
This paper is included in the Proceedings of the  
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the 
2025 USENIX Annual Technical Conference  

is sponsored by

Snary: A High-Performance and Generic 
SmartNIC-accelerated Retrieval System

Qiaoyin Gan, Institute of Computing Technology, Chinese Academy of Sciences; Heng Pan, 
Computer Network Information Center, Chinese Academy of Sciences; Luyang Li, Kai Lv, 
and Hongtao Guan, Institute of Computing Technology, Chinese Academy of Sciences; 
Zhaohua Wang, Computer Network Information Center, Chinese Academy of Sciences; 

Zhenyu Li, Institute of Computing Technology, Chinese Academy of Sciences; 
Gaogang Xie, Computer Network Information Center, Chinese Academy of Sciences

https://www.usenix.org/conference/atc25/presentation/gan



SNARY: A High-Performance and Generic SmartNIC-accelerated Retrieval System

Qiaoyin Gan2,3, Heng Pan1, Luyang Li2, Kai Lv2, Hongtao Guan2,
Zhaohua Wang1, Zhenyu Li2, and Gaogang Xie1,3

1Computer Network Information Center, Chinese Academy of Sciences
2Institute of Computing Technology, Chinese Academy of Sciences

3University of Chinese Academy of Sciences

Abstract
Industrial large-scale recommendation systems mostly follow
a two-stage paradigm: retrieval and ranking stages. The re-
trieval stage aims to select thousands of relevant candidates
from a vast corpus with millions or more items, and thus often
becomes the performance bottleneck. Offloading the retrieval
stage to hardware is a promising solution. Nevertheless, pre-
vious solutions either fail to achieve optimal performance or
lack the sufficient generality to support fuzzy search, which
has been widely used in modern retrieval systems to improve
their scalability and efficiency.

In this paper, we present SNARY, a generic SmartNIC-
accelerated retrieval system, to facilitate both exact and fuzzy
search. Specifically, SNARY utilizes High-Bandwidth Mem-
ory (HBM) for corpus storing and scanning and designs two
types of search engines: a data parallelism exact search, and
a Locality-Sensitive Hashing (LSH)-based fuzzy search. Fur-
thermore, SNARY employs a pipeline-based approach to select
Top-K items and streams the data flow of the whole system.
We have implemented SNARY on Xilinx commercial Smart-
NICs. Experimental results show SNARY achieves a 20.91%-
83.88% lower latency and a 1.26×-18.27× higher latency-
bounded throughput in exact search scenarios, and achieves a
85.13%-87.40%lower latency and a 20.18×-23.81× higher
latency-bounded throughput in fuzzy search scenarios in com-
parison with the state-of-the-art hardware-based solutions.

1 Introduction

Due to the rapid growth in the amount of information, rec-
ommendation systems have been widely applied in many
web-scale applications (e.g., Amazon and ByteDance) to as-
sist users in finding their preferred items. A typical indus-
trial recommendation system often consists of two sequential
stages [20, 36]: matching (a.k.a retrieval) and ranking1 (see
Figure 1). The retrieval stage selects thousands of relevant

1Recent works further divide the ranking into three phases: pre-ranking,
ranking and re-ranking [27, 28].

Figure 1: Hierarchical structure of the recommendation sys-
tems. Recommendation systems are composed of two distinct
stages: retrieval and ranking.

items from a very large-scale corpus (e.g., millions of items)
while the ranking stage further filters out the top dozens of
items from the selected small-scale candidates with high preci-
sion and recall. In this paper, we mainly focus on the retrieval
stage.

With advancements in deep learning, neural retrieval mod-
els are being extensively applied in the retrieval stage, with
progressively better results [5, 36]. Among them, represen-
tation learning [1], which is also called embedding, has be-
come the mainstream trend to facilitate deep retrieval in prac-
tice [15, 20, 27]. Specifically, in an embedding-based retrieval
(EBR) system, all corpus items and user queries are repre-
sented with semantic embedding vectors via two parallel deep
neural networks. The retrieval process of the EBR system
can be regarded as a Nearest Neighbor (NN) algorithm: given
one user query, a matching function is then used to calcu-
late the similarity (a.k.a distance) in the embedding space for
each corpus item with the query. Each retrieval operation is
associated with a recall count, K, indicating the number of
embeddings that require final retrieval. After similarity cal-
culation, a sorting algorithm is deployed to efficiently select
Top-K items based on their similarity to the query. That is to
say, the retrieval problem is finally converted into a similarity
search problem.

According to the retrieval scenario requirements and spe-
cific algorithm implementations, retrieval methods are further
divided into exact search and fuzzy search. Exact search is
based on the K-Nearest Neighbor (KNN) algorithm, and the
retrieval results are the top K embeddings that are closest to
the user query, which are strictly sorted according to the dis-
tances between embeddings, while fuzzy search is based on
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Approximate Nearest Neighbor (ANN) algorithms, and the
retrieval results are embeddings with relatively high similarity
to the user query, but not necessarily exact, which usually sac-
rifices a certain degree of precision to improve the retrieval
speed [20]. Due to the high precision of retrieval results, exact
search is very popular in various fields [25, 51]. It is worth
noting that fuzzy retrieval can provide more effective solu-
tions in scenarios where exact results are not required and
lower latency is needed, such as video recommendation [5],
product search [27, 47], and information retrieval [15]. At
the same time, there are some scenarios where the combina-
tion of exact search and fuzzy search is required to improve
the stability of the system’s response time. For example, a
specific recommendation system has significant traffic differ-
ences at different times of the day. Appropriately using fuzzy
search during high-traffic periods and exact search during
relatively stable traffic periods can effectively balance the
system’s response time and enhance the user experience.

However, existing EBR systems usually have some defi-
ciencies in two aspects: (i) the growing corpus sizes have
brought about serious performance problems; (ii) the require-
ments of different scenarios for retrieval methods bring about
the issue of generality. For the performace issue, the EBR
systems are required to fetch all corpus items, calculate their
similarity, and choose Top-K items as long as they receive
one user query. Consequently, the corpus size determines
the scale of the problem. Low retrieval performance (high
response delay) indeed degrades user experience and satis-
faction. Therefore, the recent interest in the community has
moved to the implementation of high-performance EBR sys-
tems, especially with hardware accelerators. For example,
some works exploit GPUs (Graphics Processing Units) to
accelerate those computation-intensive tasks in EBR, such as
similarity computation [49]. There are already mature GPU
retrieval system frameworks that support both exact search
and fuzzy search simultaneously [25]. However, GPUs are
not optimized for pipeline parallelism that is required by the
data flow of the whole EBR system, especially at the Top-K
selection stage due to the cost of external memory commu-
nication. To this end, the community has turned to another
popular hardware accelerator, FPGA (Field Programmable
Gate Array), which does not have the inherent limitations of
GPUs. Unfortunately, the state-of-the-art FPGA-based EBR
system [51] only works with exact search and falls short for
fuzzy search, lacking support for both types of retrieval meth-
ods which brings limited generality.

In this paper, we design SNARY, a SmartNIC-Acceler-
ated Retrieval sYstem, which can achieve high performance
and generality for both exact and fuzzy search. We choose
SmartNICs for two reasons: (i) modern SmartNICs are of-
ten equipped with FPGAs; (ii) SmartNICs are the nearest
devices to user queries in servers because queries are often
from remote users in practice. That is to say, SNARY can
directly process user queries when the NIC receives them.

Overall, SNARY is integrated with two types of search en-
gines: exact search and fuzzy search. For exact search, SNARY
utilizes the FPGA high bandwidth memory (HBM) to store
and scan the corpus. With massive fully programmable com-
pute elements on FPGAs, SNARY designs a data-parallelism
method to accelerate similarity computation, and a pipeline-
parallelism solution to facilitate Top-K item selection. In addi-
tion, the whole data flow of SNARY also follows the pipeline
parallelism paradigm. For fuzzy search, SNARY proposes a
Locality-Sensitive Hashing (LSH)-based [7, 8, 45] search ar-
chitecture on FPGAs. Specifically, we design multiple LSH
hash tables to maintain the corpus on FPGA HBM. With this
basis, SNARY can quickly select relevant retrieval results for
one query via hash table lookup, which constitutes a small
new “corpus”. Then, SNARY will further perform a more ef-
fective exact search operation on the new corpus for final
fuzzy retrieval results.

We implement SNARY based on Alveo™ U50 Data Cen-
ter Accelerator Card, and compare it with Faiss [25], a pop-
ular GPU-based EBR system, and FAERY [51], the state-
of-the-art FPGA-based solution. Experimental results show
that SNARY achieves a 78.75%-83.88% lower query la-
tency than Faiss and a 20.91%-45.19% lower query latency
than FAERY, with a 14.12×-18.27× higher latency-bounded
throughput than Faiss and a 1.26×-1.64× higher latency-
bounded throughput than FAERY in exact search scenarios.
It also achieves a 85.13%-87.40% lower query latency than
Faiss, with a 20.18×-23.81× higher latency-bounded through-
put than Faiss in fuzzy search scenarios, while FAERY does
not support fuzzy search. To sum up, this paper makes the
following contributions:

• To the best of our knowledge, SNARY is the first SmartNIC-
based retrieval system that achieves high performance for
both exact and fuzzy searches.

• We utilize large HBM and programmable compute ele-
ments on FPGAs to design a data-parallelism similarity
computation and a pipeline-parallelism Top-K selection to
facilitate exact search. With this basis, we further propose
an LSH-based fuzzy search on SmartNICs.

• We implement SNARY on commercial SmartNICs, and
evaluate its performance and efficiency. Experimental re-
sults show that SNARY outperforms the popular GPU-
based approach and the novel FPGA-based approach.

2 Background and Motivation

2.1 Embedding-based Retrieval

Industrial recommendation systems often adopt embedding-
based retrieval (EBR) to provide relevant or personalized
product candidates [20,27]. The basic idea of EBR is to trans-
late all corpus items and user queries into embedding vectors
via representation learning [1], and convert the retrieval prob-
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Figure 2: The workflow of an ideal and feasible EBR system.

lem into a similarity search problem in the embedding space.
It is noteworthy that corpus item embeddings often are pre-
computed (offline) in practice.

Overall, a typical EBR algorithm mainly consists of three
steps: corpus access, similarity computation and Top-K selec-
tion. Specifically, given a user query, the algorithm is required
to scan the corpus and iterate through its all items (i.e., corpus
access) and calculate the similarity between each item and
the user query (i.e., similarity computation). After that, the
algorithm sorts the items based on their similarity and selects
Top-K items (i.e., Top-K selection) as the retrieval results.
It is clear that corpus access is a memory-intensive opera-
tion while both similarity calculation and Top-K selection are
compute-intensive.
Ideal EBR system. With the analysis of the basic EBR algo-
rithm, we then introduce an ideal EBR system architecture
that can provide optimal retrieval performance. In summary,
it should satisfy the following conditions.
• Large high-bandwidth memory. Due to the growing cor-

pus sizes, the EBR system requires a large-capacity exter-
nal memory to store it. In addition, the memory should
provide high bandwidth in order to support the memory-
intensive operation (corpus access).

• Task/Data parallelism. Logically, the similarity calcula-
tions for different item embedding are independent. To
match the throughput of corpus access, the ideal EBR sys-
tem should perform calculations with data parallelism.

• Pipeline parallelism. To achieve optimal latency, both
inside Top-K selection and the whole EBR data flow should
follow the pipeline parallelism paradigm. Otherwise, the
accumulation of intermediate results is unacceptable in
terms of resource consumption in scenarios with large
scale corpus.

Comparison of different hardware. At present, most main-
stream EBR systems are implemented on CPUs, GPUs and
FPGAs. For CPUs, the relatively low memory bandwidth
slows down the reading speed of the corpus, which directly
affects the overall performance of the system; at the same
time, the relatively small number of CPU cores also poses a
challenge to data parallelism. Compared with CPUs, GPUs
provide large-capacity and high-bandwidth external memo-
ries and have good support for data parallelism. However,
due to the overhead of cross-core communication in GPUs
and the limitations of single-core memory, GPUs have rel-
atively large defects in supporting the overall pipelining of

(a) Fuzzifying corpus access.

(b) Fuzzifying similarity calculation.

Figure 3: Two methods of fuzzy retrieval solutions. Fuzzy
retrieval solutions include fuzzifying similarity calculation
stage and fuzzifying corpus access stage.

the system, especially in the Top-K selection stage. Research
shows that currently, mature GPU frameworks consume 80%
of latency in the Top-K selection stage [51]. Meanwhile,
this also limits the maximum supported recall count (e.g.,
1024 in [25]). Advanced FPGAs also provide large-capacity
and high-bandwidth external memories through HBM. Mean-
while, unlike GPUs, FPGAs provide sufficient on-chip memo-
ries that can be directly accessed, and all computing units and
interconnects are programmable, which enables FPGAs to
better support the implementation of fully pipelined systems.
Performance factors. Figure 2 illustrates the workflow of
a pipelined EBR system. Actually, the total latency of the
pipelined system is determined by two portions: (i) the cost
of corpus access; (ii) the time for one batch of corpus items
to pass through the pipeline, going through similarity calcula-
tion and Top-K selection. Thus, we formalize the theoretical
latency of the retrieval system in terms of pipeline cycles
(denoted by L) as follows:

L =
M
B

+C, (1)

where M represents the corpus size, B represents the band-
width of external memory which determines the throughput in
any pipeline cycle, and C is a constant denoting the pipeline
cycles needed to process a single batch of corpus items. That
is, C is dependent on the specific design and implementation
of one EBR system. Since the entire system is pipelined, once
the corpus has been fully read, the last batch of the corpus
passes through the pipeline, and the entire system completes
its operation.

2.2 Accelerating Retrieval with Fuzzy Search

The retrieval phase can be accelerated through fuzzy search, a
technique widely employed in industry. It often utilizes ANN
algorithms (e.g., LSH [7]) to achieve low response time, but
at the cost of slight accuracy degradation. However, such a
trade-off is worthwhile in many time-sensitive scenarios, such
as search engines and recommendation systems.

Existing fuzzy retrieval solutions mainly focus on fuzzi-
fying the similarity calculation [6, 22, 31] (see Figure 3(a)).
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For example, some works employ lexical fuzzification ap-
proach [14, 17], synonym expansion technique [39, 43], and
machine learning-based methods [29, 48] to enhance the flex-
ibility of matching between user queries and corpus items.
These approaches are mainly applied in CPU-based retrieval
systems to compensate for the deficiency of data parallelism
in CPU-based similarity calculation. However, for those sce-
narios that involve large-scale corpus, the corpus size often
determines the overall latency (see Equation 1). In such cases,
fuzzifying similarity calculations has little effect on perfor-
mance. Instead, fuzzifying corpus access may lead to more
improvement (see Figure 3(b)), which means that instead of
scanning the entire corpus, only the part of the corpus that
is highly relevant to the user’s query is selected for retrieval.
According to Equation 1, the latency for reading the corpus
accounts for the vast majority of the overall system latency.
Reducing the size of the corpus can effectively decrease the
latency and improve the retrieval speed.

2.3 SmartNIC Opportunities

We have found that accelerating the retrieval system through
a SmartNIC implementation has the following advantages:

• SmartNICs are the nearest devices to user queries in servers
since queries are often from remote users. SmartNIC-
accelerated retrieval systems have the opportunity to
achieve optimal performance since they have the short-
est data path.

• Accelerating the retrieval system through SmartNICs, i.e.,
implementing the retrieval phase on FPGA, leverages the
hardware advantages of FPGA. It harnesses FPGA’s pro-
grammability to implement custom data parallelism and
pipelining strategies, ultimately achieving a retrieval sys-
tem with favorable latency.

• FPGAs not only provide ample external storage space for
storing large-scale corpus but also allow for preprocessing
of the corpus using ANN algorithms. This enables fuzzy
search acceleration without compromising the pipeline of
the retrieval, thereby simultaneously supporting both exact
and fuzzy search scenarios.

3 SNARY Overview

We design SNARY, a high-performance and generic
SmartNIC-accelerated retrieval system, that follows the afore-
mentioned ideal EBR system architecture. It is noteworthy
that SNARY supports both exact and fuzzy searches. Figure 4
shows its conceptual architecture.

Overall, SNARY utilizes High Bandwidth Memory (HBM)
on FPGAs to store a large-scale corpus and enable efficient
corpus access. Furthermore, SNARY builds LSH hash tables
on HBM in advance to maintain corpus items. Consequently,

Figure 4: The conceptual architecture of SNARY. SNARY
consists of a HBM, multiple similarity computation units, a
filter and a pipeline-parallel Top-K selection module.

similar items will be inserted into one or neighbor hash buck-
ets2.

For a query that requires an exact search, SNARY will fetch
a batch of items from the corpus, and feed them to multiple
similarity calculation instantiations built upon massive fully
programmable compute elements of FPGAs. That is, SNARY
calculates the similarity between corpus items and the user
query in a data-parallel manner. After that, the items will
be transmitted to a parallel Top-K selection module which
perfectly supports the pipelining framework, selecting the
final retrieval results based on their similarity. To balance the
throughput between the similarity calculation and the Top-K
selection modules, SNARY inserts a filter in-between to drop
relatively poor items.

If a user performs a fuzzy retrieval, SNARY will use the user
query as a key to look up the LSH hash tables. Those items
in the matched hash bucket and its neighbor hash buckets
will constitute a new small-scale corpus. Then, SNARY will
perform an exact search on the new corpus. That is, SNARY
fuzzifies corpus access and significantly reduces the size of
the target corpus. This indeed reduces the latency of the over-
all system.

4 Design and Implementation

In this section, we begin by examining how SNARY achieves
efficient exact search, providing a more detailed theoretical
proof. Subsequently, we discuss the transition from exact
search to fuzzy search and analyze the system design in fuzzy
search. After that, we present the theoretical formula for the la-
tency of SNARY. Finally, we elaborate on the implementation
details of SNARY.

4.1 Exact Search

SNARY stores the large-scale corpus in HBM. HBM achieves
high capacity and bandwidth by stacking multiple DDR chips.

2In SNARY, a hash bucket only stores the indexes of corpus items for
saving memories.
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(a) E < BM . (b) E > BM .

Figure 5: The layout of embeddings in HBM for two situa-
tions. According to the relationship between E and BM , em-
bedding concatenation or embedding splitting is performed.

HBM can be divided into multiple channels, each with a max-
imum transfer bandwidth BM , meaning that within one clock
cycle, each channel can transfer data of up to BM bytes. Mem-
ory read/write operations in each channel do not interfere
with each other, and based on this, HBM allows concurrent
reading of multiple candidate objects. Let E represent the size
of each embedding; if N channels are used to store embed-
dings from the corpus, the memory bandwidth in Equation 1
can be expressed as:

B = N ·BM. (2)

To fully utilize the memory bandwidth, a horizontal storage
strategy is employed when storing the corpus. This means
that the embeddings in the corpus are evenly divided into N
parts, ensuring that the data size within each channel is the
same. Consequently, all channels read data synchronously in
the vertical direction.

Within one clock cycle, HBM can read a maximum of
BM bytes of data in one channel. As a result, the number of
complete embeddings NE read by HBM in one clock cycle is
given by the following equation:

NE =
N ·BM

E
. (3)

As discussed, we expect to read complete embeddings in
each clock cycle, enabling the overall system to operate in a
pipelined fashion. Generally, both E and BM are powers of
2, so when they are not equal, embedding concatenation or
embedding splitting is performed, as shown in Figure 5.

The similarity calculation stage involves assessing the sim-
ilarity between user queries and candidate objects, which,
in the EBR system, is translated into the distance between
two embeddings in the embedding space. Therefore, similar-
ity calculation involves computing the distance (e.g., inner
product [42], Cosine distance [2] and Euclidean distance [8],
etc.) between the embedding representing the user query and
the embedding representing the candidate object to obtain a
similarity score. A higher similarity score indicates a greater
similarity to the user query.

Figure 6: The working principle of the Top-K selection mod-
ule. It involves two rounds of parallel swaps to maintain the
0th position as the smallest value among the current Top-K
elements.

To achieve an efficient processing pipeline, the throughput
of the similarity calculation stage needs to match that of the
corpus retrieval. In other words, within one clock cycle, the
computation of the distance between NE embeddings and the
embedding representing the user query must be completed.
As there is no data dependency among these NE computa-
tions, FPGA’s data parallelism advantage can be leveraged
in the design. NE similarity computation units are instanti-
ated, with each unit responsible for calculating the similarity
score between a candidate object and the user query. Con-
sequently, within one clock cycle, the similarity calculation
module receives NE embeddings and concurrently generates
NE similarity scores.

The Top-K selection stage requires selecting the top K
highest scores generated by the similarity calculation module
to obtain the final retrieval results. Different retrieval systems
may have a varying magnitude of recall quantity [12, 27, 35],
so the design of the Top-K selection module needs to satisfy
resource constraints and meet performance and scalability
goals, when the value of K changes.

The design of the Top-K selection module should support
the pipelining of the system. A pipelined retrieval system
requires real-time sorting to prevent issues such as pipeline
blocking and excessive memory usage. We improved the Top-
K sorting algorithm presented in [30] and implemented a
Top-K sorting module that maintains pipelined parallelism
even with a large number of recall items. We also provide a
more detailed and rigorous proof to establish the correctness
of the Top-K algorithm. The specific principle is illustrated in
Figure 6. The core of the Top-K selection module is an array
of size K, which stores the current top K largest values. At any
given time, the 0th position of this array holds the smallest
value among the current Top-K elements. In each pipeline
cycle, a new similarity score is read and compared with the
0th position element. If the new score is larger than the current
Top-K’s smallest value, a replacement occurs. Subsequently,
the array undergoes two rounds of parallel swaps to ensure
that the 0th position continues to hold the smallest value in
the current Top-K set. The first round of parallel swaps starts
from the 1st position and proceeds backward, swapping pairs
if they are in reverse order; the second round begins from the
0th position, similarly swapping reverse pairs as necessary.
The Top-K selection module generally also needs to ensure
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that the results from the retrieval stage are ordered, making
them more convenient for processing in the sorting stage. To
achieve this, after the final new score is read, we add K/2
additional pipeline cycles with empty inputs, during which
K rounds of parallel swaps are performed. This guarantees
that the scores in the final Top-K array are sorted. The proof
of the correctness of the algorithm above can be found in
Appendix A.1.

Since the swaps in both Stage 1 and Stage 2 can be per-
formed in parallel, the Top-K selection module can complete
its operations with O(1) time complexity for each pipeline cy-
cle. Additionally, each new score is compared with the current
smallest value in the Top-K array (i.e., the 0th position), en-
suring that the array always contains the top K largest scores
at any given time. To maintain the efficiency of parallel swaps
when the value of K is large, we partition the Top-K array
and distribute it across the on-chip memory to increase the
number of read/write ports. In scenarios with limited on-chip
resources, we also offer a solution that divides the Top-K ar-
ray into upstream and downstream segments. This approach
splits the array into two sections of size K/2, with the first half
storing the top K/2 values and the second half storing values
ranked between K/2 and K. The upstream array receives the
new scores, determines whether to replace any value and per-
forms parallel swaps. The replaced value (or the non-replaced
new score) is then passed to the downstream array, where a
similar process is executed.

As stated previously, the performance of the Top-K se-
lection module has a significant impact on the overall per-
formance of the retrieval system. Compared with the Top-
K selection module algorithm adopted in [51] (first pro-
posed in [35]), the above-mentioned Top-K selection algo-
rithm based on parallel exchange only occupies O(K) on-chip
memory, while the algorithm in [51] requires approximately
O(9K/2) of memory. This order-of-magnitude memory foot-
print optimization yields substantial performance improve-
ments, since under a large recall count, the on-chip resources
are almost fully occupied (mainly including the memory oc-
cupied by the Top-K module and the filter module). Note that
with on-chip memory pressure, the wiring between the mem-
ory module and other logic modules will become complicated,
which may lead to problems such as wiring congestion and
tight logic resources, thereby reducing the working frequency.
At the same time, the above-mentioned algorithm only oc-
cupies a few (1 or 2) pipeline stages, while the algorithm
in [51] has O(logK) modules and needs to occupy O(logK)
pipeline stages, while each module cannot be reused. Our Top-
K selection module is helpful for reducing on-chip memory
occupancy, increasing the overall clock frequency, reducing
the pipeline depth, and has good scalability at the same time.

Due to the dissimilarity in throughput between the similar-
ity calculation module, which produces NE scores per clock
cycle, and the Top-K selection module, which can only han-
dle one score per clock cycle, a throughput imbalance exists

between them. To prevent pipeline blockage, a filter module
is introduced between these two modules. The filter module
utilizes forward feedback from the Top-K selection module
to identify the current minimum score swapped out from the
Top-K array and filters out scores that are smaller than the
current minimum score. In every pipeline cycle, the filter re-
ceives NE scores, transports the single valid score into the
Top-K selection module according to the current minimum
Top-K value, and caches or drops other scores.

We provide a detailed analysis of the filtering efficiency
and the cache memory usage for other valid scores in the same
pipeline cycle in Appendix A.2. Let γ = K/M represent the
recall rate of the entire retrieval system, the condition under
which the filter can be effective is given by:

1
N2

E
≥ γ− γ lnγ, (4)

which provides guidance for our system design. For instance,
in the case of a recall rate of 1× 10−3, we get NE ≤ 11.25.
Thus, at most 11 candidate objects can be read from the corpus
in one clock cycle to make sure the filter works.

4.2 Fuzzy Search

Compared to exact search, fuzzy search reduces search la-
tency by sacrificing accuracy. We implement fuzzy search
acceleration in the retrieval process based on the structure of
exact search. According to Equation 1, there are three opti-
mization approaches to reduce retrieval system latency and
improve performance: (i) reducing the size of the corpus, M;
(ii) increasing the memory bandwidth, B; and (iii) decreasing
the system’s fixed latency, C.

Memory bandwidth is determined by the hardware configu-
ration, while system-fixed latency is a constant related only to
system design, accounting for a relatively small portion of the
total latency. Therefore, one optional approach is to reduce
the size of the corpus, M, to decrease the retrieval system’s
latency. Specifically, we selected the LSH algorithm, which
is more friendly to FPGA, for corpus filtering in the ANN
algorithm that accelerates the search by reducing the search
scope. Before conducting an exact search, the corpus is fil-
tered to obtain a smaller corpus size, M′, and then the exact
search is performed on this reduced corpus. This approach
maintains the structure of exact search, ensuring high module
reusability, and facilitates the flexible switching of system
functionality in different scenarios. At this point, according
to Equation 1, the theoretical formula for system latency after
corpus filtering is:

L =
M′

B
+C. (5)

The LSH algorithm achieves dimensionality reduction of
target embeddings and partitions the target embedding set into
different buckets. In comparison to regular hash algorithms,
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Figure 7: The workflow of corpus filtering. Corpus partition-
ing happens in the offline phase and the LSH query happens
in the online phase.

LSH exhibits a degree of locality sensitivity by locality-
sensitive hash functions. Specifically, two embeddings with
high similarity in the original space will fall into the same
or nearby (Hamming distance) buckets after being mapped
by these functions. Conversely, two embeddings with low
similarity in the original space will have relatively distant
bucket assignments after the LSH mapping. In this way, we
can consider the sets of embeddings within the same or nearby
buckets as sets of embeddings with high similarity. For em-
beddings representing user queries, we also employ LSH for
dimensionality reduction. We can then treat the bucket where
the user queries hit and some neighboring buckets of embed-
dings in the origin corpus as a new corpus for exact search.
This approach allows us to accelerate the search process by
filtering out highly similar embeddings in the corpus.

The process of dimensionality reduction and querying
through the LSH algorithm involves adjusting three main
parameters: Kh, Lh, and Th, each of which serves a specific
purpose:
• Kh represents the number of bits used to represent origin

embeddings after dimensionality reduction. In other words,
the LSH algorithm maps a high-dimensional embedding to
a collection with 2Kh buckets.

• Lh stands for the total number of hash tables in LSH. The
LSH algorithm can be configured for multi-table querying,
where an embedding can be simultaneously mapped by Lh
local sensitive hash functions during a query. This allows
searching in Lh tables and identifying Lh buckets where
the embedding hits.

• Th represents the maximum Hamming distance considered
when searching for nearby buckets within a single table. To
improve search accuracy, LSH can match and hit buckets
with Hamming distances smaller than or equal to Th as a
collection of embeddings within the table.

In the case of multi-table querying where Lh ≥ 2, there is also
a choice of query result set intersection or union strategy. The
final matching result can either take the intersection or union
of the embeddings in the buckets matched in each table.

The necessity of performing intersection (or union) on
query results from multiple tables implies that once we have
obtained the indices of all matching buckets, we cannot im-
mediately begin pipelined access of embeddings within these
buckets, since it is hard to determine whether the current em-
bedding is part of the intersection (or is a duplicate, for the
union case). This disrupts the data flow of the system, which
will cause performance degradation. Calculating the intersec-
tion (or union) before corpus access would introduce signifi-
cant additional delay and unnecessary memory consumption.
Therefore, SNARY adopts a single-table query strategy, mean-
ing Lh = 1, adjusting the value of Kh and Th to control the
scale of matched embeddings.

The LSH algorithm we have chosen should approximately
distribute the embeddings in the corpus equally among the
buckets. Since we expect to search among the bucket where
the user queries hit and its neighbors in Hamming distance Th,
we can estimate the size M′ of the filtered corpus as follows:

M′ =
∑

Th
i=0

( i
Kh

)
2Kh

·M. (6)

The workflow of our corpus filtering process using the LSH
algorithm is illustrated in Figure 7. In the offline phase, we
partition the corpus into different buckets based on the LSH
algorithm and simultaneously construct hash tables, which is
a one-time offline preprocessing phase. That is to say, it does
not introduce any extra cost during online queries, since the
bucket structure remains static and reusable across all queries,
and the execution time of the offline phase remains within a
manageable range (approximately 1-2 seconds for a corpus
size of 9M). In the online phase, we similarly map user query
using LSH and obtain the index of the bucket it falls into.
Finally, we use the hit buckets (and neighboring buckets) as
the new corpus and perform an exact search within the filtered
corpus.

We adopt the widely-used simHash method [3, 34], which
reduces a high-dimensional embedding to a low-dimensional
signature and the specific process can be divided into the
following steps:

• Map each dimension of the high-dimensional embedding
to a Kh-bit embedding using a standard hash algorithm.

• Transform the embeddings obtained in the first step based
on the weight of each position. Specifically, replace 1 with
weight and replace 0 with the additive inverse of weight in
each position.

• Accumulate the embeddings in the second step bit-wise.

• Compress the accumulated embedding dimensionally, re-
placing positive values with 1 and non-positive values with
0.

This process yields a signature representing the bucket num-
ber it hits in the hash table. The standard hash function in the
first step can be changed to obtain different simHash methods.
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Figure 8: The data structure related to LSH. We store the hash
table and index table in HBM, through which we can locate
the position of hit embeddings in the corpus.

In this way, we reserve the possibility of constructing different
hash tables and performing multi-table querying.

Two available memory channels in HBM are utilized to
store data structures related to LSH. Specifically, the hash
table and index table are stored in HBM, as illustrated in
Figure 8. In the hash table, the starting positions and sizes of
each bucket in the index table are recorded, while the index
table keeps track of the specific positions of embeddings
within each bucket in the corpus. When the bucket where a
user query hits is obtained, the hash table is accessed first to
mark the regions that need to be accessed in the index table.
Afterward, only the elements from the marked buckets in the
index table need to be accessed. For each obtained position
of an embedding within the corpus, this position can be used
to retrieve the specific embedding from the corpus.

During corpus access, we can simultaneously prepare for
the next position’s retrieval, allowing the system to continue
its pipelined operation. However, it’s important to note that
we still aim to parallelize corpus access, which means ac-
cessing NE embeddings per clock cycle. Due to the uneven
distribution of embeddings in the buckets after allocation, it
is challenging to determine if NE continuous embeddings are
located in different channels within a bucket. Additionally, it’s
unclear if accessing NE positions at once will precisely cover
all embeddings within a bucket (since the bucket size may
not be a multiple of NE ). To maintain the normal operation of
the pipeline, we perform the following steps for each bucket
before writing embedding positions to the index table:
• Categorize the embeddings within the bucket into NE

classes based on the channels they are stored in. Let the
size of the class with the most embeddings be denoted as
S.

• Add paddings to the bucket to reach a size of S ·NE so that,
for each class there are S elements including the added
paddings.

• Rearrange the elements within the bucket so that, starting
from the initial element, every consecutive NE elements
are in different channels. If the elements for a channel have
been exhausted, use paddings to fill the gaps.
Through preprocessing, we can achieve parallel access of

NE elements within the current bucket, thereby ensuring a
balanced throughput between index table access and corpus
access. When we encounter padding elements during the

reading, a flagged embedding enters the pipeline. The score
generated by this embedding will be filtered out in the filter
module, ensuring it doesn’t affect the recall results. This opti-
mization strategy increases the pipeline width of fuzzy search
to match that of exact search, which significantly improves
the efficiency of the fuzzy search process.

4.3 Implementation Details

We implement prototypes of SNARY on the Xilinx AMD
Alveo™ U50 Data Center accelerator card of different recall
counts K. It features integrated HBM2 (second-generation
HBM), which provides up to 400 GB/s of memory band-
width with 8GB storage and 32 channels for concurrent reads,
enabling efficient handling of large datasets and reducing
memory bottlenecks. We fully utilize on-chip resources to
design SNARY as a completely pipelined structure, supporting
seamless switching between exact and fuzzy search modes.
We also utilize a 100 Gbps TCP/IP stack [18] to implement
corpus uploading, updating, and result transmission on the
card. Due to the fact that the FPGA baseline used in our exper-
iment only supports recall counts that are powers of two [51],
four systems with recall counts ranging from 512 to 4096
were implemented for comparative experiments.
Corpus access. 16 HBM channels are utilized to store the
corpus, providing a total storage capacity of up to 4 GB. Each
embedding is stored across 4 contiguous channels, allowing
our system to accommodate up to 1024 million embeddings.
Since read and write operations among different channels do
not interfere with each other, parallel reads are performed in
each pipeline cycle to maximize bandwidth. This enables the
reading of 4 embeddings at once, which can then proceed to
the subsequent computation stages.
Similarity calculation. In the similarity calculation module,
the dot product is used to measure the similarity between
different embeddings. Data from the contiguous channels be-
longing to an embedding is computed with the corresponding
positions of the user query’s embedding, integrating these
calculations to form similarity scores. In the computation
process, the calculation of similarity scores for different em-
beddings, as well as the scores for different positions of a
single embedding, is fully unrolled, effectively utilizing hard-
ware resources.
Top-K selection. The Top-K selection module adopts the
parallel swapping strategy mentioned in Section 4.1 to ensure
pipelined parallelism. Specifically, an array of length K is
implemented in on-chip memory to store the Top-K scores,
with array partitioning used to increase the read/write ports
of the Top-K array. For higher recall counts, the array is fur-
ther divided into upstream and downstream segments to avoid
excessive resource consumption within a single pipeline cy-
cle, while maintaining an O(K) byte space usage. After the
last score enters the Top-K selection module, additional K/2
cycles are added to perform the same parallel swapping and
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Table 1: Resource usage and clock frequency of SNARY under
different recall counts.

K
resource usage (%) Freq.(MHz)

LUT FF BRAM DSP

512 18.17 12.15 18.42 0.07 302.0
1024 26.41 14.09 18.42 0.07 285.0
2048 34.44 15.97 20.35 0.07 279.0
4096 40.16 24.19 20.35 0.07 235.3

sorting operations to ensure that the final Top-K array is com-
pletely ordered.
Filter. The filter is implemented using four FIFO pipelines
with a certain depth to balance the throughput between the
similarity calculation and Top-K selection modules. These
FIFO pipelines receive scores from the similarity calculation
and filter out or temporarily cache3 some scores based on
the current Top-K minimum value feedback from the Top-K
selection module. They then provide one score to the Top-K
selection module. To handle burst scenarios, the depth of each
FIFO pipeline is set to accommodate the storage of 2K scores
according to the analysis in Appendix A.2.
Fuzzy search. Two idle HBM channels are used to store the
hash table and index table. Upon the arrival of user queries, the
index table, which has already been preprocessed, allows for
the parallel reading of the corresponding channels for every
4 indices, with each embedding stored in a different channel.
This enables the reading of the corresponding positions in
the next pipeline cycle while retrieving the 4 indices without
impacting the overall pipelining of the system. The param-
eters Kh and Th in the LSH algorithm are set as adjustable
parameters, allowing users to control the balance between
result accuracy and retrieval speed.
Batch support. SNARY implements batch support through
multiple computing units on a single card to further enhance
throughput under low-latency conditions. These computing
units share the same HBM and possess identical architecture,
allowing them to work in parallel coordination. Due to on-
chip resource limitations, we achieved a batch size of 3 for
systems with recall counts of 512 and 1024, a batch size of 2
for a recall count of 2048, and a batch size of 1 for a recall
count of 4096. Furthermore, for increasing batch sizes beyond
these values, multi-card coordination may provide additional
opportunities for improvement.
Memory Overhead. (i) Corpus size. Both exact and fuzzy
search operations utilize the HBM external memory to store
the corpus. In our experiments, we place up to 9M embed-
dings in HBM, which occupies about 28% external memories
(totaling 32M embeddings). (ii) On-chip memory. The hard-
ware implementation for both exact and fuzzy search with the

3Caching occurs when multiple scores exceed the current minimum value
within one clock cycle.

same recall count is the same. We fully utilized the limited
8MB on-chip memory to implement SNARY, and the resource
consumption and the clock frequency of SNARY under differ-
ent recall counts is shown in Table 1.

5 Evaluation

We evaluate the performance of SNARY on both exact and
fuzzy search scenarios and compare it with a GPU-based
retrieval system Faiss and an FPGA-based retrieval system
FAERY. For exact search, we evaluate the delay and the
latency-bounded throughput of SNARY, Faiss, and FAERY.
For fuzzy search, we first evaluate the efficiency performance
of SNARY and Faiss under similar accuracy performance. We
also conducted a series of self-comparison experiments to
explore the impact of parameter changes on the trade-off be-
tween efficiency and accuracy. All error bars in the figures
represent the standard error of the mean (SE). Our experimen-
tal results show that:
• SNARY achieves a 78.75%-83.88% lower query latency

than Faiss and a 20.91%-45.19% lower query latency than
FAERY, with a 14.12×-18.27× higher latency-bounded
throughput than Faiss and a 1.26×-1.64× higher latency-
bounded throughput than FAERY in exact search scenarios.

• SNARY achieves a 85.13%-87.40% lower query latency
than Faiss, with a 20.18×-23.81× higher latency-bounded
throughput than Faiss in fuzzy search scenarios, while
FAERY does not support fuzzy search.

• SNARY allows for the adjustment of relevant parameters
to achieve a trade-off between efficiency and accuracy,
thereby better meeting various retrieval requirements in
fuzzy search scenarios.

5.1 Experimental Setup
Baseline. We use Faiss [25] and FAERY [51] as the GPU-
based and FPGA-based baseline in our experiments. Faiss is
evaluated on a server equipped with 4 Nvidia A100 GPUs,
each with 12GB of VRAM, running CUDA version 12.0.
FAERY is implemented and evaluated on the Xilinx AMD
Alveo™ U50 Data Center accelerator card, with the same
HBM utilization configuration as SNARY. A recall count of
1024 was used as the default configuration in our experiment
because FAERY implements a system specifically for this
recall count [51], and it also represents the maximum recall
count in Faiss. FAERY systems with the same batch size as
SNARY under different recall counts were also implemented
to conduct comparative experiments with SNARY.
Corpus. SNARY is designed as a generic retrieval system
that is not sensitive to any specific workload. Thus, we follow
the methodologies of [51] and use synthetic datasets to evalu-
ate the generality and efficiency of SNARY. This is because
SNARY focuses on how to improve the retrieval performance
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via designing a search engine architecture on SmartNICs.
Within this architecture, the retrieval efficiency is mainly de-
cided by the corpus access, which is a hardware-bound pro-
cess independent of dataset semantics. Specifically, the corpus
consists of randomly generated 128-dimensional embeddings
with 1 byte each dimension. Since each channel in the HBM
provides 32B bandwidth, we utilize 4 consecutive adjacent
channels to store a complete embedding.

5.2 Evaluation on Exact Search

We measured the query latency and the latency-bounded
throughput among different systems in exact search scenarios.
Latency-bounded throughput refers to the number of queries
a system can process per second (QPS) while maintaining a
strict upper limit on response time, or latency. This metric
is crucial in real-time retrieval systems, where rapid and ef-
ficient data processing is essential to meet user expectations
and service requirements. In such systems, high throughput
must be achieved without exceeding latency constraints, en-
suring both speed and quality of service. In our experiments,
we adopted the widely recognized upper latency limit of 10ms
as a standard benchmark [4, 10, 27], ensuring the system’s
ability to handle queries efficiently within this time frame.
The experimental results are shown in Figure 9.

We first set the recall count to 1024 and varied the cor-
pus size to compare query latency and latency-bounded
throughput among different systems. The experimental re-
sults are shown in Figure 9(a) and Figure 9(b). As can be
seen, SNARY’s latency exhibits a linear relationship with cor-
pus size, which is consistent with the latency formula pre-
sented in Equation 1. SNARY achieves a 82.42%-83.63%
lower query latency than Faiss and a 34.52%-45.19% lower
query latency than FAERY. Under the 10ms latency constraint,
SNARY achieves a 18.27× higher throughput than Faiss and
a 1.52×-1.76× higher throughput than FAERY, and contin-
ues to function even when the other systems fail to meet the
latency constraint.

We also fixed the corpus size at 1M and varied the recall
count to compare the performance of the different systems.
The results are shown in Figure 9(c) and Figure 9(d). As
the recall count increases, the performance of all systems
decreases, and SNARY obtains more stable performance com-
pared with FAERY as the system architecture is not made more
complex. Notably, Faiss was unable to function under higher
recall counts due to a recall count limitation of 1024. SNARY
achieves a 78.75%-83.88% lower query latency than Faiss
and a 20.91%-38.85% lower query latency than FAERY. Un-
der the 10ms latency constraint, SNARY achieves a 14.12×
-18.27× higher throughput than Faiss and a 1.26×-1.64×
higher throughput than FAERY, and continues to operate un-
der higher recall counts.

The experimental results show that in terms of both the
query latency and the latency-bounded throughput, the per-

(a) Query latency under different
corpus sizes.

(b) Latency-bounded throughput
under different corpus sizes.

(c) Query latency under different
recall counts.

(d) Latency-bounded throughput
under different recall counts.

Figure 9: The comparison of query latency and latency-
bounded throughput among different systems in exact search
as corpus size and recall count varies.

formance of SNARY is superior to that of Faiss and FAERY.
This is because, compared with GPU systems, the inherent
hardware advantages of FPGA (mentioned in Section 2.1)
enable the retrieval system to be fully pipelined, reducing
the retrieval latency, ensuring that the system can still work
properly under relatively high recall counts. Meanwhile, since
the single-query latency of GPU is relatively high, it is easy
to exceed the latency limit on higher batch sizes. However,
SNARY adopts a fully parallelized batch support, ensuring
high throughput under low latency. Compared with FAERY,
the improvements made by SNARY in the Top-K selection
module algorithm (mentioned in Section 4.1) are helpful in
reducing on-chip resource occupation, increasing the clock
frequency, and decreasing the pipeline depth, thus achieving
better results.

The experimental results also indicate that, compared to
Faiss, both SNARY and FAERY, which are FPGA-based im-
plementations, exhibit significantly lower latency jitter. Their
latency and latency-bounded throughput remain consistently
stable (as seen in Figure 10). This is mainly due to the fact
that FPGA can achieve deterministic processing logic through
customized hardware circuits, thereby avoiding performance
jitter. In contrast, GPUs may experience fluctuations during
concurrent processing due to factors such as task scheduling
and concurrent memory access. The FPGA’s dedicated hard-
ware design ensures stable performance, while the GPU’s
shared resource architecture introduces variability in execu-
tion times. It also can be seen that increasing the recall count
results in performance degradation. Because higher recall
counts significantly raise the resource occupancy of the Top-
K module, which is the bottleneck in GPU-based systems
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(a) Recall (bars) and MRR (line)
between Faiss and SNARY.

(b) Recall (bars) and MRR (line)
among different parameter combi-
nations of SNARY.

(c) Query latency between Faiss
and SNARY.

(d) Latency-bounded throughput
between Faiss and SNARY.

(e) Query latency among different
parameter combinations.

(f) Latency-bounded throughput
among different parameter combi-
nations.

Figure 10: The comparison of query latency, latency-bounded
throughput and accuracy among different systems in fuzzy
search as corpus size varies. The corresponding metrics for
the exact search case are also shown for reference in the
comparison of SNARY and Faiss.

(discussed in Section 2.1) and dominates the on-chip memory
consumption for FPGA-based systems.

5.3 Evaluation on Fuzzy Search
We measured the performance between SNARY and Faiss
in fuzzy search scenarios under various corpus with a recall
count of 1024 where Faiss functions normally. We used the In-
dexIVFFlat method of Faiss as the baseline, which is the most
popular ANN algorithm in Faiss. It accelerates the search by
partitioning the dataset into segments, where Voronoi cells
are defined in the d-dimensional space, and each database
vector is assigned to one cell. During the search, only the
vectors in the query’s cell and a few neighboring ones are
compared to the query vector. It has two tunable parameters,
nlist and probe, which determine the segment number and
the search range respectively to balance latency and accuracy.
We used the recommended configuration with nlist = 100 and
nprobe = 10.

For the comparison experiment, we first adjusted our own

ANN parameters to ensure that the two systems have similar
accuracy when comparing latency. We select the parameter
combination of Kh = 4 and Th = 1 to participate in the com-
parative experiment. First, we measured the retrieval result
accuracy of SNARY and Faiss under different corpus sizes.
We use Recall and MRR (Mean Reciprocal Rank) to gauge
the accuracy of fuzzy search. In our experimental scenario,
Recall represents the ratio of fuzzy retrieval results to exact
retrieval results, while MRR refers to the mean of the inverse
of the ranking of the first correct result returned in multiple
queries. The experimental results are shown in Figure 10(a).
It can be seen that when the corpus size changes, the Recall
and MRR values of SNARY are similar and slightly higher
than those of Faiss. As corpus size increases, the accuracy of
SNARY maintains a stable range.

We then measured the query latency and the latency-
bounded throughput (with the same upper limit of 10ms)
between the two systems and the experimental results are
shown in Figure 10(c) and Figure 10(d) with results in exact
search scenarios as references. From the experimental results,
SNARY successfully reduces query latency in fuzzy search
compared with exact search and also outperforms Faiss in
terms of latency and latency-bounded throughput under sim-
ilar accuracy metrics. SNARY achieves a 85.13%-87.40%
lower latency and a 20.18×-23.81× higher throughput under
the 10ms constraint than Faiss at similar accuracy of search-
ing results. Compared with exact search, SNARY reduces the
query latency by 78.05%-78.72%, while Faiss reduces that
by 35.41%-39.17%, which also makes the latency-bounded
throughput corresponding to the fuzzy search higher than that
of the exact search.

The performance advantages of SNARY in fuzzy search
come from two aspects: (i) high-performance exact search;
(ii) high-efficiency acceleration effect. Due to the hardware
architecture advantages of SNARY, its performance in terms
of query latency and latency-bounded throughput in exact
search is already better than that of GPU-based systems (men-
tioned in Section 5.2). Moreover, SNARY adopts the method
of directly fuzzifying the reading of the corpus. For a fully
pipelined parallel retrieval system, this can directly reduce the
delay, and in the scenarios of large-scale corpus, it can very
efficiently accelerate the entire retrieval process (mentioned
in Section 2.2).

Finally, we investigated the impact of parameter changes
on the trade-off between latency and accuracy. As indicated in
Equation 6, the reduction in corpus size and consequently, the
overall system latency can be controlled by selecting appro-
priate values of Kh and Th. We use η to represent the corpus
reduction ratio, defined as follows:

η =
∑

Th
i=0

( i
Kh

)
2Kh

. (7)

We selected various parameter combinations, as shown in
Table 2, to assess the performance of the fuzzy search. The
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Table 2: Performance in fuzzy search of different systems.

metric parameter combination

param1 param2 param3 param4 param5

Kh 4 3 5 4 3
Th 0 0 1 1 1

η(%) 6.25 12.50 18.75 31.25 50.00

identities of different systems are arranged in ascending order
based on the values of η.

We measured the query latency, latency bounded-through-
put (with the same upper limit of 10ms), and accuracy of
SNARY under different parameter combinations, with a re-
call count of 1024, the experimental results are shown in
Figure 10(b), Figure 10(e) and Figure 10(f). From the ex-
perimental results, as the parameter η decreases, the propor-
tion of corpus reduction increases, leading to a decrease in
the query latency of SNARY and an improvement in latency-
bounded throughput. Conversely, as η increases, the search
range expands, resulting in improved precision and higher-
quality retrieval results. Additionally, across different corpus
sizes, SNARY consistently demonstrates stable acceleration
performance, with the latency reduction compared with exact
search remaining around 1−η, which is consistent with the
corpus reduction ratio in Equation 6.

This also indicates that we can balance retrieval efficiency
and accuracy by adjusting the values of Kh and Th. In scenarios
where lower retrieval latency and higher throughput are priori-
tized over accuracy, a smaller η value can be used, whereas in
scenarios requiring higher retrieval accuracy, a larger η value
is more appropriate. Additionally, users can directly predict
the latency reduction and the increase in latency-bounded
throughput in a fuzzy retrieval based on the parameter com-
bination, allowing for more flexible and efficient retrieval in
different application contexts.

5.4 Extended System Characterization
Impact of parallel corpus access. As briefly stated in Sec-
tion 4.1, parallel corpus access improves system efficiency
by processing multiple embeddings simultaneously per clock
cycle, compared to sequential retrieval. To validate its perfor-
mance impact, we tested four parallelism levels, using exact
search task with recall count 1024 and measured query latency
and latency-bounded throughput under different parallelism
levels. Experimental results are shown in Figure 11(a) and
Figure 11(b). It can be observed that system performance
demonstrates significant improvements with increasing par-
allelism degrees. At the higher parallelism level of 8, the
performance gain becomes less pronounced due to the exces-
sive number of embeddings processed per clock cycle. These
results confirm that parallel corpus access directly enhances
both critical performance metrics of the system.

(a) Query latency among different
parallelism levels.

(b) Latency-bounded throughput
among different parallelism levels.

(c) Energy consumption between
FAERY and SNARY.

(d) Cycle and resource allocation
among modules in SNARY.

Figure 11: The experimental results of parallel levels, Smart-
NIC energy consumption and module performance analysis.

SmartNIC energy consumption. We measured the power
consumption of both FAERY and SNARY implemented on
identical hardware boards. Experimental results indicate no
significant correlation between corpus size and power draw.
As depicted in Figure 11(c), increasing Recall Count ele-
vates system complexity, leading to corresponding increases
in power consumption. Notably, SNARY demonstrates supe-
rior power efficiency compared to FAERY, attributable to its
optimized Top-K module design.
Module performance analysis. We measured and analyzed
the clock cycle allocation ratios and resource utilization pat-
terns using Vitis across SNARY’s modules under varying
recall counts, with detailed data presented in Figure 11(d),
where corpus access, similarity calculation and Top-K module
(with filter) are denoted as M1, M2 and M3, respectively. The
results demonstrate that the Top-K module dominates both
temporal overhead and hardware resource usage among all
components. This finding underscores the critical importance
of Top-K module optimization for overall system performance
enhancement.

6 Discussion

HBM utilization. Our experiments use 2 channels to store the
hash table and index table, and 1 channel for write-back opera-
tions. The remaining 29 channels can be fully utilized to store
the corpus. This allows for the possibility of reading up to 7
embeddings at once when using 4 contiguous channels per
embedding. From inequation 4, we know that the parallelism
metric NE is constrained by the recall rate γ. Under our experi-
mental conditions, the maximum recall rate γ = 1/250, which
yields NE ≤ 6.19, indicating that our system can achieve par-
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allelism of NE = 6 while utilizing 24 HBM channels. In more
general conditions, a recall rate of less than 3×10−3 ensures
that 7 channels can be simultaneously utilized. Therefore, our
system can further reduce latency by utilizing more HBM
channels for higher total bandwidth, potentially decreasing it
by up to around 43%. When utilizing multiple channels, a lim-
ited corpus may result in significant vertical gaps in the HBM.
To improve HBM utilization, it is possible to partition HBM
vertically into multiple segments, allowing the empty sections
to be used for storing additional corpora for other retrieval
tasks or to hold a backup corpus for online updates. If fewer
channels are used and the corpus involves various data types
(such as text, images, and audio), the remaining channels can
be allocated for storing multimodal data features.
Early corpus filtering. As discussed in Section 2.1, the perfor-
mance of SNARY is directly correlated with corpus size, and
our fuzzy search solution improves operational efficiency by
reducing the corpus size. However, this still requires storing
all data on the servers. Future work will focus on implement-
ing early corpus filtering to preemptively remove irrelevant
corpus portions based on user requirements or business types.
This approach will store only task-related corpora on servers
before initiating read operations. Such an implementation is
expected to both alleviate server storage burdens and further
enhance system efficiency.
Multi-card cooperation. SNARY implements batch support
by instantiating multiple on-chip computing units, which will
undoubtedly be limited by on-chip resources. For example,
when the recall count increases, the batch size supported by
the system becomes smaller, and multiple computing units
may also bring wiring difficulties, slow timing convergence,
and other problems. A feasible approach for higher latency-
bounded throughput is multi-card cooperation. This collab-
orative approach allows for distributing the processing load
across several cards, enhancing concurrency and further opti-
mizing performance. The integration of SmartNICs facilitates
efficient and low-latency communication between multiple
cards, ensuring that the data transfer necessary for batch pro-
cessing occurs seamlessly and swiftly.

7 Related Work

Deep retrievals. Recently, many different neural models have
been proposed to address semantic gap problems, which fall
mainly into two categories: representation-based learning [1]
and interaction-based learning [9]. For representation-based
learning, many DL models (e.g., LSTM-RNN [37], ARC-
I [19] and DSSM [21]) are utilized to generate semantic repre-
sentations of corpus items. Interaction-based approaches learn
the complex relevant patterns between the query and items
via neural models, such as DRMM [16], Match-SRNN [46],
MatchPyramid [38] and K-NRM [50]. SNARY utilizes the
semantic representations generated by neural networks to cal-
culate their similarity.

Hardware-accelerated retrieval systems. To improve re-
trieval performance, some specific hardware accelerators have
been integrated into modern retrieval systems. For example,
some works utilize GPUs to accelerate similarity calcula-
tion [11, 25] or CXL (compute express link) [23] to improve
the corpus access. Recently, FPGAs also have been introduced
to improve performance [26, 51]. SNARY mitigates the gap
and enables both exact and fuzzy search, adapts an optimized
Top-K algorithm and involves SmartNIC-centric deployment
compared with [51].
Accelerating retrievals with ANN. Besides hardware accel-
eration, the community also proposes some ANN algorithms
to accelerate the retrieval. For example, IVF [44] utilizes an
inverted index approach to store vectors in order to reduce
the number of accessed items. HNSW [32] employs a hier-
archical NSW [33] index graph to conduct an approximate
nearest neighbor search. PQ [24] and OPQ [13], using prod-
uct quantization, reduce the computational cost of distance
calculations. For SNARY, it utilizes LSH [7, 8, 45] to reduce
the scale of the corpus.
Efficient Top-K algorithms. Although many efficient Top-
K methods have been implemented on GPUs [40, 41], the
overhead of inter-core communication still presents a bot-
tleneck for these algorithms. [51] introduced a FIFO-based
algorithm on FPGA. However, it occupies O(9K/2) memory
and exhibits limited scalability with varying recall counts.
[30] proposed a parallel swapping algorithm for smaller re-
call counts with O(K) memory. SNARY presents a strategy
for implementing parallel swapping algorithms under larger
recall counts while providing detailed theoretical proofs.

8 Conclusion

In this paper, we design and implement SNARY, a high-
performance and generic retrieval system. SNARY is built
upon SmartNIC and enables both exact and fuzzy retrievals.
Specifically, SNARY leverages HBM on FPGAs to store a
large-scale corpus. With this basis, it designs a data paral-
lelism exact search engine and an LSH-based fuzzy search
engine. To achieve high performance, SNARY further em-
ploys a parallel pipelined method to facilitate the Top-K item
selection and stream the data flow of the whole system. Exper-
imental results show that SNARY significantly outperforms
the popular GPU-based solutions in both exact and fuzzy sce-
narios and outperforms the novel FPGA-based solutions in
exact scenarios which fall short in fuzzy scenarios.
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A The Theoretical Proof and Analysis

A.1 Proof of the Correctness of Top-K Module
We now prove that the algorithm in Top-K selection module
ensures the 0th position always holds the smallest value in the
current Top-K array, and that the entire array can be ordered
with at most K/2 additional parallel cycles.
• First, when array length K = 2, the Stage 1 swap process

effectively does nothing, while Stage 2 directly compares
the two values in the array and moves the smaller value
to the 0th position, confirming that the algorithm works
correctly.

• Next, assume that our algorithm holds for an array of length
K = k−1. We now consider an array of length K = k and
divide it into two parts: the 0th position and the remaining
k−1 elements, denoted as array A. It is important to note
that for any pipeline cycle i, Stage 2 of cycle i and Stage 1
of cycle (i+1), when applied to array A, effectively per-
form the two rounds of parallel swaps for K = k− 1. In
Stage 2 of cycle i, the new score (in the 0th position) is
compared and swapped with the 0th position of array A,
followed by a parallel sort of array A starting from the 1st
position. Stage 1 of cycle i+1 then performs a parallel sort
starting from the 0th position of array A.
Since our algorithm holds for array A with length K = k−1,
after Stage 1 of cycle (i+ 1), the 0th position of array A
contains the smallest value of array A, which means that
the 1st position of the original array is the smallest value
among the last (k− 1) elements. After Stage 2 of cycle
(i+1), the 0th and 1st positions of the original array are
compared: if the 0th position is smaller, it remains as the
minimum value, and no swap occurs; if the 0th position is
larger, a swap occurs, making the 1st position the smallest
value in the array. As a result, after this process, the 0th
position of the original array becomes the smallest value
in the entire array.
Since the array is initialized with negative infinity values at
i = 0, the induction step holds, and the algorithm is proven
to work for K = k in all stages.
From the above proof, it is established that in any pipeline

cycle, the 0th position of the array always holds the smallest
value in the entire array. At the end of the last clock cycle,
we add additional K/2 clock cycles to ensure that the array
becomes fully ordered. This can be guaranteed because:
• At the end of the last clock cycle, the 0th and 1st positions

of the array hold the smallest and second smallest values,
respectively.

• Since the swap algorithm can be applied to arrays of any
length, after the i-th additional clock cycle, the smallest
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Figure 12: A simplified operational example of the Top-K
module with M=8 and K=4.

and second smallest values from position 2i to (K −1) are
placed in their correct positions, while the first 2i elements
are already the smallest 2i values in the array, and remain
unchanged.

• By the end of the K/2-th additional clock cycle, the entire
array is fully sorted.
We present a simplified operational example in Figure 12

with M=8 and K=4 (note that M >> K in practice) to demon-
strate the complete workflow of the Top-K module. It can be
observed that the 0th array position consistently maintains
the minimum value among all received inputs at every clock
cycle termination. Furthermore, the array attains full ordering
within at most K/2 additional clock cycles.

A.2 Analysis of the Filtering Efficiency
Assuming the total number of embeddings in the corpus is
M, i.e., M scores are produced in the similarity calculation
module, and the total number of scores that are dropped out by
filter is M f . In order to balance throughput, the total number of
filtered scores must not be less than the throughput difference
between the two modules, which is given by:

M f ≥ M− M
NE

. (8)

Considering that the scores generated from similarity calcu-
lations are random, for the sake of simplification, let’s assume
that all scores follow a random uniform distribution within a
certain interval. Taking the first input data to the filter as cycle
0, the first output data of the filter and the first input data into
the Top-K selection module occur at cycle 1. According to the
previous analysis, we know that the first valid smallest Top-K
value is produced in cycle (K+1), and it is fed back to the fil-
ter in the next cycle. This is because it takes K cycles to fully
populate the Top-K array with valid scores. In the subsequent
cycles, the current smallest Top-K value based on the valid
scores will be replaced. Since the filter requires receiving the
valid minimum Top-K value to function properly, it will begin
to operate effectively at cycle C0 = K +2 or later:

It is worth noting that the minimum Top-K value is updated
every pipeline cycle. In other words, in cycle (C0 + i), the

scores input to the filter are compared with the minimum
value of the Top-K value of the first (i+K) scores. Since the
similarity scores are uniformly random, the probability that
a score enters this sequence and is ranked beyond the K-th
position after reordering is the probability of being filtered.
Therefore, in cycle (C0 + i), the probability of the input score
being filtered by the filter is denoted as P(i):

P(i) =
(i+K)+1−K
(i+K)+1

=
i+1

i+K +1
. (9)

In every pipeline cycle, the total number of scores input to
the filter is NE . Since the filter starts inputting scores at cycle
0, the last batch of inputs will arrive at cycle (M/NE − 1),
which means:

imax = M/NE −1−C0. (10)

According to Equation 9 and Equation 10, the total number
of filtered scores can be expressed by the following equation:

M f =
imax

∑
i=0

NE ·P(i)

= M−C0 ·NE −K ·NE ·
imax

∑
i=0

1
i+K +1

(11)

Let j = i+K +1, we can then obtain:

imax

∑
i=0

1
i+1+K

=
imax+K+1

∑
j=K+1

1
j

≤
∫ imax+K+1

K

1
x

dx

= ln(
M

K ·NE
− 2

K
).

(12)

Since we have M/NE >> 2, substituting Inequation 12 into
Equation 10, we obtain:

M f > M−C0 ·NE −K ·NE · ln( M
K ·NE

). (13)

Therefore, to ensure the validity of Inequation 8, it is only
necessary for the following inequality to be satisfied:

M−K ·NE −2 ·NE −K ·NE · ln( M
K ·NE

)≥ M− M
NE

. (14)

Let γ = K/M represent the recall rate of the entire retrieval
system. Substituting γ into Inequation 14, we obtain:

1
N2

E
≥ γ− γ ln(γ)− 2

M
− γ ln(NE)≥ γ− γ ln(γ), (15)

which limits the maximum value of NE , demonstrating the fact
that it becomes increasingly challenging to balance through-
put as NE increases. It is worth noting that γ < 1, and the
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derivative of the inequality’s right-hand side − ln(γ) is greater
than 0, indicating that the right-hand side of the inequality
monotonically increases as γ increases. This suggests that
smaller recall values can provide a larger range of possible
values for NE .

The filter can handle throughput imbalance within a certain
range, however, additional cache space needs to be set up to
avoid losing data that is expected to enter the Top-K selection
module. Within one clock cycle, the filter receives NE scores,
and more than one score may be greater than the current min-
imum value in the Top-K sequence. Therefore, these scores
need to be temporarily cached and passed to the Top-K se-
lection module in the following clock cycles. Caching scores
happens in two scenarios:
• Before clock C0, when the current Top-K sequence has not

produced the current minimum value yet, all scores need
to be cached. In this case, the total number T of scores to
be cached is given by:

T =C0 · (NE −1) = K ·NE +2 ·NE −K −2. (16)

• After clock C0, there may be occasional cases where more
than one score is greater than the current minimum Top-K
value. The specific design of the filter adopts the following
strategies: (i) If the filter currently contains scores, it will
prioritize outputting scores from the filter and cache any
input scores that are greater than the current minimum Top-
K value. (ii) If the filter is empty, it will output the first
input score that is greater than the current Top-K minimum
value, and cache any other eligible input scores. (iii) If
the filter is empty and all input scores are smaller than
the current minimum Top-K value, it can randomly output
one score to balance throughput, which will not affect the
output of the Top-K selection module.
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