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Abstract

RCuckoo is a fully disaggregated lock-based key/value
store in which clients cooperatively access a passive mem-
ory server using exclusively one-sided RDMA operations.
RCuckoo employs cuckoo hashing to enable single round-
trip reads of small values while updates and deletes re-
quire only two. We introduce locality-enhanced depen-
dent hashing that allows us to adjust the expected dis-
tance between a key’s potential table locations, dramat-
ically improving insert performance compared to prior
cuckoo-hashing approaches while limiting I/O amplifica-
tion and maintaining practical maximum fill factors. We
show that not only does RCuckoo outperform all existing
state-of-the-art RDMA-based key/value stores when read-
ing small values, but under severe contention RCuckoo
delivers up to 7× the throughput of comparison systems
across the standard set of YCSB workloads. Moreover,
RCuckoo’s lease-based locking mechanism enables it to
gracefully recover from 100s of client failures per second.

1 Introduction

Disaggregated architectures aim to improve scalability
and utilization by pooling network-attached resources [3,
17, 21, 35]. In theory, pooling reduces per-machine frag-
mentation and stranding by exposing resources over the
network. Collectively, disaggregated resources can be
provisioned for the sum-of-peak workloads rather than
the peak-of-sums [2, 36]. Stagnating DRAM densities
are driving interest in primary storage pooling, but per-
formant, general-purpose far-memory tiers remain elu-
sive [1, 4, 5, 11, 18, 24, 35, 42] as even the fastest rack-
scale networks have access latencies that are an order-of-
magnitude slower than local memory. (e.g., RDMA la-
tency is approximately 1 µs versus DRAM’s 50 ns) [40].

As a result, most existing far-memory systems [5, 12,
34, 39, 44] choose to statically partition remote mem-
ory to avoid the multiple round trips required to synchro-
nize shared updates. While challenging to achieve, mem-
ory sharing is critical to making remote memory pooling

practical as it can improve utilization—the entire point
of memory disaggregation. To date, the most promis-
ing approach to delivering shared access to pooled re-
mote memory is to expose a key/value store (KVS) inter-
face that provides coherent read/write semantics [19, 22,
37, 38, 40, 41, 43]. Yet, most performant KVS systems
employ two-sided RDMA operations which rely upon
memory-side CPUs to manage locks and execute critical
sections [9, 20, 25, 26], reducing their potential savings.

To fully unlock the potential of memory disaggregation,
we propose a design where compute and memory are en-
tirely separate. In our fully disaggregated model, a KVS
must implement a client-side serialization protocol im-
plemented entirely in one-sided RDMA operations (i.e.,
read, write, and atomic updates). Maintaining a coher-
ent memory model is the core challenge in designing such
systems. Existing KVS’s with ordered keys (e.g., BTrees
& Radix Trees) rely upon locking schemes [22, 41], while
those that provide unordered access favor lock-free tech-
niques [19, 37, 38, 40] to decrease read latency while
avoiding the RDMA hardware bottlenecks and complex
failure scenarios that can arise with locks. The trade-off,
however, is that lock-free approaches perform worse as
write intensity increases.

In this work we present RCuckoo, a system that uses
lock-based synchronization on commodity RDMA hard-
ware to out-perform existing key/value stores across a
wide range of workload mixes. Critically, locks enable
the use of cuckoo hashing [32], a well-established, high-
performance datastructure for key/value stores. Locks
also support in-lining small values in the hash table, deliv-
ering significantly higher throughput on common mixed
read/write workloads. Further, our fine-grained locks and
careful protocol design reduce lock hold times during up-
dates to two round trips in the common case, and we avoid
known hardware bottlenecks with RDMA atomic opera-
tions by crafting a lock table small enough to be stored
entirely on NIC-based memory. Finally, lease-based lock
acquisition delivers correct, high-throughput performance
even in the face of client failures with held locks.

RCuckoo’s efficient locking is made possible by a de-
pendent hashing algorithm that makes spatial locality a
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tunable parameter. Cuckoo hashing works by determinis-
tically computing two potential hash locations—primary
and secondary—for any key; collisions are resolved by
relocating the existing entry in a key’s primary location
to the existing key’s secondary location, and so on down
what is known as a cuckoo path. Traditionally, a key’s two
potential locations are drawn independently at random,
defeating any locality-based optimizations. By control-
ling the distance between a key’s locations—and therefore
the span of a potential cuckoo path—we probabilistically
bound the range of memory that must be locked, and, re-
latedly, the number of locks that a client must acquire.

Combined with aggressive batching of RDMA oper-
ations, RCuckoo’s spatial locality limits the number of
round trips required for all table operations. In the com-
mon case, reads execute in one (for small values) or
two round trips, uncontested updates and deletes require
two round trips, and the median insert operation involves
only two round trips—although the expected number in-
creases as the table fills and cuckoo paths grow. On our
testbed, RCuckoo delivers comparable or higher perfor-
mance on small values across the standard set of YCSB
benchmarks than all of the existing disaggregated key/-
value stores we consider. Concretely, with 320 clients
RCuckoo delivers up to a 2.5× throughput improvement
on read-intensive (YCSB-B) workloads and up to 7.1×
their throughput on write-intensive (YCSB-A) workloads.
Moreover, RCuckoo’s performance remains high despite
100s of clients failing per second.

2 Background
Existing disaggregated key/value stores build upon the ex-
tensive literature of RDMA-based key/value stores. In this
section we overview that lineage and discuss the algorith-
mic distinctions between the two. Our hash table design
draws on both cuckoo and hopscotch hashing. We provide
a brief overview of both approaches and related literature.

2.1 Disaggregated Key/Value Stores
The challenge to adapting existing RDMA-based KVS de-
signs to a fully disaggregated setting is the need to rely
exclusively on one-sided operations due to the lack of a
server-side CPU. Precursor RDMA KVS systems achieve
performance by striking a delicate balance between ef-
ficient one-sided RDMA operations and CPU-serialized
two-sided operations [8, 15, 25, 26, 28], where the later
are used sparingly, but are critical for correctness.

In general, the performance of any KVS on a mixed
read/write workload hinges on its serialization perfor-

mance. Fast consistent writes with one-sided RDMA are
hard because RDMA atomic operations operate on small
(8-byte) regions of memory and the cost of round trips is
high. This constraint has lead to a divide in the design
of disaggregated KVS systems between those that sup-
port range queries over ordered keys and those that do
not. Systems with ordered keys use locks to guard their
complex updates, while those with unordered keys em-
ploy lock-free optimistic approaches by constraining up-
dates to atomic 8-byte writes. These latter designs typ-
ically use hash indexes with 8-byte entries that point to
uncontested extent regions where the corresponding val-
ues are stored. Commonly the index entries use 48 of the
64 bits as a pointer and the remaining 16 bits for a digest
of the key and the size of the value. This approach re-
quires additional round trips to check for a key’s presence
and limits the size of values that can be stored [38, 45].

On the other hand, KVS systems that support ordered
keys use locks to guard the complex operations required to
update B-Trees or Radix Trees. In exchange for expensive
update operations, locks allow these systems to support
inlined values and, thus, faster small-value reads. Per-
formance is gated, however, by lock granularity and hold
times. At the time of writing all lock-based KVS systems
assume that clients are grouped into co-located servers
which can locally coordinate lock accesses and batch their
writes [22, 41], an assumption that optimistic KVS sys-
tems do not make [37, 38, 40, 45]. We show that it is
possible to realize the performance gain of lock-guarded
inlined operations without requiring client co-location if
locks are sufficiently fine grained and hold times limited.

2.2 RDMA and Network Performance

Historically, network bandwidth has limited KVS
throughput more than operation rate. For instance, while a
40-Gbps ConnectX-3 NIC can process 75 million packets
per second, line rate restricts it to 5 MOPS when read-
ing 1-KB objects. As commodity datacenter link rates
increase from 100 Gbps to 400 Gbps and beyond, how-
ever, latency and contention—rather than raw network
bandwidth—become the primary scalability bottlenecks.
To this end our design choices seek to reduce round trips
at the cost of slight bandwidth amplification and we focus
our evaluation on workloads with small key/value pairs
whose performance is not limited by line rate on our 100-
Gbps ConnectX-5 testbed hardware.

Concretely, Figure 1(a) shows the growth in round trip
time for RDMA reads of increasing size. On our hard-
ware, the round trip time for a single 1-KB read is lower
than the total latency of issuing two dependent reads of
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Figure 1: Basic RDMA performance on our testbed. (a) Read latency as a function of message size [31]. (b) Operation
throughput as a function of offered load. (c) Atomic compare-and-swap performance on device and main memory.

just a few bytes each. This suggests that performance can
be gained if a single large packet can complete the work
of two smaller, but dependent messages. Indeed, our eval-
uation (see Figure 8(d)) shows that even on our 100-Gbps
testbed inlining values and servicing lookups with a sin-
gle large read provides a 4–37% throughput increase com-
pared to an extent-based approach for the same value size.

Prior systems have avoided locks due to the stark per-
formance penalties of RDMA atomics [16]. Figure 1(b)
illustrates this bottleneck on ConnectX-5 NICs when
atomic operations are issued on remote server memory:
reads and writes scale almost linearly while atomics reach
a hard limit around 50 MOPS. Using RDMA atomic op-
erations to spin on locks quickly induces these bottle-
necks as the cap is even lower (3 MOPS as shown in Fig-
ure 1(c)) for atomics that contend with each other (i.e.,
access the same remote address). Recent ConnectX series
NICs sport a small amount (256 KB) of on-NIC mem-
ory which avoids a PCIe round trip and raises the cap
on atomic operation throughput [30, 41]. Figure 1(c) il-
lustrates the performance improvement for single—i.e.,
contended—and independent addresses. If a system can
arrange to store its locks exclusively in NIC memory it
can gain up to a 3× performance improvement on con-
tended workloads.

Others have explored ways to improve RDMA-based
lock performance. Citron implements a general purpose,
range-based lock table with fairness guarantees [10].
While the current design is ill-suited for our use case (each
request solves a knapsack problem, maintains a tree struc-
ture, and can introduce false contention), we hope to adapt
its fair bakery algorithm to RCuckoo in future work. At
present, RCuckoo focuses on raw, common-case perfor-
mance, supporting concurrent operations across disjoint
ranges as described in the following section.

2.3 Cuckoo and Hopscotch Hashing

Both cuckoo and hopscotch hashing have been highly suc-
cessful as indexes for RDMA KVS [8, 9, 14, 20, 25].
Both algorithms enable clients to locally calculate a key’s

location (or neighborhood) in the index without consult-
ing the server. This fact enables a critical division of la-
bor for mixed read and write workloads. Reads can be
performed asynchronously via one-sided RDMA, while
writes require serialization—typically implemented using
locks managed by the CPU at the memory server using
two-sided RDMA. Both cuckoo and hopscotch hashing
algorithms have complex mechanisms for resolving hash
collisions which make them difficult to implement en-
tirely with one-sided RDMA. This section describes both
algorithms and their associated challenges.

Cuckoo hashing uses independent hash functions to
compute a primary and secondary location for each key.
Keys are always inserted into their primary location and
evict an existing key to their secondary on collision which
in turn can cause a chain of evictions (a cuckoo path)
shown in Figure 2. Associative locations and BFS search
are used to minimize path length [9, 20] which is the
largest factor in the cost of insertions. In a fully disag-
gregated implementation each path step incurs a read to
a random index location which requires an RDMA round
trip (as the lack of locality makes client-side caching in-
feasible). The lack of locality similarly frustrates attempts
to proactively acquire locks. That said, cuckoo hashing
does not require any metadata to be maintained in the in-
dex, simplifying collision and error recovery.

Hopscotch hashing, on the other hand, delivers a tun-
able level of locality for insertions, but at the cost of main-
taining index metadata. In hopscotch hashing, all inser-
tions occur in a neighborhood of their original hash loca-
tion [8, 13]. Evictions are performed by “hopscotching”
entries through their neighborhood until an open location
is found. Each entry has a bitmask which tracks its col-
lisions. When hopscotching these bitmasks must be up-
dated which requires additional locking. Farm [8] and
Reno [14] bound this expense by setting hard limits on
chain length but still require a server-side CPU to fix bit-
masks when concurrent inserts execute. Hopscotch hash-
ing trades locality for additional metadata, while cuckoo
hashing eschews metadata at the cost of random accesses.
Our system RCuckoo combines the advantages of both ap-
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Figure 2: RCuckoo’s datastructures showing insertion of
key K as it displaces C, whose value is stored in an extent.

proaches with a cuckoo hash function with hopscotch-like
locality properties in the common case.

3 Design
In this section we describe the design of RCuckoo, a fully
disaggregated key/value store implemented as a lock-
based cuckoo hash table. RCuckoo’s performance stems
largely from its extremely compact lock table which is
enabled by our dependent hashing algorithm. Before de-
scribing the hashing algorithm or lock table, however, we
first introduce the datastructures and protocols to read and
modify the contents of the key/value store. For simplicity,
we describe our design in the context of a single server,
but it is straightforward to shard a large table across mul-
tiple servers (with a minor tweak, see Section 3.3).

3.1 Datastructures
Figure 2 shows RCuckoo’s index and lock table (both
maintained at the remote memory server) during an in-
sertion of key K (which requires the cuckooing of key
C). The index table (right) is a single region of RDMA-
registered main memory divided into rows of fixed-width
entries. Each row contains n associative entries (3 in this
figure; we use 8 in practice) and terminates with an 8-bit
version number and 64-bit CRC (computed over the entire
row including version number). Clients access the index
table using 1-sided RDMA reads and writes. Clients can
safely read one or more rows in a single lock-free RDMA
operation as CRCs allow each row’s contents to be ver-
ified while version numbers enable clients to detect if a
row has been modified (used to detect failures; see Sec-
tion 4.1).

Table entry and key sizes are configuration parameters,
but are the same for all rows and must be fixed at table
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Figure 3: RCuckoo’s operation protocol. Blue lines are
index accesses, and red lines are extent accesses. Solid
lines are reads, dotted lines are CAS, and curved dashed
lines are writes. Overlapping messages indicate batching.

creation. Individual entries, on the other hand, can con-
tain either inlined key/value pairs (bottom left) or a key
and 48-bit pointer to an extent to store larger values (bot-
tom right). The least-significant bit of an entry signifies its
type; values are inlined by default. Extent entries use 23
bits to encode the value size (which can range from 23 to
226 bytes). Extents are located in separate, pre-allocated,
per-client, RDMA-registered regions of server memory to
avoid contention on inserts. Given the fully-disaggregated
context we assume the index table will be initially provi-
sioned at maximum size; we defer resizing to future work.

Locks (stored in a bit vector in NIC memory, shown
on the left) each protect a tunable number (here, two;
16 in our experiments) of index rows. Clients perform
lock acquisition and release with RDMA compare-and-
swap (CAS) operations. Specifically, RCuckoo leverages
masked CAS (MCAS) operations [29, 41] to obtain up to
64 locks simultaneously while avoiding false sharing.

3.2 Operations
We detail the operations supported by RCuckoo below;
Figure 3 visualizes the corresponding message exchanges.

3.2.1 Reads

RCuckoo is designed to facilitate lock-free, single round-
trip reads for small values as they are the dominant oper-
ation for key/value stores in many data centers [6, 27]. To
read the value associated with a given key clients calculate
the potential table locations for the key’s entry (using the
hash functions described in the next subsection) and issue
RDMA reads for both rows simultaneously. Because all
operations between a client and a given server travel over
a reliable connection, they are intrinsically ordered, but
in our description we will only call out when a particular
ordering among a batch of messages is required.
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Moreover, as suggested by Figure 1(a), if the rows are
located sufficiently close together, it can be beneficial for
the client to issue a single covering read that returns the
contents of both rows—as well as any intervening ones—
in a single request. In our experiments RCuckoo clients
issue a single, large read rather than two small reads if
the locations are in adjacent rows. Reads are successful
if either row contains an entry with the desired key and a
valid CRC. An invalid CRC indicates a torn write or rare
failure case, in which case the operation is retried (see
Section 4.1). As shown in Figure 3(a) successful inlined
reads complete in one round trip, while reads for large
values require a second round trip to retrieve the extent.

3.2.2 Updates and deletes

Updates and deletes, like reads, access only two locations
in the index table, but require a client to acquire the as-
sociated locks. Due to RCuckoo’s dependent hashing, it
is usually possible to attempt to acquire both locks in a
single MCAS operation (Section 3.4.1). If so, the client
issues read(s) for the corresponding rows of the index ta-
ble immediately afterwards but in the same batch of op-
erations.1 In the rare case that the locks must be acquired
independently—necessitating an additional round trip—
the reads are batched with the second lock request.

Assuming successful lock acquisition and valid reads,
the operation can proceed if the key is present in either
location. In a single (ordered) batch of operations, the
client first writes the updated/freed entry and recomputed
row version and CRC before releasing the locks. When
updating values stored in extents, clients store the value
to a new extent via an RDMA write that is sent in parallel
with lock requests. On lock release clients write the first
bit of the old extent to free it. Deletes operate identically
save writing a new extent. Clients garbage collect their
own extents by occasionally scanning their allocated re-
gion for freed extents. Figure 3(b) shows that most uncon-
tested operations complete in two round trips; clients retry
acquisitions until they succeed or detect a failed client.

3.2.3 Inserts

Inserts are challenging because concurrent operations
might result in cuckoo paths that collide. To avoid the
complexity of rolling back partially completed inserts in
the event of a collision, RCuckoo clients compute a com-
plete cuckoo path ahead of time and then acquire locks
on all the relevant rows to ensure its success. Moreover,

1Because the lock table is located in NIC memory, RCuckoo clients
can employ SEND FENCE on reads batched with lock acquisitions to
ensure consistency without incurring a performance penalty.

to facilitate recovery from client failures, an insert is per-
formed by cuckooing elements one at a time, starting by
moving the last entry in the path to the empty location,
and then replacing it with the previous entry in the path,
and so on until the new entry is inserted in its primary
location.

To speed up cuckoo-path searches, RCuckoo clients
keep a local, RDMA-registered cache of (relevant por-
tions2 of) the index table. The cache is populated with
the results of any operation, but is used only for inserts.
Clients validate—and, if necessary, update—their cache
at each step of the insert operation as explained below, so
stale entries do not impact correctness, only performance.

At a high level an insert operation proceeds in three
(or four) phases. For extent entries, clients first write the
value to a free extent—in parallel with the remaining three
phases. Clients maintain a local slab allocator that man-
ages their private extent region, so there is no contention.
Regardless of whether the entry contains an inlined value
or a pointer to an extent, RCuckoo clients start by identify-
ing a potential cuckoo path using only the contents of their
local table cache. Clients then simultaneously attempt to
acquire the locks for and update their cache of the rows
that comprise the candidate path. Using only the contents
of their newly updated local cache, clients conduct a sec-
ond search to confirm that a candidate path—either the
initial guess or an alternative that similarly consists only
of currently locked rows—exists. If so, the insert is per-
formed; if not, the client releases its locks and retries.

Speculative local search: Each insertion attempt uses
a heuristic search to find a speculative cuckoo path. An at-
tempt starts by identifying a potential path using the (po-
tentially stale) contents of the client’s local table cache.
We use breadth-first search (BFS) [20] to identify short
paths in an attempt to minimize bandwidth and locking
overhead. If the client cache is empty the degenerate path
is presumed, i.e., that the key will be inserted into its pri-
mary location without the need for any cuckooing. Spec-
ulative cuckoo paths are especially useful when client
caches are fresh—often due to a failed prior attempt to
insert the same key.

Cache synchronization: Armed with a speculative
cuckoo path, clients identify the set of locks necessary
to protect the relevant rows. Approximately 99% of
paths can be locked with a single MCAS operation (Fig-
ure 4(c)); longer paths acquire locks in groups (Sec-
tion 3.4.1). Immediately after, but in the same batch of
RDMA operations as each attempt to acquire (a subset of)
the locks, clients synchronize their local cache by issuing

2A small cache suffices; we use 64 KB in our experiments. Caching
the entire index yields negligible additional benefit.
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reads for all of the rows covered by that set of locks. In
general, locks cover multiple rows, so this will be a super-
set of the rows necessary for the identified path. Note that
if lock acquisition is successful, the values returned by the
read of the corresponding rows will remain unchanged un-
til the lock is released.

Figure 2 shows an example insert operation where the
primary row for K is full and the entry for key C is being
evicted to its secondary location. Hence, the client has ac-
quired locks corresponding to the row where it hopes to
insert the entry for key K as well as the row into which it
plans to cuckoo the existing entry for key C. Rows shaded
in gray are synchronized because they are covered by the
locks, while the contents of any other rows that happen
to be in the client’s cache cannot be depended upon with-
out additional validation. Rather, they may increase the
likelihood that a subsequent speculative search succeeds.

Second search: If all the lock acquisitions are success-
ful, the client confirms that the speculative path remains
valid. Under an insert-heavy workload, however, specula-
tive cuckoo paths are frequently stale. Yet, a valid cuckoo
path may still exist within the locked rows. Hence, if the
speculative path is no longer viable, clients perform a sec-
ond search within their cache restricted to only the rows
for which they currently hold the lock in hopes of identi-
fing an alternative path. If the speculative path works—
or a valid alternative is located—the appropriate series of
swaps and version/CRC updates are calculated and issued
as a batch of RDMA writes, one row at a time, followed
by (an ordered set of) lock releases. If no valid path ex-
ists within the currently locked rows the client releases
its locks and tries again, conducting another speculative
search on the updated cache contents.

This entire process repeats until success, a client deter-
mines there is no viable cuckoo path within a maximum
search depth (we use a depth of five in our experiments,
at which point the insert operation returns an error indi-
cating the table is full), or a failed client is detected. If
cuckoo paths were to randomly span the table it is un-
likely that an alternate valid path would exist within the
locked rows when speculation fails. In the next subsec-
tion, we describe how RCuckoo uses dependent hashing
to dramatically increase the likelihood that an alternate
path exists.

3.3 Locality

In a traditional cuckoo hash, the two locations for a given
key are deliberately independent which allows the table to
be filled quite full before inserts begin to fail. In RCuckoo
the distance between keys’ two cuckoo hash locations is a

tunable parameter. Increased locality has two direct ben-
efits: it decreases the number of MCAS operations neces-
sary to acquire the relevant locks and increases the proba-
bility that both of a keys’ locations can be read with a sin-
gle covering read. It also reduces the region of the index
table likely to be spanned by cuckoo paths, which speeds
up inserts, but leads to hot spots that limit the table’s ex-
pected maximum fill factor. Experiments show that an op-
timal locality setting can dramatically decrease the num-
ber of round trips required to perform inserts in RCuckoo
while maintaining high (90%+) maximum fill factors.

In RCuckoo, the primary location for a key is chosen
uniformly at random, while the second is offset from the
first by uniformly random value drawn from a probabilis-
tically bounded range, where the range is likely to be rela-
tively small. We start with a base hash3, h(), and use it to
implement three independent hash functions h1(), h2(),
and h3(). (In our implementation we use a different salt
for each of the three functions.) We compute the two lo-
cations L1 and L2 for a key K as

L1(K) = h1(K) mod T,

L2(K) = L1+(h2(K) mod ⌊ff+Z(h3(K))⌋) mod T,

where T is the size of the index table in rows, Z(x) is the
number of trailing zeros in x, and f is a parameter that
controls the expected distance between the two hash loca-
tions. (In a sharded deployment, the second location is re-
stricted to the same shard by “wrapping around” the offset
accordingly.) The particular formulation is not important,
but the upshot is exponentially fewer keys have secondary
locations at increasing distances from their primary. The
probabilistic aspect is crucial, as any fixed bound on the
distance between hash locations leads to low maximum
fill factors (on the order of 10–15% in our experiments).

Figure 4(a) shows the distance between hash locations
as a CDF for different values of f , while Figure 4(b)
shows that larger f enables higher fill prior to the first
insertion failure. In our evaluation we set f = 2.3 based
on this empirical data. As shown in the figure, for index
tables with eight entries per row, RCuckoo delivers an ex-
pected max fill of greater than 95% with a 68% probability
that a key’s locations are located five or fewer rows apart.

Decreased distances between hash locations naturally
lead to shorter cuckoo paths when combined with our
breadth-first search approach. Using f = 2.3 and a ta-
ble size of 100-K rows, Figure 4(c) shows that when fill-
ing the table to 95% full, slightly more than half of inser-
tions do not require any cuckooing, and 95% of insertions
require cuckoo paths that span 32 or fewer rows while

3We use xxHash [7] in our implementation.
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Figure 4: (a) CDF of distances between cuckoo locations for different locality settings using RCuckoo’s dependent
hashing. (b) Fill percentage before insertion failure for different locality settings (average of 10 runs, negligible
variance). 90% fill indicated by dashed red line. (c) CDF of cuckoo spans for dependent and independent hashing. A
cuckoo span is the distance between the smallest and largest index in a cuckoo path.

nearly 99% span 256 or fewer. Conversely, with inde-
pendent hashing, insertions that require any cuckooing at
all almost always result in spans of 2 K rows or more.

3.4 Locking
While RCuckoo reads are lock free, updates and espe-
cially inserts depend critically on locking performance.

3.4.1 Lock granularity

Increased locality decreases the number of round trips re-
quired for lock acquisition. Recall the lock table is a lin-
ear array of lock bits and each bit locks one or more ta-
ble rows. As mentioned previously, RCuckoo implements
lock acquire and release using RDMA masked compare-
and-swap (MCAS) operations that can update 64 bits at
a time. To avoid deadlock RCuckoo acquires locks in in-
creasing order. For any given operation, clients group the
necessary locks into the smallest number of sets as possi-
ble (where each set is an attempt to acquire one or more
locks within a single 64-bit span) and issue MCAS opera-
tions one at a time in order of their target address. Clients
continuously spin on lock acquisitions and only move to
the next MCAS operation after the current one succeeds.
Due to this one-MCAS-per-round-trip acquisition proce-
dure, lock granularity is critical to performance.

If, as in Figure 4(c), almost 99% of cuckoo spans are
256 rows or less, and each lock protects four rows, almost
all insertions can have their locks acquired with a single
MCAS (lock-table accesses do need to be byte aligned).
Of course, increasing the number of rows covered by a
single lock can lead to false sharing, forcing additional
retries to acquire the necessary locks. Figure 5 shows the
results of a representative experiment where 8 clients are
concurrently filling a 512-row table to 95% full. We report
the 99th-percentile (i.e., the most expensive inserts when
the table is nearly full) number of round trips required to
acquire the locks necessary to perform an insertion as a
function of both lock granularity (i.e., number of rows per
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Figure 5: 99th-percentile round trips required per insert
in a 512-row table when filling to 95%. 512 buckets per
lock corresponds to a single global lock.

lock, on the x-axis) and lock size (i.e., the number of locks
that can be accessed with a single MCAS operation, on
the y-axis—RCuckoo’s single-bit locks correspond to 64
locks per message shown on the bottom row).

While there is some noise due to experimental variance,
the far-right column shows that a single global lock results
in high contention (as there is only one lock in the sys-
tem, it does not matter how many locks can be acquired
per message). Conversely, the top left corner shows that,
despite the lack of false sharing when a lock corresponds
to exactly one row, the inability to acquire more than one
lock at a time leads to a large number of round trips. Un-
der these conditions, the sweet spot falls in the range of
2–16 rows per lock. In our experiments we use 16 rows
per lock as, when combined with our choice of f , a single
MCAS suffices for the vast majority of insertions.

3.4.2 Virtual locks

While Figure 5 suggests that RCuckoo could employ
larger locks (e.g., 8–16-bits per) without increasing the
number of round trip times required to acquire them, there
is an additional design constraint that drives our choice
of single-bit locks. Specifically, to improve locking per-
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formance, RCuckoo locates the lock table in NIC device
memory which delivers 3× higher throughout on con-
tented addresses than host memory (Figure 1(c)). It is
also lower latency as operations to device memory avoid
a PCIe round trip. Unfortunately, NIC memory is limited
(to 256 KB on our ConnectX-5s), so this choice bounds
the size of the lock table and drives our single-bit design.

To allow RCuckoo to support tables with more than
64 M rows, we implement a virtual lock table where mul-
tiple logical locks map to a single physical lock. Con-
cretely, we map a logical lock l drawn from a table of size
L to a physical location p in a bit-array of size P by com-
puting p = l mod P . Mapping multiple virtual locks
to a single physical lock introduces yet another source of
false sharing, but allows us to support arbitrarily large ta-
bles. When employing virtual locking, clients performing
an insert first map rows to virtual locks, then to physical
locks, then sort them into groups.

4 Fault tolerance
In keeping with the rest of its design, RCuckoo handles
failures in a fully disaggregated manner as well. We
depend upon the RDMA hardware to handle network
failures and focus exclusively on clients which can fail-
stop mid-operation. Server failure can be addressed by
employing client-driven replication on top of RCuckoo.
While there may be opportunities to integrate replication
into RCuckoo itself, we defer such an exploration to fu-
ture work. In RCuckoo, client failure is only of concern if
the failure occurs while the client was holding one or more
locks, i.e., in the middle of a mutating operation (i.e., up-
date, delete, or insert); hence, RCuckoo detects client fail-
ures by noticing that a pending mutation does not com-
plete in a timely fashion. Any client that encounters such
a situation endeavors to recover the stranded lock and re-
pair the impacted portion of the index table. The remain-
der of this section describes how RCuckoo clients detect
faults, reclaim stranded locks, and, if necessary, repair the
index table. Finally, we discuss additional measures that
can be employed to prevent stale writes if desired.

4.1 Failure detection
Clients detect failures by setting a timeout when attempt-
ing repeated lock acquisition or read requests. Because
RCuckoo operations are designed to require only a few
round trip times, a client performing a successful mutating
operation will complete and release its locks extremely
rapidly. Conversely, a client that is unable to acquire all
the locks required for an insert operation releases those

they do hold before trying again. Hence, it is extremely
unlikely that repeated attempts to acquire a lock or per-
form an untorn read will fail continuously.

Of course, there is a possibility that a given row is
highly popular, leading to high lock contention and/or re-
peatedly torn reads. Clients distinguish this case by con-
sulting the CRC for the row they are unable to success-
fully read or lock. Because each mutation increases the
version number, even updates that replace an entry with
the same value will result in a different CRC. Clients de-
clare a false positive and restart their failure timer if a
CRC changes between attempts.

We expect client failures to be relatively rare, so set
our fault timeout conservatively. Failure timers must al-
low for worst-case locking time, second-search time, and
RDMA message transmission time. We bound locking
time; search and message propagation are both measured
in single-digit microseconds on our testbed. To guard
against the possibility that network conditions lead to high
rates of RDMA retries we set the maximum RDMA op-
eration retry number to three. In this context, we set the
failure timeout to 100 ms in our experiments, orders of
magnitude above the 99th-percentile insert time of 50 µs.

4.2 Repair leases

RCuckoo recovers stranded locks one lock at a time; if a
client fails holding multiple locks recovery may be con-
ducted by multiple clients at different times depending on
their access patterns. RCuckoo’s lock table does not main-
tain records of ownership, so there is no way to “transfer”
lock ownership from the failed node to a recovery node
in the table itself. Instead, clients acquire a repair lease
that grants exclusive permission to reclaim locks on a re-
gion of the index table. The index table is broken into n
regions so repairs can be executed in parallel.

RCuckoo maintains a lease table in RDMA-registered
main memory on the server. Lease entries contain a
(log n)-bit lease ID, a set flag, the lease holder’s 48-bit
queue pair ID (which RDMA ensures is unique for a given
server), and an 8-bit counter (incremented on each acqui-
sition). A lease is considered free if the set bit of the cur-
rent entry in the lease table is zero. Clients attempt to
acquire the lease using RDMA CAS operations to ensure
mutual exclusion. Upon successful acquisition, a client
completes the repair (described below) and then relin-
quishes the lease by clearing the set bit. Leases are re-
voked (to handle the case of a failed recovery node) using
a timeout mechanism similar to normal locks. If a client
times out while attempting lease acquisition it claims it for
itself (again, using CAS to resolve any races) and marks
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the lease holder as failed (see Section 4.4).

4.3 Table repair
All modification operations write new entries as a cuckoo
path; updates and deletes have a path of length one. As de-
scribed in Section 2.3 cuckoo paths are executed by first
claiming an open entry at the end of the path and proceed-
ing backward along the path, cuckooing entries forward
one-by-one until the new entry is written at the beginning
of the path. Client failures can occur at any point along an
insertion path; a failed client can leave the table in one of
four distinct states based on how far along it was:

1. A duplicate entry exists and one has a bad CRC,

2. A duplicate entry exists and both have correct CRCs,

3. No duplicate exists but one row has a bad CRC, or

4. No duplicate exists and no rows have a bad CRC.

The last case can occur if a client fails prior to issuing any
updates to the table or if it fails after updating all the rows
but before releasing the locks. In either case recovery is
trivial: a client with the repair lease can simply unlock
the stranded lock. Recovery from the other three cases
requires modification to the index table.

To repair the table a client first detects in which state the
table is and then transitions the table forward through the
states with a deterministic sequence of operations so that
failures during recovery can be repaired by a subsequent
client. A client determines the state by issuing reads to
all rows protected by the stranded lock. It then proceeds
one-by-one through each entry within the rows, check-
ing both hash locations for the corresponding key (one of
which may not be in the locked rows) for duplicates or a
bad CRC. Because RCuckoo updates one row per RDMA
write, there can be at most one duplicate or bad CRC.

Clients repair the table by transitioning though the
states one step at a time. To move from state 1 to 2, the
client writes a new CRC for the bad duplicate. The ta-
ble can be transitioned from state 2 to 4 by clearing the
duplicate entry in the second (i.e., pointed to by L2(K))
location. Finally, the table can be transitioned from state
3 to 4 by recalculating and writing a new CRC to the im-
pacted row. After a client has issued its repair sequence it
unlocks the reclaimed lock and returns its lease.

From a correctness perspective, once all rows have a
valid CRC and there are no duplicates, the table is usable
again. Clearly the new value being inserted into the ta-
ble by the failed client is lost, but this is indistinguishable
from the case that the client failed before attempting the
insert. If the client was in the middle of cuckooing val-
ues up the path, a subset of the values were moved from

their primary cuckoo location to their secondary location,
but reads check both locations in any case, so the entry
will still be located. Finally, because duplicate entries are
freed, no space in the table is lost.

4.4 Preventing stale writes

The one remaining concern is that a supposed-failed client
could just be slow, and may yet attempt to complete its
cuckoo path despite the fact that its locks were reclaimed.
Our failure timeout is deliberately set many orders of
magnitude larger than the expected operation completion
time, but we cannot completely rule out the possibility.
Large-scale deployments can implement a separate live-
ness protocol to identify stalled clients and prevent such
black swan events.

Specifically, a portion of remote memory could be used
to store a datastructure that each client must update with
some frequency so failed (or unreasonably slow) clients
can be identified by their failure to update their entry in
a timely manner. Such a protocol is straightforward to
implement with one-sided RDMA operations, but we have
not found the need to implement it in our testbed—we
have never seen a stale write that was delivered with a
delay anywhere close to approaching our timeout value.

Once a failed client is identified, real-world deploy-
ments have many ways to ensure the client ceases op-
eration, but it is interesting to consider providing such
functionality within RCuckoo itself. Unfortunately, at the
time of writing the Infiniband specification does not al-
low clients to modify each other’s RDMA permissions.4

To the best of our knowledge, the only current alterna-
tive is to reset a failed client’s queue pair by crafting an
invalid packet and sending it to their queue pair at the
server [33, Attack 2]. For this attack to work the packet se-
quence number of the invalid packet must match expected
sequence number at the receiver so 224 packets must be
sent to ensure the connection is corrupted successfully.

5 Evaluation
We evaluate RCuckoo by directly comparing its perfor-
mance in terms of throughput and latency against rep-
resentative state-of-the-art (partially) disaggregated key/-
value stores. When accessing sufficiently large values,
all systems can max-out our testbed’s 100-Gbps link
rate, so we focus on workloads with small key/value
pairs that remove the bandwidth limitation, exposing the

4Type-II memory windows enable clients to remove their own per-
missions using SEND WITH INV, but not another client’s.
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(in)efficiency of each system’s management and synchro-
nization techniques.

When values are stored inline, RCuckoo outperforms
existing systems while delivering competitive insert laten-
cies. Using fault injection, we show that our distributed
approach to client failure detection and recovery enables
RCuckoo to sustain high throughput even though 100s
of clients are failing per second. Finally, we justify our
design decisions through a series of micro-benchmarks.
Specifically, we quantify the benefit RCuckoo extracts
from its locality enhancement before measuring the im-
pact of index-table entry size.

5.1 Implementation
We have built two separate versions of RCuckoo, an
8.7 K-line C++ implementation tuned for high perfor-
mance and a 12 K-line Python implementation that sim-
ulates RDMA operations to facilitate correctness test-
ing. Both implementations will be made available on
GitHub at publication. We report results using our
C++ implementation which requires OFED-4.9 to sup-
port masked CAS operations and device-mapped memory
on ConnectX-5 NICs. All experiments use 64-KB client
index-table caches and a virtual lock table at the server.

5.2 Testbed
We conduct our evaluation on an 9-node cluster of dual-
socket Intel machines. Each CPU is an Intel Xeon E5-
2650 clocked at 2.20 GHz. Each machine has 256 GB of
RAM with 128 GB per NUMA node. All machines have a
single dual-port ConnectX-5 attached to a 100-Gbps Mel-
lanox Onyx switch. In our RCuckoo experiments we use
one sever as the memory server and the rest a client ma-
chines spreading threads evenly across machines.

We compare RCuckoo against three recent RDMA
key/value stores with different designs, FUSEE [38],
Clover [40], and Sherman [41]. While none have the exact
same assumptions or feature set as RCuckoo, each repre-
sents an apt comparison point for different aspects. To
avoid biasing our evaluation, we consider the same work-
loads (YCSB) as the authors of the previous systems.

FUSEE is a fully disaggregated key/value store that
represents the closest available comparison point to
RCuckoo. While both employ only 1-sided RDMA op-
erations, FUSEE eschews locking in favor of optimistic
insertions. FUSEE clients use CAS operations to man-
age fixed, 64-bit index table entries that contain pointers
to values stored in extents. Due to its reliance on CAS
operations, FUSEE is unable to support inlined storage
of small values like RCuckoo, forcing all reads to require

two round trips. Unlike RCuckoo, FUSEE is designed to
support replication. To remove the overhead of replica-
tion, we deploy FUSEE with a single memory node.

Clover is only partially disaggregated—it requires a
metadata server to manage its index structure—but can
deliver higher read performance than FUSEE on read-
only workloads. Clover is designed to leverage remote
persistent memory and implements both reads and up-
dates using one-sided RDMA operations. Moreover, un-
like FUSEE—and similar to RCuckoo—Clover reads are
self verifying. In contrast to prior comparisons [38] that
force clients to consult the metadata server on each read,
we allow Clover to take advantage of its client caching to
achieve maximum performance on read-heavy workloads.

Sherman is the highest-throughput distributed key/-
value storage system of which we are aware that em-
ploys locks. Sherman maintains a B-tree that spans mul-
tiple servers and supports range queries, a feature none of
the other systems—RCuckoo included—provide. On the
other hand, Sherman clusters are not fully disaggregated:
each node in a cluster is a peer with many CPU cores and
a single memory core that is responsible for servicing al-
location RPC calls from clients. As such, Sherman does
not encounter the same bandwidth bottlenecks as the other
systems because requests are partitioned across machines.

5.3 Performance

We start by considering throughput and latency on the
classical YCSB workloads which employ varying mixes
of read and update operations before turning to the more
complex insert operation. RCuckoo delivers the high-
est performance on reads and updates across all settings,
while insert performance varies as a function of table fill
factor. Even in the worst case, however, RCuckoo limits
insert I/O amplification to around 2×.

Throughput. Figure 6 shows YCSB throughput for
RCuckoo, FUSEE, Clover, and Sherman on three differ-
ent YCSB workloads. For each system, we allocate a 100-
M-entry table and pre-populate it with 90 M entries that
each consist of a 32-bit key and 32-bit value (we con-
sider larger sizes in Section 5.5). We plot the aggregate
throughput of a variable number of clients concurrently
accessing entries according to a Zipf(0.99) distribution.

In a read-only (YCSB-C) workload, FUSEE suffers
from its extent-based value storage. RCuckoo, Clover,
and Sherman perform similarly at low-to-moderate levels
of concurrency, but they separate at scale. Sherman’s read
algorithm is more complex than RCuckoo’s leading to
lower top-end performance. Clover’s client-side caching
shines under this skewed workload, where almost all reads
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Figure 7: Insert performance as a function of fill factor. (a) Throughput for four different insert workloads, (b) median
operation latency, (c) mean operation size, and (d) mean per-operation RDMA message count under workload A.

hit in a client’s index cache, requiring only a single read
for the value; its performance degrades under a more uni-
form workload (not shown). RCuckoo, on the other hand,
reads inlined values in a single round trip regardless of the
distribution, leading to the highest performance.

Increased update rate slows all systems. Even with
only 5% updates (YCSB-B), the picture changes dramati-
cally. Sherman performs well at low levels of concurrency
due to its single-round-trip reads, but hits a severe bottle-
neck due to lock contention on the skewed access pattern.
(Sherman improves—but does not surpass RCuckoo—for
uniform workloads, not shown, where lock contention is
less of an issue.) Caching is less effective with updates,
bringing Clover’s throughput in line with FUSEE.

On the 50/50-mixed YCSB-A workload RCuckoo and
FUSEE perform similarly, although we are unable to scale
FUSEE past 250 clients in our testbed while RCuckoo
continues to scale. Sherman begins to suffer from lock
contention even earlier, topping out around 5 MOPS
before collapsing. (Absolute performance improves as
Zipf skew decreases—not shown—but the trend remains.)
Clover performs worst under write-heavy workloads due
to its inability to effectively leverage caching with a con-
stantly changing index structure.

Latency. Latency varies dramatically depending on op-
eration for all systems, each of which optimizes for reads.
For RCuckoo, insert is by far the most involved opera-
tion, but it remains highly performant. To evaluate in-
sert performance we run workloads with a mix of reads
and inserts. Figure 7 considers performance on workloads
that exclusively use inserts (rather than updates); as with

YCSB nomenclature A is 50/50 read/insert; B is 95/5; C is
read-only; and W is insert only. Inserts become more ex-
pensive as the table fills, so we pre-populate the table with
a varying number of entries and report insert performance
as a function of the table’s initial fill factor.

As a baseline we collect the read and insert latencies
for all systems under light load (Figure 7(a)). Read la-
tency is nearly identical for all systems save FUSEE as it
makes a read to both the index and extent. Insert times
vary: Clover and Sherman use two-sided RDMA oper-
ations for insert and both need to perform allocations
and set up metadata for the requesting client. FUSEE is
slightly slower, roughly the same as RCuckoo’s best case.
As the table fills, however, cuckoo paths grow in length
causing RCuckoo insert operations to require additional
round trips to find valid cuckoo paths. Insert operations at
maximum fill take roughly twice as long as at empty.

Insert I/O amplification. Figure 7(b) shows impact of
table fill on insert throughput at heavy load (320 clients).
As the index table fills, cuckoo paths become longer lead-
ing to increased contention and additional bandwidth con-
sumption. In each case (except read-only C) RCuckoo’s
performance declines with fill factor. In the insert-only W
case RCuckoo’s performance drops from a high of 11.5
MOPS in a nearly empty table to 4.5 MOPS at a 90%
fill factor. As a point of comparison, FUSEE’s maximum
insert-only performance is 9.1 MOPS on our testbed, al-
though it is independent of fill factor. While FUSEE
out-performs RCuckoo at high fill factors, we observe
that insert-only workloads are rare in practice [27]. Fig-
ures 7(c) and (d) show the impact of fill factor on the band-
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Figure 8: RCuckoo microbenchmarks: (a) YCSB-A throughput vs. client failure rate, (b) round trip times required
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width cost (at most 2×) of each operation and the number
of RDMA messages (≤1.5×) they require to complete.

5.4 Fault tolerance

RCuckoo runs at nearly full throughput during realistic
failure scenarios and remains functional in the face of
hundreds of failures per second. We emulate client fail-
ures by performing a partial insert operation that ran-
domly truncates the batch of RDMA operations (includ-
ing lock releases), leaving the table in one of the states
listed in Section 4.3. Figure 8(a) shows that throughput
remains high until about 500 client failures per second,
at which point lock granularity begins to play a signifi-
cant role; finer-grained locks are easier to recover leading
to less throughput degradation. As a point of reference,
we observe that RDMA itself struggles to handle churn of
this magnitude: a server can only establish approximately
1.4 K RDMA connections per second [23].

5.5 Microbenchmarks

Having established RCuckoo’s superiority over prior sys-
tems and demonstrated its robustness to client failure, we
now evaluate the impact of particular design choices.

Locality enhancement. Figure 8(b) illustrates the dra-
matic benefit RCuckoo extracts from its dependent hash-
ing combined with a BFS cuckoo-path search strategy. To
focus on longer cuckoo paths, we pre-populate a 100-M
entry table to 85% and then report both the median and
99th percentile round trips per insert key/value pairs un-
til the table is 95% full as a function of lock granularity.
While median performance is on the same order, the 99th-
percentile insert takes an order of magnitude fewer round
trips with dependent hashing and BFS as opposed to in-
dependent hashing and DFS as used in prior cuckoo hash
systems [20, 25, 32]. As before (c.f. Figure 5), perfor-
mance is similar with four or more locks per message.

Entry/value sizes. Inlined key/value entries enable
single-round-trip reads. However large entries increase
bandwidth consumption for inserts. Figure 8(c) shows the
effect of entry size on throughput under 50% insert and
read-only (YCSB-C) workloads. Insert is a bandwidth-
limited operation on our 100-Gbps testbed, while read
performance (and update/delete, not shown) is largely un-
affected by entry size. Extent entries are slightly slower:
Figure 8(d) shows YCSB throughput as a function of
value size from 8 to 1024 bytes on 6 client machines with
120 cores. Read performance becomes link-rate limited
after about 64 bytes. For comparison, we show the per-
formance of the 8-byte inlined values used elsewhere in
the evaluation on this configuration and compute the dif-
ference. Inlined entries have two sources of performance
gain: they avoid the overhead of reading and writing to
extents which increases with value size, but, more impor-
tantly they avoid additional rounds trips on cache misses.
YCSB-B sees a 21% performance improvement from in-
lining while YCSB-A gains 37% (YCSB-C has misses).

6 Conclusion
In this work we design and implement a lock-based
cuckoo hash table for passive remote memory. Using de-
pendent hashing, a carefully designed locking protocol,
and the latest RDMA NIC features we achieve single-
round-trip reads, update operations that require two round
trips when uncontested, and insert operations that require
only two round trips in the median case. Even in the face
of high contention and nearly full tables, client caching
limits I/O amplification. Moreover, our step-by-step in-
sert protocol enables fully disaggregated failure detection
and recovery.
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