
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

HypeReca: Distributed Heterogeneous In-Memory
Embedding Database for Training

Recommender Models
Jiaao He, Shengqi Chen, Kezhao Huang, and Jidong Zhai, Tsinghua University

https://www.usenix.org/conference/atc25/presentation/he-jiaao

HYPERECA: Distributed Heterogeneous In-Memory Embedding Database for
Training Recommender Models

Jiaao He Shengqi Chen Kezhao Huang Jidong Zhai

Tsinghua University

Abstract
Making high-quality recommendations is important in on-
line applications. To improve user satisfaction and effec-
tiveness of advertising, deep learning-based recommender
models (DLRM) are widely studied and deployed. Training
these models on massive data demands increasing compu-
tation power, commonly provided by a cluster of numerous
GPUs. Meanwhile, the embedding tables of the models are
huge, posing challenges on the memory. Existing systems
exploit host memory and hashing techniques to accommodate
them. However, the simple offloading design is hard to scale
up to multiple nodes. The sparse access to the distributed em-
bedding tables introduces high data management and all-to-all
communication overhead.

We find that a distributed in-memory key-value database
is the best abstraction to serve and maintain embedding
vectors in DLRM training. To achieve high scalability,
our system, HypeReca, utilizes both GPU and CPU mem-
ory. We improve the throughput of data management ac-
cording to the batching pattern of DNN training, using a
pipeline over decentralized indexing tables and a contention-
avoiding schedule for data exchange. A two-fold parallel
strategy is used to guarantee consistency of all embedding
vectors. The communication overhead is reduced by repli-
cating a few frequently accessed embedding vectors, ex-
ploiting the sparse pattern with a performance model. In
our evaluation on 32 GPUs over real-world datasets, Hype-
Reca achieves 2.16−16.8× end-to-end speedup over Huge-
CTR, TorchRec and TFDE. The source code is available at
https://github.com/thu-pacman/hypereca/.

1 Introduction

Making recommendations has always been one of the core
components of the Internet. Users are served with blog posts
and videos, products and advertisements as long as they are
surfing online. Making more accurate recommendations is
core of the business. In recent years, recommendation mod-
els based on deep learning (DLRMs) are showing superior

model quality. They automatically learn from the enormous
data generated by users’ online behaviors. For instance, web-
sites predict the click-through rate (CTR) of a video to decide
whether to show it to a user. And then, actual click data is used
to train the CTR-predicting model. This training cycle is pro-
cessed every few minutes in real-world systems. To provide
up-to-date recommendation, training performance of these
models is critical. Training them demands a large amount of
data processed by significant computational resources, e.g.,
up to hundreds of GPUs.

GPU Utilization
Time

Iteration 1 Iteration 2 Iteration 4Fwd. Bwd.

Embedding Tables
(Memory Consuming)

Sparse Communication
for Re-organization

Dense Model
(Computation

Intensive)

Figure 1: Sketch of a DLRM Training Process

As shown in Figure 1, the sparse part consists of embed-
ding tables that contain the feature vectors of numerous items.
To train the model, the related feature vectors of items in the
training samples are gathered from the embedding tables via
sparse inter-process communication. After receiving all the
embedding vectors, the GPUs process them with the dense
part of the model.

Typically, a hybrid parallel strategy is adopted to train
the model. The memory-consuming embedding tables are
partitioned across workers, and the host memory is commonly
used to accommodate most of them. They may contain up
to trillions of parameters [21, 25] in production. Rest layers
of the model, the dense part, are replicated. They model is
replicated on up to hundreds of GPUs, which provide the
computation capability to train it.

Unfortunately, such parallel strategy fails to scale up, due

USENIX Association 2025 USENIX Annual Technical Conference 1071

https://github.com/thu-pacman/hypereca/

Training Data
(IDs)

0x02

0x43

0x45

Current Video:
User:

History:

Embedding
Tables

Users

Videos

E.V. 1

E.V. 2

E.V. 3

O.S. 1

O.S. 2

O.S. 3

Embedding Vectors
for Training

E.V. 1
E.V. 2
E.V. 3

Gradients of
Embedding Vectors

G. 3
G. 2
G. 1

Dense
Model

Gradient-based
Update

Prediction

Does Not
Click

Label

Clicked

Sparse Part Dense Part

Forward
Computation

Backward
Propagation

and Parameter
Update

E.V.
Embedding Vector

O.S.
Optimizer States

G.
Gradients

Figure 2: General Model Structure and Training Process of DLRMs

to the huge size and heterogeneity of the model parts. Every
training sample is related to tens of embedding vectors that
reside in several other workers, incurring significant overhead
to exchange the embedding vectors among the hardware de-
vices. From the ranklist of DLRM training benchmark [41]
of MLPerf [23], we observe that the most advanced system
from NVIDIA [39] only achieves 2.89× speed up using 13×
more GPUs (from 8 to 112). We even find that using more
GPUs may slow down the training in some cases.

A series of prior works introduce algorithms that change
the training behavior to alleviate this problem, e.g., shuf-
fling the training samples [2] or dropping certain embed-
ding vectors [20]. Although higher throughput might be
achieved, they pose uncertain influences on final model qual-
ity. Model developers thus usually appreciate systems that
train the model without changing the algorithm to avoid any
side effect. Therefore, we focus on improving the efficiency
of the original synchronous training method.

We identify that existing model-transparent approaches fail
to cope with the huge size and heterogeneity of the models
due to the following two challenges.

High Data Management Cost Different from typical em-
bedding tables in other models, embedding vectors of new
items are constantly inserted to the tables, because there are
always new items in the training data. Among the distributed
embedding tables, overhead of the item-wise data manage-
ment is high [43]. Current approaches maintain the embed-
ding vectors differently at either table level [25, 33] or item
level [3,34] according to the access pattern. The system has to
maintain locations of every embedding vector and guarantee
the consistency. The GPUs consume up to millions of items
every few milliseconds, posing high throughput requirement
on the CPU-side embedding feeding and updating module.

High Communication Cost The communication over-
head to gather the embedding vectors from remote nodes
and sending the gradients back takes a significant amount

of time, comparing with the neural computation on the
GPUs. Uneven access pattern has been exploited by previous
works [3, 25, 33, 34, 44] to accelerate the communication by
replicating some frequently accessed items (e.g. items repre-
sented by stars in Figure 1) across all GPUs. However, this
introduces additional overhead to synchronize the replicas,
and the total commjjunication overhead can hardly be reduced.
Selecting the items to replicate is critical but challenging.

We propose an in-memory embedding database, HypeReca,
to address the challenges in the distributed DLRM training
scenario. Behind a simple interface similar to a key-value
database, it automatically utilizes both host and device mem-
ory in the cluster to store the embedding data, and serve it with
different parallel strategies according to the specific pattern
of DNN training and its data.

First, we design an efficient decentralized embedding vec-
tor management mechanism. The vectors are stored in chunks,
and the locations are maintained by a distributed indexing ta-
ble. As training data are fed to the model in batches during
the training process, we utilize the multi-thread parallel pro-
cessing capability for the throughput-critical indexing tasks.
Furthermore, we introduce an intra-node pipeline to reduce
the lock overhead over the tables.

Second, we adopt a two-fold parallel strategy for the embed-
ding tables, namely 2FP. We apply communication-efficient
data parallelism for a special chunk of frequently-accessed
embedding vectors stored on GPUs. While slight redundancy
is introduced, the synchronization operation is simplified,
and thus better utilizes the network bandwidth. We build a
performance model on the replication strategy that makes
a trade-off when selecting the replicated items. The sparse
embedding vector access pattern is exploited to reduce the
overall communication latency.

We evaluate HypeReca on two different clusters with up to
32 GPUs. With identical model quality, our system achieves
2.16−16.8× speedup over the baseline systems on different

1072 2025 USENIX Annual Technical Conference USENIX Association

models and training datasets with terabytes of data.

2 Background and Motivation

2.1 DLRM Model and Work Flow
DLRMs are commonly used to predict behaviors of users, e.g.
click-through rate (CTR). It takes IDs of entities, including
the user, the presented content, and any possibly related items,
as input. Then, using a deep neural network, it conducts
predictions to provide better recommendations. For example,
when predicting CTR of a video shown to a user, the user’s
ID, together with the video’s ID, and possibly IDs of past
ten videos the user watched, are fed into the DLRM as one
training sample. The fact that the user clicked it is used as a
label, and the model is trained by supervised learning.

As shown in Figure 2, a DLRM model mainly consists of
two parts. Sparse Part contains one or multiple embedding
tables. Dense Part consists of various neural network models.

Sparse Part contains several embedding tables. They map
discrete IDs of certain categories to embedding vectors, com-
monly consisting of tens or some hundreds of floating point
numbers. Due to the numerous contents online, sparse parts
of real DLRMs contain more than billions [20, 21, 25] of pa-
rameters. Despite consuming much memory, it is sparsely ac-
cessed, involving little computation. Optimizing the memory-
intensive operators [28] is effective on a single GPU, but
scaling it up requires special communication design.

Dense Part studies on the embedding vectors of input items
and makes predictions. This part is being intensively stud-
ied by the model developing community. MLPs and CNNs,
Transformers and MMoEs [5, 11, 27, 36], are introduced for
better model quality. As recommendation tasks require low
inference latency, these models are usually of moderate size,
but much more computation-intensive.

To train the model, a batch of labeled training data, con-
taining up to millions of IDs, is first fed into Sparse Part.
The data is processed by the DLRM, and output of Dense
Part is compared with the ground truth. Then, gradients pro-
duced by a loss function are propagated backward through
both parts. Finally, a gradient-based optimizer, e.g. SGD [16]
or Adam [18], is used to update the parameters.

It should be noticed that the embedding tables are part of
the parameters of the model. They are updated every itera-
tion when training. Maintaining the optimizer states of the
embedding tables is a part of the parameter updating process.
Although the gradients are sparse, the updated embedding
vector may be immediately needed by the next training batch.

2.2 Existing Basic Parallel Strategy
Distributed training is the most promising way to increase
training throughput. However, in DLRM, the dense part
involves intensive computation, while the sparse part requires

a lot of memory to store the embedding tables. The difference
in workload leads to different selections of parallel strategy.
A basic hybrid parallel strategy is commonly used in present
DLRM training systems [15, 39, 43]. Figure 3 illustrates the
hybrid parallelism that applies different parallel strategy to
sparse part and dense part separately.

For Sparse Part, it is inevitable that the embedding tables
are partitioned across multiple devices, as they may contain
terabytes of parameters. For simplicity, we adopt GSET [43]
technique that maps IDs of items in different categories into a
unique global ID, which simplifies multiple embedding tables
into one. To fit Sparse Part into distributed memory, embed-
ding vectors of different items are placed on different workers.
From the view of distributed deep learning, it adopts model
parallelism, where rows of embedding vectors are stacked up
to be a tall matrix, and split up horizontally. Host memory is
commonly used to store these large embedding tables [25,43].
Some GPU-centric systems put them on GPUs [12,15,39], but
they still have to offload most embedding vectors elsewhere,
due to the huge size of training datasets.

Rest parts of the model, including data loading and Dense
Part, adopt data parallelism. A global batch of training data
is split into multiple mini-batches by samples. Each worker is
bound to one GPU. Dense Part is replicated across all GPUs,
as it has fewer parameters and is more compute-intensive.
To synchronize the replicas, all-reduce operation is per-
formed over the gradients before updating the models. This
approach can greatly scale up the throughput [19, 22, 31], but
it is inefficient in utilizing memory.

Due to the different parallel strategies between the two
parts, the embedding vectors are re-organized. For instance, a
training sample on worker A includes items whose embedding
vectors are on worker B and C. Then, B and C need to find
them in local memory, and send them to A. Globally, for a
batch of training samples, every worker gathers embedding
vectors from local memory, and send them to other workers.
This is commonly implemented by invoking all-to-all,
a basic sparse collective communication operation [30]. It
may be replaced by all-reduce over a tensor containing
multiple rows of zeros, depending on the efficiency of the
communication operation implementation [39].

The all-to-all communication pattern leads to significant
scalability issues. Training time composition of several open-
source distributed DLRMs [15,39] is measured and presented
in Figure 4. Sparse Part, which is dominated by the sparse
all-to-all communication, makes up most of the training time,
exceeding 90% in most occasions. Increasing network band-
width is the only direct way to accelerate the inter-device
communication. For example, previous works utilize high-
bandwidth NV-Links among GPUs within a node [39, 47], or
equip high-performance NICs for every GPUs [3, 25]. These
hardware items are expensive and less scalable compared to
clusters connected via commodity hardware (e.g. PCIe GPUs
and Infiniband HCAs per node).

USENIX Association 2025 USENIX Annual Technical Conference 1073

Global Batch of
Training Data

Sparse Part (Model Para. on CPU) Dense Part (Data Para. on GPU)

Worker
0

Mini-batch
0

Embedding
Table
Part. 0

Dense

Worker
1

Mini-batch
1

Embedding
Table
Part. 1

Dense

Worker
2

Mini-batch
2

Embedding
Table
Part. 2

Dense

ID-00 E.V.-00 E.V.-00
ID-01

E.V.-01

E.V.-01
ID-02

E.V.-02

E.V.-02

ID-10

E.V.-10

E.V.-10
ID-11 E.V.-11 E.V.-11
ID-12

E.V.-12

E.V.-12

ID-20

E.V.-20

E.V.-20
ID-21

E.V.-21

E.V.-21
ID-22 E.V.-22 E.V.-22

Re-organize
Embedding

Vectors
via

Inter-Device
Collective

Communication

Figure 3: Existing Basic Hybrid Parallelism on Sparse Part and Dense Part

0 50% 100%

HugeCTR on 32 GPUs
 Criteo Legacy

HugeCTR on 8 GPUs
 Criteo Legacy

HugeCTR on 24 GPUs
 DCN

TorchRec on 16 GPUs
 DeepFM

Sparse
Forward
Dense
(Fwd. + Bwd.)
Sparse
Backward
Sparse
Update

Figure 4: Iteration Time Break-down

In fact, the embedding vectors are created, read, and up-
dated in the same way as a KV store system. Differently, the
requests during DLRM training are served in large batches.
The serving throughput is more important than the latency.

2.3 Throughput-Sensitive Data Management
While it is a widely known approach to handle hot and cold
data separately, the presence of GPUs in DLRM training
introduces unique challenges. Data management overhead
of the training system is essential to overall performance.
The system has to determine the items to replicate, indicate
locations of all demanded items, and ensure synchronization
of replicas within a short period of time.

When training a common DLRM, an NVIDIA V100 GPU
consumes 159k items in 10ms. As there are commonly 8
GPUs in a node, the CPU has to provide the GPUs with
embedding vectors of millions of items within a few millisec-
onds. The throughput of managing the embedding vectors
should be as high as that of computation on GPUs, posing a
strong efficiency demand.

The difficulty prevents prior works [2] from scaling up to
multiple nodes. Expensive four-socket nodes [34] and even
a dedicated CPU node equipped with Intel’s most powerful
Xeon Platium CPUs [3] are introduced to cope with the data
management stress. As it is hard to change the hardware setup

in many production cases, we focus on improving distributed
DLRM training performance on the extensively deployed
homogeneous clusters using commodity hardware.

2.4 Sparse Pattern of Training Data: Skewness
Intuitively, some items in DLRMs are much more frequently
accessed than others, e.g., accounts of celebrities or spot news.
Besides, embedding tables of some categories contain very
few items, such as genders, which are always accessed. We
refer to such uneven sparse access pattern as skewness.

It is easy to accelerate DLRM training by utilizing skew-
ness across embedding tables. Applying different parallel
strategies to different embedding tables [25, 33, 48] can re-
duce communication overhead with little modification of the
training system. However, embedding tables are the smallest
units of parallelism in these systems. Such granularity is so
coarse that they miss many opportunities among items within
embedding tables, and gain little improvement.

With a finer granularity, skew access pattern has been ob-
served among embedding vectors within an embedding ta-
ble [2,3,34]. We closely inspect such skewness in real datasets
to find opportunities for improving the performance and scal-
ability of distributed DLRM training.

100 50 0
Criteo
Kaggle

1

4

16

64

%
 o

f I
te

m
s

(H
ist

og
ra

m
)

100 50 0
Taobao

60

80

100

Cu
m

ul
at

iv
e

 D
ist

rib
ut

io
n

(C
ur

ve
)

Frequency of Items

Figure 5: Observation on Skewed Distribution of Items

We inspect two public datasets, Criteo Kaggle [7] and
Taobao [4]. We peek into 100 batches of training data in

1074 2025 USENIX Annual Technical Conference USENIX Association

each dataset. The histograms in Figure 5 aggregate the batch-
frequency of items, i.e. the number of batches containing
a certain item out of all 100 batches. In the Criteo Kaggle
dataset, we find 2.2% items appear in more than 95 batches,
indicated by the leftmost spiking bar of the histogram. We
call them frequent items in our work. Similarly, we find that
0.6% items are frequent items in Taobao dataset. The rest
items briefly follow an exponential distribution. Most of them
appear in no more than 5 out of 100 batches.

We further inspect another batch to obtain the distribution
of items over each bin, which indicates embedding vector
access during training. Fewer than 1% items are not present
in the previous 100 batches. As the cumulative curves in
Figure 5 suggest, in Criteo Kaggle dataset, more than 90%
accesses are directed to the 2.2% most frequently-accessed
items. While in Taobao, 13% most frequent items can cover
about 86% embedding vector accesses.

The skewness brings an opportunity for reducing commu-
nication. Suppose that we have a replica of the frequent items
on each GPU, the all-to-all communication volume can
be reduced by up to 90%. The end-to-end performance can
be greatly improved since most time of distributed DLRM
training is spent on the inter-device communication.

While the item-wise skewness pattern should be utilized,
we keep in mind that the data management overhead should
be minimized to achieve end-to-end speed up.

3 System Overview

HypeReca adopts the key-value store abstraction for the em-
bedding vector database. As shown in Figure 6, the operations
are integrated into the training process, while the stand-alone
embedding database handles the requests.

Our system maintains the embedding vectors and the rel-
evant optimizer states in chunks. The chunks may reside in
host memory or device memory. As they occupy most of the
storage space, HypeReca employs the following techniques
to manage them. Decentralized Indexing Tables (DIT) are
used to locate the embedding vectors in chunks on different
processes, according to the input ID. It allows migrating
the embedding vectors among chunks, and indexing the em-
bedding vectors at high throughput. A special embedding
chunk (R chunk) is placed in the device memory of GPUs
to provide the dense part of the model with efficient direct
device-local access to certain embedding vectors and utilize
the skewness in the embedding vector access.

For a batch of IDs in the training dataset, the Prefetch op-
eration first asynchronously locate or allocate the embedding
vectors in the chunks. The Pull and Push operations work
as the embedding computation in the forward and backward
propagation. The Update operation commits the updates
according to the gradients.

It takes negligible effort to use HypeReca with existing
neural network training frameworks, such as PyTorch [29]

HypeReca

ID Indexing
& Management

Cached
Indices

Embedding
ChunksR

Chunk
(§5)

Embedding
Chunks

Embedding
Chunks

Optimizer

Gradient
Buffer

DITs
(§4)

Prefetch(IDs)

Pull(QID)

Embedding
Vectors

Dense Part

Push(QID, grads)

Update(QID)

Data Loader

Training
Process

Figure 6: Overview of HypeReca

and HugeCTR [39]. While the Prefetch call may be inserted
into the data loader or integrated with Pull, the operations
can be simply used as a customized embedding layer.

4 Throughput-Oriented Data Management

Performance challenges of the sparse communication for em-
bedding vector accesses come from complicated fine-grained
data management. On the one hand, millions of items are con-
sumed by the GPUs in milliseconds. On the other hand, the
embedding vectors locate in various places to utilize the mem-
ory. For a batch of training data, the system goes through the
management routine for each item separately, which results
in fragmented memory access and inter-process communica-
tion. We mitigate these drawbacks with throughput-oriented
designs for competitive end-to-end training performance.

4.1 Dynamic Decentralized Indexing

Most embedding vectors are maintained in distributed mem-
ory space across multiple processes. In existing systems,
the input IDs are commonly directly mapped to partitions
of the embedding table by simple hashing, e.g. using a few
bits in the ID to indicate the index of the partition and off-
set within it. However, besides hash collision that may hurt
model quality [43], it is less scalable. To extend the capacity
of a partition, a significant amount of data has to be moved
around in memory, leading to unpredictable access latency.

To efficiently manage memory, HypeReca allocates spaces
for embedding vectors by chunks. Every process maintain
several embedding chunks in the host memory. Also, we

USENIX Association 2025 USENIX Annual Technical Conference 1075

place a special replicated chunk on each GPU. For a newly
seen ID, it is assigned to a certain chunk. If there is no space
left in the last chunk, a new chunk is allocated. By this design,
HypeReca is able to avoid any collision, and keep allocated
memory utilized. Besides, there is little overhead to maintain
the chunks, because they are orders of magnitudes fewer than
the embedding vectors.

Proc.
0

Proc.
2

Proc.
1C0

C2

C1

DIT
0 DIT

2

DIT
1

Input ID 01 Rank=1

Location=
{2, ichunk, joffset}

Embedding
Vector

Indexing

Embedding
Lookup

Example embedding vector fetching process for an item in a
mini-batch on process 0 whose location is maintained on process 1,
and the embedding vector resides in chunk C2 on process 2.

Figure 7: Workflow to Fetch an Embedding Vector

As Figure 7 shows, to fetch an embedding vector, there are
two steps: (1) ID of the item is converted to location infor-
mation in the distributed memory space, namely indexing;
(2) the actual embedding lookup is performed, where the
embedding vector is fetched from an embedding chunk.

The location information consists of rank of the process that
holds the embedding vector, index of the chunk, and offset of
the embedding vector within the chunk. This information is
compactly packed into a few bytes.

HypeReca employs decentralized indexing hash tables
(DIT) to maintain the locations of items, which is more scal-
able compared with a centralized indexing module. To guaran-
tee consistency, each ID is exactly maintained by one certain
hash table on a process. The last few bits of IDs are used to
indicate the rank of the process. On each process, the DIT
only maintains location information, which is much lighter
than the embedding vectors.

In the embedding lookup step, the location information
is used to retrieve the embedding vector from memory of
processes i. Also, during backward propagation, the gradients
are accordingly sent backward, and the embedding vectors
are updated by the end of every iteration.

A notable detail is that simply accessing remote embedding
vectors through RDMA is poorly efficient. In an experimental
version of our system, we adopt one-sided RDMA put and get
operations provided by UCX to directly fetch the embedding
vectors from remote host memory. Unfortunately, because
the embedding vectors are barely larger than 500 bytes, the
overhead to send one-sided requests dominates. The actual
communication bandwidth can hardly achieve more than 10%
the theoretical peak bandwidth.

Instead, in our system, for a batch of embedding vector

fetching requests from process A to process B, process B
locally gathers embedding vectors from local chunks (and
maybe perform some local pooling according to the model)
into a temporary contiguous memory space before sending
them to process A. This approach better utilizes the bandwidth
of the network, and the RDMA network is managed by the
high-level communication libraries, such as MPI and NCCL.

The decentralized indexing design provides HypeReca with
high flexibility. ID of the items can be in any format, without
the need to be preprocessed into contiguous indices, which is
very useful for streaming training data.

4.2 Asynchronous Parallel Indexing Pipeline
We find an extra performance benefit from the indexing de-
sign. Performing indexing is not related to the actual data of
embedding vectors, which is updated in every iteration. There-
fore, indexing can be decoupled with embedding lookup, and
moved to the thread for data loading. After the data loader
reads IDs in a training sample from storage, HypeReca im-
mediately convert these IDs into locations in HypeReca. The
training thread then asynchronously reads them from a buffer,
so the latency on the critical path is reduced.

Specifically, inter-process communication is conducted to
perform indexing over remote DITs. When a process per-
forms indexing for a batch of input IDs, it sends requests to
all other processes. For each process, one thread handles one
request from a remote process. The thread goes through the
local DIT to find locations for each ID in the batch. New lo-
cations are assigned to embedding vectors of newly-seen IDs.
Finally, after the allocation is finished, the thread responds to
the request with a batch of locations.

The latency of the request-handling thread can be high,
because even executed in batches, the latency to access hash
tables is not that predictable. Fortunately, multiple threads are
used to load multiple batches of data simultaneously ahead
of training in most training systems, so indexing can also be
performed in parallel to increase throughput.

To guarantee consistency of the DITs, read-write locks
are used to support concurrent access. We observe that the
lock is a performance bottleneck. Besides the overhead in its
implementation, many other threads are blocked when one
thread is trying to write new items. A naïve implementation
can barely meet the throughput requirement.

We invent a parallel pipeline for the hash table operations,
exploiting opportunities brought by the batch of queries. For
better concurrency, we first slice the hash table into a few tens
of shards. Multiple threads handling different indexing tasks
go through the shards as a pipeline, as shown in Figure 8.
Every thread only needs to lock a shard once, and all the IDs
in this shard are processed. Such design eliminates most con-
tention, because the threads are mostly operating on different
shards in a pipeline manner.

This indexing pipeline is inspired by the commonly used

1076 2025 USENIX Annual Technical Conference USENIX Association

Indexing

Embedding Lookup
and Maintenance

Asynchronous

Host
GPU Time

Embedding
Chunks

R Chunk
& Dense

Hash Table
Shard 2

Hash Table
Shard 1

Hash Table
Shard 0

Thread 0

Batch 0
Shard 0

Batch 0
Shard 1

Batch 0
Shard 2

Thread 1

Batch 1
Shard 0

Batch 1
Shard 1

Batch 1
Shard 2

Thread 2

Batch 2
Shard 0

Batch 2
Shard 1

Batch 2
Shard 2

Thread 3

Batch 3
Shard 0

Batch 3
Shard 1

Batch 3
Shard 2

Thread n

Batch n
Shard 0

Batch n
Shard 1

Batch n
Shard 2

Other
Threads

Other
Threads

Other
Threads

E.V.
0

GPU
0

Grad.
0

Upd.
0

Upd.
0

E.V.
2

GPU
2

Grad.
2

Upd.
2

Upd.
2

Batch 1 and 3 are trained on some remote processes. Thread 1 and 3 respond to the indexing request, and their further steps are not presented in this figure.

Figure 8: Indexing Pipeline and Computation in a Process

pipeline parallelism in training large neural networks. How-
ever, different from the inter-layer and inter-device pipeline
parallelism, this pipeline works within the embedding layer
and within a CPU. It utilizes independent data structures
simultaneously for higher throughput.

Although this pipeline does not directly reduce indexing la-
tency of one batch, the overall throughput of multiple threads
is increased. As long as it can match the throughput on GPUs,
the overall training process is not throttled by indexing, be-
cause it is processed by the data loading thread. In our prac-
tice, throughput of this indexing pipeline is high enough to
match the throughput of 8 GPUs using 32 CPU threads.

5 Pattern-Aware Parallel Strategy

The chunk-based in-memory embedding database provides
us with the flexibility to utilize skew access pattern by plac-
ing chunks on the GPU. The synchronization overhead of
the chunks varies according to the placement strategy of the
chunks and the related synchronization algorithm. Inspired
by hybrid training algorithms of typical neural networks, we
propose a hybrid chunk placement strategy, and build a per-
formance model to guide the selection of the strategy. Over
the ever-existing all-to-all communication for the sparse em-
bedding vector access, we employ scheduling techniques to
reduce its contention.

5.1 2-Fold Parallel Strategy

We partition the embedding vectors into two parts accord-
ing to the access frequency. An item-wise two-fold parallel
strategy (2FP) is applied to both parts of the embedding vec-
tors. More specifically, we apply either of the following two
strategies to the embedding vector related to an item: (a) data

parallelism is used on a small portion of frequent items; (b)
model parallelism handles the rest items.

Proc.
0

Host
C0

GPU
0-0

R Emb.
Vectors

Dense

GPU
0-1R

Emb.
Vectors

Dense

Proc.
1

Host
C1

GPU
1-0

R Emb.
Vectors

Dense

GPU
1-1R

Emb.
Vectors

Dense

Model Para.
(All-to-all)

Data Para.
(All-reduce)

Direct HBM
Access on
GPUs

HypeReca

Figure 9: The Two-Fold Parallel Strategy (2FP)

Figure 9 illustrates the design of 2FP. There are two ex-
clusive types of partitions. Any embedding vector belongs to
exactly one of them.

R is the replicated embedding chunk for high throughput
GPU-local access of embedding vectors. There is a replica
of R on each GPU, so accesses of embedding vectors in
R are performed locally through the high-bandwidth device
memory (HBM). Inter-device data movement is eliminated
during forward and backward propagation, removing signif-
icant communication overhead. Synchronous data-parallel
training algorithm is used over R to keep it consistent across
GPUs. Gradients are synchronized in each iteration before
updating the embedding vectors.

Ci(i ∈ [0,Nproc.)) denotes the rest trivial chunks on process
i. Host memory of the process is used to store embedding vec-
tors in Ci. This saves GPU memory to store R and the dense
part. During training, processes fetch embedding vectors of
samples in its local batch from all Ci, excluding those in R .
Gradients are then pushed back, aggregated and used to up-
date the embedding vectors. As the updates finish before the

USENIX Association 2025 USENIX Annual Technical Conference 1077

pulling operation of the next iteration, the dense part always
works on the latest version of embedding vectors. In other
words, model parallelism is applied to Ci. The embedding
tables are row-wise partitioned.

HypeReca achieves model transparency via the two-fold
strategy. The embedding vectors are kept in a fixed place
throughout the training process. Without complicated strate-
gies like prefetching or caching, we are able to guarantee
strong consistency directly by parallel training algorithms.

Additionally, the 2FP design removes the necessity to per-
form deduplication [46], which removes duplicated items
before initiating all-to-all to reduce its volume, but introduces
extra overhead. In HypeReca, the duplicated items are mostly
frequent items in R , which do not go through all-to-all.

In this section, we illustrate how to reduce the communi-
cation overhead with 2FP by building a performance model.
Speed up of 2FP is achieved based on the efficient managing
the data in end-to-end DLRM training processes.

5.2 Performance Modeling

To select proper items to put in R for optimal performance,
there are two steps. First, we identify the frequency of items.
Then, we pick a proper number of items.

For the first step, peeping at the dataset can provide ad-
equate information to find out the most frequent items. As
Figure 5 suggests, sampling of 100 training batches has al-
ready shown an obvious tendency of skewness. And 100
iterations are likely fewer than 1% of a training process that
can be done in a few minutes. Due to the fact that more than
10k iterations are normally needed for training, and the data
follows a similar skewed distribution, performing frequency
counting of items in the first 100 iterations introduces only
minor overhead. It is possible that the skewness changes dur-
ing a training process that lasts much longer. We can always
re-peep to keep R fresh, and this can be overlapped with other
jobs that pause training, e.g. writing a checkpoint.

The second step is more challenging. The size of R , de-
noted as R, is significant to the performance. We find a trade-
off between reducing the all-to-all volume and increasing the
synchronization overhead of R . Having more items in R can
reduce the number of items that must be fetched across pro-
cesses, i.e., all-to-all overhead. However, the whole R must
be synchronized and updated as a dense parameter in every
iteration, even if some items are not accessed at all, incurring
overhead and losing the benefits of sparsity. Therefore, we
need a proper R to minimize overall latency.

A performance model is built to help to determine R. The
overall communication latency Loverall consists of two parts:

Loverall = LR +LC

The latency to synchronize R is noted as LR and the la-
tency to fetch data in Ci is noted as LC . As both tasks are

communication-intensive, there is little benefit from overlap-
ping them, so we can add them up directly.

The first part, LR , is proportional to R:

LR = RCar

The latency comes with a coefficient Car that denotes the
communication performance of all-reduce on given hardware
and model setup, which can be calculated or measured by a
micro-benchmark.

The second part, LC is a little more complicated:

LC = N(1−ρ(R))Ca2a

The latency of Ci is related to N, the number of items in
a batch. Here, 1−ρ(R) denotes the portion of items that do
not present in R , and have to be fetched from Ci. As com-
munication for Ci is all-to-all, LC is calculated with another
coefficient, Ca2a, which can be obtained in a similar way to
Car above.

Algorithm 1 Produce ρ from sampled training data
1: function GETK(A sampled list of items D[N])
2: C←{0,0, . . . ,0} ▷ A map from item ID to counter
3: for all Item ID i ∈ D do
4: Ci←Ci +1
5: end for
6: U ← Unique IDs in C
7: Descending sort U by CUi

8: ρ0← 0
9: for i← 1 . . . |U | do

10: ρi← ρi−1 +
CUi
N

11: end for
12: return ρ

13: end function

ρ(R) is a function that uses the sampled training data to
estimate the portion of embedding vector accesses that are
covered by R . Algorithm 1 is used to determine ρ(R) for
any possible R. Items are sorted according to their frequency,
and the top R items are selected. Then, we calculate the
expectations of items in R to appear in a training batch.

Finally, Loverall is expanded as follows:

Loverall = RCar +N(1−ρ(R))Ca2a

We observe that LR , the first part of Loverall, increases when
R increases, while LC , the second part, decreases, correspond-
ing to the aforementioned trade-off. Besides, ρ(R) grows
sharply with R when R is relatively small, e.g. a few thou-
sands, and turns to a slow increase when R is larger. There-
fore, Loverall is roughly a U-shaped curve over R.

A ternary search algorithm can be used to quickly find an
optimal range of R, considering the memory limit as the max-
imum candidate value. Then, we employ bulk enumeration to
get an optimal value of R.

1078 2025 USENIX Annual Technical Conference USENIX Association

By further analyzing the equation, we can see that various
batch sizes N lead to different optimal R values for minimum
Loverall, as it only affects LC . As N gets larger, (1−ρ(R))Ca2a
becomes more significant in Loverall, and a larger R is more
beneficial. This brings extra performance gain for HypeReca
when scaling DLRM training up with larger batch size, if
there is enough memory for a larger R .

5.3 Analytical Effectiveness of 2FP
Should the frequent items be removed from model parallelism,
the communication volume of all-to-all can be significantly
reduced. And as the they only make up a small portion of all
items, they can be duplicated with little extra memory con-
sumption, and synchronized with less communication over-
head. This can be verified by applying the performance model
to the real-world datasets that we observed.

First, we measure the performance of all-reduce for data
parallelism and all-to-all for model parallelism on 32 GPUs
across 4 nodes. Then, we calculate ρ from the datasets to
estimate the reduction of communication.

2 4 8 16 32
GPUs

0

50

100

La
te

nc
y

/ m
s Intra-

node
Inter-
node All-reduce

All-to-all
2FP on Criteo
2FP on Taobao

Figure 10: Communication Latency Modeling

For model parallelism using all-to-all, assume that there
are 32MB of embedding vectors to exchange on each GPU.
Then, assume that the actual number of different items is
about 6% the total number of samples. In this case, all-reduce
is performed over 64MB of embedding vectors on each GPU
using data parallelism.

The solid lines in Figure 10 show the latency of both collec-
tive communication operations. The performance of all-to-all
is better within a node, but its latency grows much larger
than all-reduce when scaling up to more than 16 GPUs across
multiple nodes, because it is unfriendly to the hierarchical
connection topology. In contrast, all-reduce can scale up well
across nodes, as the distributed reduction algorithms fit the
hardware architecture and network topology better.

The dashed lines in Figure 10 show our estimation of com-
munication latency of 2FP on both datasets. When train-
ing over Kaggle dataset, we have ρ(32,265) = 0.92. This
means about 32k (2.2%) items are processed by all-reduce,
and the all-to-all latency is reduced by 92%. Theoretically,
the communication latency is reduced by 9.2×, compared
to the original strategy that only applies model parallelism
for the embedding vectors and performs all-to-all over all of
them.

The case for Taobao is harder, but the opportunity is still sig-
nificant. We use ρ(227,058) = 0.86, so having 227k (13%)
frequent items replicated removes 86% all-to-all overhead.
As a result, the communication latency is reduced by 5.2×.

Even compared with data parallelism, there is 93%−245%
communication speed up. In fact, data parallelism is not
practical because the actual memory footprint would be far
more than that of all-to-all on the same number of items,
because it duplicates instead of splitting data.

5.4 Contention-free Scheduling

Exchanging the embedding vector among processes is more
complicated than a simple all-to-all collective communication
operation. When the workers exchange the embedding vec-
tors, they are first gathered into a temporary contiguous tensor
from the chunks to utilize the network bandwidth. Similarly,
during indexing, each worker iterates through its local DIT to
respond to each indexing request.

We summarize the all-to-all request workload pattern as
follow. Each process sends requests to all processes. To
respond to the request, the remote process has to conduct
computation locally before sending the results back. Basically,
we employ a separate thread pool on each process to respond
to the requests. Contention happens when multiple requests
are sent to the same process simultaneously.

Proc.
0 Local Work

for proc. 0
Local Work
for proc. 1

Local Work
for proc. 2

Proc.
1 Local Work

for proc. 0
Local Work
for proc. 1

Local Work
for proc. 2

Proc.
2 Local Work

for proc. 0
Local Work
for proc. 1

Local Work
for proc. 2

Recv. Req.
from 1

Resp. to 1Recv. Req.
from 2

Resp. to 2

Recv. Req.
from 2

Resp. to 2Recv. Req.
from 0

Resp. to 0

Recv. Req.
from 0

Resp. to 0Recv. Req.
from 1

Resp. to 1

Figure 11: A 3-process Example of the Ring Schedule

HypeReca adopts a contention-free ring schedule to avoid
the problem. Figure 11 instantiates the schedule with 3 pro-
cesses. Formally, for a workload among n processes, n steps
are performed. In step i, process r performs computation of
request from process ((r+ i) mod n), and communication
operations are executed accordingly.

For peak performance, the communication operations are
all performed asynchronously to better overlap with compu-
tation. Computation for the request to the local process is

USENIX Association 2025 USENIX Annual Technical Conference 1079

placed at the beginning of the schedule to minimize initializa-
tion overhead. Finally, at any point of time, each process has
exactly one request to handle, so the demanded number of
CPU cores remains stable through the training process, and
the overall throughput is promising.

6 Evaluation

6.1 Setup and Methodology
We use two different clusters to evaluate HypeReca.

• Antique: Each node contains 8× NVIDIA A100 SXM4
GPUs with 40GB memory and dual Infiniband HDR
200Gb/s HCA cards. Due to limited quota, we are only
able to compare scalability of HypeReca and HugeCTR
over Terabytes dataset on this cluster.

• Vintage: Each node contains 8× NVIDIA V100 PCIe
GPUs with 16GB memory and an Infiniband EDR
100Gb/s HCA card. All experiments are conducted
on this cluster unless otherwise stated.

Antique represents a high-end cluster setup for training
large deep learning models, whereas Vintage has a more
budget-friendly setting. The PCIe GPUs have similar commu-
nication bandwidth as consumer-grade GPUs, such as GTX
1080. As the DLRM training workload is communication-
bound, we expect our system to achieve higher speedup
on clusters with lower communication bandwidth, enabling
DLRM training on these more economical hardware plat-
forms.

We compare the performance of HypeReca with the follow-
ing three open-source baselines.

TFDE [37] The name is short for TensorFlow Distributed
Embeddings. It implements Parallax [17] for DLRMs using
newer TensorFlow [1]. Compared with a bare data-parallel ap-
proach, this system maintains the sparse part by a distributed
sparse parameter server. In fact, this is equivalent to the ex-
isting basic hybrid parallelism that applies model parallelism
for the entire sparse part.

TorchRec [15] A coarse-grained hybrid parallel strat-
egy [25, 33] is applied to utilize the skewness across embed-
ding tables. It is easy to implement, yet missing opportunities
within an embedding table. It also adopts CUDA unified mem-
ory technique for faster data transfer between host memory
and GPU memory.

HugeCTR [39] This system is used by NVIDIA in the
MLPerf DLRM benchmark, with a Caffe-like front end that
supports a limited range of models. All the embedding tables
are placed on GPUs, and it utilizes GPU-direct communica-
tion techniques to accelerate all-to-all.

We set up test cases using three public real-world datasets
for three popular DLRMs, as shown in Table 1.

Taobao advertisement display and click dataset [4] is a
public dataset of logs from taobao.com, one of the largest

Table 1: Datasets and Models for Evaluation
Dataset Taobao [4] Criteo Kaggle [7] Terabytes [6]
Model DCN [27] Legacy [39] DLRM [41]

Feat. (Den./Sp.) 4/4 1/39 14/26
Samples 26M 36M 4.3B
Dataset Size 1.17GB 4.3GB 671GB
Items 1.83M 1.60M 187M
Embedding Size 117MB 411MB 96.1GB

e-commerce websites in China. Sparse features of the dataset
include IDs of products, customers, and campaigns. Criteo-
Kaggle [7] dataset is a benchmark dataset for CTR prediction,
with more masked sparse features per sample. Terabytes [6]
is of similar data format, but much larger, used in MLPerf
DLRM benchmark [41].

Deep and Cross Network (DCN) [27] uses a cross net-
work layer, i.e. dot product of embedding vectors, to learn
interactions between sparse features. The legacy model of
HugeCTR [39] treats all features as sparse, and process them
with a simple multi-layer perceptron (MLP) network. DLRM
benchmark of MLPerf [41] uses an interaction layer with
larger MLP, being a widely-used standard benchmark to eval-
uate DLRM training systems.

We first compare HypeReca with the baselines in end-to-
end training. Each model is trained for 500 iterations, and the
average trained samples per second is used as the metric of
throughput. Then, we validate the performance model by test-
ing different selection of R. Also, we compare the indexing
performance of HypeReca with a baseline implementation.

6.2 Scalability and End-to-end Results

We first measure both strong and weak scaling of HypeReca,
i.e., keeping either global batch size or batch size per GPU
the same, and use HugeCTR as a reference. We choose R
of HypeReca for each setting according to the performance
model, which is detailed in §6.5.

2 4 8 16 32
(a) Strong Scaling
 (Batchsize=256k)

0
2
4
6
8

10

M
 S

am
pl

es
/s

ec

Ours HugeCTR

2 4 8 16 32 GPUs
(b) Weak Scaling

 (Batchsize=16k per GPU)

OOM

Figure 12: Intra- and Inter-Node Scalability on Vintage

The scalability on Criteo dataset is presented in Figure 12.
Two systems show a similar tendency to scale up within a

1080 2025 USENIX Annual Technical Conference USENIX Association

node. However, when scaling to more than one node, Hype-
Reca still speeds up as the number of GPUs increases, while
HugeCTR becomes even slower. Notably, HugeCTR runs
out of memory in the weak scaling experiment as the global
batch size is too large, and it fails to utilize host memory.
Meanwhile, HypeReca keeps most embedding vectors on the
host side, using much less GPU memory, making it possible
for larger batch sizes or more complicated dense parts.

8 16 32
(a) Strong Scaling
 (Batchsize=256k)

2

4

6

8

10

M
 S

am
pl

es
/s

ec

Ours
HugeCTR

8 16 32 GPUs
(b) Weak Scaling

 (Batchsize=16k per GPU)

Figure 13: Inter-Node Scalability on Antique Cluster

Inter-node scalability on Antique over Terabytes dataset
is shown in Figure 13. HypeReca is slower than HugeCTR
on one node. HugeCTR benefits from the fast intra-node
NVLink connection, while HypeReca has to copy embed-
ding vectors in Ci from host memory via much slower PCIe
connections. However, HypeReca outperforms HugeCTR on
multiple nodes. Because the bandwidth of inter-node con-
nection is lower (from 600 GB/s per GPU to 400 Gbps per
node), HugeCTR is even slower on multiple nodes than on a
single node. In contrast, HypeReca shows a better tendency
to scale up to more nodes, even on a cluster with faster con-
nections.

Taobao + DCN

M
 S

am
pl

es
/s

ec

1.5
4

5.5
0

4.7
0

11
.90

TFDE TorchRec HugeCTR Ours

Criteo + Legacy
0.4

8 2.1
3

1.3
5

9.3
7

MLPerf-DLRM
0.3

6
0.1

9 0.7
9

3.2
7

Figure 14: End-to-end Comparison on Vintage Cluster

Training throughput on 32 GPUs over different models
and datasets are shown in Figure 14. TFDE achieves poor
performance because of the high re-organization overhead.
TorchRec outperforms HugeCTR in the first and second case,
as it finds opportunities on certain embedding tables, while
data transfer overhead between CPU and GPU slows it down
on Terabytes dataset. HypeReca outperforms all baselines on
all test cases, achieving 9.1×, 16.8×, and 4.2× speedup on

the MLPerf benchmark, respectively.
Unfortunately, we are not able to compare HypeReca with

other systems utilizing fine-grained skewness [2, 3, 34] due to
issues on code availability or deployment feasibility. Mean-
while, they achieve less speed up over the same TorchRec
baseline in test cases using similar models, datasets, and
number of GPUs. As HypeReca outperforms TorchRec and
HugeCTR on 32 GPUs, we believe that HypeReca achieves
competitive performance and scalability.

6.3 Effectiveness of the Indexing Pipeline

We develop a micro-benchmark for the decentralized dynamic
indexing module using different numbers of data-loading
threads per process on each of 4 nodes. A node has 32 cores
and 64 threads. As indexing is integrated into the data loader,
the throughput of the data loader shall match the training
throughput. We implement a baseline that uses hash tables
without any schedule for the batches of queries. Another
reference implementation is using a simple hash strategy for
indexing without DITs, which involves the collision issue that
degrades the model quality.

1 4 8 16 24 32 40 48 56 64
Threads per Node

0

5

10

15

20

M
 S

am
pl

es
/s

ec

Ours
Ours w/o Schd.
Baseline
Simple Hash

Figure 15: Multi-threaded Indexing Throughput

Figure 15 shows results of the micro-benchmark over Ter-
abytes dataset. The baseline achieves a maximum throughput
of 1.37M samples per second using 8 threads per node, much
lower than the training throughput of HypeReca, 3.3M/s. Its
throughput even decreases when using more threads, due to
the high locking overhead of the DITs. In contrast, the index-
ing pipeline of HypeReca achieves more than 10M samples
per second, 8.26× faster than the baseline. This matches the
throughput of training the dense part on GPUs.

Because no communication is involved, the simple hash
baseline is always faster than our system. Still, the optimally
configured DITs achieve 50% the peak performance of such
a performance-maximized implementation.

The HypeReca w/o Schd. curve shows the performance of
HypeReca when we disable the contention-avoiding schedule
of indexing. It is able to keep similar throughput with Hype-
Reca using fewer than 32 threads. Because the CPU resource
is relatively abundant, the requests can be handled quickly.

USENIX Association 2025 USENIX Annual Technical Conference 1081

However, when having more threads that generate more re-
quests simultaneously, contention severely slows down the
indexing tasks, hence the whole system. Our schedule effec-
tively reduces the contention, and is even able to improve
the throughput when the CPU is oversubscribed. As there
are other active threads, HypeReca achieves the peak perfor-
mance when oversubscribing 50% CPU cores, which brings
40.8% extra throughput over the case using 32 cores.

6.4 Overhead for Changing Skewness
Regarding the change of skewness pattern during the training
process, we first observe the Terabytes training data in an
entire epoch. The data includes real online user access history
across 24 days. We first get the R of different sizes according
to the first 100 batches of the first day. Then, we inspect the
coverage of access in the following iterations of the first day,
and in some sampled batches of the next 23 days.

100 3000
Iteration

0.95

0.96

Ac
tu

al
 ρ

(ℝ
)

1 23
Day

ℝ = 32K

ℝ = 64K

ℝ = 128K
ℝ = 256K

Figure 16: Variance of Skewness During Training

As shown in Figure 16, all of the actual R coverage rates
are consistent, both within a day and across multiple days.
Besides, shuffling of the dataset is a common practice for
training on both offline and online training data. Therefore,
this result is generalizable to other scenarios.

Second, we evaluate the overhead to update the R by writ-
ing all the embedding vectors back to the Ci, and then pull
new frequent embedding vectors into a new R . The result of
the micro-benchmark is shown in Figure 17.

ℝ = 32k 64k 128k 256k bs=64k 192k
0

500

1000

La
te

nc
y

/ m
s

Resharding 10 Iterations

Figure 17: Comparing the Latency of Re-sharding

As a reference, we include the latency of 10 training it-
erations of the MLPerf-DLRM model with different batch
sizes. The overhead of such re-sharding operation increases
with the size of R . Meanwhile, even with the largest R, it

only takes about 1 second to complete the re-sharding tasks.
The latency is at the same level of training for 10 iterations.
Considering the above observations that the skewness pattern
will likely remain stable, we can conclude that the overhead
to update the R with the changing skewness pattern is minor
in the whole training process.

6.5 Validating the Performance Model
We calculate ρ(R) for all the datasets, as presented in Fig-
ure 18. When R= 64k, ρ(R) is 73.9% for Taobao, and around
96% for both Criteo and Terabytes. This contributes to the
reduced communication volume of HypeReca, and explains
the reason for HypeReca to perform better on the latter two.

0 64 128 192 256
0.0

0.5

1.0

ρ(
ℝ

)

Taobao
Criteo
Terabytes

0 64 128 192 256
0.8

0.9

1.0

ρ(
ℝ

) (
Zo

om
ed

-in
)

ℝ / 1,024 items

Figure 18: ρ(R) for Used Datasets

The red dashed curve in Figure 19 indicates the latency
predicted by our performance model using the above ρ(R) in
three setups on 32 GPUs. Except for a few outliers caused
by performance disturbance, it matches the actual latency
well. The average coefficient of determination, r2, exceeds
0.9 when fitting parameters, Car and Ca2a, which validates the
accuracy of our performance model.

The stacked areas of Figure 19 represent a break-down
analysis of the latency over different R. Latency of the dense
part remains unchanged, because it only involves unchanged
dense computation on GPUs. Overhead of data parallelism
for R grows linearly with its size. The all-to-all overhead
decreases in an L-shaped curve, in accordance with (1−
ρ(R)). For Terabytes dataset, its latency reduces drastically
when R increases from 0 to 1024, and then gradually gets
smaller when increasing R. As small R covers less items in
Taobao dataset, the all-to-all latency decreases slower.

In all 3 different setups, the overall latency is a U-shaped
curve over R. An optimal R brings up to 7.80× speedup over
Terabytes dataset, and 1.60× over Taobao, comparing with
R = 0, i.e., disabling 2FP. This matches the speed-up over
the baseline systems in Figure 14, and suggests that simply
using host memory to store embedding vectors without 2FP
brings little speedup.

For Terabytes dataset, we conduct the ablation experiment
over two different batch sizes. The optimal R gets larger as
the batch size grows, which matches the observation from the
equation of our performance model in §5.2.

1082 2025 USENIX Annual Technical Conference USENIX Association

0

100

200
Optimal Terabytes (Batch Size=64k)

Prediction
 (All-to-all)

 (All-reduce)
Dense

0

250

500 Optimal Terabytes (Batch Size=192k)

0 64 128 192 256
ℝ / 1,024 items

0

20

40
Optimal Taobao (Batch Size=256k)

Ti
m

e
/ m

s

Figure 19: Iteration Time Prediction and Actual Breakdown

Meanwhile, the end-to-end latency varies little around the
optimal R value. Estimating a brief range of R is enough to
get near-optimal performance of HypeReca. In our experi-
ments, the deviation of R estimations from real optimal values
incurs no more than 1% overhead on actual latency.

As the optimal R ranges from 20k to 64k, the GPU memory
of R ranges from 10MB to 32MB for the embedding vectors of
128 floating point numbers. Therefore the overhead to store
and synchronize R is minor for GPUs.

7 Related Works and Discussion

General auto-parallel NN training systems. Recent
works [26, 31, 32, 49] focus on partitioning typical dense
models with a computation graph as input. These approaches
fail to explore sparsity within layers, e.g. skewed data access
pattern of embedding tables.

4-D parallelism for DLRM. A prior work [25] concludes
all possible parallelism for DLRM into 4 types: column-wise
and row-wise, table-wise and data parallelism. 2FP generally
contains the latter three ways of parallelism in a more flexible
and high-performance way. While embedding vectors are
mostly too short to be applied with column-wise parallelism
in practice, HypeReca is also compatible with it.

Using GPU memory as cache. GPU memory is treated as
a cache of CPU memory in many other works [9, 24, 42], and
they achieve speedup on single GPUs. However, they select
frequent items separately on each worker, and do not change
the all-to-all communication pattern. Therefore, they
do not scale up to multiple GPUs better than HugeCTR [39],
which puts all data on GPUs, Furthermore, our work is orthog-
onal to these works, and can directly apply their techniques

on Ci in HypeReca.
Distributed replicated cache [3] is partly equivalent to 2FP,

but online addition and eviction make its control flow too
complicated to achieve competitive scalability.

Hardware-dependent systems. Introducing specific hard-
ware can alleviate the communication bottleneck, e.g. uti-
lizing fast NVLinks within a node [48] or pairing every
GPU [25, 34] with high-performance NICs. Compared with
these systems that require expensive hardware, HypeReca
is more general and applicable to various setups with more
affordable commodity hardware.

Changing the training algorithm. Embedding vector de-
composition [35, 38, 40] and compression [10] reduce the
memory footprint of the sparse part. Asynchronous train-
ing [21, 24, 43] and dropping some unimportant embedding
vectors [20] are proved effective in certain cases. Model
developers have to be aware of the deviation of algorithms
which may affect model quality. HypeReca does not bring
such concern, while being compatible with them.

DLRM as a graph. The training samples of DLRMs may
be treated as edges in a hypergraph. Using graph-based
methods to train the model may improve its efficiency [45].
However, it is hard for current graph-based training sys-
tems [13, 14] to meet the throughput demand of DLRMs and
keep model-transparency at the same time.

Typical KV store systems. Cold/hot partitioning is em-
ployed by typical key-value store systems [8]. Meanwhile,
applying such technique to the DLRM training workload de-
mands extra dedicated design in synchronization policy and
throughput-centric data management mechanism.

8 Conclusion

Scalability of DLRM training is important, while sparse com-
munication of re-organizing data between its two parts intro-
duces huge communication cost. We design an in-memory
distributed embedding database, HypeReca, to reduce the cost.
The throughput-centric data management module allows us
to utilize GPU memory with the sparse access pattern of the
workload. The two-fold parallel strategy effectively boosts
the overall performance of the distributed DLRM training.

Acknowledgment

We would like to thank the anonymous reviewers and our
shepherd Roberto Palmieri for their insightful comments.
This work is supported by Beijing Natural Science Foun-
dation (L242017), NSFC for Distinguished Young Scholar
(62225206), National Natural Science Foundation of China
(U23A6007), and Tsinghua University Initiative Scientific
Research Program. Jidong Zhai is the corresponding author
of this paper.

USENIX Association 2025 USENIX Annual Technical Conference 1083

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: a system for large-scale machine learning.
In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI 16), pages 265–283,
2016.

[2] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud,
Divya Mahajan, and Prashant J. Nair. Accelerating
recommendation system training by leveraging popular
choices. Proc. VLDB Endow., 15(1):127–140, jan 2022.

[3] Saurabh Agarwal, Chengpo Yan, Ziyi Zhang, and Shiv-
aram Venkataraman. Bagpipe: Accelerating deep rec-
ommendation model training. In Proceedings of the
29th Symposium on Operating Systems Principles, pages
348–363, 2023.

[4] Alimama. Ad display/click data on taobao.com. https:
//www.kaggle.com/datasets/pavansanagapati/
ad-displayclick-data-on-taobaocom, 2020.

[5] Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and
Wenwu Ou. Behavior sequence transformer for e-
commerce recommendation in alibaba. In Proceedings
of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data, pages 1–4,
2019.

[6] Criteo. Criteo 1tb click logs
dataset. https://ailab.criteo.com/
download-criteo-1tb-click-logs-dataset,
2014.

[7] Criteo. Criteo display advertising chal-
lenge. http://www.kaggle.com/c/
criteo-display-ad-challenge, 2014.

[8] dePaul Miller, Jacob Nelson, Ahmed Hassan, and
Roberto Palmieri. Kvcg: a heterogeneous key-value
store for skewed workloads. In Bruno Wassermann,
Michal Malka, Vijay Chidambaram, and Danny Raz,
editors, SYSTOR ’21: The 14th ACM International Sys-
tems and Storage Conference, Haifa, Israel, June 14-16,
2021, pages 5:1–5:12. ACM, 2021.

[9] Jiarui Fang, Geng Zhang, Jiatong Han, Shenggui
Li, Zhengda Bian, Yongbin Li, Jin Liu, and Yang
You. A frequency-aware software cache for large
recommendation system embeddings. arXiv preprint
arXiv:2208.05321, 2022.

[10] Hao Feng, Boyuan Zhang, Fanjiang Ye, Min Si, Ching-
Hsiang Chu, Jiannan Tian, Chunxing Yin, Summer

Deng, Yuchen Hao, Pavan Balaji, Tong Geng, and Ding-
wen Tao. Accelerating communication in deep learning
recommendation model training with dual-level adaptive
lossy compression. In Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage, and Analysis, SC ’24. IEEE Press, 2024.

[11] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
and Xiuqiang He. Deepfm: A factorization-machine
based neural network for CTR prediction. In Carles
Sierra, editor, Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017, pages
1725–1731. ijcai.org, 2017.

[12] Jiaao He, Shengqi Chen, and Jidong Zhai. POSTER:
pattern-aware sparse communication for scalable rec-
ommendation model training. In Proceedings of the
29th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, PPoPP 2024,
Edinburgh, United Kingdom, March 2-6, 2024, pages
466–468. ACM, 2024.

[13] Kezhao Huang, Haitian Jiang, Minjie Wang, Guangxuan
Xiao, David Wipf, Xiang Song, Quan Gan, Zengfeng
Huang, Jidong Zhai, and Zheng Zhang. Freshgnn: Re-
ducing memory access via stable historical embeddings
for graph neural network training. Proc. VLDB Endow.,
17(6):1473–1486, 2024.

[14] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi,
and Xipeng Shen. Understanding and bridging the gaps
in current gnn performance optimizations. In Jaejin
Lee and Erez Petrank, editors, PPoPP ’21: 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Virtual Event, Republic of Korea,
February 27- March 3, 2021, pages 119–132. ACM,
2021.

[15] Dmytro Ivchenko, Dennis Van Der Staay, Colin Taylor,
Xing Liu, Will Feng, Rahul Kindi, Anirudh Sudarshan,
and Shahin Sefati. Torchrec: a pytorch domain library
for recommendation systems. In Proceedings of the
16th ACM Conference on Recommender Systems, pages
482–483, 2022.

[16] J. Kiefer and Jacob Wolfowitz. Stochastic estimation
of the maximum of a regression function. Annals of
Mathematical Statistics, 23:462–466, 1952.

[17] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo
Cho, Eunji Jeong, Hyeonmin Ha, Sanha Lee, Joo Seong
Jeong, and Byung-Gon Chun. Parallax: Sparsity-aware
data parallel training of deep neural networks. In George
Candea, Robbert van Renesse, and Christof Fetzer, edi-
tors, Proceedings of the Fourteenth EuroSys Conference

1084 2025 USENIX Annual Technical Conference USENIX Association

https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom
https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom
https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset
http://www.kaggle.com/c/criteo-display-ad-challenge
http://www.kaggle.com/c/criteo-display-ad-challenge

2019, Dresden, Germany, March 25-28, 2019, pages
43:1–43:15. ACM, 2019.

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[19] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur
Mudigonda, Nathan Luehr, Everett Phillips, Ankur Ma-
hesh, Michael Matheson, Jack Deslippe, Massimiliano
Fatica, et al. Exascale deep learning for climate an-
alytics. In SC18: International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 649–660. IEEE, 2018.

[20] Fan Lai, Wei Zhang, Rui Liu, William Tsai, Xiaohan
Wei, Yuxi Hu, Sabin Devkota, Jianyu Huang, Jongsoo
Park, Xing Liu, et al. Adaembed: Adaptive embed-
ding for Large-Scale recommendation models. In 17th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23), pages 817–831, 2023.

[21] Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong
Wang, Yongjun He, Honghuan Wu, Lei Sun, Haodong
Lyu, Chengjun Liu, Xing Dong, et al. Persia: An
open, hybrid system scaling deep learning-based recom-
menders up to 100 trillion parameters. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 3288–3298, 2022.

[22] Zixuan Ma, Jiaao He, Jiezhong Qiu, Huanqi Cao, Yuan-
wei Wang, Zhenbo Sun, Liyan Zheng, Haojie Wang,
Shizhi Tang, Tianyu Zheng, et al. Bagualu: targeting
brain scale pretrained models with over 37 million cores.
In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pages 192–204, 2022.

[23] Peter Mattson, Christine Cheng, Gregory Diamos, Cody
Coleman, Paulius Micikevicius, David Patterson, Hanlin
Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, et al.
Mlperf training benchmark. Proceedings of Machine
Learning and Systems, 2:336–349, 2020.

[24] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie,
Zhi Yang, Yangyu Tao, and Bin Cui. Het: Scaling
out huge embedding model training via cache-enabled
distributed framework. Proc. VLDB Endow., 15(2):312–
320, 2021.

[25] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. Software-
hardware co-design for fast and scalable training of deep

learning recommendation models. In Proceedings of
the 49th Annual International Symposium on Computer
Architecture, pages 993–1011, 2022.

[26] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, et al. Efficient large-scale language
model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–15, 2021.

[27] Maxim Naumov, Dheevatsa Mudigere, Hao-
Jun Michael Shi, Jianyu Huang, Narayanan Sun-
daraman, Jongsoo Park, Xiaodong Wang, Udit Gupta,
Carole-Jean Wu, Alisson G Azzolini, et al. Deep
learning recommendation model for personaliza-
tion and recommendation systems. arXiv preprint
arXiv:1906.00091, 2019.

[28] Zaifeng Pan, Zhen Zheng, Feng Zhang, Bing Xie, Ruo-
fan Wu, Shaden Smith, Chuanjie Liu, Olatunji Ruwase,
Xiaoyong Du, and Yufei Ding. Recflex: Enabling fea-
ture heterogeneity-aware optimization for deep recom-
mendation models with flexible schedules. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis,
SC ’24. IEEE Press, 2024.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information pro-
cessing systems, 32, 2019.

[30] Kishore Punniyamurthy, Khaled Hamidouche, and Brad-
ford M. Beckmann. Optimizing distributed ml com-
munication with fused computation-collective opera-
tions. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis, SC ’24. IEEE Press, 2024.

[31] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[32] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. Zero-infinity: Break-
ing the gpu memory wall for extreme scale deep learn-
ing. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, pages 1–14, 2021.

USENIX Association 2025 USENIX Annual Technical Conference 1085

[33] Geet Sethi, Bilge Acun, Niket Agarwal, Christos
Kozyrakis, Caroline Trippel, and Carole-Jean Wu. Rec-
shard: statistical feature-based memory optimization
for industry-scale neural recommendation. In Proceed-
ings of the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 344–358, 2022.

[34] Geet Sethi, Pallab Bhattacharya, Dhruv Choudhary,
Carole-Jean Wu, and Christos Kozyrakis. Flexshard:
Flexible sharding for industry-scale sequence recom-
mendation models. arXiv preprint arXiv:2301.02959,
2023.

[35] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim
Naumov, and Jiyan Yang. Compositional embeddings
using complementary partitions for memory-efficient
recommendation systems. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’20, page 165–175,
New York, NY, USA, 2020. Association for Computing
Machinery.

[36] Hongyan Tang, Junning Liu, Ming Zhao, and Xudong
Gong. Progressive layered extraction (ple): A novel
multi-task learning (mtl) model for personalized recom-
mendations. In Proceedings of the 14th ACM Confer-
ence on Recommender Systems, pages 269–278, 2020.

[37] Shashank Verma, Wenwen Gao, Hao Wu, Deyu
Fu, and Tomasz Grel. Fast, terabyte-scale rec-
ommender training made easy with nvidia merlin
distributed-embeddings. https://github.com/
NVIDIA-Merlin/distributed-embeddings, 2022.

[38] Weihu Wang, Yaqi Xia, Donglin Yang, Xiaobo Zhou,
and Dazhao Cheng. Accelerating distributed dlrm
training with optimized tt decomposition and micro-
batching. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage, and Analysis, SC ’24. IEEE Press, 2024.

[39] Zehuan Wang, Yingcan Wei, Minseok Lee, Matthias
Langer, Fan Yu, Jie Liu, Shijie Liu, Daniel G Abel,
Xu Guo, Jianbing Dong, et al. Merlin hugectr: Gpu-
accelerated recommender system training and inference.
In Proceedings of the 16th ACM Conference on Recom-
mender Systems, pages 534–537, 2022.

[40] Zheng Wang, Yuke Wang, Boyuan Feng, Dheevatsa
Mudigere, Bharath Muthiah, and Yufei Ding. El-rec:
efficient large-scale recommendation model training via
tensor-train embedding table. In 2022 SC22: Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1007–
1020. IEEE Computer Society, 2022.

[41] Carole-Jean Wu, Robin Burke, Ed H Chi, Joseph
Konstan, Julian McAuley, Yves Raimond, and Hao
Zhang. Developing a recommendation benchmark
for mlperf training and inference. arXiv preprint
arXiv:2003.07336, 2020.

[42] Minhui Xie, Youyou Lu, Jiazhen Lin, Qing Wang, Jian
Gao, Kai Ren, and Jiwu Shu. Fleche: an efficient gpu
embedding cache for personalized recommendations. In
Proceedings of the Seventeenth European Conference
on Computer Systems, pages 402–416, 2022.

[43] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang,
Qingxing Xu, Bihai Wu, Jiazhen Lin, Hongbo Ao, Wan-
hong Xu, and Jiwu Shu. Kraken: memory-efficient
continual learning for large-scale real-time recommen-
dations. In Christine Cuicchi, Irene Qualters, and
William T. Kramer, editors, Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2020, Virtual
Event / Atlanta, Georgia, USA, November 9-19, 2020,
page 21. IEEE/ACM, 2020.

[44] Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-
Herng Lai, Bhargav Bhushanam, Yuandong Tian, Arun
Kejariwal, and Xia Hu. Dreamshard: Generalizable
embedding table placement for recommender systems.
Advances in Neural Information Processing Systems,
35:15190–15203, 2022.

[45] Qianru Zhang, Lianghao Xia, Xuheng Cai, Siu-Ming
Yiu, Chao Huang, and Christian S. Jensen. Graph
augmentation for recommendation. In 40th IEEE Inter-
national Conference on Data Engineering, ICDE 2024,
Utrecht, The Netherlands, May 13-16, 2024, pages 557–
569. IEEE, 2024.

[46] Mark Zhao, Dhruv Choudhary, Devashish Tyagi, Ajay
Somani, Max Kaplan, Sung-Han Lin, Sarunya Pumma,
Jongsoo Park, Aarti Basant, Niket Agarwal, Carole-Jean
Wu, and Christos Kozyrakis. Recd: Deduplication
for end-to-end deep learning recommendation model
training infrastructure. CoRR, abs/2211.05239, 2022.

[47] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Rui-
quan Ding, Mingming Sun, and Ping Li. Distributed
hierarchical gpu parameter server for massive scale deep
learning ads systems. Proceedings of Machine Learning
and Systems, 2:412–428, 2020.

[48] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian,
Ronglai Jia, and Ping Li. Aibox: Ctr prediction model
training on a single node. In Proceedings of the
28th ACM International Conference on Information and
Knowledge Management, pages 319–328, 2019.

1086 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/NVIDIA-Merlin/distributed-embeddings
https://github.com/NVIDIA-Merlin/distributed-embeddings

[49] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. Alpa: Automating inter- and
Intra-Operator parallelism for distributed deep learning.
In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 559–578,
Carlsbad, CA, 2022. USENIX Association.

USENIX Association 2025 USENIX Annual Technical Conference 1087

	Introduction
	Background and Motivation
	DLRM Model and Work Flow
	Existing Basic Parallel Strategy
	Throughput-Sensitive Data Management
	Sparse Pattern of Training Data: Skewness

	System Overview
	Throughput-Oriented Data Management
	Dynamic Decentralized Indexing
	Asynchronous Parallel Indexing Pipeline

	Pattern-Aware Parallel Strategy
	2-Fold Parallel Strategy
	Performance Modeling
	Analytical Effectiveness of 2FP
	Contention-free Scheduling

	Evaluation
	Setup and Methodology
	Scalability and End-to-end Results
	Effectiveness of the Indexing Pipeline
	Overhead for Changing Skewness
	Validating the Performance Model

	Related Works and Discussion
	Conclusion

