
pose elastic tensors as an abstraction to dynamically adjust
the memory sizes of tensors based on memory usage and the
fine-tuning process. Based on elastic tensor, we developed
mTuner, a system that enables efficient fine-tuning of large
models on multi-GPU servers. Compared to existing state-
of-the-art systems, mTuner achieves an improvement of up
to 51.2% and 24.8% (28.3% and 14.5% on average) on PCIe
and NVLink servers.
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A Artifact Appendix

Abstract
This artifact includes the source codes and experiments for
replicating the evaluations in this paper.

Description & Requirements
How to access

mTuner is publicly available at https://github.com/
xxcclong/mTuner.

Hardware dependencies

• NVIDIA Tesla H100/A100 GPU

• Memory > 400GB

• Disk space > 100GB

Software dependencies

We list the most important software we used:

• CUDA 12.1

• Torch==2.5.1+cu121

• triton==3.1.0

They can be installed by following the instructions.

Evaluation workflow
Using scripts here to run all experiments.

Major Claims

• mTuner achieves throughput improvements on PCIe and
NVLink servers for LLMs from 7B to 70B.

• Search overhead of mTuner is kept to tens of seconds.

Please refer to the README to reproduce the results.
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