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Abstract
Many data centers adopt Remote Direct Memory Access

(RDMA) to allow data center applications to achieve low
latency and high throughput, while keeping minimal CPU
overhead. The upper-layer applications keep evolving rapidly,
and thus need congestion control algorithms (CCAs) that
exist in the NIC hardware also to react correctly and timely,
especially for a burstier ML workload. Even worse, the data
center network will increase the line rate to 400 Gbps, even
800 Gbps soon. Therefore, how to reduce control loop delay
for various CCAs becomes crucial to the performance of
various applications. However, RDMA’s hardwired CCA is
not able to satisfy such a requirement.

To this end, we design and implement SwCC, an RDMA
engine with on-NIC RISC-V cores that allows software-
programmable and per-packet congestion control. To avoid
the performance degradation caused by introducing the pro-
grammable RISC-V cores, SwCC carefully designs the 1)
RISC-V core memory subsystem, 2) engine architecture, and
3) interaction between the RISC-V core and other NIC re-
sources. Besides, SwCC provides a set of rich software APIs,
allowing developers to deploy new CCAs with minimum en-
gineering efforts. We prototype SwCC using the Xilinx U280
FPGA. Experimental results demonstrate that SwCC achieves
performance comparable to current commercial RDMA NICs
(Mellanox ConnextX-5). Both SwCC and ConnectX-5 reach
3.1 µs control loop RTT and need 512B packet size to reach
line-rate traffic (100 Gbps). In terms of flexibility, SwCC al-
lows to use the C language to implement nearly all kinds of
existing CCAs, e.g., rate-based CCAs, window-based CCAs,
and credit-based CCAs. The potential ASIC design of SwCC
can easily scale to higher network bandwidth.

1 Introduction
Modern data centers urge their networks with low latency and
high bandwidth utilization while keeping low CPU utilization.
In recent years, many mainstream data centers have adopted
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RDMA to reduce CPU overhead and network latency. Among
all RDMA technologies, RDMA over Converged Ethernet
(RoCE [33]) is the most widely deployed in modern data cen-
ters such as Microsoft Azure [8, 24, 28], Alibaba Cloud [20],
and Google Cloud [40]. RoCE relies on Priority Flow Control
(PFC) [32] to ensure the network lossless [20, 87, 88]. How-
ever, PFC introduces issues such as head-of-line blocking,
congestion spreading, and PFC deadlocks [25, 28, 29, 56, 73].
To essentially prevent the activation of PFC, developers pro-
pose various CCAs to optimize network performance by ef-
fectively managing traffic and reducing congestion, thereby
inherently preventing the activation of PFC. According to the
location of RDMA congestion control (CC) logic, we mainly
identify four types of CC solutions.
ASIC-based NIC CC solutions, such as DCQCN [88],
IRN [56], implement the CC logic on the ASIC-based NIC.
These solutions adjust network transmission within tens of
nanoseconds after congestion notifications reach the NIC,
significantly reducing control loop latency. However, CCAs
are tightly coupled with the NICs and can not be optimized
or upgraded after manufacturing. When a better CCA is
introduced, it takes years to deploy it in real commodity
NICs. Therefore, these solutions cannot keep up with the
rapid iterations of data center CCAs. For example, at least 11
CCAs [1,2,6,21,22,44,54,76,81,82,86] have been proposed
in 3 years, while only 7 Mellanox NICs [47–53] are released
in recent 10 years.
CPU-based CC solutions. To facilitate the rapid deployment
of new CCAs, people place the CC logic in CPUs, leverag-
ing software flexibility and programmability to enable fast
deployment of various CCAs. CPU-based CC solutions, such
as Soft-RoCE [62], implement the CC logic on the CPU to
enable the flexible deployment of various CCAs, allowing
dynamic adjustments to transmission bandwidth based on
diverse congestion signals. However, compared with deploy-
ing CC logic in the NIC, these solutions usually have a high
control loop delay due to the long latency from PCIe and
layered software (tens of microseconds higher). Consider-
ing RDMA’s micro-second latency, such a high delay could

USENIX Association 2025 USENIX Annual Technical Conference    1243



greatly degrade the network performance when congestion oc-
curs. In our experiment that runs two flows with DCQCN [88]
on a dumbbell topology, we observe that a high control loop
delay would significantly increase the time needed to drain
the switch queue. Compared with NIC-based CC solutions,
running CCAs in the host CPU can increase the switch queue
draining time by 7.8× (Subsection 3.2).
Naive FPGA-based SmartNIC CC Solutions. To enable
programmability while keeping low control loop delay, devel-
opers place the CC logic in SmartNICs to avoid PCIe latency
and complicated host software layers. Tonic [4] and Nan-
oTransport [5] place the CC logic on FPGA-based SmartNICs.
These approaches offload transport logic in the SmartNIC and
allow users to update the NIC transport logic using hardware
description language (HDL). However, FPGA programming
requires much more engineering effort and a much longer
development cycle, making it hard to keep pace with the rapid
iteration of CCAs.
SoC-based SmartNIC CC Solutions. To address the pro-
grammability issue, NVIDIA BlueField-3 [60] offers Pro-
grammable Congestion Control (PCC) [63] to run CCAs in a
RISC-V processor named datapath accelerator (DPA), which
allows users to deploy the CCAs using software program-
ming. Though this provides high programmability, it is hard
to ensure performance with wimpy DPA, because the CC
controller is triggered in a long interval and can not be trig-
gered each time when receiving a packet. Besides, PCC only
allows developers to adjust per-flow rates and cannot support
credit-based or window-based CCAs, and PCC only supports
a small subset of CCAs (as shown in Figure 2). Therefore,
PCC results in low flexibility.

In summary, none of the existing solutions can provide both
high flexibility and high programmability while maintaining a
low control loop delay. To this end, we design and implement
SwCC, an RDMA engine that allows software-programmable
and per-packet congestion control. SwCC integrates an on-
NIC RISC-V processor to allow flexible and fast deployment
of CCAs while keeping software programming. The main
challenge is that naively integrating a programmable RISC-
V processor into the RDMA engine will cause severe per-
formance degradation (as observed in NVIDIA BlueField-3
PCC [63]). To this end, SwCC carefully design the 1) memory
subsystem by exploiting the data access pattern of different
CCAs, 2) engine architecture to allow the core to run at a
high frequency, and 3) interaction between the RISC-V core
and other NIC resources to reduce required CPU cycles when
running CCAs in the RISC-V core.

We prototype SwCC on an Xilinx U280 FPGA. Experi-
mental results demonstrate that SwCC achieves comparable
performance to current commercial RDMA NICs (Mellanox
ConnextX-5): 1) 3.1 µs/3.4 µs control loop RTT, and 2) 512-
bytes/512-bytes packet size to achieve line-rate traffic (100
Gbps). SwCC supports rate-based, window-based, and credit-
based mainstream CCAs to ensure flexibility. We implement

representative CCAs such as TIMELY, DCQCN, and HPCC
using only 102, 140, and 148 lines of code, respectively. We
believe that the potential ASIC design of SwCC can easily
scale to a higher network bandwidth.

2 Background
An end-to-end CC algorithm involves the collaboration be-
tween the sender and the receiver. The receiver is usually
responsible for notifying the sender of the congestion with
meta information such as credits [19, 57] and congestion no-
tification packets (CNP) [86, 88]. The CC controller on the
sender side reacts to the congestion and reallocates network
resources such as sending rate, and congestion window, de-
pending on the specific algorithm. Different CCAs 1) use
different CC signals, 2) trigger the CC controller at differ-
ent times, and 3) reallocate network resources with different
strategies when the CC controller is triggered.

2.1 What CC Signals to Use
CC controller on the sender side relies on CC signals to be
aware of the network congestion. Different CCAs use very
different signals, which can be categorized into four classes.
ECN: CCAs such as DCQCN [88], TCD [86], and ACC [81]
use explicit congestion notification (ECN). The receiver
would send congestion notification packets (CNPs) to notify
the senders of the network congestion.
RTT: CCAs, such as TIMELY [55], Swift [40], BBR [11],
Copa [7], and Bolt [6], allows the senders to proactively mea-
sure the link RTT to be aware of the network congestion. The
RTT value can indicate the degree of the queuing along the
link, which is caused by network congestion.
INT: CCAs, such as HPCC [42], PowerTCP [1], and Posei-
don [76], utilize INT (In-band Network Telemetry) to obtain
precise link load. When a sender sends a packet to a receiver,
the switches along the path insert metadata indicating the
current loads of the packet’s egress port. The receiver copies
these metadata to the ACK packet and sends the ACK to the
sender, which then adjusts its transmission accordingly.
Token: CCAs, such as pHost [19], NDP [27], Homa [57], and
ExpressPass [14], use credits to avoid network congestion.
The available sender credit of a flow is the total tokens re-
ceived from the receiver minus the transmitted bytes. Usually,
each transmitted packet piggybacks the credit in the ACK.

2.2 When to Trigger the CC Controller
CCAs use events to trigger the CC controller. Different
CCAs generate events at different times. The events can
be mainly categorized into sending packet events, receiving
packet events, and timer/counter events. The sending/receiv-
ing packet events are generated when sending/receiving pack-
ets. Note that the above events may not generated for all kinds
of packets. For example, some CCAs [40, 42, 55] only need
to generate receiving packet events for ACK packets. Timer/-
counter events are generated periodically or when the counter
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Table 1: Comparison of CC Solution in Different Locations

Solution Control
Loop Delay Flexibility Programmability

CPU-based
CC [62] 23 µs High High

ASIC-baesd NIC
CC [33] 3.1 µs Low Low

Naive FPGA-based
SmartNIC CC [4] 3.3 µs High Low

SoC-based
SmartNIC CC [63] 3.5 µs Low High

SwCC 3.3 µs High High

reaches a threshold. One CCA may adopt one or multiple
kinds of events to trigger the CC controller. For example,
credit-based CCAs usually generate sending packet events to
trigger the CC controller to decrease the credit and generate
receiving packet events to trigger the CC controller to increase
the credit.

2.3 How to Adjust Data Transmission
CC controller limits the data transmission in three main ways:
Window: Previous works [1, 6, 40, 42, 76, 82] adopt a per-
flow congestion window to allow for 1) tracking each inflight
packet/segment, and 2) reacting to network congestion in a
fine-grained manner. Window-based CC is quite complicated,
especially in the presence of selective acknowledgments.
Rate: Instead of tracking each packet/segment, previous
works [54, 55, 75, 81, 82, 88] adopt a more coarse-grained
approach to limit packet sending rate. They only adjust the
sending rate of each flow. For example, TIMELY [55] mea-
sures the flow RTT and adjusts the sending rate according to
the RTT gradient.
Credit: Previous works [14, 19, 27, 57] use credits as permis-
sions to send data. The credit of a flow is the total number of
received tokens minus the number of transmitted bytes and
the credit calculation consists of simple addition/subtraction.

3 Motivation
An ideal RDMA NIC should offer 1) low control loop delay
to let CCAs react to congestion timely; 2) high flexibility to
enable various kinds of CCAs; and 3) high programmability
to allow developers to program easily without knowing much
hardware details. However, the existing solutions fail to meet
all the requirements as shown in Table 1. In the following, we
present the detailed design and the corresponding limitations
of each kind of solution.

3.1 ASIC-based NIC Solution
RDMA NICs such as Mellanox Connect-X series [50] are
widely deployed in nowadays datacenters. They offload the
congestion control logic to the NIC ASIC area to save host
CPU usage. Running CCAs in the NIC greatly brings low
control loop delay as it avoids PCIe traversals for control
signals. However, ASIC-based solutions are far behind the
rapid evolution of the CCAs, because one special RDMA
NIC usually only supports one or a few CCAs with con-
figurable settings. For example, Mellanox CX series NICs

only support DCQCN. However, CCAs are evolving rapidly.
From 2021 to 2023 alone, 11 new CC algorithms were pre-
sented [1, 2, 6, 21, 22, 44, 54, 76, 81, 82, 86] to improve the
CC performance for different scenarios. At the same time,
commercial NIC hardware requires years of development.
Mellanox releases only seven CX series NICs [47–53] since
2012. It’s impossible for commercial NICs to always keep
pace with the evolving CCAs.
Limitation: ASIC-based NIC solutions provide low control
loop delay but have low flexibility and low programmability.
Even worse, ASIC-based NIC usually only supports adjusting
CCA parameters through firmware updates, and upgrading to
a new CCA is nearly impossible for currently off-the-shelf
ASIC NICs.

3.2 CPU-based CC Solution
To enable fast deployment of new CCAs, Soft-RoCE [62] runs
CCA logic in host CPU software. It implements the RDMA
transport on top of the Linux network stack. Users can use
software programming languages to implement their CCAs,
providing high flexibility and programmability. However, run-
ning CCA logic in the software significantly increases the
control loop delay. As Table 1 shows, Soft-RoCE needs nearly
an order of magnitude higher control loop delay than running
CCAs in the hardware NIC. Compared with running CCAs
in ASIC-based NIC, Soft-RoCE introduces severe overheads:
PCIe traversal, software stack, and kernel switching.

The high control loop delay is harmful to the performance
of CCAs. To illustrate the potential impact of control loop
delay, we conduct an experiment in our testbed. We connect
two sender servers and one receiver server to a P4 switch.
Each server is equipped with an FPGA NIC running DC-
QCN [61]. We first let one sender establish a stable flow to
the receiver and then let the other sender establish a new flow
to the receiver. The control loop delay is measured from the
generation of the CNP packet to when the sender receives it.
We manually delay the processing of the CNP packet to obtain
different control loop delays. Figure 1 shows the time to drain
the switch queue when congestion occurs. We observe that a
high control loop delay would significantly increase the time
needed to drain the switch queue. Compared to NIC-based
CC solutions, running CCAs in the host CPU can increase the
draining time of the switch queue by 7.8×.
Limitation: CPU-based CC solution provides high flexibil-
ity and high programmability. However, the overheads from
PCIe traversals and software context switching significantly
increase control loop delay, thus degrading CC performance.

3.3 Naive FPGA SmartNIC-based CC Solution
To keep low control loop delay while enabling multiple
kinds of CCAs, researchers offload transport protocols on
FPGA SmartNICs. For example, Tonic [4] proposes a Verilog-
programmable transport layer in hardware. NanoTransport [5]
proposes a programmable hardware transport layer using the
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Figure 1: Effect of control loop latency on queue draining
time.

P4 language. Thus flexibility is guaranteed because such a pro-
grammable transport allows developers to implement CCAs
according to their needs. Low control loop delay is also guar-
anteed because the transport runs in the NIC and the CC
control signals do not need to traverse the PCIe interconnect
or kernel stack.
Limitation: However, offloading transport to FPGA exposes
one severe limitation: hardware programming offers low pro-
grammability. Developers have to write hardware description
languages (HDLs) such as Verilog and Chisel. Implementing
a CCA using HDL requires much more engineering effort.
Developers have to know hardware details well and fix timing
problems. Besides, debugging is very difficult when using
FPGAs to implement CCAs.

3.4 SoC SmartNIC-based CC solution
NVIDIA BlueField-3 SmartNIC allows the offload of CCAs
to the RISC-V processor of the SoC SmartNIC, called pro-
grammable congestion control (PCC [63]). PCC allows devel-
opers to write a C-style program to run on the NIC RISC-V
processor. NIC periodically generates events and notifies the
user’s CC program to adjust the data transmission rate. Con-
ceptually, PCC keeps a low control loop delay while providing
high flexibility and programmability.

However, the cache and memory system of the datapath
accelerator (DPA, i.e., RISC-V cores) in BlueField-3 are in-
adequate to support running PCC efficiently. Because DPA
has poor cache/memory performance and weak single-thread
performance, DPA is suitable for simple workloads with high
parallelism (using its 256 concurrent threads) [13]. However,
CCAs need to fetch many packet-related data (i.e., fields in
the packet header) and QP-related data (e.g., per-QP credit)
from memory, so its poor cache (L1: 10 ns)/memory (300 ns)
incurs high overhead to process each packet. For example, at
a 100 Gbps line rate, a 1 KB packet arrives every 89 ns, well
below the memory access latency (300 ns).

This cannot be easily solved by using DPA’s multiple
threads. CC is not a high-parallelism workload, as the packet
processing of the same QP must be mapped to the same thread
to avoid inter-thread communication/synchronization over-
head. As such, letting DPA run CC for a small number of
QPs cannot exploit the high parallelism of DPA and easily be-
comes a system bottleneck, especially for the CCAs triggered
per packet. This is also why the current PCC only supports
rate-based CCAs, because not every packet would trigger
the CC in rate-based CCAs.

Figure 2: Comparison of CCAs supported by PCC and SwCC.

Figure 3: To achieve a network line rate of 100 Gbps, the NIC
has to send a data packet within a specific duration depending
on the packet size.

4 Design and Implementation
To address these limitations, we present SwCC, a NIC RDMA
engine that allows flexible implementation of various CCAs
through software programming without sacrificing perfor-
mance. SwCC has three design goals:
Low Control Loop Delay and Short CC Controller Trig-
gering Interval. As described in Section 3.2, control loop
delay directly influences the efficiency of CCAs, SwCC aims
to provide low control loop delay. Besides, SwCC must ensure
a short CC controller triggering interval to support per-packet
CCAs at a high network bandwidth. To be more specific, we
have to allow triggering CC controller upon sending/receiving
a packet. As shown in Figure 3, under the 100 Gbps line rate,
the packet arrival interval is only 89 nanoseconds for 1 KB
packets. Therefore, the frequency of the CC controller should
be as high as possible, and the required cycles for processing
each packet should be as low as possible.
High Flexibility. To support various kinds of CCAs, SwCC
must allow developers to use different kinds of CC signals
(§Section 4.3.1) and use different kinds of data transmission
strategies (§Section 4.2.2). Besides, SwCC should allow trig-
gering the CC controller flexibly (§Section 4.3.2).
High Programmability. To keep pace with the fast evolution
of CCAs, SwCC must provide an easy-to-program interface
to allow developers to focus only on the high-level CC algo-
rithms, rather than on low-level hardware details.

To this end, we design and implement SwCC, an RDMA
engine that allows software-programmable and per-packet
congestion control. SwCC integrates an on-NIC RISC-V
processor to allow flexible and fast deployment of CCAs
while keeping software programming, thus providing flex-
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ibility. However, this introduces significant processing over-
head compared to hardwired solutions. Our key idea is to
carefully design the interaction between the RDMA engine
and the RISC-V core, so as to enable the user CC program
running in the RISC-V processor to access and control the
NIC resources at a very low cost. To do so, we rely on careful
co-design from both hardware and software perspectives. As
such, we have ensured 1) low control loop delay because
the CCAs are running in the NIC RISC-V core; 2) short CC
controller triggering interval due to the carefully designed
hardware/software interaction mechanism; 3) high flexibility
because we expose enough hardware resources to the RISC-V
processor; and 4) high programmability because users can
program the RISC-V core with a high-level software program-
ming language.

4.1 SwCC Design Overview
Figure 4 provides SwCC system overview. The hardware part
mainly consists of 1) RX path logic; 2) TX path logic; 3)
“WQ Handler” module that processes WQEs, sending data
packets to the TX CC and packets without data to the “Header
Fabricator”; 4) “DMA” that performs address translation and
reads/writes data to the host memory; 5) QP-aware memory
subsystem that maintains the per-queue-pair QP context.

Along the RX path, SwCC consists of 1) “RX Parser” that
parses incoming packets; 2) “Packet Retransmission” that
handles go-back-N retransmission; 3) “Packet Filter” that
generates events to trigger the RX CC core according to the
user configuration; 4) “RX CC” that runs CCA logic related
to dealing with RX events.

Along the TX path, SwCC consists of 1) “TX CC” that
runs CCA logic related to whether to allow transmitting a
packet; 2) “Header Fabricator" and “Packet Fabricator " that
fabricate the header and the complete packet.

SwCC software consists of a rich set of APIs allowing
easy programming. These APIs allow users to define 1) when
to trigger the CC controller flexibly, 2) what extra header
fields should be carried in each packet as needed, and 3) how
to let the CC core interact with hardware efficiently. In the
following, we present the detailed design of SwCC, organized
in a manner that shows how it guarantees our design goals.

4.2 How to Keep Low Control Loop Delay and
Short CC Controller Triggering Interval.

To keep a low control loop delay, we put a programmable CC
controller (RISC-V core) that runs CCAs in the NIC engine.
This greatly reduces CC controller response time to network
congestion as it avoids the long PCIe wire latency, which
could contribute up to 90% wire-to-wire response time for
flows with small packets [59].

However, naively integrating a RISC-V processor into the
NIC leads to low single-core performance due to the power/-
form factor limitation of the NIC, as evidenced by the case
of NVIDIA PCC. To keep a short CC controller triggering
interval, we 1) strive to increase the CC controller hardware

frequency as much as possible; 2) strive to reduce the required
number of CPU cycles when the CC controller processes each
event.

4.2.1 TX/RX Separated Multi-Core

Integrating more cores in the CC controller can linearly in-
crease the CC processing capability, thus allowing a short CC
triggering interval. Instead of naively adopting a multi-core
design in the CC controller, we propose a TX/RX separated
multi-core design, which runs the TX and RX logic of CCAs
in different CC controller RISC-V cores.

Such a design is guided by our observation that most CCAs
can be clearly partitioned into a TX function and an RX
function, in both the programming perspective and logic per-
spective. In the RX function, when the CC controller is trig-
gered by an event, the CC controller adjusts the context of
the current queue pair, such as the congestion window and
credits. In the TX function, the CC controller usually decides
whether to send a packet or not, according to the context of
the current queue pair.

Based on this observation, the proposed TX/RX separated
multi-core lets each core only deal with either TX or RX
function, so as to reduce processing latency. In case of enough
hardware resources for 2N cores in the NIC, we let half of
them process the TX function and the other half process the
RX function. Each queue pair corresponds to a specific TX
CC core and a specific RX CC core, according to the result of
the queue pair number (QPN) mod N. This avoids consistency
issues as the same queue pair would not be processed by
different RX CC cores or TX CC cores.

The main benefit of TX/RX separated multi-core is that a
single core would only deal with a subset of CC logic and
thus only need to access a subset of the NIC resources. For
example, the RX CC core only needs to be connected to the
RX port, and the TX CC core only needs to be connected
to the TX port. Compared to a fully connected data path,
TX/RX separated multi-core can greatly reduce the required
hardware resources to construct the data path. As such, the
design can meet the timing constraints more easily. In our
FPGA prototype, TX/RX separated multi-core can increase
the design frequency by up to 16% (§Section 5.3). We believe
that the conclusion still holds when applied to an ASIC-based
design of SwCC.

4.2.2 QP-aware Memory Subsystem

A traditional memory subsystem relies on a large cache with a
sophisticated pre-fetching mechanism to provide upper-layer
applications with low-latency memory accesses. However,
due to form factor and power constraints, the cache size in
the NIC is usually limited, and the pre-fetching mechanism is
much wimpier compared with traditional host server CPUs.
And a NIC cache usually has much higher latency than the
server CPU cache (an order of magnitude higher) as observed
in NVIDIA BF3 [13].
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Figure 4: Overall architecture of SwCC.

Instead of trying to construct a powerful and general mem-
ory subsystem, we exploit the underlying data access pattern
in the NIC CC core and construct our memory subsystem ac-
cordingly, based on the following observation. When receiv-
ing a packet, the packet is first processed by the RX-related
logic, such as header parsing and retransmission logic. Then
the CC controller is triggered to run CC logic. When running
CC logic, the RX core needs to access QP-related context,
such as per-QP credits, and packet-related information, such
as returned tokens.

Inspired by this, we propose QP (Queue pair)-aware mem-
ory subsystem to forward the QP contexts and user-specified
packet header to the CC core’s control & status registers
(CSR) before the CC core is triggered. What’s more, be-
fore the packet is processed by the RX-related logic, we use
the QPN as a hint to prefetch the QP context from off-chip
DRAMs to the on-chip memory region. As such, it overlaps
the DRAM access latency and RX-related logic processing,
minimizing the time of forwarding QP context to the CC
core’s CSRs. To do so, we introduce four hardware-software
co-designed mechanisms (described below) and revamp the
data access process based on them.
QP Context Table. In SwCC, we do not design a traditional
cache that organizes data in cache-line granularity, uses mem-
ory address to index each cache slot, and uses host DRAM
to back on-chip SRAM. Instead, we use both on-chip SRAM
and off-chip DRAM to store QP contexts. The on-chip SRAM
is organized as a 4-way set-associative cache, with each cache
line storing all the contexts of a QP. Each slot is 128 bytes1

and the total size of the QP context table is 128 KB, which can
store QP contexts of up to 1K QP. The swap-in/out process
follows a simple LRU algorithm. Unlike traditional RNICs,
which use host DRAM to back on-chip SRAM, SwCC uses on-
NIC DRAM, which offers much lower access latency (1200 ns
vs. 100 ns) and incurs significantly lower swapping overhead.

1We choose 128 bytes because the per-QP contexts of most CCAs can fit
in this size.

CSR-based Fast Path. Although the data organization dif-
fers from that of traditional caches, the QP context table still
has a relatively high latency given the power/form factor con-
straints. Instead of letting CC cores access the QP context
table at runtime, we let hardware write the corresponding QP
contexts into the core’s control & status registers (CSRs) in
advance. The standard RISC-V ISA sets aside a 12-bit en-
coding space for up to 4,096 CSRs [66]. In each SwCC CC
core, we leverage 64 CSRs2 that have been reserved in the
RISC-V ISA sets. Before the CC core is triggered to execute
the RX or TX function, the NIC hardware would write the
incoming event type, and QP contexts into the reserved CSRs
using a user-configurable manner in advance. For the RX CC
core, the header of the received packet that triggers the RX
function would also be written into the CSR registers. During
the execution of the TX/RX function, the CC cores directly
operate on the CSR registers instead of the QP context table.
Reading data from CSRs to general-purpose registers (GPRs)
only takes one cycle since implementing 64 one-cycle CSRs
(256 bytes in total) is easy even under power/form factor
constraints. As such, the CC core execution time is greatly
reduced as high NIC cache access latency is removed.
Prefetch with QPN Hint. When an event is scheduled to run
on an RX CC core, the NIC hardware has to write the QP
context into the CC core’s CSRs. However, it’s likely that the
QP’s slot is not in the QP context table, as the on-chip table
size is limited and the number of concurrent QPs could be
numerous. In this case, the QP context table has to fetch the
QP contexts from the backed off-chip DRAM and the CC
core has to be stalled for dozens of cycles due to the long
off-chip DRAM access time. As such, we use QPN as a hint
to prefetch the QP contexts from off-chip DRAM in advance.

In the RX path, when a packet enters “RX Parser”, the
packet QPN would be extracted and forwarded to the QP

2The 64 CSRs include 32 CSRs for writing QP context, 16 CSRs for
writing packet header, and 16 CSRs for writing event type and other configu-
rations.
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Figure 5: Comparison of Soc-based SmartNIC and SwCC
when processing packets.
context table to prefetch the QP contexts from the backed
DRAM if the QPN’s contexts are not in the table. Before
the packet’s corresponding event runs on the RX CC core, it
has to go through “RX Parser”, update the packet sequence
number (PSN) in the “Connection table”, and go through
“Packet Filter”. Processing the above logic takes around 60
nanoseconds. Considering that a DRAM access time is very
close to this value, forwarding the QPN in advance allows
the QP context table to hide the stall penalty caused by long-
latency DRAM access.

In the TX path, when a sending packet request from the
user/RX core enters the “WQ Handler”, the request QPN
would be forwarded to the QP context table for prefetching.
This also helps to hide QP context table miss penalty as the
“WQ Handler” has to slice large messages into small packets
and the processing time could be up to dozens of nanoseconds.
Consistency Guarantee. Although different QPs are mapped
to different CC cores, it is likely that a TX CC core and an RX
CC core concurrently access the QP context of a particular
flow. As such, the QP context table must provide a consistency
guarantee. We implement locking purely in hardware, without
requiring atomic instructions in the software. The core is
triggered by hardware only when the QP context entry to be
processed is not owned by other cores. Once triggered, the
QP context entry is owned by this core, and the hardware
manages the entry ownership. Each entry has a lock bit to
indicate whether it is owned by a core. When triggering a core
with an event, the hardware checks the lock bit; if occupied,
it tries other events; otherwise, it triggers the core and sets
the lock bit. When the core finishes execution, the hardware
clears the lock bit. This mechanism works for two reasons.
First, each event follows a run-to-completion model, so a core
does not require ownership after processing. Second, the core
processes events one by one, with each event having only
one corresponding QP context entry, ensuring no complicated
lock dependencies.
Summary. With the above four hardware-software co-
designed mechanisms, SwCC is able to reduce as many as
possible CC core stalls due to the long off-chip memory ac-
cess time. Figure 5 illustrates how the packet events are pro-
cessed when there is a miss in the on-chip cache/QP context
table. In SoC-based SmartNIC, the RX packet has to be pre-

Figure 6: The packet format of SwCC.

processed by the RX hardware pipeline before triggering CC
core execution. The cache miss would incur the stall of the
core. In SwCC, we prefetch with a QPN hint to hide on-chip
QP context table misses within the RX packet pre-processing.
As such, the real RISC-V core cycles used for each packet
event are minimized, thus a short CC controller triggering
interval is guaranteed.

4.3 How to Keep High Flexibility
SwCC should provide developers with the ability to imple-
ment various kinds of CCAs, i.e., developers can decide 1)
what signals to use, 2) when to trigger the CC controller, and
3) how to adjust data transmission in the CC controller.

As described in § 4.2.1, we place a multi-core RISC-V pro-
cessor as the CC controller to allow developers to implement
their custom logic on how to adjust data transmission. In the
following, we present how developers can decide what signals
to use and when to trigger the CC controller in SwCC.

4.3.1 Using Different CC Signals in SwCC
SwCC allows developers to leverage different CC signals
to provide as much flexibility as possible. As discussed in
§Section 2, CC signals can be mainly categorized into 1) ECN,
2) delay, 3) token, and 4) INT signals.
Extensible CC Header. To support the above CC signals,
we propose the extensible CC header, a customized header
sitting after the RoCEv2 BTH header. To use the extensible
CC header, developers can add their own fields in the defi-
nition of a structure PktHeader. The first four fields (QPN,
RDMA opcode, pktLength, and ECN) in the PktHeader are
common for all kinds of CCAs, and developers can add their
own fields, such as tokens, after the fixed four fields. Each
packet in SwCC would carry the user-defined extensible CC
header. The size of the extensible CC ranges from 0 to 64
bytes, as 64 bytes are enough for all mainstream CCAs (for
example, HPCC [42] has 42B). In the RX path, when receiv-
ing a packet, the QPN and opcode in the BTH header, the
packet length and ECN signal in the IP header would be ex-
tracted to the first four bytes of the structure PktHeader. The
user-defined extensible CC header would also be placed in
the following position of the structure PktHeader. The RX
CC core can read the PktHeader structure to get all the re-
quired information. In the TX path, the TX CC core can write
data into the structure PktHeader, and the hardware would
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be responsible for padding the data into the packet header.
The position of the PktHeader in the packet header is shown
in Figure 6.
Compatibility. Different CCAs have different deployment
requirements. If the chosen CCA does not utilize the exten-
sible CC header and thus does not require the remote side to
provide custom metadata/signals, the remote side can be an ex-
isting commercial NIC. Otherwise, the remote side must be a
SwCC-enhanced NIC. For non-INT CCAs, the switch simply
treats the extensible CC header as part of the RDMA packet
payload, and there is no switch deployment requirement. For
INT-based CCAs, we currently need to use programmable
switches to add INT metadata in the extensible header, as
existing switches can only add INT metadata at the end of the
packet.

The extensible CC header allows developers to implement
ECN-based, token-based, and INT-based CCAs. To support
delay-based CCAs, SwCC implements a hardware timer and
exposes the timer as a CSR to all CC cores. CCA logic in the
CC core can read this CSR to get the hardware time and use it
to implement their delay-based CC logic. As such, SwCC can
support all four kinds of CCAs and SwCC allows developers
to decide what CC signals to use flexibly.

4.3.2 Selective Triggering

To allow developers to flexibly trigger the CC controller, we
design a “Packet Filter” module that sits between the “RX
Parser” and RX CC cores. Instead of letting each incoming
packet generate an event and trigger the CC controller, the
“Packet Filter” only generates events for the user-specified
packets.When a packet arrives, the “Packet Filter” checks the
opcode field in the packet header and determines whether
to generate an event to trigger the RISC-V core. As such,
developers can decide whether to trigger the CC controller at
runtime.

The “Packet Filter” recognizes the RDMA opcode in the
BTH header of the incoming packet. The opcode consists of 8
bits, where opcode[7:5] indicates the RDMA transport service
type (e.g., Reliable Connection) and opcode[4:0] indicates the
packet type (e.g., Send, Recv, Read, Write, etc.). In addition
to the opcodes defined by the RoCEv2 standard, developers
can adopt unused 0x18-0x1F opcodes to define their own
packet types [34]. When implementing a CCA, developers
must specify which RDMA opcodes will trigger an event by
setting a 32-bit one-hot value. During system initialization
(i.e., after the CCAs are programmed to the RISC-V core), the
RISC-V core updates one of its CSRs using the one-hot value.
The value of this CSR is connected as an input of the “Packet
Filter” module, which would trigger the events according to
this input. By blocking unnecessary packet events, selective
triggering allows the CC controller to focus on processing
user-specified events. As such, SwCC achieves its design goal
of letting developers decide when to trigger the CC controller
flexibly.

4.4 How to Keep High Programmability
SwCC provides a rich set of programming APIs (Table 2)
to help developers to deploy their CCAs. We take a simple
credit-based CCA as an example and show how to use these
APIs to implement the CCA. The CCA has two functional
parts: sender-side TX function and receiver-side RX function.

On the sender side, the TX function checks if the remaining
credit is larger than the length of the to-be-sent packet. If
the credit is enough, the TX function would notify the NIC
hardware to construct and send this packet out. Otherwise,
the request would be deferred.

On the receiver side, the RX function increments the credit
if it has received an ACK packet. If the received packet is a
data packet, the RX function would generate a send packet
event to notify the NIC hardware to send an ACK packet to the
remote sender. The CCA defines four bytes in the extensible
CC header to store the returned credits in the ACK packet.

1 /* Selective processing */
2 #define TracedPkts (ACK | WRITE_REQ | READ_RESP)
3 /* Extensible packet headers */
4 typedef struct{
5 int qpn; /*Static*/
6 int opcode; /*Static*/
7 int pktLength; /*Static*/
8 int ecn; /*Static*/
9 int returned_credit;

10 }PktHeader;
11 /* Extensible QP context */
12 typedef struct{
13 int total_credit;
14 }QPContext;
15 /* Program running in the TX CC cores*/
16 int send(){
17 int credit;
18 Event e;
19 while(true){
20 /* Poll for new packet arrivals and read events from CSR */
21 pollEventSync(&e);
22 /* Update the credit when sending a packet */
23 if(e.context.total_credit > e.packet.pktLength){
24 credit = e.context.total_credit - e.packet.pktLength;
25 updateContext(e.context.total_credit , credit);
26 e.eventType = Send;
27 }else{
28 e.eventType = LoopBack;
29 }
30 postEvent(&e); /* Write the event to CSR */
31 }
32 }
33 /* Program running in the RX CC cores*/
34 int recv(){
35 Event e;
36 int credit;
37 while(true){
38 pollEventSync(&e);
39 /* Update the credit when receiving an ACK */
40 if(e.packet.opcode == ACK){
41 credit = e.context.total_credit + e.packet.returned_credit;
42 updateContext(e.context.total_credit , credit);
43 e.eventType = Done;
44 /* Send a ACK when receiving a WRITE_REQ or READ_RESP */
45 }else{
46 updatePkt(e.packet.returned_credit , e.packet.pktLength);
47 updatePkt(e.packet.opcode , ACK);
48 e.eventType = GenTxEvent;
49 }
50 postEvent(&e);
51 }
52 }

Listing 1: An example of programming with SwCC.

Next, we show how to implement the CCA using the
provided programming interfaces. Before writing CC con-
troller logic, the developer has to complete three definitions.
First, the developer has to define the variable TracedPkts
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Function Parameters Description

pollEventSync (&Event) The Event containing the PKTHeader, QPContext
and EventType

Busy polling for the arrival of new packet, then read the PKTHeader
and QPContext from the CSR into the Event.

updatePkt (packet.item, item) An item in the PKTHeader (packet.item), A vari-
able (item) to update the item in the PKTHeader Update the packet.item in the PKTHeader using item

updateContext (context.item, item) An item in the QPContext (context.item), A vari-
able (item) to update the item in the QPContext Update the context.item in the QPContext using item

postEvent (&Event) The Event containing the PKTHeader, QPContext
and EventType

Write the Event into the CSR, then notify the hardware engine that
packet processing is complete

Table 2: SwCC programming APIs for implementing CCAs.
(Line 2), and this value can tell the “Packet Filter” hard-
ware to only generate RX events when receiving ACK-
/RDMA_WRITE_REQ/RDMA_READ_RESP packets. Sec-
ond, the developer has to define the returned_credits field
as an extensible CC header in the structure PktHeader (Line
9), and this field is used to store the returned credits in the
ACK packets. Third, the developer has to define the field
total_credit field in the QP context table (Line 13), and
this field is used to store the remaining credits of each QP.
After that, the developer can write the RX function and TX
function.

In the TX path, the TX CC core first polls send packet
requests in the send request FIFO (Line 21). After polling a
request, the TX CC core checks whether the remaining credit
is larger than the requested packet size (Line 23). If so, the TX
CC core decreases the total credit accordingly (Lines 24-25)
and marks the request with Send, indicating that this send
packet request is granted (Line 26). Otherwise, the TX CC
core marks the request with LOOPBACK which indicates that
the request should be pushed back into the send request FIFO
(Lines 28). At last, the TX CC core posts the event and notifies
the NIC hardware (Line 30).

In the RX path, the RX CC core polls the event FIFO
(Line 38). After polling an event, the RX CC core checks
whether the received packet is an ACK packet (Line 40). If
so, the RX CC core increases the total credits by the value
of the returned_credit field in the extensible CC header
(Lines 41-42), and then marks the event with Done (Line
43), indicating that NIC hardware does not need to do extra
work. Otherwise, we should generate an ACK for the received
packet (RDMA WRITE_REQ or RDMA READ_RESP). In this case,
the RX CC core marks the event with GenTxEvent (Line
48) and sets the returned_credit field in the extensible QP
context as the received packet length (Line 46). At last, the
RX CC core posts the event and notifies the NIC hardware.

In summary, SwCC provides programmers with easy-to-use
programming abstractions. As such, SwCC allows developers
to focus on the CCA logic instead of dealing with low-level
NIC hardware interactions.

5 Evaluations
Our evaluations aim to answer the following questions:

• How does the control loop delay of SwCC compare to that
of RoCE and Soft-RoCE (§5.2)?

• How much frequency can the TX/RX separated multi-core
increase (§5.3)?

• How effective is the QP-aware memory subsystem (§5.4)?
• How are the flexibility and programmability of SwCC

(§5.5)?
• How many resources do the SwCC use (§5.6)?
• How does the end-to-end performance of SwCC compare

to that of ASIC-based NIC CC solutions (§5.7.1) and CPU-
based CC solutions (§5.7.2)?

5.1 Experimental Setup
Experimental platform. The experimental platform consists
of three servers, connected with a Wedge100BF-32X P4 re-
configurable switch. Each server is equipped with two In-
tel Xeon Silver 4214 CPUs @2.20GHz, 256GiB 2400MHz
DDR4 memory, a Xilinx U280 FPGA, and a Mellanox
ConnectX-5 NIC.
SwCC implementations. We prototype “SwCC” in Xilinx
Alveo U280 FPGA (6K LoCs of Chisel3). SwCC mainly
reuses the PCIe and CMAC modules of FpgaNIC [77]. There
are mainly three extensions. First, we replace FpgaNIC’s
TCP/IP transport with our RoCEv2 implementation. Second,
we place several RISC-V cores in the NIC, which are po-
sitioned between the transport layer and the PCIe module.
The RISC-V cores use the open-source riscvmini core [15],
features a simple 3-stage pipeline. We mainly modify the
cache/memory subsystem and the interface to the hardware.
Third, we propose a QP-aware memory subsystem and related
hardware logic that serves the RISC-V cores to minimize
data/packet access time during CCA processing.

The SwCC logic runs at 250 MHz. We implement five
CCAs (DCQCN [88], TIMELY [55], HPCC [42], Swift [40],
Homa [57]) in the SwCC.
RoCE Baseline. The ASIC-based NIC CC solution baseline,
labeled “RoCE”, runs traffic on the Mellanox ConnectX-5
NIC. We use MLNX_OFED 23.1 driver and enable DCQCN
in the server.
Soft-RoCE Baseline. We implement CPU-based CC solution
baseline, labeled “Soft-RoCE”, based on Soft-RoCE [62]. We
implement DCQCN (100 LoCs of C++), TIMELY (70 LoCs
of C++) and HPCC (110 LoCs of C++) by referring to [42,
55, 88].
RDMA-HLS Baseline. The FPGA-based 100Gb RoCEv2
stack [74] baseline used in [68–70], labeled “RDMA-HLS”,
runs traffic on the Xilinx Alveo U280 FPGA. We implement
DCQCN in the stack using HDL.
BF3 Baseline. We implement baseline “BF3” that uses PCC
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in SoC SmartNIC Bluefield-3 [60] to implement DCQCN.
Parameter Setting. We implement DCQCN, TIMELY, and
HPCC using SwCC and Soft-RoCE. In the two implemen-
tations, we use the same parameters except those related to
RTT, which we configure according to the actual measure-
ments from SwCC and Soft-RoCE. For DCQCN, we set Kmin
= 5KB, Kmax = 200KB, Pmax = 1% and g = 1/256 following
the default parameter setting in [88]. For TIMELY, we set α

= 0.875 and β = 0.8, as suggested in [55]. For HPCC, we set
η = 0.95 and maxStage = 5, as suggested in [42].

5.2 Comparison of Control Loop Delay
We first measure the RTT control loop delay of RDMA WRITE
with a packet size of 1 KB. Figure 7 illustrates the results. We
have two observations.

SwCC RoCE Soft-RoCE
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Figure 7: Control loop delay comparison. Whiskers show the
1st and 99th percentile.

First, both SwCC and RoCE achieve a similar average con-
trol loop delay of approximately 3.1 µs. This is because both
approaches offload the CC controller to the NIC, avoiding
additional PCIe traversals and software overhead. Second,
Soft-RoCE exhibits significantly higher and more variable
latency compared to SwCC and RoCE. Soft-RoCE runs the
CC controller on the CPU software, which introduces PCIe
traversals along with overheads from data copying, and kernel
switching, resulting in a longer and less stable control loop
delay. The SwCC design would not increase the control loop
delay and can have nearly the same control loop delay as the
ASIC-based solution.

5.3 Effect of TX/RX Separated Multi-Core
We then validate the effectiveness of TX/RX Separated Multi-
Core by measuring the maximum frequency and the through-
put of SwCC.

Figure 8 shows the FPGA routing with/without the TX/RX
separated multi-core (two cores for both implementations).
We observe that the TX/RX separated multi-core has much
less (50%) routing wire from/to the CC cores. This is because
the TX/RX separated multi-core allows a single core to con-
nect to only a subset of NIC resources as a core only needs to
process TX or RX logic.

The reduced routing wire can help to increase the achieved
design frequency. Figure 9 shows the achieved frequency
with/without TX/RX separated multi-core, under different
numbers of RISC-V cores3 with Vivado default implementa-

3The calculation method is: Fmax (MHz) = max(1000/(T - WNS)), where
T is the target clock period (ns) and WNS is the worst negative slack (ns) of
the target clock [3].

Figure 8: Comparison of routing with/without functional sepa-
ration mechanism. “congestion” indicates the routing resource
contention for circuits as the number of required routing wires
increases.

Figure 9: Comparison of the assessed Fmax with/without
TX/RX separation mechanism.

tion strategy. We observe that TX/RX separated multi-core
can increase the achieved frequency by up to 16%. This is
because TX/RX separated multi-core reduces the routing wire
to/from the CC cores.
Effect of Core Number. We evaluate the effect of core num-
ber, by comparing the throughput of RDMA WRITE.

Figure 10 demonstrates the throughput of different RDMA
implementations under different packet sizes.4 The “SwCC-
n" means that SwCC instantiates n “RX CC” cores and n “TX
CC” cores. The “RoCE-n” means the utilization of n PUs in
the CX-5 NIC. There are only 8 PUs in the CX-5 NIC, so
“RoCE-8” has reached the maximum throughput of the CX-5
NIC [65]. The “Soft-RoCE-n” means the use of n threads in
the CPU to run Soft-RoCE. The CPU in our testbed supports
up to 24 hardware threads and we use up to 24 threads in
Soft-RoCE.

We have three observations. First, SwCC can achieve com-
parable throughput to that of commercial NICs. “SwCC-8”
and “RoCE-8” both achieve line rates with packet sizes above
512B. The throughput of “SwCC-1” is 1.1-1.5 times that of
“RoCE-1”. This is because SwCC uses two RISC-V cores (a
“TX CC” and a “RX CC”) to handle a single flow, while the
CX-5 NIC uses only one PU to process a flow. Second, the
throughput of Soft-RoCE is much lower than the other two
implementations. Even with 24 threads in “Soft-RoCE-24”,
Soft-RoCE only achieves around 24Gbps throughput. This

4Except for “RoCE-1”, which uses a single QP, all other approaches
utilize 24 QPs. This is because the CX5 NIC can only control the number of
PUs (processing units) used by adjusting the number of QPs. Additionally,
all approaches, except RDMA-HLS, enable DCQCN for CC.
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Figure 10: Comparison of throughput for various approaches
using different numbers of cores/units/threads.

(a) Average time to access QP con-
text.

(b) The cycles of CC controller.

(c) The RDMA WRITE throughput of
SwCC.

(d) The frequency required to achieve
various line rates.

Figure 11: The effect of QP-aware memory subsystem.

is because of the inefficiencies in the kernel network stack
caused by data copying from the kernel to application buffers,
kernel switching, etc [10]. Third, “SwCC” and “RDMA-HLS”
achieve nearly identical performance as both run on FPGA-
based SmartNICs. Likewise, “BF3” and “RoCE” deliver com-
parable performance because they use the same hardware
network card.

5.4 Effect of QP-aware Memory Subsystem
We examine the effect of the QP-aware memory subsystem by
comparing the CC core’s access time to the QP context, CC
controller execution cycles and throughput of RDMA WRITE.
The size of QP context table is 128 KB, “w/o hint” and “w/
hint” indicate whether the QPN hint interface is used for the
QP-aware memory subsystem. We also implement a naive
memory subsystem, which includes a 4-way associative cache
with a cache line size of 64B, and the size of cache is 128 KB,
labeled “naive cache”.
Time to Access QP Context. We establish 1K, 10K, and
100K QPs on two servers. The sender randomly selects a
QP from these QPs with a uniform probability of initiating
an RDMA WRITE request. We send 100M requests with each
carrying a 1KB message and measure the time to access the
QP context on the RISC-V core.

Figure 11a illustrates the average QP context access time

for different approaches with different numbers of network
flows. We observe that, regardless of the number of network
flows running, QP-aware memory reduces memory access
time by at least 50% compared to naive cache. When the
number of QPs is 1K, the QP context is fully cached, the
naive cache requires multiple load/store instructions to move
the QP context into the registers, leading to additional delays.
When the QP context is not fully cached, QP-aware memory
can leverage its hint interface to prefetch the QP context,
further reducing access time. As the number of QPs increases,
the performance of SwCC remains nearly constant.

Execution Cycles. Figure 11b shows the cycles of different
baselines for the CC controller running DCQCN. We have two
observations. First, “Soft-RoCE” runs on the CPU and uses a
naive memory system, and thus requires approximately 3×
the cycles of “SwCC”. Second, “BF3”, significantly increases
the total execution cycles, reaching 11.4× that of “SwCC”. It
is mainly due to BlueField-3’s poor DPA memory subsystem.

Throughput. We compare the network throughput with naive
cache and QP-aware memory under different packet sizes.
We instantiated 1 pair of CC cores in SwCC, and we set the
number of network flows to 100K. Each flow sends 1K RDMA
WRITE requests with each carrying a 1 KB message.

As shown in Figure 11c, when one pair of CC cores is
instantiated in SwCC, the QP-aware memory significantly
impacts throughput. The throughput of the naive cache is ap-
proximately 40% of that of the QP-aware memory with small
packets. This is because, in this case, the throughput bottle-
neck of the SwCC core lies in the CC core, where excessive
CPU cycles are required to process each event, resulting in
low throughput. Therefore, reducing the number of CPU cy-
cles required by the CC core to process events can effectively
increase the throughput of SwCC.

Potential ASIC Design. SwCC currently targets an FPGA-
based SmartNIC, however, because it comprises fixed compo-
nents and RISC-V cores, it readily supports an ASIC design,
which offers higher clock frequencies and more efficient hard-
ware resource utilization. We use simulations to estimate the
processor frequency required to achieve line rate under a sin-
gle QP with different memory subsystems, setting the RDMA
message size to 1 KB. As shown in Figure 11d, naive cache
requires up to 8 GHz to reach an 800 Gbps line rate, whereas
QP-aware memory needs only 2.4 GHz, which is more realis-
tic to achieve. This outcome demonstrates SwCC’s potential
for ultra-high-speed networks.

Regarding the power consumption of the ASIC design,
we can compare SwCC with RISC-V cores in commercial
SmartNICs. The BlueField-3 SmartNIC features a 1.8 GHz,
16-core/256-thread RISC-V core, with total NIC power con-
sumption at 66 W. Since SwCC employs only a simple in-
order, 3-stage 2-core RISC-V design at 2.4 GHz, we believe
its projected power consumption to be reasonable for a NIC.

USENIX Association 2025 USENIX Annual Technical Conference    1253



Table 3: C code lines for implementing various CCAs in
SwCC.

CCA CC
Signal Triggering Event Adjustment

Strategy
C code
(lines)

DCQCN ECN CNP, DATA, Timer rate 140
TIMELY timestamp ACK rate 102
HPCC INT ACK wnd 148
Swift timestamp ACK wnd 164

Homa token DATA, GRANT,
RESEND, BUSY credit 95

Table 4: FPGA resource consumption.
Name LUTs (K) REGs (K) BRAMs URAMs

RDMA-HLS 26 (2%) 65(2.5%) 130 (6.4%) 0 (0%)

SwCC-1 51 (3.9%) 62 (2.4%) 220 (11%) 4 (0.4%)
SwCC-8 112 (8.6%) 124 (4.8%) 220 (11%) 32 (3.3%)
CC Core 8 (0.6%) 4 (0.2%) 0 (0%) 2 (0.2%)

QP-aware Memory 2.5 (0.2%) 0.5 (0.1%) 114 (5.6%) 0 (0%)

5.5 Flexible User-Defined CC Framework
Based on SwCC, we implement five representative CCAs that
1) use different CC signals, 2) trigger the CC controller at
different times, and 3) adjust data transmission differently.
Table 3 shows 1) what CC signals these CCAs use, 2) what
types of packets trigger the CC controller when received by
these CCAs, 3) which kind of data transmission strategies
these CCAs use, and 4) lines of C code to implement these
CCAs. We have two observations. First, SwCC supports a
broad range of CCAs. SwCC achieves its design goal of high
flexibility. Second, regardless of the algorithm, each can be
implemented in less than 200 lines of code. This is because
SwCC allows developers to focus on the CCA logic without
dealing with complex hardware details. SwCC achieves its
design goal of high programmability.

5.6 Hardware Resource Usage
Table 4 shows the FPGA resource consumption of “RDMA-
HLS” and “SwCC”. “SwCC-1” requires the instantiation of
RISC-V cores and supports extended CC headers of various
lengths. Consequently, it utilizes slightly more resources com-
pared to “RDMA-HLS”. “SwCC-8”, which instantiates 16
RISC-V cores, consumes approximately twice the hardware
resources of “SwCC-1”. Despite the increased resource usage,
it only occupies under 10% resources, leaving ample capacity
for other functionality.

5.7 End-to-End Performance
We compare “SwCC”, “RoCE”, and “SoftRoCE” to evaluate
the end-to-end performance of “SwCC”. We compare “SwCC”
and “RoCE” on a 100Gbps network. The comparison between
“SwCC” and “Soft-RoCE” is conducted on a 10Gbps network
because “Soft-RoCE” cannot reach a line rate of 100Gbps.

5.7.1 SwCC vs. RoCE
In the experiment, we use three servers, two as senders and
one as a receiver. Each of two senders starts 5 flows to the
receiver, where each flow sends 2K messages, each with a
size of 2 KB. We implement the DCQCN algorithm in SwCC,

(a) Queue length (b) FCT

Figure 12: The end-to-end performance comparison of SwCC
and RoCE.

(a) TIMELY (b) DCQCN (c) HPCC

Figure 13: Comparison of buffer occupancy at the congested
port of the switch under various CCAs.

labeled “SwCC”. We set the period of CNP generation in
DCQCN as 50 µs, and the period of updating α as 55 µs,
which follows the parameter setting in [88].

Figure 12 shows the buffer occupancy comparison and flow
completion time. We observe that when the CX-5 NIC detects
congestion in the “RoCE” baseline, it halts data transmission
for approximately 90 µs. In contrast, SwCC’s implementation
of the DCQCN algorithm adjusts the transmission rate based
on work [88]. Consequently, the buffer occupancy of “RoCE”
drains more quickly than that of “SwCC”, but it still remains
significantly below the switch’s maximum queue length. Ad-
ditionally, the halt in transmission results in a slightly longer
FCT for “RoCE” compared to “SwCC”. In the absence of
publicly available details of the NIC’s CCAs, we can not de-
vise an identical algorithm. In sum, “SwCC” delivers slightly
better performance than “RoCE”.

5.7.2 SwCC vs. Soft-RoCE
We implement the DCQCN, TIMELY, and HPCC in SwCC
and Soft-RoCE, with the same settings as Section 5.7.1. In
our testbed, the RTT is approximately 5 µs for SwCC and 30
µs for Soft-RoCE, respectively.

Figure 13 shows the switch buffer occupancy comparison
under different algorithms for SwCC and Soft-RoCE dur-
ing congestion. We observe that SwCC alleviates congestion
more rapidly under different levels of network congestion.
This is due to SwCC’s shorter control loop, which increases its
sensitivity to congestion, allowing it to respond more quickly
and effectively mitigate network congestion.

Figure 14 shows the comparison of FCT under different
algorithms for SwCC and Soft-RoCE during congestion. We
observe that when implementing the TIMELY, DCQCN, and
HPCC CCAs, the FCT of Soft-RoCE is 14×, 39×, and 42×
higher than that of SwCC respectively. This is mainly because
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Figure 14: Comparing of FCT statistics for SwCC and Soft-
RoCE under various CCAs.

SwCC has a much lower control loop delay than Soft-RoCE.

6 Related Work
ASIC-based NIC CC solution. Some NICs offload the net-
work stacks with hard-wired transport protocols [9, 35, 53].
However, they only implement at most two types of conges-
tion control, including PFC [32] and DCQCN [61], and can
only be modified by their vendor.
CPU-based CC solution. The “pluggable TCP" API [37] and
QUIC [41] support user-space programming of congestion
control. However, they do not bypass the kernel, resulting in
poor performance. Kernel bypass libraries such as DPDK [16],
netmap [67] and Snap [46] allow programs to send pack-
ets from userspace to the NIC. The mTCP [38] implements
NewReno [18] on DPDK. Google deploys Swift [40] and
1RMA [71] on Snap. However, Snap’s RTT latency for a
single-sided operation is 8.8 µs, which is 2.8 × higher than
the control loop latency of ASIC-based NICs.
FPGA-based SmartNIC CC solution.The emergence of
FPGA-based SmartNICs [12, 30, 31, 70, 84, 85, 89] has made
programmable CC on NICs feasible. Prior works [4,5] enable
programmers to implement a variety of transport protocols
in hardware by Verilog or P4 language. However, the HDL
offers low programmability. Some works [26, 64] implement
rate-based CCAs using packet pacing, but they do not provide
a programmable interface.
SoC-based SmartNIC system. Prior works [17, 23, 39, 43,
45, 72, 78, 79, 83] propose the frameworks or systems on SoC-
based SmartNIC to alleviate the host CPU pressure. None
of these works address the issue of a programmable CC con-
troller. Many vendors [36, 58, 60, 80] have developed SoC-
based SmartNICs that incorporate CPUs and network acceler-
ation hardware. However, only a few of these SmartNICs [63]
feature dedicated programmable congestion control interfaces,
and their flexibility remains limited.

7 Conclusion
This paper presents SwCC, an RDMA engine integrated with
a RISC-V processor that enables the execution of a wide range
of CCAs directly on the RISC-V core, while keeping high per-
formance. SwCC achieves an end-to-end control loop delay
of 3 µs, which is comparable to that of leading commercial
NICs while providing high flexibility and programmability
for CCA development. The ASIC design of SwCC can easily
scale to higher network bandwidth.
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A Artifact Appendix

A.1 Abstract
This artifact provides the source code of SwCC and scripts to
reproduce the main experimental results. The experiments are
run on two 4U AMAX servers, each equipped with two Intel
Xeon Silver 4214 CPUs@2.2GHz, 256GB DDR4 memory,
a Xilinx U280 FPGA, a ConnectX-5 NIC. SwCC is imple-
mented on Xilinx Alveo cards U280 with Vivado 2020.1.

A.2 Artifact check-list
• Program: C/C++

• Compilation: g++-11.3.0, gcc-11.3.30

• Run-time environment: QDMA driver installed

• Hardware: Xilinx Alveo U280

• Execution: Running commands as root with sudo

• Metrics: control loop delay and the throughput for various
approaches using different numbers of cores/units/threads

• Output: Experiments produce outputs in the console or bin
files

• Experiments: a) Control loop delay comparison between
SwCC, RoCE and Soft-RoCE, b) Throughput comparisons
between SwCC-1, SwCC-8, RoCE-1, RoCE-8, Soft-RoCE-1
and Soft-RoCE-24

• Disk space required: 1GB

• Time needed to prepare workflow: 1 hour

• Time needed to complete the experiments: 3 hours

• Publicly available: Yes

• Code licenses: MIT

• Data licenses: MIT

A.3 Description
A.3.1 How to access

The codebase can be accessed from GitHub https://github.c
om/RC4ML/SwCC.git.

A.4 Installation
Use the following commands to clone the SwCC repository,
install the necessary tools and build binary programs.

git clone --recursive https://github.com/RC4ML/SwCC.git

## Install QDMA driver
cd qdma_driver
make
sudo insmod /path/to/qdma_driver/src/qdma -pf.ko
echo ’1024’ | sudo tee -a

/sys/bus/pci/devices /0000:1a:00.0/qdma/qmax
sudo dma-ctl qdma1a000 q add idx 0 mode st dir bi
sudo dma-ctl qdma1a000 q start idx 0 dir bi desc_bypass_en

pfetch_bypass_en

## Install MLNX_OFED
wget https://content.mellanox.com/ofed/MLNX_OFED
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-23.04-1.1.3.0/ MLNX_OFED_LINUX -23.04 -1.1.3.0
-ubuntu18.04-x86_64.tgz -O mlnx.tgz
tar -zxvf ./mlnx.tgz
cd mlnx && sudo ./ofedinstall

## build SwCC programs
mkdir SwCC/build
cd SwCC/build
cmake ..
make

## Build baseline software
mkdir Baseline/libr/build
cd Baseline/libr/build
cmake ..
make

## After completing the RoCE experiments , follow these steps to
prepare for the Soft -RoCE experiments

### Uninstall MLNX_OFED
cd ~/MLNX_OFED_LINUX -23.04-1.1.3.0- ubuntu18.04-x86_64/
sudo ./uninstall.sh
sudo reboot

### Load kernel modules and install required libs
sudo modprobe ib_core
sudo modprobe ip6_udp_tunnel
sudo modprobe udp_tunnel
sudo modprobe ib_uverbs
sudo depmod -a
cd ~/SwCC/Baseline/rxe/
make -j
sudo insmod ./rdma_rxe.ko
sudo apt install librdmacm -dev libibverbs -dev libibumad -dev

libpci -dev

### Environment setup in atc25@r4:
sudo rdma link add sr4 type rxe netdev enp62s0np0
sudo ifconfig enp62s0np0 mtu 9000 up
sudo service irqbalance stop

### Environment setup in atc25@r3:
sudo rdma link add sr3 type rxe netdev enp28s0np0
sudo ifconfig enp28s0np0 mtu 9000 up
sudo service irqbalance stop

A.5 Experiment workflow
We provide three machines for artifact evaluation: a
Sender(atc@r4), a Receiver(atc@r3), and a Vivado ma-
chine(atc@max). Both the Sender and the Receiver are
equiped with a Xilinx U280 FPGA and a ConnectX-5 NIC
machine. The Sender and the Receiver are used for the ex-
periment, and the Vivado machine is used for deploying
bitstream.

You can refer to our GitHub repo to see how to connect and
deploy bitstream on FPGA. Please reboot the FPGA machine
after programming the FPGA. And then you can run the
SwCC experiment on the FPGA machine.

A.6 Evaluation and expected results
We use the control loop delay experiment of SwCC as an
example, you can find other evaluations in our GitHub repo.

A.6.1 Run the control loop delay experiment

Program bistream/SwCC-1.bit to the FPGA on both the
sender and receiver, and after reboot the machines, run the
following command to start the experiment:

## On the Receiver:
sudo SwCC/build/example/latency_receiver
## On the Sender:

sudo SwCC/build/example/latency_sender

Then the Receiver and Sender display the messages.

## On the Receiver:
After both the sender and receiver programs are started , enter

any value to launch the receiver:
## On the Sender:
After the receiver is launched , enter any value to begin the

latency test.

Entering any value in the Receiver, then entering any value
in the Sender. The output will be like this:

5th percentile: 3096 ns
25th percentile: 3168 ns
50th percentile (median): 3168 ns
75th percentile: 3168 ns
95th percentile: 3168 ns

A.7 Notes
Before running Soft-RoCE experiments, it is necessary to
uninstall MLNX_OFED and configure the Soft-RoCE envi-
ronment. Therefore, we strongly recommend completing all
RoCE-related experiments before proceeding with Soft-RoCE
experiments.
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