
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

STORM: a Multipath QUIC Scheduler for Quick
Streaming Media Transport under Unstable

Mobile Networks
Liekun Hu and Changlong Li, East China Normal University, Jianghuai Advance
Technology Center, and MoE Engineering Research Center of Hardware/Software

Co-Design Technology and Application
https://www.usenix.org/conference/atc25/presentation/hu-liekun

STORM: a Multipath QUIC Scheduler for Quick Streaming Media Transport
under Unstable Mobile Networks

Liekun Hu1 and Changlong Li1,2,3∗
1School of Computer Science and Technology, East China Normal University

2Jianghuai Advance Technology Center, Hefei 230026, China
3MoE Engineering Research Center of Hardware/Software Co-Design Technology and Application

Abstract
The rapid proliferation of streaming media applications has
driven the need for multipath transport on mobile devices.
While multipath techniques successfully improve throughput
by exploiting multiple network interfaces, our study reveals
that path instability leads to excessive end-to-end latency.
This paper analyzes the data path of multipath networks and
observes that the high latency is always caused by the “last
mile” wireless link, instead of the core network. Addition-
ally, unlike traditional scenarios, both reliable and unreliable
data are transmitted across these paths. However, existing
multipath schedulers did not fully account for the reliability
characteristics in the design. To address this gap, this paper
proposes STORM, a novel multipath scheduler that aims to
ensure low latency under unstable mobile networks. We in-
tegrate STORM with the mobile device’s wireless modules
(e.g., WiFi and 5G). STORM differentiates between reliable
and unreliable traffic. This approach prevents retransmissions
from hindering critical data flows. Our evaluation on real de-
vices shows that STORM reduces tail packet delay by 98.2%
and improves the frame rate of streaming media by 1.95x
under unstable networks, compared to the state-of-the-art.

1 Introduction

Recent years have witnessed the popular trend of streaming-
media-based applications, such as real-time footage of un-
manned aerial vehicles (UAVs) [45], 360° panoramic videos
of virtual/mixed reality (VR/MR) headsets [30], ultra-high
definition (UHD) videos [4], and cloud gaming [44]. With
their increased demand for high-quality content, multipath
transport is increasingly important for mobile devices. By
making use of multiple network interfaces (e.g., WiFi, cellu-
lar network, and satellite communication) on mobile devices,
the throughput of streaming-media transport can be enhanced
as the data is split over various sub-flows and transmitted in
parallel.

∗Changlong Li is the corresponding author, email: clli@cs.ecnu.edu.cn.

TCP-based multipath transport (MPTCP [31]) is the most
famous protocol, establishing a subflow over each TCP path.
MPTCP is naturally unsuitable for streaming media data trans-
mission for its strict reliability and retransmission mecha-
nism [29]. Differently, QUIC supports unreliable transport
as it is developed based on UDP, which is more friendly for
transmitting streaming media data. Hence, the industry has
been moving toward QUIC in many emerging scenarios, and
as its extension, multipath QUIC (abbreviated as MPQUIC)
has been widely studied recently [21, 22, 26, 49, 51].

However, most bandwidth-hungry applications are also
latency-sensitive. For example, the latency of VR visuals
should be less than 130 ms, or people may feel dizzy dur-
ing usage [27]. Even though MPQUIC enhances throughput,
this paper shows that the end-to-end latency is unexpectedly
high if the signal of one path becomes unstable. Our evalu-
ations in a moving vehicle illustrate that the tail latency is
up to 4.59s when enabling MPQUIC, which is 6.38x higher
than the original system, even though the average throughput
is effectively enhanced. Unfortunately, with the increasing
mobility, such as high-speed railways [25], vehicles [16, 26],
and the Electric Vertical Takeoff and Landing (eVTOL [1])
in the near future, the instability of wireless networks is an
increasingly common phenomenon. Enhanced mobility intro-
duces more frequent and abrupt cellular network handovers
and WiFi roaming et al. Therefore, ensuring quick streaming
media transport on multipath when the network becomes un-
stable, instead of the normal stable case, is crucial in practice.

As the core element of MPQUIC, the scheduler determines
when and how to distribute packets to each sub-flow. This pa-
per shows that existing schedulers cannot address the latency
issue of MPQUIC from neither ‘when’ nor ‘how’ aspects.

First, existing schedulers’ response speed on network path
deterioration is slow, which cannot meet the low-latency
demand of streaming media services. Indeed, the mobility-
induced instability problem has been considered in recent
studies [5, 22, 49]. However, existing solutions estimate the
path status based on the congestion status on a path within a
certain period or the already appeared user experience phe-

USENIX Association 2025 USENIX Annual Technical Conference 851

nomena. Such a design philosophy tends to lag, especially for
wireless links that experience unexpected outages accompa-
nied by high burst loss. We find that the scheduler does noth-
ing at the moment that the signal of one path already becomes
weak, and start to reduce the data transmission proportion on
a certain path while the signal of this path is already recoverd.
In this paper, we make an interesting observation that the
transmission latency bottleneck lies in the “last mile wireless
link” (e.g., link from end devices to the base station or access
point) rather than the core network. By co-designing with the
end device’s WiFi and 4G/5G module, the scheduler has the
potential to be aware of unstable wireless link conditions and
do scheduling instantly.

Second, reliable and unreliable packets are allowed to be
transported on QUIC paths simultaneously [28]. Existing
schedulers did not take the packet reliability into account.
When one path faces burst loss, our evaluation in Section 2
will show that the retransmission of reliable packets blocks
the unreliable ones, and the unreliable packets further block
many reliable packets. Specifically, the scheduler consistently
prioritizes retransmitted reliable packets over normal packets
in MPQUIC. During severe burst loss, a substantial volume of
reliable packets requiring retransmission monopolizes band-
width resources, leading to a backlog of unreliable packets.
Since the existing scheduler treats reliable and unreliable
packets without differentiation, the subsequent reliable pack-
ets have to wait for all accumulated unreliable packets to be
sent.

Inspired by the observations, this paper proposes STORM,
a Multipath QUIC Scheduler for quick streaming-media
Transport under mobile networks. STORM aims to ensure
low latency of streaming media applications when the multi-
path suffers “network storm”. To achieve this goal, two novel
schemes are further proposed: a signal-watermark mecha-
nism (SWM) and a Reliability-aware scheduling (RAS) strat-
egy. The SWM implementation relies on tightly coupling the
MPQUIC software stack with the wireless network modules
on the end device. Like the memory-watermark mechanism
in the Linux kernel [17], SWM maintains a signal-watermark
to estimate the path state. Compared to existing solutions, the
lightweight SWM can be aware of the network storm more
timely and accurately. Based on that, RAS realizes reliability
differentiated scheduling by managing them as blocks and
streams separately.

We have developed STORM based on the MPQUIC proto-
col and implemented it on real devices. Mobile systems can
use STORM without rooting the device or recompiling the
kernel. Experimental results show that the tail packet delay
decreases by 98.2% when enabling STORM, and the aver-
age retransmission ratio is reduced by 12.8%. With STORM,
the user experience is effectively improved. Specifically, the
frame rate of streaming media data is improved by 1.95x
when under unstable networks, compared to the state-of-the-
art [21, 51].

The contributions of this paper are summarized as follows:

• STORM is the first effort to address the latency issue of
MPQUIC under unstable mobile networks. By making
use of the characteristics of QUIC protocol and stream-
ing media data, this paper demonstrates that the transport
latency with MPQUIC has the potential to be further re-
duced.

• We breakdown the data path of multipath networks and
observe that the bottleneck is located at the “last mile”
wireless link, instead of the core network. Inspired by
this observation, this paper shows that the multipath
scheduler can be designed in a lightweight but more
practical approach.

• This paper is the first to propose a scheduler that distin-
guishes reliable and unreliable data on multipath. In this
approach, the streaming media data on emerging scenar-
ios can be transported with minimized retransmission,
which is critical to reducing the end-to-end latency.

• We have implemented STORM on real-life mobile de-
vices. Experimental results show that tail packet delay
with STORM can be reduced by 98.2% and the frame
rate of streaming media data is improved by 1.95x when
under unstable networks, compared to the state-of-the-art
solutions.

2 Background and Motivation

2.1 Trends in Mobile Applications
The development of STORM is motivated by a series of trends
in mobile application scenarios.
Emerging Scenarios and Demands. There are diversified
streaming media-based usage scenarios (e.g., video conferenc-
ing [5], AR/VR [7], teleoperated driving [6], and cloud gam-
ing [44]) nowadays that significantly change people’s lives.
For example, using Apple Vision Pro [11], the data from a
neighbor Macbook can be presented on an MR headset in a 3D
approach. More people prefer to have conferences and buy on-
line, which spawns a wave of Internet celebrity economy [19].
The COVID-19 pandemic is further accelerating such tran-
sitions in consumers’ habits. In addition, modern operation
systems (e.g., Fuchsia [12] and Harmony [13]) are trying to
connect various mobile devices as a unit. They expect to let
consumers use remote devices as if in local [3, 18, 40]. These
emerging scenarios need high network bandwidth support. It
motivates the development of multipath transport techniques.
However, it imposes more stringent user experience require-
ments because viewers are less tolerant of slow response
speed [39]. Besides improving throughput, the transport la-
tency should also be considered in the scheduler design.
Enhanced Mobility. Different from traditional computers,
mobile devices always move. People may use their phones

852 2025 USENIX Annual Technical Conference USENIX Association

(a) Stationary Case (b) Moving Case (c) E2E latency

Figure 1: Frame rate in stationary and moving cases.
(a) LTE and 5G fluctuation (RSRP + SINR) (b) WIFI RSSI fluctuation

Figure 2: Signal strength fluctuation during moving.

Figure 3: Impact of signal strength on
loss rate.

Figure 4: Packet delay in MPQUIC (Re-
liable & Unreliable) and MPQUIC-R
(Fully reliable) mode.

Figure 5: Maximum waiting time of criti-
cal data in different cases.

when walking or on the high-speed railway. Video streaming
from vehicles unlocks a host of novel applications, like in-
vehicle entertainment and gaming [9]. The mobility can lead
to sudden signal changes on the end device side, caused by
cellular network handover or weak WiFi signal et al. With the
development of the next-generation cellular network, mobile
devices will suffer more handover in the future because the
coverage area of a single 5G/6G base station is smaller than
that of the 4G LTE base station [24]. The enhanced mobility
introduces more frequent and sudden signal fluctuates.
Reliability Differentiated Transmission. The importance of
transmitted data is different. For example, video streams have
I-frames and P-frames [48]. I-frames are independent and
serve as the start of a GOP (Group of Pictures), while P-frames
depend on the previous frame. The loss of an I-frame renders
all dependent data useless, but existing systems (e.g., SVC
extensions [36]) allow skipping P-frames without affecting
the decoding of subsequent frames. Transporting all the data
reliably prolongs the latency. MPQUIC supports reliability
differentiated transmission: critical data is transmitted reliably
while uncritical data is not.

2.2 Effect of MPQUIC on QoE
To explore the effect of modern MPQUIC on the Quality of
Experience (QoE), this paper conducts a series of evaluations
on a Xiaomi 12S Pro with LTE, 5G, and WiFi network inter-
faces. We ported the open-source Ringmaster [33, 34] video
conference platform to Android, enabling two conference
endpoints to communicate via MPQUIC. We adopt frame
rate as the metric to quantify the smooth experience and col-
lect the FPS (frame-per-second). Furthermore, the per-frame
end-to-end latency is measured.

2.2.1 Effect on FPS

We first evaluate the FPS of UHD video conferences under
LTE. Fig. 1(a) shows that single-path transport results in
frame rate fluctuations. Specifically, the worst frame rate is
only 14fps. Since LTE bandwidth is insufficient to support
UHD video conferences, the delivery interval between frames
becomes prolonged, causing a decrease in frame rate. Also
in this position, enabling multipath (LTE+WiFi) effectively
enhances FPS, with all rates exceeding 29fps. This shows that
the multipath technique improves bandwidth-hungry apps.

When moving on campus, the signal strength changes. For
multipath transport, the frame rate significantly degrades if
one path’s signal is poor. FPS is even worse than in single-
path transport. As shown in Fig. 1(b), average FPS with 5G
is 29.6fps, while reduced by 18.4% with 5G+WiFi. In the
worst case, single-path 5G has a frame rate of 25fps when
moving, while multipath drops to 10fps. That is, even though
multipath transport is necessary for streaming media-based
applications, its effect is negative instead of positive in some
cases.

2.2.2 Per-frame E2E Latency

This paper further explores the end-to-end (E2E) latency of
each frame. For a high user experience, the latency should be
minimized. As shown in Fig. 1(c), 92.3% of the latency for
multipath transmission is less than 100ms. However, when
moving, the tail latency reaches 4.59 seconds, which is 5.37x
of the stationary case. Such high latency makes real-time
communication for video conference attendees impossible,
causing frequent frame drops and video artifacts on the screen.

USENIX Association 2025 USENIX Annual Technical Conference 853

2.3 Root Cause Analysis

2.3.1 Mobility-induced Signal Changes

To explore the reasons, the signal strength during evaluation
is analyzed. We collect three types of signal strength indi-
cators at the physical layer through the OS’s API: Received
Signal Received Power (RSRP), Signal to Interference plus
Noise Ratio (SINR), and Received Signal Strength Indicator
(RSSI) [15, 32, 47]. At the transport layer, the packet loss rate
is recorded. Fig. 2 shows that the wireless signal strength
changes dramatically when the device moves around cam-
pus. In some areas, the WiFi signal drops, while the cellular
network signal drops suddenly in other places. For example,
we find that public WiFi signals are stronger in office build-
ings, while cellular network signals tend to be weaker indoors
compared to outdoors.

We further explore the effect of such signal fluctuations
on the transmission. Fig. 3 shows the relationship between
RSSI (lower dBm values mean worse signal) and loss rate. In
the figure, each point represents an RSSI-loss measurement,
with darker red shades indicating higher point concentration.
Specifically, we can see all measured loss rates remain under
10% at -70dBm. As the RSSI drops to -80dBm, a significant
cluster emerges between 60% and 80% loss, and in some cases
reaches 100%. When the value of RSSI is reduced, the loss
rate tends to be higher. This phenomenon is widely observed
in the evaluation. As loss rates rise, more retransmissions
occur, consuming bandwidth that could serve subsequent data.

The results demonstrate that the scheduler cannot respond
to these rapid signal changes. This is due to the “visibility
gap” and unawareness of link outages. Our log analysis in-
dicates that the scheduler selects and schedules according
to the path bandwidth and RTT obtained by the congestion
control mechanism. As a result, severe burst loss can last
several seconds. Due to dependencies between packets on
the two paths, overall performance is reduced. The delay in
data arrival prevents rendering the next frame, causing video
stutter and video artifacts.

2.3.2 Scheduling without Reliability Differentiation

Keyframes (e.g., I-frames) are crucial for video smoothness,
as non-keyframes depend on them for decoding [50]. Without
keyframes, non-keyframes are useless. MPQUIC provides re-
liable transmission for these critical data, while other data are
transmitted unreliably. Theoretically, this scheme can effec-
tively reduce the additional delay due to lost retransmissions.
However, the practice performance is not as expected. Fig.
4 shows that MPQUIC’s median and third quartile packet
delays improve by 26.6% and 67.55% compared to MPQUIC-
R. However, MPQUIC has a higher maximum packet delay
outlier (rhombic scatter) than MPQUIC-R, reaching up to
1.65x.

We further explore the cause of this phenomenon by calcu-
lating the waiting time of keyframes in the video conference.
In our study, waiting time refers to the delay from when the
application hands data to MPQUIC until MPQUIC has fin-
ished transmitting the data. We compare the default MPQUIC
scheduler (minRTT [21]) with the state-of-the-art deadline-
aware scheduler (DAMS [51]). The deadline is set to 300ms1.

We evaluate the scheduler in three cases. (1) Both critical
and uncritical data are treated as reliable and scheduled with-
out differentiation. (2) Critical data are treated as reliable, and
uncritical data as unreliable, flagged in QUIC as STREAM and
DATAGRAM frames [28], respectively. (3) Similar to Case-2,
with modified scheduling: unreliable data waits if any reliable
data are in the sending queue.

Fig. 5 shows the critical data, maximum waiting time in
three cases when moving around the campus. In Case-1, the
maximum waiting time is 4.1s for MPQUIC and 2.92s for
DAMS. When distinguishing unreliable packets, the maxi-
mum waiting time for MPQUIC was only reduced by 11.79%.
Unexpectedly, the maximum waiting time for DAMS in-
creased by 39.93%. Comparing Case-2 and Case-3, we ob-
serve a significant reduction in maximum waiting time.

Burst loss from poor signals triggers extensive retransmis-
sions of reliable data, which are prioritized over all normal
traffic. Consequently, unreliable data remains queued until
retransmissions are complete. Afterward, queued unreliable
data floods the network, delaying subsequent reliable data.
This mutual blockage increases latency, resulting in worse
tail packet delay for MPQUIC than for MPQUIC-R. Ideally,
reliable data should not be so heavily affected by unreliable
data. Case-3 shows that prioritizing reliable data does help. A
scheduler that better coordinates both data types is needed.

3 Design

3.1 STORM Overview
This paper proposes STORM, an MPQUIC scheduler for
quick streaming media transport under mobile networks.
STORM aims to ensure low latency when the multipath suf-
fers unstable networks.

3.1.1 Key Components

See Fig. 6, to achieve STORM, two core components are
maintained: a signal-watermark mechanism (SWM) and a
reliability-aware scheduling (RAS) strategy.
Signal-watermark mechanism. As analyzed, link outages
during device movement and the sender scheduler’s unaware-
ness result in a vicious cycle of packet loss and retransmis-
sions. This phenomenon motivates us to propose a memory-
watermark-like mechanism for the mobile devices’ MPQUIC.

1We set the deadline as 300ms by default since delivering latency over
this value will cause significant delays and disruptions [20].

854 2025 USENIX Annual Technical Conference USENIX Association

Mobile Device Side Sender Side

Core Network
WAN

Slow
Path

Fast
Path

WiFi

4G
5G

Wireless
Network
Module

eAdapter
Layer

SWM

Capture
Thread

Streaming
Media
Data

RAS

Signal-
watermark
Feedback
Algorithm

MP
QUIC

Dual-Q

RQUQ

Dynamic
Multipath

Management

Reliable
Data-block
Transport

➊

➋

➌ Feed
back

➎

⑥

⑦

⑨

⑧
➍

Unreliable
Data-stream

Transport

Figure 6: Architecture overview.

The basic idea is to quantify the path’s signal strength, com-
pare it with a predefined watermark, and then send differen-
tiated feedback based on the comparison. There are many
challenges to tackle in SWM design, for example, how to
quantify multiple signal strength indicators into a signal qual-
ity index, and how to ensure the flexibility and applicability
of the watermark. We will discuss this in detail in Section 3.2.
Reliability-aware scheduling. Based on SWM, this paper
further proposes an RAS strategy on the sender side. RAS
treats reliable and unreliable data differently. Specifically,
reliable data is organized as blocks and unreliable data is
organized as streams. The details and advantages of such an
approach will be discussed in Section 3.3.

3.1.2 Workflow

Also see Fig. 6, STORM’s workflow consists of a feedback
flow and a scheduling flow, forming a scheduling system that
strings together the two components. Specifically, the blue
arrows in the figure are feedback flows (1 - 5), while the
brown arrows are scheduling flows (6 - 9).

Feedback flow begins at the adapter layer encapsulated
in the wireless network module of the mobile device. (1) A
dedicated thread collects signal strength indicators from this
adapter layer. (2) These indicators are input to the Signal-
Watermark feedback algorithm. (3) The algorithm sends feed-
back to the sender via MPQUIC and adjusts the watermark
based on subsequent results. (4) Upon receiving the feedback,
the sender notifies the Dynamic Multipath Management mod-
ule in the RAS component to decide whether to activate or
deactivate a path. (5) The Reliable Data-block Transport mod-
ule also uses this feedback to adjust its path allocation ratio.
After these steps, the feedback flow completes, and schedul-
ing can proceed using the updated signal conditions. (6) The
scheduling flow starts once streaming media data arrives at
the RAS component, which places the data into Dual-Q based
on reliability requirements. (7) Dual-Q maintains separate
queues for different reliability classes, each governed by its
own scheduling strategy. (8) The Reliable Data-block Trans-
port module distributes reliable data across two paths to max-
imize aggregate bandwidth, reducing allocations on any path

Figure 7: Breakdown of End-to-End RTT: Wireless Link vs.
Core Network RTT (Scenario 1: strong signal location for
stationary; Scenario 2: underground mall; Scenario 3: subway;
Scenario 4: hotel room; Scenario 5: high-speed railroad).

identified (via SWM feedback) as having poor signal. (9) The
Unreliable Data-stream Transport module then injects data
into idle times on the slower path after each reliable data send.

3.2 Signal-watermark Mechanism

3.2.1 Data Path Breakdown

Extensive research has examined whether wireless links (so
called the “last mile”) act as a bottleneck for network through-
put [2, 37]. However, the latency bottleneck on the data path
has not been thoroughly analyzed. In this paper, we break-
down the data path to understand where the latency bottleneck
locates on the network path.

To accurately obtain the round trip time (RTT) between
the base station and the device, we innovatively utilize the
first hop IP address after entering the core network from the
base station. Specifically, we employ a traceroute-like func-
tion to identify this first-hop IP address. Since the latency
between the base station and its first hop is typically under
5ms, measuring the RTT of this address effectively represents
the wireless link’s latency.

Fig. 7 shows results from various scenarios, including poor
RSRP (low coverage) and poor SINR (high interference). We
observe that poor RSRP (Scenario 2 and 4) leads to more
frequent failed handovers compared to poor SINR (Scenario
3). The severity of packet loss and wireless link latency due
to handover failure intensifies whenever either RSRP or SINR
deteriorates. In the worst case, the E2E RTT reaches 3,781
ms, with the wireless link RTT at 3,750 ms. This trend is
consistent across all mobile scenarios, indicating that despite
advancements in wireless technology claiming low latency,
the wireless link remains the latency bottleneck in mobile
environments. Therefore, designing SWM to monitor signal
conditions and provide feedback is essential for quickly re-
ducing latency.

USENIX Association 2025 USENIX Annual Technical Conference 855

Wireless Network
Module

Adapter Layer

Multipath QUIC
Send Control

Signal-Watermark

Quality Index

Signal Quality
Quantification

Outage
Feedback

Warning
Feedback

Recovery
Feedback

Calculate
Severity

Exceed Time
Threshold?

Below
Outage

Below
Warning

Above
Warning

Adjust

Signal

Send to
Sender

Yes

Above
Good
Above
Good

Capture Thread

Figure 8: The workflow of SWM. The gray box works on the
MPQUIC protocol stack.

3.2.2 Co-Design with the Wireless Network Module

As shown in Fig. 8, to enable SWM’s signal-awareness, we
co-designed MPQUIC with the wireless network module. Our
goals were to provide a unified way to retrieve signal strength
across different platforms and to maintain MPQUIC’s perfor-
mance by avoiding blocking operations.

Originally, the mobile device’s wireless module ran inde-
pendently of MPQUIC. To allow seamless access to signal
strength indicators, we extended it with an adapter layer that
standardizes retrieval across platforms (see the orange box on
the left in the figure). MPQUIC then obtains signal strength
through a single, unified API.

MPQUIC uses a non-blocking I/O event loop for multipath
transfers. Directly polling signal strength in this loop could
block it, degrading performance. To avoid this, we delegate
signal-strength capture to a dedicated thread (see the orange
box on the right in the figure). This thread periodically calls
the adapter layer’s API and updates atomic variables in SWM.
By employing lock-free programming, we minimize overhead
on MPQUIC’s main event loop.

3.2.3 Signal-watermark Feedback Algorithm

Upon receiving signal strength indicators from the capture
thread, the Signal-Watermark feedback algorithm begins exe-
cution. Its workflow is shown in the blue box of Fig. 8.
Signal Quality Quantification. Signal strength indicators
such as SINR and RSRP vary in scales and units, influenc-
ing signal quality from distinct dimensions—coverage and
interference. To coherently quantify their combined impact,
we normalize these indicators into a unified interval for direct
comparison. Since SINR and RSRP inherently exhibit multi-
plicative and proportional characteristics, we adopt a weighted
geometric mean rather than a linear combination. The weights
tune the relative influence of each indicator, recognizing that
SINR and RSRP affect signal quality to different extents (see
Section 3.2.1). As shown in Eq. 1, the base quality Qbase is
defined as:

Qbase =
(
(SINRnorm)

wsinr × (RSRPnorm)
wrsrp

) 1
wsinr+wrsrp (1)

where wrsrp and wsinr are adjustable weights in [0,1]. Requir-
ing the sum of weights to exceed 1 imposes a compressive
effect, preventing large jumps in Qbase from minor improve-
ments and pulling Qbase toward moderate values when indi-
cators are extremely low, maintaining stability and avoiding
excessive dispersion. Note that for WiFi, which only uses
RSSI, Qbase equals RSSInorm.

To further refine this measure, we introduce a modulation
factor that reacts to packet loss trends. The packet loss rate
is a critical indicator of whether current feedback decisions
are effective: a persistent rise in loss (∆loss > 0) shows that
the signal-degrading path is still over-utilised. Accordingly,
the modulation factor amplifies the negative adjustment, ag-
gressively reducing that path’s utilization and achieving the
desired effect more quickly. Conversely, when ∆loss ≤ 0, the
factor does not raise the quality score, because temporary loss
reductions do not yet signal genuine recovery. The modulation
factor H(∆loss) is defined as:

H(∆loss) =

1, ∆loss ≤ 0

exp(−γ ·∆loss), ∆loss > 0
(2)

Here, γ ∈ [0,1) controls sensitivity to increasing loss: a larger
γ sharply reduces quality when loss rises, while a smaller γ

allows for subtle adjustments. This keeps the base quality as
the primary determinant, with ∆loss as a secondary cue.

The final quality index Q ∈ [0,1] is:

Q = Qbase ×H(∆loss) (3)

As shown in the blue box at the top right of Fig. 8, the fi-
nal quality index will be passed to the Signal-watermark for
comparison.
Adaptive Signal-watermark Feedback. After obtaining the
quality index, it is compared against three watermarks: Good,
Warning, and Outage. If the index falls below the Warning
watermark, a warning feedback is generated, indicating the
gap between the current index and the Warning watermark, to
help adjust path allocation ratios. Dropping below the Outage
watermark triggers high-priority outage feedback, instruct-
ing the sender to stop scheduling on that path. When the
index exceeds the Warning watermark, SWM will consider
generating recovery feedback.

To prevent frequent feedback caused by the unstable qual-
ity index, a timing threshold mechanism with Fast Suppres-
sion/Slow Recovery is implemented. Feedback is promptly
generated when the index falls below Warning or Outage.
However, recovery feedback is only immediately issued
when the index recovers from below Outage to above Good.
If the index rises to between Outage and Warning, no action is
taken. When the index surpasses Warning, a timer starts, and
recovery feedback is generated only if the index remains
above Warning for a threshold time Trec; otherwise, the timer
resets. This approach ensures that signal improvements are
sustained.

856 2025 USENIX Annual Technical Conference USENIX Association

Time

Block A
Block B

Block C
Fast path

(small RTT)

Slow path
(large RTT)

T2 T1

△T
Time hole

Time hole

Block transmission time OWD

Figure 9: Slow path time hole.
However, rapid fluctuations in the quality index can lead to

a worst-case scenario where the corresponding path remains
inactive for an extended period. Specifically, if the index con-
tinuously and quickly oscillates across multiple watermarks,
it may never stabilize above the Warning watermark for the
entire recovery feedback period (Trec), thus failing to generate
any recovery feedback. Even if it briefly exceeds the Good
watermark, it will be deactivated again upon falling below the
Outage watermark. In fact, utilizing paths with severe quality
fluctuations offers no performance advantage and consider-
ably impairs user experience. Hence, sustained deactivation
of such unstable paths is beneficial.

The default watermark settings were based on extensive
experiments (see Fig. 3), but device-specific conditions, net-
work technologies, and environments can affect effectiveness.
To accommodate this variability, watermarks are adaptive.
Specifically, the SWM evaluates the effects of previous feed-
back through MPQUIC send control. If the Outage watermark
fails to prevent high burst loss, it is increased until the loss is
curtailed. Similarly, if the burst loss exceeds 10% when below
the Warning watermark, it is raised by a smaller step for finer
granularity. To prevent aggressive path deactivation and band-
width waste, the Outage watermark decreases if burst loss
above 50% does not occur, ensuring alignment with actual
link outages. These adaptive adjustments keep the watermarks
calibrated to real-world link conditions.

3.3 Reliability-aware Scheduling
To enable the sender to fully utilize SWM feedback, a new
scheduling scheme must be devised. Merely adjusting multi-
path scheduling allocation ratios and deactivating link outages
path may improve performance to some extent, but does not
address the root cause. Although SWM can mitigate high
burst loss, it cannot achieve a loss-free environment in real
wireless networks. As analyzed in Section 2.3.2, loss cause
reliable and unreliable data to block one another, making co-
ordinated scheduling of both essential for further improving
latency.
Dual-Q for Reliable and Unreliable Data. To coordinate
the scheduling of data with different reliability requirements,
we manage them using two separate queues. Specifically, we
revise the MPQUIC protocol to adopt a Dual-Q architecture,
consisting of an RQ for reliable data blocks and a UQ for

unreliable data streams. In the RQ, reliable data are handled
as individual blocks, each with its own priority and deadline
set by the application. The scheduler establishes a subflow
for each path and distributes these blocks accordingly. Mean-
while, in the UQ, unreliable data are sorted by their deadlines.
if a loss occurs, RAS discards the affected data and proceeds
to the next.

Maintaining two distinct data types, including blocks for
reliable data and streams for unreliable data, offers two key
advantages. First, by representing reliable data as discrete
blocks, each block is fully delivered as a unit, meeting the
requirement for complete, in-order delivery. Second, treating
unreliable data as streams enables more flexible use of idle
bandwidth without the constraints imposed by fixed block
sizes. We now introduce the scheduling strategy in detail.
Reliable Data-block Transport. For reliable data blocks,
RAS aims to deliver as many as possible before the deadline.
Aligning arrival rather than sending times maximizes the
faster path’s potential [8]. To ensure packets belonging to one
block can arrive at a similar time, the data size allocated on
the paths (Size1 and Size2) follows the constraint:

Size1 ×bwagg

bw1 ×F1
+OWD1 =

Size2 ×bwagg

bw2 ×F2
+OWD2 (4)

Here, bwi represents the current path bandwidth, and OWDi
refers to the one-way delay on the corresponding paths. Path
bandwidth is estimated based on the congestion control algo-
rithm employed by the MPQUIC. To prevent the division re-
sult from approaching zero, we normalize with the aggregated
bandwidth bwagg (the sum of the two paths’ bandwidths). Fi
is determined by the mobile device side SWM’s feedback:
more severe warning feedback lower the Fi value, indicating
a higher potential loss rate. Fewer data allocations are made to
paths with lower Fi values to avoid burst loss. Upon receiving
a recovery feedback, the Fi value is restored to one.

RAS calculates the residual time to send at that moment
for each subflow. For subflow on path i, its residual time is:

Trsdi = deadlinei −T psdi −OWDi (5)

Here, T psdi represents the time already passed before pro-
cessing. If less than 0, the data is proven to be expired. RAS
cancels the sending operation and evicts it from RQ.

The urgency of the deadline depends on both residual time
and block size. A large block with a distant deadline can still
be urgent. Based on Eq. 5, we calculate the gap between the
current bandwidth (Cbw) and the minimal required bandwidth
(Mbw), as shown in Eq. 6. Mbw corresponds to Sizei

Trsdi
. If not

processed immediately, the required bandwidth increases as
the block nears its deadline.

Blocks with smaller Gbw values are more urgent. If the
gap is less than zero, the data cannot be delivered within the
remaining time under current conditions. In this case, RAS

USENIX Association 2025 USENIX Annual Technical Conference 857

delays processing this block to prioritize others.

Gbw = min
i∈{1,2}

(
Cbwi −

Sizei

Trsdi

)
(6)

Ultimately, RAS determines weights based on the band-
width gap and block priority. Blocks with lower weight are
more likely to be scheduled.

We normalize the bandwidth gap and block priority to
calculate the final weights. The gap is divided by bwagg, and
the priority is divided by the current maximum priority value
(Pmax). Parameter α adjusts the importance of each in the
weight calculation. To avoid unfairness to smaller blocks, we
multiply the gap by parameter R, representing the unsent data
ratio in a block. This adjustment ensures blocks that have
already sent most of their data receive a lower weight (higher
priority).

weight = α× Gbw
bwagg

×R+(1−α)× priority
Pmax

(7)

Unreliable Data-stream Transport. After achieving efficient
scheduling for reliable data blocks, we must consider how to
handle unreliable streaming data. If we simply allocate them
across two paths in the same manner as reliable data, the loss
affecting reliable data will continue to cause mutual blockage.
Furthermore, as shown in Fig. 9, block A finishes on two
paths at T1 and T2. The idle period ∆T (T2 −T1) on the slow
path creates a time hole. This time hole reduces throughput,
and when combined with mutual blockage, it becomes nearly
impossible for both data types to meet their deadlines.

RAS manages unreliable data on UQ as a stream arranged
by deadlines, with their weight set higher than Pmax for dif-
ferentiation. During ∆T , RAS schedules UQ data to the slow
path. Because unreliable data is injected only during time hole,
any blockage lasts only for a single retransmission. Once that
retransmission completes, the next reliable block creates an-
other time hole, allowing the scheduling of unreliable data
in this new hole. This approach effectively alleviates mutual
blockage and further improves overall delivery speed.
Dynamic Multipath Management. Another challenge is
sudden link outages. Upon receiving outage feedback from
the mobile device, the affected path is quickly deactivated to
minimize the impact of burst loss. With only a single path re-
maining, Eq. 4 is no longer applicable. Instead, RAS employs
subsequent equations to calculate each block’s weight based
on the full allocation to the remaining path. Due to bandwidth
constraints, the unreliable stream is scheduled by the deadline
only after all reliable blocks have been transmitted and there
is available congestion window capacity. When recovery
feedback is received, the path is immediately reactivated to
maximize bandwidth utilization.

Even though subsequent data will not be scheduled to the
deactivated path, prior scheduling decisions cannot be undone.
If not processed, these data may be delivered late. To solve

this, RAS employs deadline-aware reinjection. RAS calcu-
lates if unacknowledged data can meet the deadline with the
current available path’s bandwidth. If feasible, it reinjects the
data; otherwise discarding them. Reinjection occurs after the
scheduling round to avoid delaying normally scheduled data.
Unreliable data are discarded without reinjection.

4 Implement STORM with MPQUIC

STORM is implemented based on the QUIC protocol. Specifi-
cally, we developed STORM based on Alibaba’s XQUIC [10].
Features of QUIC, like the unreliable QUIC-Datagram based
on RFC9221 [28] and multipath functionality incorporated
into the IETF WG Draft [21], are used by STORM. Based on
that, we modify QUIC with 1,342 lines of C language code,
excluding the libraries.
Wireless Network Module Adapter Layer. MPQUIC uses
abstract paths to adapt to various mobile network interfaces,
preventing direct access to signal strength indicators. We
introduce an adapter layer to the wireless network module.
On Android, we implemented Java logic to monitor wireless
network signal changes. These indicators are stored as atomic
variables and accessed by SWM via Java Native Interface
(JNI) calls every 100 milliseconds.

The adapter layer implementation introduces minimal mod-
ifications to user equipment. Unlike previous approaches that
required hardware adjustments or system-level root privileges,
our adapter-based method efficiently retrieves cellular signal
strength indicators by utilizing standard Android classes (e.g.,
WifiManager [42] and TelephonyManager [41]). Specifically,
the adapter achieves this with only 102 lines of Java code, sig-
nificantly simplifying developers’ workload and seamlessly
integrating into existing systems.
Reliable Data-block Transport. MPQUIC supports vari-
ous frame types to handle different data reliability require-
ments. Specifically, STREAM frames carry reliable data, while
DATAGRAM frames carry unreliable data [14, 28]. STORM ex-
tends this capability by mapping different reliability data to
different frame types.

MPQUIC packetizes data into a doubly linked list for write
streams, complicating fine-grained scheduling. To minimize
overhead, STORM schedules data based on block metadata
and caches reliable blocks in a vector.
Unreliable Data-stream Transport. MPQUIC’s stream man-
agement supports unreliable data streams but faces synchro-
nization challenges: data must be packetized pre-injection
into the slow path, complicating alignment between unreliable
data on the slow path and reliable data on the fast path. Fixed
packet sizes worsen timing mismatches, leading to inconsis-
tent finishes of unreliable transmissions relative to reliable
blocks under varying bandwidth conditions.

To solve these issues, STORM introduces a novel scheme.
Unreliable data is placed in a doubly linked send queue or-
ganized by deadlines, where each node holds an entire data

858 2025 USENIX Annual Technical Conference USENIX Association

segment rather than individual packets. This approach defers
packetization until injecting data into the slow path, thereby
reducing scheduling overhead and improving synchronization
with reliable data.
Dynamic Multipath Management. MPQUIC man-
ages multipath usage by sending PATH_STANDBY and
PATH_AVAILABLE frames to notify peers of path states.
A STANDBY path does not schedule packets unless the
AVAILABLE path is unavailable [21]. However, this
mechanism is inadequate for signal-aware path management
due to two issues: (1) In-flight packets on a STANDBY path
remain until lost, while buffered data continues to transmit,
increasing latency and packet loss. (2) If the AVAILABLE
path’s congestion window is exhausted, new packets are
sent through the STANDBY path. These behaviors conflict
with the deactivation of paths experiencing link outages,
highlighting a limitation in MPQUIC’s scheduling.

STORM introduces a new frame type, PATH_ALERT,
containing feedback from the SWM. Upon receiving a
PATH_ALERT frame, the sender manages multipath according
to RAS’s design.
Abstraction and API. STORM encapsulates the process and
offers an API to the upper layer. Applications just need to
call the STORM_send and provide parameters like deadline
and priority. Specifically, STORM categorizes application
data into Reliable Transport Blocks and Unreliable Transport
Streams, executing their logic.

STORM does not use a proxy [25, 26] in its implementa-
tion. While proxies reduce application modifications, they
only intercept the payload, losing important metadata. This
limits QUIC’s cross-layer benefits, complicating fine-grained
scheduling. Instead, data can be sent directly through the API
provided by STORM, reducing code changes.

Evl. Type Dev.
Equipment

NET MEM OS

Control Lab PCs Ethernet 94GB Ubuntu 20.04

APP
Video Conf. Phone WiFi-6, LTE/5G 12GB Android 14

Live Stream. Phone WiFi-6, LTE/5G 12GB Android 14

360° Video Laptop WiFi-6 16GB Ubuntu 18.04

Table 1: Equipment details of the evaluation platforms.

5 Evaluation

5.1 Experiment Setup

This section provides the evaluation from two aspects:

• Control Network Environment. We test STORM in a
controlled lab environment. The evaluation focuses on
three main aspects: microbenchmarks, the performance
effects of individual designs, and the performance effects
of parameter settings.

• Applications in the Wild. Furthermore, we developed
three apps for typical scenarios: video conferencing, low-
latency live streaming, and 360° video. These applica-
tions were evaluated in real-world mobile Internet envi-
ronments, and the QoE was analyzed.

Parameter Configurations. The parameters in the evaluation
are listed in Table 2. The default signal-watermark was set
empirically. wrsrp and wsinr are set to 0.8 and 0.6, respectively,
because poor RSRP values are usually more strongly asso-
ciated with failure of handover. Set γ to 0.01 to avoid overly
penalizing the common random losses (under 10%) typical
of wireless links, while still enabling a rapid score reduction
once ∆loss exceeds 50. Trec is set to 400 ms. α is set to 0.5.

Symbols Semantics Setting

Good High-watermark that represent strong signal 0.45
Warning Medium-watermark that represent weak signal 0.32
Outage Low-watermark that represent link outage 0.21

wrsrp RSRP weight coefficient 0.8
wsinr SINR weight coefficient 0.6

γ Modulation factor sensitivity parameter 0.01
Trec Time threshold for recovery feedback 400 ms
α Weight coefficient for reliable data transport 0.5

Table 2: Summary of parameters used by STORM.

5.2 Microbenchmark
We developed a toolkit to evaluate STORM’s microbench-
mark performance under various network conditions. The
tool sends six blocks of varying priorities and sizes every
100ms at 30Mbps, each with a 300ms deadline. This setup
emulates transmitting a Group of Pictures (GOP) in streaming
applications at 60 fps. Specifically, the highest-priority block
represents an I frame, three lower-priority blocks represent
P frames, and two lowest-priority blocks (transmitted unreli-
ably) represent B frames. Note that STORM supports dead-
line setting well below 300 ms, discussed in Appendix A.1.
Two PCs (see Table 1) are connected to an OpenWrt router
with traffic control (tc). Ethernet simulates WiFi and cellular
networks, avoiding interference. We tested the completion
rate and waiting time of high-priority blocks. DAMS [51]
and MPQUIC were compared with STORM. Since Ethernet
does not reflect wireless link conditions, we only examined
STORM performance under a strong signal.

5.2.1 Bandwidth Variation

We evaluated STORM’s performance under bandwidth fluc-
tuations using various combinations, denoted in Mbps. Al-
though more combinations were tested and exhibited simi-
lar trends, this paper only presents four representative cases:
<20, 25> (adequate bandwidth), <15, 20> (nearly adequate),
<10, 15> (slightly inadequate), and <5, 10> (severely inade-
quate). These combinations clearly illustrate STORM’s per-

USENIX Association 2025 USENIX Annual Technical Conference 859

(a) Completion Rate (b) Waiting Time Distribution

Figure 10: Block completion rate and waiting time distribu-
tion under various bandwidth combinations.

Figure 11: Block completion rate
under various RTT combinations.

Figure 12: STORM’s sig-
nal status sync bias rate.

(a) Goodput (Mbps) (b) Rebuffering Time (s)

Figure 13: Ablation study of STORM’s design.
Figure 14: Weight parameter
α.

Figure 15: Recovery feed-
back period Trec.

formance under bandwidth conditions ranging from sufficient
to severely insufficient. The RTT for the two paths was set to
30ms and 50ms, with a loss rate of 0.01%.
Completion Rate. Fig. 10(a) shows that with <10, 15> band-
width combinations, the completion rate2 of MPQUIC drops
from 99.9% to 26.1%. The completion rate of DAMS is re-
duced by 76.4% compared to the sufficient-bandwidth case.
With a bandwidth combination of <5, 10>, both DAMS and
MPQUIC nearly reach zero completion rates, unable to deliver
on time with only half the required bandwidth. In contrast,
STORM’s completion rate only decreases by an average of
49.3%.

As Table 3 shows, STORM schedules 66.5% of reliable
data to the fast path, while unreliable data is all scheduled on
the slow path. In MPQUIC, all data competes equally for the
fast path. DAMS, however, utilizes both paths for reliable data
and defaults to MPQUIC’s approach for unreliable data. As a
result, unreliable data consumes 17.4% more bandwidth on
the fast path than in MPQUIC. STORM fully utilizes the fast
path without wasting the slow path, significantly increasing
the completion rate of reliable blocks.

Reliable data Unreliable data
fast path slow path fast path slow path

MPQUIC 75.1% 24.9% 71.7% 28.3%
DAMS 54.8% 45.2% 89.1% 10.9%
RAS 66.5% 33.5% 0% 100%

Table 3: The ratio of (un)reliable data on the two paths.

Efficiency to Transport High-priority Data. We further ver-
ify the advantages of scheduling reliable data more on the fast
path. Fig. 10(b) shows the waiting time distribution for high-
priority data. The top of each color bar represents the maxi-

2The completion rate is the ratio of packets successfully delivered before
the deadline to the total number of packets.

mum waiting time for that bandwidth combination. As band-
width decreases, the maximum waiting time for MPQUIC
and DAMS increases significantly (by 44.3x and 54.5x, re-
spectively). In the worst case, the time reaches 11 seconds.
In contrast, STORM performs better. For example, with the
<5,10> bandwidth combination, STORM’s maximum waiting
time is 49.6% of MPQUIC’s and 45.3% of DAMS’s.

5.2.2 RTT Variation

We further explore the effect of RTT variation. In the evalua-
tion, one path’s RTT is fixed at 30ms, while the other varies
from 30ms to 180ms. The bandwidths of the two paths are set
to 20Mbps and 14Mbps. As shown in Fig. 11, two phenomena
are observed: First, STORM consistently outperforms DAMS
and MPQUIC in the completion rate across various RTT com-
binations. With the <30,120> RTT combination, STORM’s
completion rate increased by 37.3% and 37.6% over MPQUIC
and DAMS, respectively. Second, we observed DAMS’s com-
pletion rate rising to 64.4% with the RTT combination <30,
150>. Due to excessive RTT differences, DAMS can hardly
use the slow path to accelerate delivery, scheduling more data
to the fast path. The fast path’s 20Mbps bandwidth is suf-
ficient for this higher completion rate. MPQUIC, however,
allocates data to the slow path when the fast path’s congestion
window is exhausted, increasing missed deadlines.

5.3 STORM Deep Dive
In this section, we replay user walking network traces to in-
vestigate how each design affects STORM’s performance. We
modified saturatr [46] to trace when the mobile device detects
a signal strength change, providing these records to SWM for
simulating signal strength capture. We set up a mpshell [23]

860 2025 USENIX Annual Technical Conference USENIX Association

testbed with a sender application and a virtual low-latency live
streaming player. The player focuses on network transmission
without actual decoding or rendering.
Signal State Sync Bias. Studies show that reporting signal
strength to user space can be delayed by up to 200 ms [25],
causing synchronization bias between signal change and feed-
back receipt. Fig. 12 shows that the ‘captured vs. actual’
signal strength differs minimally: about 1.14% on average
and 0.95% at the median. With a capture-to-feedback delay
of at most 300 ms, large spatial shifts are unlikely. Even at
high speeds, STORM quickly reacts to signal degradation,
then waits for stabilization before readjusting.
Ablation Study. We conducted an ablation study to investi-
gate the impact of the Signal-Watermark Mechanism (SWM)
and Reliability-Aware Scheduling (RAS) components. Fig.
13 shows that the complete design (SWM+RAS) is crucial
for STORM to optimize user experience during signal fluc-
tuations. Disabling SWM reduces goodput by 26.6% and
increases rebuffering time by 6.8x. Disabling RAS reduces
goodput by 15.7% and increases rebuffering time by 2.9x.
Computational Overhead. STORM is a lightweight multi-
path scheduler integrated into MPQUIC with negligible com-
putational overhead. RAS’s average processing time for data
in Dual-Q is 5.03 ms, only 7.4% of the total transmission
time (68.1 ms). The feedback algorithms in SWM have O(1)
complexity, incurring only µs-level overhead. With our imple-
mentation, the number of Java Native Interface (JNI) calls is
minimized to further reduce overhead. Specifically, the most
time-consuming JNI call introduces an average overhead of
78 µs per invocation. Given that this call occurs once every
100 ms, it results in merely 780 µs of additional CPU time per
second, leading to negligible extra CPU usage.

5.4 Sensitive Study

We in this part test the sensitivity of STORM performance to
different parameter settings.
Parameter α Tuning. A larger value of α in Eq. 7 leads
to STORM scheduling the more urgent packets first, which
decreases its consideration of their priority. We evaluate
STORM with α values from 0 to 1, shown in Fig. 14. As
α increases, E2E latency decreases as the scheduler favors ur-
gent packets for timely delivery, but this raises the frame drop
ratio. If critical decoding data is delayed by urgent packets, the
player favors received data, compromising smoothness and
quality despite lower latency. Thus, a suitable STORM bal-
ance is α = 0.5.
Recovery Feedback Period. To find the optimal period Trec
for SWM to generate recovery feedback, we test a range of
values in [20, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000]ms. Fig. 15 shows the E2E latency for these period set-
tings. Periods under 100ms produce overly frequent recovery
feedback. This excessive frequency can disrupt transmission
and cause traffic fluctuations. Periods over 800ms waste band-

width and increase end-to-end latency. We select 400ms as
the period for STORM. Note that as mobility increases, this
period should be extended to ensure the signal stabilizes.

5.5 Real-world Applications Evaluation
We further explore STORM’s effect on user QoE in the real-
world mobile network. Three typical streaming media applica-
tions were tested on a Xiaomi 12S Pro phone, communicating
with Tencent Cloud servers located in Asia (see Table 1).
Video Conference. We prepared three video streams to trans-
port from the server to the client. The server encodes them
into VP9 format frames using ffmpeg and libvpx. One stream
is a real-time conference, serving as the mainstream. The
other two streams are workloads. Mainstream keyframes have
the highest priority. The non-keyframes of the other streams
are set to unreliable data. Resolution is 1280x720, with a
bitrate of 30 Mbps and a frame rate of 30 fps.
Low-latency Live Streaming. We simulate a live pull stream.
We encoded a 1080p video at 30Mbps using ffmpeg. I and
P frames are high and medium-priority blocks, respectively.
And B frames are an unreliable stream. The video plays con-
tinuously for two minutes at 30 fps.
360° Video. We developed a 360° video application. The
video is delivered as tiles, with tiles near the center of the
user’s viewport given higher priority. Unreliable masking
streams prevent tile skipping. Due to the complexity of im-
plementing 360° video on an Android phone, the client was
implemented on a laptop with two wireless cards.

5.5.1 Benefit on QoE

Our evaluation includes different QoE metrics. The following
metrics were used:

• Video Conference: Frame rate distribution, normalized
stall duration, and normalized SSIM score.

• Low-latency Live Streaming: Frame rate distribution,
normalized stall duration, and normalized video goodput.

• 360° Video: Peak Signal-to-Noise Ratio (PSNR) and
User Perceived Ratio (the ratio of actual bitrate received
by the user to the video bitrate).

To explore the real-world performance impact of SWM, we
implemented a variant of STORM, STORM-U, using RAS
without SWM feedback. Single path (SP) performance is also
considered.

We conducted field tests at five real-world locations, such
as the parking lot and the library. These locations are covered
by WiFi and cellular networks, with the phone connected to
both. To examine mobility’s effect on multipath transmission
performance, we divided the tests into two scenarios.
In Changing Signal Strength. In this case the user runs
three applications while walking within a given area and

USENIX Association 2025 USENIX Annual Technical Conference 861

(a) Video conference’s QoE (b) Low-latency live streaming’s QoE

Figure 16: The video conference and low-latency live streaming’s QoE.

(a) User perceived ratio (b) PSNR (dB) distribution

Figure 17: The 360° video’s QoE
(a) Retransmission ratio (b) Packet delay reduction

Figure 18: Transport improvement.

experiences sudden link outages both indoors and outdoors.
We measured how these rapid signal fluctuations affect each
solution.

Fig. 16 shows DAMS’s performance declines significantly
with signal fluctuations, more so than MPQUIC. In contrast,
STORM maintains good performance. A frame rate of 24 fps
is generally considered the minimum for motion to appear
natural to the human eye. Lower rates produce perceptibly
unsmooth motion. For video conference, STORM’s unsmooth
FPS (below 24 fps) ratio improved by 95.1% compared to
MPQUIC and 96.8% compared to DAMS. STORM also ex-
cels in stall duration, outperforming MPQUIC by 83.0% and
DAMS by 85.2%. SP struggled with tests due to link outages,
causing performance fluctuations. Lower FPS and longer
stalls lead to more video stutters, while STORM effectively
reduces both during signal fluctuations, enhancing user expe-
rience.

STORM quickly deactivates the path during link outages,
minimizing loss and latency. STORM-U, however, cannot
sense sudden changes. Delayed data leads to decoding fail-
ures, which in turn produce video artifacts and degrade video
quality. For 360° video, STORM’s median user-perceived
ratio and PSNR are 0.81dB and 46.1dB (see Fig. 17), improv-
ing by 11.1% and 7.7% over STORM-U, resulting in the best
video quality.
In Stable Signal Strength. In this case, the user runs three
applications while staying in a position with a good signal.
We begin by showing the QoE in the video conference. Ta-
ble 4 shows that STORM performed the best. With sufficient
bandwidth and low latency in stationary conditions, the per-
formance differences among individual solutions are minimal.
Similar results are observed in low-latency live streaming and
360° video.

5.5.2 Transport Improvement

We finally explored how STORM can improve transport per-
formance in real-world applications. MPQUIC-R and DAMS-

APP Metrics MPQUIC DAMS STORM-U STORM

1
FPS 29.2 29.4 29.4 29.6

Stall Dur. 1 0.97 0.96 0.96
SSIM 0.99 0.99 0.99 0.99

2
FPS 29.1 29.2 29.3 29.5

Stall Dur. 1 0.97 0.97 0.96
Goodput 0.84 0.90 0.93 1

3 UPR 0.92 0.95 0.94 0.98
Median PSNR 47.2dB 47.4dB 47.8dB 47.9dB

Table 4: The QoE of (1) video conference, (2) low latency
live streaming, and (3) 360° video applications under a stable
signal strength.

R are included for comparison.
Fig. 18(a) shows that STORM achieves the lowest retrans-

mission ratio. MPQUIC-R and DAMS-R suffer severe retrans-
missions during sudden link outages. In contrast, DAMS and
MPQUIC perform better in retransmission ratio by deliver-
ing non-critical data over unreliable transmissions. Despite
its efficient scheduling, STORM-U still encounters an aver-
age retransmission ratio of 4.1% due to its inability to sense
the wireless link. By quickly deactivating the broken path,
STORM reduces the average retransmission ratio to 1.5%.
Fig. 18(b) shows the packet delay reduction of STORM com-
pared to other solutions at different percentiles. We selected
the optimal MPQUIC and STORM-U solutions for compari-
son. The results show a 98.2% decrease in packet delay at the
99th percentile with MPQUIC, demonstrating its strong ad-
vantage in improving tail packet delay. Although STORM-U
outperforms MPQUIC in other aspects, its delayed response
to signal changes still results in high tail delays.

6 Related Works

Multipath Transport for Streaming Media. The growing
demand for high-throughput and low-latency video streaming
has led to much work on multipath transport. MPTCP [31]
introduced the concept of establishing subflows across mul-
tiple TCP connections to use interfaces such as Wi-Fi and

862 2025 USENIX Annual Technical Conference USENIX Association

cellular, but its strict reliability can degrade real-time stream-
ing [29]. Even works designed to mitigate HOL blocking
[8, 35, 38, 43] often remain suboptimal when mobility causes
rapid link fluctuations. By contrast, QUIC, operating over
UDP, is better suited for real-time data since it supports both
reliable and unreliable modes [28]. Based on this, MPQUIC
[21,22,26,49,51] aggregates throughput across multiple paths
but, as our experiments show, still suffers high latency when
one path’s signal drop suddenly. STORM overcomes this is-
sue by making use of the characteristics of QUIC protocol
and streaming media data.
MPQUIC Scheduling. A key element of MPQUIC is the
scheduler, which allocates packets across subflows. Exist-
ing mechanisms, such as minRTT [21], or QoE-based feed-
back [22, 49], rely on historical metrics that fail to react
quickly to sudden signal drops. Although these approaches
boost throughput, they often overlook stringent latency re-
quirements demanded by real-time streaming (e.g., VR or
cloud gaming). Consequently, severe tail latencies persist un-
der unstable networks. STORM addresses this gap by offering
fast signal-awareness and scheduling decisions that reduce
latency without sacrificing throughput.

7 Conclusion

This paper proposed STORM, an MPQUIC scheduler for
quick streaming media transport under mobile networks.
Based on the signal-watermark mechanism and reliability-
aware scheduling strategy, STORM ensure low latency of
streaming media applications when the multipath suffers “net-
work storm”. We have implemented STORM on real-life de-
vices. Our evaluation shows that STORM reduces tail packet
delay by 98.2% and improves the frame rate of streaming me-
dia by 1.95x under unstable networks when enabling STORM,
compared to the state-of-the-art.

Acknowledgments

We thank USENIX ATC 2025 reviewers for their feedback
and their help in improving the paper. This work was sup-
ported in part by the National Key R&D Program of China
(2024YFB4504400), Dreams Foundation of Jianghuai Ad-
vance Technology Center (No. 2023-ZM01Z011), NSFC
under Grant No. 62302169 and No. 62372184, Major Key
Project of PCL under Grant PCL2024A06 and PCL2022A05,
and Shenzhen Science and Technology Program under Grant
RCJC20231211085918010.

References

[1] Ishan Aryendu, Sudhanshu Arya, and Ying Wang. Min-
imizing age of information: Adaptive spectrum sharing
in ultra-reliable and low-latency evtol communications.

In 2024 IEEE 25th International Symposium on a World
of Wireless, Mobile and Multimedia Networks (WoW-
MoM), pages 57–63. IEEE, 2024.

[2] Arjun Balasingam, Manu Bansal, Rakesh Misra, Kanthi
Nagaraj, Rahul Tandra, Sachin Katti, and Aaron Schul-
man. Detecting if lte is the bottleneck with bursttracker.
In The 25th Annual International Conference on Mobile
Computing and Networking, pages 1–15, 2019.

[3] E. Bandara, X. Liang, S. Shetty, R. Mukkamala,
P. Foytik, N. Ranasinghe, and K. D. Zoysa. Octopus:
privacy preserving peer-to-peer transactions system with
interplanetary file system (ipfs). In 17th Annual Inter-
national Conference on Mobile Systems, Applications,
and Services, pages 591–609, 2023.

[4] Qiang Chen and Changlong Li. Argus: Real-time hq
video decoding with cpu coordinating on consumer de-
vices. In 2024 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2024.

[5] Sandesh Dhawaskar Sathyanarayana, Kyunghan Lee,
Dirk Grunwald, and Sangtae Ha. Converge: Qoe-driven
multipath video conferencing over webrtc. In Proceed-
ings of the ACM SIGCOMM 2023 Conference, page
637–653. Association for Computing Machinery, 2023.

[6] Oussama El Marai and Tarik Taleb. Smooth and low
latency video streaming for autonomous cars during
handover. Ieee Network, 34(6):302–309, 2020.

[7] Yongjie Guan, Xueyu Hou, Nan Wu, Bo Han, and Tao
Han. Metastream: Live volumetric content capture, cre-
ation, delivery, and rendering in real time. In Proceed-
ings of the 29th Annual International Conference on
Mobile Computing and Networking, 2023.

[8] Yihua Ethan Guo, Ashkan Nikravesh, Z Morley Mao,
Feng Qian, and Subhabrata Sen. Accelerating multipath
transport through balanced subflow completion. In Pro-
ceedings of the 23rd Annual International Conference
on Mobile Computing and Networking, pages 141–153,
2017.

[9] Philipp Hock, Sebastian Benedikter, Jan Gugenheimer,
and Enrico Rukzio. Carvr: Enabling in-car virtual reality
entertainment. In CHI conference on human factors in
computing systems, pages 4034–4044, 2017.

[10] Alibaba Inc. Xquic. https://github.com/alibaba/
xquic, 2023.

[11] Apple Inc. Introducing Apple Vision Pro: Apple’s
first spatial computer. https://www.apple.com/
newsroom/2023/06/introducing-apple-vision-
pro/, 2023.

USENIX Association 2025 USENIX Annual Technical Conference 863

https://github.com/alibaba/xquic
https://github.com/alibaba/xquic
https://www.apple.com/newsroom/2023/06/introducing-apple-vision-pro/
https://www.apple.com/newsroom/2023/06/introducing-apple-vision-pro/
https://www.apple.com/newsroom/2023/06/introducing-apple-vision-pro/

[12] Google Inc. Fuchsia os. https://fuchsia.dev/,
2022.

[13] HUAWEI Inc. Harmony os. https://consumer.
huawei.com/en/harmonyos/, 2024.

[14] Jana Iyengar and Martin Thomson. QUIC: A UDP-
Based Multiplexed and Secure Transport. https://
www.rfc-editor.org/rfc/rfc9000.html, 2021.

[15] Han-Shin Jo, Young Jin Sang, Ping Xia, and Jeffrey G
Andrews. Heterogeneous cellular networks with flexible
cell association: A comprehensive downlink sinr anal-
ysis. IEEE Transactions on Wireless Communications,
11(10):3484–3495, 2012.

[16] HyunJong Lee, Jason Flinn, and Basavaraj Tonshal.
Raven: Improving interactive latency for the connected
car. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking,
pages 557–572, 2018.

[17] Changlong Li, Yu Liang, Rachata Ausavarungnirun,
Zongwei Zhu, Liang Shi, and Chuan Jason Xue. Ice:
Collaborating memory and process management for user
experience on resource-limited mobile devices. In Pro-
ceedings of the Eighteenth European Conference on
Computer Systems, pages 79–93, 2023.

[18] Changlong Li, Liang Shi, and Chun Jason Xue. Mo-
bileswap: Cross-device memory swapping for mobile
devices. In 58th ACM/IEEE Design Automation Confer-
ence (DAC), 2021.

[19] LinkedIn. Internet celebrity economy market size,
research. https://www.linkedin.com/pulse/
internet-celebrity-economy-market-size-
research-1v3zf, 2023.

[20] LinkedIn. Video conference: what best prac-
tices reducing latency video conferencing.
https://www.linkedin.com/advice/3/what-
best-practices-reducing-latency-video-
conferencing, 2023.

[21] Yanmei Liu, Yunfei Ma, Quentin De Coninck,
Olivier Bonaventure, Christian Huitema, and
Mirja Kühlewind. Multipath Extension for QUIC.
https://datatracker.ietf.org/doc/draft-
ietf-quic-multipath/05/, 2023.

[22] Gerui Lv, Qinghua Wu, Yanmei Liu, Zhenyu Li,
Qingyue Tan, Furong Yang, Wentao Chen, Yunfei Ma,
Hongyu Guo, Ying Chen, et al. Chorus: Coordinating
mobile multipath scheduling and adaptive video stream-
ing. In 30th Annual International Conference on Mobile
Computing and Networking, pages 246–262, 2024.

[23] Mpshell. https://github.com/ravinet/
mahimahi/tree/old/mpshell_scripted, 2023.

[24] Arvind Narayanan, Eman Ramadan, Jason Carpenter,
Qingxu Liu, Yu Liu, Feng Qian, and Zhi-Li Zhang. A
first look at commercial 5g performance on smartphones.
In Proceedings of The Web Conference 2020, pages 894–
905, 2020.

[25] Yunzhe Ni, Feng Qian, Taide Liu, Yihua Cheng, Zhiyao
Ma, Jing Wang, Zhongfeng Wang, Gang Huang, Xu-
anzhe Liu, and Chenren Xu. {POLYCORN}: Data-
driven cross-layer multipath networking for high-speed
railway through composable schedulerlets. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1325–1340, 2023.

[26] Yunzhe Ni, Zhilong Zheng, Xianshang Lin, Fengyu Gao,
Xuan Zeng, Yirui Liu, Tao Xu, Hua Wang, Zhidong
Zhang, Senlang Du, et al. Cellfusion: Multipath vehicle-
to-cloud video streaming with network coding in the
wild. In Proceedings of the ACM SIGCOMM 2023
Conference, pages 668–683, 2023.

[27] Stephen Palmisano, Luke Szalla, and Juno Kim. Monoc-
ular viewing protects against cybersickness produced by
head movements in the oculus rift. In Proceedings of
the 25th ACM Symposium on Virtual Reality Software
and Technology, pages 1–2, 2019.

[28] Tommy Pauly, Eric Kinnear, and David Schinazi. An
Unreliable Datagram Extension to QUIC. https://
www.rfc-editor.org/rfc/rfc9221.html, 2022.

[29] Michele Polese, Federico Chiariotti, Elia Bonetto, Fil-
ippo Rigotto, Andrea Zanella, and Michele Zorzi. A
survey on recent advances in transport layer protocols.
IEEE Communications Surveys & Tutorials, 21(4):3584–
3608, 2019.

[30] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakr-
ishnan. Flare: Practical viewport-adaptive 360-degree
video streaming for mobile devices. In Proceedings of
the 24th Annual International Conference on Mobile
Computing and Networking, pages 99–114, 2018.

[31] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan
Ford, Michio Honda, Fabien Duchene, Olivier Bonaven-
ture, and Mark Handley. How hard can it be? designing
and implementing a deployable multipath TCP. In Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI), pages 399–412, 2012.

[32] Elizaveta Rastorgueva-Foi, Mário Costa, Mike Koivisto,
Kari Leppänen, and Mikko Valkama. User positioning in
mmw 5g networks using beam-rsrp measurements and
kalman filtering. In 2018 21st International Conference
on Information Fusion (FUSION), pages 1–7, 2018.

864 2025 USENIX Annual Technical Conference USENIX Association

https://fuchsia.dev/
https://consumer.huawei.com/en/harmonyos/
https://consumer.huawei.com/en/harmonyos/
https://www.rfc-editor.org/rfc/rfc9000.html
https://www.rfc-editor.org/rfc/rfc9000.html
https://www.linkedin.com/pulse/internet-celebrity-economy-market-size-research-1v3zf
https://www.linkedin.com/pulse/internet-celebrity-economy-market-size-research-1v3zf
https://www.linkedin.com/pulse/internet-celebrity-economy-market-size-research-1v3zf
https://www.linkedin.com/advice/3/what-best-practices-reducing-latency-video-conferencing
https://www.linkedin.com/advice/3/what-best-practices-reducing-latency-video-conferencing
https://www.linkedin.com/advice/3/what-best-practices-reducing-latency-video-conferencing
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/05/
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/05/
https://github.com/ravinet/mahimahi/tree/old/mpshell_scripted
https://github.com/ravinet/mahimahi/tree/old/mpshell_scripted
https://www.rfc-editor.org/rfc/rfc9221.html
https://www.rfc-editor.org/rfc/rfc9221.html

[33] Ringmaster. https://github.com/microsoft/
ringmaster?tab=readme-ov-file, 2023.

[34] Michael Rudow, Francis Y Yan, Abhishek Ku-
mar, Ganesh Ananthanarayanan, Martin Ellis, and
KV Rashmi. Tambur: Efficient loss recovery for
videoconferencing via streaming codes. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 953–971, 2023.

[35] Swetank Kumar Saha, Shivang Aggarwal, Rohan Pathak,
Dimitrios Koutsonikolas, and Joerg Widmer. Musher:
An agile multipath-tcp scheduler for dual-band 802.11
ad/ac wireless lans. In The 25th Annual International
Conference on Mobile Computing and Networking,
pages 1–16, 2019.

[36] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the
h. 264/avc standard. IEEE Transactions on circuits and
systems for video technology, pages 1103–1120, 2007.

[37] Ranya Sharma, Nick Feamster, and Marc Richardson. A
longitudinal study of the prevalence of wifi bottlenecks
in home access networks. In Proceedings of the 2024
ACM on Internet Measurement Conference, pages 44–
50, 2024.

[38] Hang Shi, Yong Cui, Xin Wang, Yuming Hu, Minglong
Dai, Fanzhao Wang, and Kai Zheng. {STMS}: Im-
proving {MPTCP} throughput under heterogeneous net-
works. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 719–730, 2018.

[39] Sam Son, Seung Yul Lee, Yunho Jin, Jonghyun Bae,
Jinkyu Jeong, Tae Jun Ham, Jae W. Lee, and Hongil
Yoon. Asap: Fast mobile application switch via adaptive
prepaging. In USENIX Annual Technical Conference
(USENIX ATC), pages 365–380, 2021.

[40] Sandeep Tata, Alexandrin Popescul, Marc Najork, Mike
Colagrosso, Julian Gibbons, Alan Green, Alexandre
Mah, et al. Quick access: building a smart experience for
google drive. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1643–1651, 2017.

[41] Android Team. Telephonymanager. https:
//developer.android.google.cn/reference/
android/telephony/TelephonyManager, 2022.

[42] Android Team. Wifimanager. https:
//developer.android.google.cn/reference/
android/net/wifi/WifiManager, 2022.

[43] Chengke Wang, Hao Wang, Feng Qian, Kai Zheng,
Chenglu Wang, Fangzhu Mao, Xingmin Guo, and Chen-
ren Xu. Experience: A three-year retrospective of large-
scale multipath transport deployment for mobile appli-
cations. In Proceedings of the 29th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 1–15, 2023.

[44] Shibo Wang, Shusen Yang, Xiao Kong, Chenglei Wu,
Longwei Jiang, Chenren Xu, Cong Zhao, Xuesong Yang,
Jianjun Xiao, Xin Liu, et al. Pudica: Toward near-zero
queuing delay in congestion control for cloud gaming.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2024.

[45] Yuxin Wang, Zunlei Feng, Haofei Zhang, Yang Gao, Jie
Lei, Li Sun, and Mingli Song. Angle robustness un-
manned aerial vehicle navigation in gnss-denied scenar-
ios. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 10386–10394, 2024.

[46] Keith Winstein, Anirudh Sivaraman, and Hari Balakr-
ishnan. Stochastic forecasts achieve high throughput
and low delay over cellular networks. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), pages 459–471, 2013.

[47] Weixing Xue, Weining Qiu, Xianghong Hua, and Kegen
Yu. Improved wi-fi rssi measurement for indoor local-
ization. IEEE Sensors Journal, 17(7):2224–2230, 2017.

[48] Xin-Wei Yao, Wan-Liang Wang, Shuang-Hua Yang, Yue-
Feng Cen, Xiao-Min Yao, and Tie-Qiang Pan. Ipb-frame
adaptive mapping mechanism for video transmission
over ieee 802.11 e wlans. ACM SIGCOMM Computer
Communication Review, 44(2):5–12, 2014.

[49] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong
Yang, Zhenyu Li, Yuanbo Zhang, Jiuhai Zhang, Wei
Shi, Wentao Chen, Ding Li, Qing An, Hai Hong,
Hongqiang Harry Liu, and Ming Zhang. Xlink: Qoe-
driven multi-path quic transport in large-scale video
services. In ACM SIGCOMM, page 418–432, 2021.

[50] Meng Zili, Wang Tingfeng, Shen Yixin, Wang Bo,
Xu Mingwei, Han Rui, Liu Honghao, Arun Venkat,
Hu Hongxin, and Wei Xue. Enabling high quality real-
time communications with adaptive frame-rate. In 20th
USENIX Symposium on Networked Systems Design and
Implementation, 2023.

[51] Xutong Zuo, Yong Cui, Xin Wang, and Jiayu Yang.
Deadline-aware multipath transmission for streaming
blocks. In IEEE INFOCOM 2022-IEEE Conference on
Computer Communications, pages 2178–2187, 2022.

USENIX Association 2025 USENIX Annual Technical Conference 865

https://github.com/microsoft/ringmaster?tab=readme-ov-file
https://github.com/microsoft/ringmaster?tab=readme-ov-file
https://developer.android.google.cn/reference/android/telephony/TelephonyManager
https://developer.android.google.cn/reference/android/telephony/TelephonyManager
https://developer.android.google.cn/reference/android/telephony/TelephonyManager
https://developer.android.google.cn/reference/android/net/wifi/WifiManager
https://developer.android.google.cn/reference/android/net/wifi/WifiManager
https://developer.android.google.cn/reference/android/net/wifi/WifiManager

A Appendix

A.1 Deadline Setting Based on Application
Real-Time Requirements

The microbenchmark experiments in Section 5.2 use a 300 ms
end-to-end deadline. This value does not restrict STORM to
traffic that must meet precisely 300ms. It simply reflects the
minimum latency budget frequently cited for interactive video
conferencing [20], as already noted in the footnote of Section
2.3.2. In practice, every unit of data that an application hands
to STORM carries its own deadline in the metadata. The
API function STORM_send exported by STORM therefore
includes an explicit field, deadline_us, whose value is filled
in by the application on a per-message basis and expressed in
microseconds. Because the STORM reads this field directly,
developers can tighten or relax the requirement for each video
frame, audio chunk, or control message at run time without
recompiling or reconfiguring the STORM.

Section 5.5 demonstrates this flexibility by evaluating three
representative applications, each configured with a deadline
that matches its real-time requirements. The video-conference
prototype operates under a strict 150ms budget. The low-
latency live-streaming scenario employs a 500ms budget, re-
flecting industry practice for end-to-end latency. The immer-
sive 360° video workload targets an 80ms motion-to-photon
limit. Whether a batch of packets meets the deadline in prac-
tice depends on the bandwidth and one-way delay of the
active paths. STORM optimizes scheduling based on the cur-
rent path conditions and operates within each path’s inherent
upper limits.

STORM is therefore deadline-agnostic. The 300ms set-
ting in the microbenchmark experiments serves only as a
conservative experimental baseline. When an application sup-
plies a tighter or looser deadline, the same scheduling strategy
remains valid and optimises scheduling under the newly spec-
ified deadline.

Figure 19: End-to-End latency distribution

A.2 Absolute End-to-End Latency Distribu-
tion

Section 5.5.2 evaluates the packet delay reduction achieved
by STORM at selected percentile points. To obtain a more
detailed view, we also collected absolute end-to-end latency
samples under the same testbed configuration and plotted
their cumulative distribution functions (CDFs). For clarity
the figure retains only four representative solutions: STORM,
MPQUIC, MPQUIC-R, and DAMS. Curves for the remaining
solutions overlap and are therefore omitted.

Figure 19 indicates that 90% of STORM’s latency mea-
surements fall below 68.2ms and 99% remain under 129.8ms.
MPQUIC, the best of the other solutions, records 90% of
latencies under 89.8ms and 99% under 758.6ms. Hence,
STORM significantly reduces both median and tail end-to-end
latency and yields a much tighter distribution, which benefits
real-time media streams.

Figure 19 also reveals a contrasting outcome for MPQUIC-
R. Among the four evaluated solutions, MPQUIC-R exhibits
the highest median end-to-end latency, clearly highlighting
the latency cost introduced by its fully reliable delivery strat-
egy. However, its tail end-to-end latency stops at 2.15s, well
below the 3.62s of MPQUIC and the 6.60s of DAMS. This
observation confirms that mutual blockage between data with
different reliability requirements imposes a severe perfor-
mance penalty, a problem that STORM mitigates through its
RAS component.

866 2025 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivation
	Trends in Mobile Applications
	Effect of MPQUIC on QoE
	Effect on FPS
	Per-frame E2E Latency

	Root Cause Analysis
	Mobility-induced Signal Changes
	Scheduling without Reliability Differentiation

	Design
	STORM Overview
	Key Components
	Workflow

	Signal-watermark Mechanism
	Data Path Breakdown
	Co-Design with the Wireless Network Module
	Signal-watermark Feedback Algorithm

	Reliability-aware Scheduling

	Implement STORM with MPQUIC
	Evaluation
	Experiment Setup
	Microbenchmark
	Bandwidth Variation
	RTT Variation

	STORM Deep Dive
	Sensitive Study
	Real-world Applications Evaluation
	Benefit on QoE
	Transport Improvement

	Related Works
	Conclusion
	Appendix
	Deadline Setting Based on Application Real-Time Requirements
	Absolute End-to-End Latency Distribution

