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Abstract
Pattern matching is critical in various network security appli-
cations. However, existing pattern matching solutions strug-
gle to maintain high throughput and low cost in the face of
growing network traffic and increasingly complex patterns.
Besides, managing and updating these systems is labor inten-
sive, requiring expert intervention to adapt to new patterns
and threats. In this paper, we propose Trochilus, a novel frame-
work that enables high-throughput and accurate pattern match-
ing directly on programmable data planes, making it highly
relevant to modern large-scale network systems. Trochilus in-
novated by combining the learning ability of model inference
with the high-throughput and cost-effective advantages of data
plane processing. It leverages a byte-level recurrent neural
network (BRNN) to model complex patterns, preserving expert
knowledge while enabling automated updates for sustained
accuracy. To address the challenge of limited labeled data,
Trochilus proposes a semi-supervised knowledge distillation
(SSKD) mechanism, converting the BRNN into a lightweight,
data-plane-friendly soft multi-view forest (SMF), which can
be efficiently deployed as match-action tables. Trochilus min-
imizes the need for expensive TCAM through a novel entry
cluster algorithm, making it scalable to large network environ-
ments. Our evaluations show that Trochilus achieves multi-
Tbps throughput, supports various pattern sets, and maintains
high accuracy through automatic updates.

1 Introduction

Pattern matching is essential to many network applications,
such as network intrusion and prevention systems (NID-
S/NIPS) [41, 45, 61], web application firewalls [48], network
censorship systems [19], and application identification sys-
tems [37]. These applications rely on pattern-matching sys-
tems to scan packet headers and payloads to check if they
match a given set of rules (i.e., patterns or signatures) contain-
ing a series of strings and regular expressions.

*Co-first authors. †Corresponding author: liq@pcl.ac.cn.

A recurring theme in pattern-matching systems literature
is the gap between the high bandwidth workloads they need
to handle and the scalability or cost of existing hardware/-
software implementations. Prior pattern-matching systems
have attempted to alleviate this gap via algorithm optimiza-
tion [5, 17, 42, 51, 54, 58, 59, 62] and hardware (GPU/FP-
GA/NPU) acceleration [22, 24, 35, 44, 49, 50, 64]. For al-
gorithm optimization which is mainly deployed on CPUs,
a server is unable to reach more than 70Gbps [52, 53, 58].
While servers optimized with FPGA/GPU/NPU may achieve
a higher throughput (i.e., at most 100Gbps under state of the
art [64]) thanks to their inherent parallel computation, they
significantly increase the complexity in system management
and make the updates extremely challenging [11, 32].

The emerging programmable switching ASICs in the net-
work community provide an unprecedented opportunity to
bridge this gap. A programmable switch can easily handle
multi-Tbps traffic at a line rate with lower cost than GPU/FP-
GA/NPU/CPU, offering a new possibility for addressing the
performance bottlenecks of pattern-matching systems.

Existing works have integrated programmable switches
but they still suffer from the issues of accuracy. Multi-
string matching [25, 30, 52] employs Nondeterministic Finite-
state Automata (NFA) relevant matching algorithms and is
constrained by the limited memory available on the pro-
grammable data plane, and thus can only support a limited
number of string patterns. Besides, multi-string matching can
only detect exact and simple patterns (e.g., digital sequence),
which consists of a small subset of pattern matching. Regular
expression matching is a more powerful tool for matching
complex patterns, attributing to regular expression’s repre-
sentative syntaxes (e.g., Kleene star and counting constraint).
However, the aforementioned methods can not extend to de-
ploy complete pattern matching on programmable switches.
This is because the serialized state transitions of automa-
ton utilized in [25, 30, 52] cause the problem of resource
explosion when deploying the complex syntaxes in regular
expressions (e.g., range matching “[a- f ]”). Today, we are still
faced with the need to build a pattern-matching system that
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Table 1: Trochilus v.s. prior arts. Hardware includes GPU,
FPGA, and NPU. Switch represents programmable switch.

Platform Method Solution
High

throughput Accuracy
Manag
ability

Software
Automaton-based

(Rule-based)

[51, 53, 54] !\

Hardware [13, 49, 64] !\ !\

Switch
[25, 52] !

Model inference-based Trochilus ! ! !

can support line rates on the order of 100Gbps [64]. This pa-
per answers this challenge with the Trochilus Programmable
Data Plane-based complete pattern matching system.

Moreover, current pattern-matching systems are focused
on enhancing performance while managing cost and power
consumption, but they do not allow for the efficient updat-
ing of pattern sets to ensure sustained accuracy. In practical
deployment, pattern-matching systems require not only an
initially high-accuracy pattern set but also regular updates to
maintain high accuracy, in order to address new traffic pat-
terns (e.g., new cyber attacks and new applications). However,
current rules are typically obtained through offline techniques
(e.g., crafted by experts or obtained from proprietary ven-
dor algorithms) [64], which is labor-intensive and induces
high maintenance costs. Trochilus addresses this challenge by
replacing traditional pattern matching with model inference.

In designing Trochilus, we argue that an ideal system for
pattern matching should meet three requirements: R1: High
Throughput (Capable of achieving high throughput at a low
cost). R2: Accuracy (consistently able to accurately identify
traffic patterns). R3: Manageability (efficiently updating the
system to accommodate new network traffic patterns). Unfor-
tunately, prior pattern matching schemes [13,25,49,51–54,64]
fall short on at least one requirement, as shown in Table 1.
Tochilus fulfills all three requirements by incorporating the
learning abilities of model inference with the low-cost and
high-throughput advantages of programmable switches.

To meet the requirements of accuracy and manageability,
Trochilus designs a pattern modelization method that can loss-
lessly transform given patterns to a byte-level recurrent neural
network (BRNN). BRNN preserves expert knowledge from
the patterns, thereby achieving high initial accuracy. Com-
pared with traditional pattern-matching systems, the BRNN
enables automatic updating with labeled data for higher ac-
curacy and supports easy manageability over ever-changing
traffic patterns. Further, concerning limited or even no labeled
data, Trochilus introduces a semi-supervised knowledge dis-
tillation (SSKD) mechanism to transform the BRNN into a
lightweight yet accurate model, called the soft multi-view
forest (SMF), whose inference process only requires simple
operations supported by the switches’ match-action paradigm.
By training multiple biased decision trees, the SMF can better
represent complex traffic patterns and achieve higher accuracy
compared to other tree-based models [55, 65, 66].

To achieve high throughput with programmable switches,
Trochilus develops a model representation to efficiently de-
ploy SMFs on the data plane. Trochilus converts SMFs to
match-action tables through tree encoding. Specifically, we
formulate an optimization problem that aims at finding a par-
tition of table entries to minimize the TCAM requirement.
To this end, we propose an entry cluster algorithm, which
heuristically aggregates table entries into clusters based on
the similarity among features represented by table entries so
that each cluster only requires a more compact table. More-
over, a sliding window mechanism is introduced to effectively
inspect the incoming data packet payload.

We evaluate Trochilus extensively with various pattern sets
(Snort [41] and Suricata [45]) and workloads (captured in
one of the largest public cloud providers). Evaluations show
that Trochilus effectively preserves the accuracy of original
patterns without labeled data and maintains even higher accu-
racy through training with labeled data. Moreover, Trochilus
achieves multi-Tbps throughput and supports various pattern
sets with limited resources.

Contributions. 1) We design a novel framework that inte-
grates model inference with low-cost high-throughput data
plane processing to address the pressing challenges of scala-
bility, accuracy, and manageability faced by pattern matching
systems. 2) We design pattern modelization, SSKD, and en-
try cluster optimization to convert patterns into accurate and
lightweight models and deploy them on resource-constrained
programmable data planes. 3) We implement a prototype of
Trochilus using the Tofino switch as the programmable data
plane and make its source code available [3]. We conduct
testbed experiments to show its performance superiority.

2 Background and Motivation

In this section, we introduce the background of pattern match-
ing, propose the design requirements of pattern matching, and
highlight the limitations of the prior arts in this field.

2.1 Pattern Matching

The key goal of a pattern-matching system is to identify when
network traffic triggers any of up to tens of thousands of
signatures, also known as rules. In network applications (e.g.,
network intrusion and prevention systems ), patterns typically
include strings for exact matching and regular expressions
for complex patterns. Formally, given an alphabet σ, an input
string x = x0, · · · ,xn and a set of patterns P = {p1, · · · , pk},
where each element pi = r1 · · ·rm is a predefined pattern and
each xi or ri is a character belonging to σ, pattern matching
can check whether each pi is a substring of x. Since Finite-
state Automata (FA) provides a formal and flexible framework
for representing and processing regular languages, converting
patterns to Nondeterministic Finite-state Automata (NFA)
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and deterministic finite-state automata (DFA) is a common
method for practical pattern matching [52].

2.2 Design Requirements

Requirement 1 (R1): High Throughput. Recently, the net-
work bandwidths at traffic aggregation points in regional ISPs
have already surpassed multi-hundred Gbps. Many network
device providers [46] and standard organizations [2] are mov-
ing towards the era of 800 Gbps bandwidth. An ideal pattern-
matching system should keep up with the current network
bandwidth requirements. Moreover, the financial cost of the
system must be low enough to be affordable for the majority
of companies.
Requirement 2 (R2): Accuracy. An ideal pattern-matching
system should have high initial accuracy upon deployment
and consistently maintain accurate identification of network
traffic patterns during operation.
Requirement 3 (R3): Manageability. In practical deploy-
ment, pattern matching systems need to continuously update
their pattern sets to identify new traffic patterns (e.g., new
applications and new cyber attacks). However, updating pat-
terns requires experts to analyze large-scale network traffic
and extract representative patterns, which is labor-intensive.
An ideal pattern-matching system should be manageable and
be able to update and maintain patterns with low overhead.

2.3 Limitations of Prior Studies

Many efforts have been made to accelerate pattern matching,
including software-based algorithmic optimization, hardware
acceleration, and programmable switch acceleration.
Software-based algorithmic optimization. Algorithmic op-
timization boosts throughput by reducing memory consump-
tion [5,10,59] or increasing the number of characters per state
transition in NFA [42, 51, 54, 62]. However, since servers’
CPUs are not designed specifically for high-throughput packet
processing, the performance of software-based packet pro-
cessing is still constrained. Actually, a server-based pattern
matching engine still can not achieve 70 Gbps packet process-
ing throughput [53, 54, 58]. Although scaling up the number
of servers can achieve higher throughput, it also induces high
capital and management costs [15]. To sum up, software-
based algorithmic optimization methods do not satisfy R1.
Hardware acceleration. Some works leverage GPUs for
pattern matching as the single instruction multiple threads
(SIMT) architecture can effectively parallelize an algorithm,
providing multi-10 Gbps throughput [24, 49, 50, 60]. How-
ever, it is difficult to maintain GPU’s performance at the peak
rate as it requires all computational units to have the same in-
struction stream [34]. Additionally, GPUs also come with
higher power costs. FPGA-based solutions utilize circuit-
level parallelism to accelerate pattern matching. While these

methods improve the overall throughput of pattern match-
ing [13, 35, 44, 64], they do not support dynamic updates well
due to the FPGA programming process. Such inflexibility
increases the investment in capital and research and develop-
ment efforts. Furthermore, the performance of these hardware
alternatives still struggles to keep pace with the rapidly in-
creasing network traffic since these hardware alternatives
are typically connected to servers via PCIe which provides
limited bandwidth [44]. To sum up, the traditional hardware
acceleration does not satisfy R1.
Traditional Programmable switch acceleration. Pro-
grammable switches, centering around Protocol-Independent
Switch Architecture (PISA) [7], provide flexible packet pro-
cessing capabilities at high throughput, presenting opportu-
nities for network functions offloading [26, 32, 33, 56]. They
exhibit similar power consumption and capital costs as tra-
ditional fixed-function switches, significantly reducing costs
compared to CPUs or other hardware. However, PISA faces
computation and storage constraints. Complex instructions
such as multiplications and divisions are not allowed. PISA
has limited match action unit (MAU) stages (e.g., Tofino 1
has 12 stages) to implement the main calculation logic. In
addition, storage is limited, e.g., on Tofino 1, the SRAM of
each pipeline is 120MB and the TCAM is 6.2MB. Previ-
ous works utilize programmable switches to accelerate multi-
string matching [25,52]. They mainly convert the multi-string
matching patterns into NFAs and then perform optimization
on state encoding and state transition. However, prior works
perform sequential state transitions, where the number of
MAU stages and TCAM requirements increase linearly as the
average length and the total number of multi-string patterns
grow. As a result, they are unable to achieve a complete de-
ployment toward large-scale multi-string patterns. Moreover,
prior works can not be extended to more general and com-
plex pattern matching. To sum up, traditional programmable
switch solutions do not satisfy R1 and R2.
Common limitations of prior studies. The deployed patterns
can not always remain effective over ever-changing traffic pat-
terns. However, prior arts primarily focus on the acceleration
of pattern matching and do not provide efficient mechanisms
for pattern update. Therefore, existing pattern-matching sys-
tems can not meet R3.

3 Trochilus Overview

3.1 Target Scenarios
Trochilus acts as a functional instance of network applications,
inspecting payloads at the byte level and taking corresponding
actions (such as alerting, forwarding, and dropping). Via net-
work data planes, Trochilus can be deployed as a link middle-
box or as a dedicated application for traffic analysis, such as
redirecting traffic to Trochilus. The current mainstream data
plane includes programmable switches and SmartNICs [36].
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Figure 1: Trochilus framework.

These two types of hardware have drastically different charac-
teristics: programmable switches have much higher through-
put, with much limited computation capability. In this paper,
we focus on PISA-driven pattern matching design, which can
be integrated into other data plane hardware (e.g., SmartNICs)
with minor changes. Note that when the depth of the payload
exceeds the single pipeline processing capability of the pro-
grammable switch, Trochilus will recirculate the packets and
discard the inspected parts of the packets.

In this paper, we assume that a processed packet contains
an Ethernet header, an IP header, a UDP or TCP header, and
a payload to be inspected. Note that our approach can sup-
port other header and payload fields (e.g., ICMP). The packet
payload can be encoded in any form, such as ASCII and
UTF-8. In this paper, we adopt ASCII encoding, where each
character is encoded as one byte. Our approach is devoted
to scenarios where the payload only contains plain text that
is not encrypted. For processing encrypted traffic, Trochilus
can be combined with previously proposed decryption mech-
anisms [43] to handle encrypted traffic.

3.2 Trochilus Workflow

As illustrated in Figure 1, Trochilus consists of two compo-
nents: data plane aware model design and model deployment.

Data plane aware model design combines pattern mod-
elization and data plane aware model adaption to gener-
ate data plane-friendly learning models from patterns, en-
abling Trochilus to replace traditional pattern matching with
model inference. Given patterns extracted from the signature
database (e.g. Snort community rules [41]), Trochilus first uti-
lizes the DFA extractor to convert the patterns to a DFA. Sec-
ond, the DFA modelization transforms the DFA into a BRNN,
which can effectively preserve the patterns’ expert knowledge
and achieves high initial accuracy. When labeled data is avail-
able, the BRNN can automatically capture underlying patterns
in the data through training to improve accuracy. Although the

BRNN is effective, it cannot be deployed in the data plane. To
generate a data plane aware model, Trochilus then leverages
semi-supervised knowledge distillation (SSKD) to distill a
soft multi-view forest (SMF), which consists of multiple soft
decision trees (SDTs), under the instruction of the BRNN.

The key component of model deployment is model repre-
sentation, which targets efficiently translating an SMF into
multiple model tables and one aggregation table through tree
encoding. Each model table is encoded from an SDT in the
SMF, and the aggregation table stores the SMF inference
results voted by each model table. When deploying model
tables, Trochilus designs an efficient entry cluster algorithm
to greatly reduce the TCAM requirements.

For incoming packets, Trochilus first utilizes a sliding win-
dow mechanism to extract payload segments for different
windows as features. Then, these features are used to query
model tables to obtain inference results of SDTs. The SMF
result is voted by inference results of SDTs through querying
the aggregation table. Finally, based on the SMF result, users
can design post-processing actions encoded in the decision
table, such as dropping, passing, alerting, or forwarding.

The conversion of the SMF model into data-plane table
entries is lossless. Trochilus supports online updates of the
pattern matching system by collecting new labeled attack traf-
fic, incrementally training the model offline, and converting
the updated rules into table entries. These entries can then be
installed on the switch without interrupting ongoing services.
This allows Trochilus to adapt to new attack patterns with
minimal impact on system operations.

4 Data Plane Aware Model Design

In this section, we show how we convert patterns to byte-
level recurrent neural networks (BRNNs) and how we further
transform the BRNNs to soft multi-view forests (SMFs) with
semi-supervised knowledge distillation (SSKD).
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4.1 Pattern Modelization
In this subsection, we utilize the byte-based DFA extractor
to construct a DFA from patterns. Then we leverage the DFA
modelization to convert the DFA into a BRNN as the teacher
model in SSKD. Compared to other existing teacher models,
BRNN is the most suitable for pattern matching. Specifically,
compared to DFAs, when labeled data is available, the BRNN
can capture new undefined patterns in the data through train-
ing, leading to an improvement in accuracy and boosting the
performance of the following knowledge distillation. Com-
pared to other learning models (e.g., LSTM [20], GRU [12]),
the BRNN preserves the provided patterns’ expert knowledge
and retains a high accuracy under cold start.
Byte-based DFA extractor. Network security applications,
e.g., Suricata [45] and Snort [41], usually use Perl-compatible
regular expression (PCRE) [39] syntax to define patterns. We
also use the PCRE syntax as the standard syntax, which can
easily be extended to other syntax flavors (e.g., POSIX [16]).
The supported PCRE syntax is shown in Appendix A.

Consider an example pattern in Snort “\x26cvv\x3d[0-
2]{3,5}”. Since this pattern can appear anywhere, we first
convert the pattern to “. ∗ \x26cvv\x3d[0-2]{3,5}.∗”. Here,
‘.’ is the wildcard that can match any character. ‘∗’ is the
Kleene star operator to match the preceding subexpression
zero or more times. Braces “{a,b}” are the range match-
ing to match the preceding subexpression a to b times. To
make this pattern consistent with the packet payload format
(i.e., bytes), we convert each character in the pattern except
the special operators in PCRE (e.g. ‘∗’) into its correspond-
ing one-byte ASCII code. So the final converted pattern is
“.∗ 0x26 0x63 0x76 0x76 0x3d [0-2]{3,5} .∗”.

Next, we construct the DFA for the converted pattern. We
use Thompson’s construction algorithm [47] to transform a
pattern into an equivalent NFA. Then we convert the NFA
to a DFA with the powerset construction algorithm [40]. We
minimize the number of states of the DFA by the DFA min-
imization algorithm [21]. Formally, a DFA consists of a 5-
tuple A = (Σ,G ,W ,α0,α∞), whose elements are defined as
follows. Σ: the input vocabulary, whose size is V = 28 = 256;
G : a finite set of states, where |G |= K; W ∈ RV×K×K : tran-
sition weights; W [σ,gi,g j]: the weight of transferring gi to
g j according to the input σ; α0: initial weight; α∞[i]: the
final weight of gi after reading the whole input; α∞: final
weights; α∞[i]: the final weight of gi after reading the whole
input. Consider an input sequence X = {x1,x2, ...,xN} and
a path P = {u1,u2, ...,uN+1}, where ui is the index of state
concerning xi. The score B(A ,P ) of path P is defined as:

B(A ,P ) = α0[u1]·

(
N

∏
i=1

W [xi,ui,ui+1]

)
·α∞ [uN+1] . (1)

Let π(X ) be the set of all paths starting from any state in G0
and ending at any state in G∞, where G0 is the set of start
states and G∞ is the set of final states. The sum of path scores,

B f w(A ,X ), can be computed by the Forward algorithm [4]:

Bfw (A ,X ) = ∑
P∈π(x)

B(A ,P )=α
T
0 ·

(
N

∏
i=1

W [xi]

)
·α∞. (2)

DFA modelization. The DFA is parameterized by Θ, which is
defined as <W ,α0,α∞>. Let ht ∈ RK be the forward score
vector after considering the first t words {x1,x2, ...,xt} of X .
We can rewrite the forward score into a recurrent form:

h0 = α
T
0 , (3)

ht = ht−1 ·W [xt ] ,1≤ t ≤ N, (4)
Bfw(A ,X ) = hN ·α∞. (5)

Here, we treat matching on a pattern as a binary classifi-
cation task. To this end, we expand Bfw(A ,X ) to a vector
[1,0] when Bfw(A ,X ) is 0, and [0,1] otherwise. It can be
easily generalized to multi-classification tasks as well. Re-
call that the hidden state computation in the forward prop-
agation of a recurrent neural network (RNN) is given by
ht = θ(Uxt +Wht−1+b), where θ denotes the activation func-
tion. When U = 0,b = 0,W = W , and θ is the identify func-
tion, the forward score computation of the DFA (as shown in
Equation 4) becomes analogous to the forward propagation
process of the RNN. On this basis, we convert the DFA with
byte-format transitions into an RNN with Θ, called BRNN.
In practice, fine-grained classification may be desired, which
considers the different combinations of final states, i.e., differ-
ent terminal state combinations correspond to different output
categories. In this case, we can use an MLP after BRNN as
the aggregation layer. The BRNN can retain the accuracy of
the original patterns and be put into production immediately
without waiting for data collection. When enough labeled
data is collected, the performance of the BRNN can be further
improved through training.

4.2 Data Plane Aware Model Adaption
The BRNN obtained in the previous step is difficult to di-
rectly deploy on the data plane, since it involves float and
nonlinear operations, and requires huge storage resources. To
promote easy deployment on the data plane, we further con-
vert BRNN, an unwieldy teacher model, into a lightweight
ensemble model called SMF using SSKD.

Existing knowledge distillation approaches face two ma-
jor problems when applied in network scenarios. First, la-
beled data only accounts for a very small proportion. It is
challenging to distill a student model with high accuracy in
such data-scarce scenarios. Second, due to the limited com-
putational and memory resources on programmable switches,
there are stringent restrictions on the selection of student
models. Specifically, prior studies mostly deploy tree-based
models (e.g., decision trees) [55,57,65]. However, the general-
ization of the decision tree is too limited to represent complex
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traffic patterns. Training decision trees on large-scale data are
prone to overfitting, resulting in poor classification accuracy.

Algorithm 1: Data Plane Aware Adaption.
Input: Teacher model BRNN, Labeled data Dl ,

Unlabeled data Du, Tree set Tset
1 Y so f t

l ,Y so f t
u ,Y hard

u ← BRNN(Dl ,Du);
2 Y mix

l ← β ·Y hard
l +(1−β) ·Y so f t

l ;
3 Y mix

u ← β ·Y hard
u +(1−β) ·Y so f t

u ;
4 Y mix← Y mix

l ∪Y mix
u ;

5 w← [1]∗ (Dl .size+Du.size);
6 X f iltered ,Y mix

f iltered ← X ,Y mix;
7 for m in range(nt) do
8 Tm← TrainSDT (X f iltered ,Y mix

f iltered ,w);
9 Tset ← Tm∪Tset ;

10 error← TestSDT (X ,Y mix,Tm);
11 w←U pdateWeight(error,w);
12 X f iltered ,Y mix

f iltered ← SampleFilter(X ,Y mix,w);
13 end for
14 return Tset

In Trochilus, we propose SSKD and SMF, which over-
come the above-mentioned problems with two key ideas. First,
we introduce the semi-supervised learning strategy into the
knowledge distillation. Attributing to the cold start character-
istic, the BRNN can effectively preserve the expert knowledge
from patterns and hence offers adequate accuracy without
training data. Moreover, when enough labeled data is col-
lected, BRNNs’ performance can be further improved. As a
result, we jointly utilize the ground truth of labeled data and
inference results of BRNN on both labeled and unlabeled data
to train the student model. Second, we propose SMF as the
student model instead of the decision tree (DT) used in the
previous studies [55]. SMF is an ensemble model which is
composed of multiple soft decision trees (SDT). Each SDT
is trained in a weight-based iterative manner and is applied
with binary features to adapt to programmable switches. The
submodels (SDTs) of the ensemble model (SMF) are trained
with samples with different weights to achieve multi-view
observation and learn the inherent patterns.

SSKD aims to generate soft labels that contain knowl-
edge of the teacher model and applies the soft labels to
train the student model. We define the labeled data as Dl =
{(X1,Y1), . . . ,(Xn,Yn)} and unlabeled data as Du = {Xn+1,
Xn+2, . . . ,Xn+m}, where each X is composed of the bit se-
quences extracted from the packet payload (binary feature).

The training phase of SSKD includes three steps as shown
in Algorithm 1. First, we acquire the output logits of BRNN
(line 1 in Algorithm 1), which are the output values of the
Softmax layer, for both labeled and unlabeled data, and de-
fine them as the soft labels (Y so f t ). Second, we calculate the
mixed label Y mix = β ·Y hard +(1− β) ·Y so f t of a sample,

where β is a hyperparameter ranging from 0 to 1, Y hard is the
hard label of the sample (line 2-4 in Algorithm 1). For labeled
data, the hard label is its ground truth; for unlabeled data, the
hard label is the output label of BRNN. Third, we use all data
obtained in the second step to train the SMF (line 5-13 in
Algorithm 1). We define the number of iterations (number of
trees in SMF) as nt . The SMF training process includes four
steps, as illustrated in Algorithm 1.
(1) We initialize each sample weight w to 1 so that all sam-
ples have the same significance at the beginning (line 5-6 in
Algorithm 1).
(2) We train an SDT referred to as Tm using the weighted
samples for m-th iteration rounds (line 8-9 in Algorithm 1). w
affects the training process of SDT including the calculation
of the Gini index, node partition, and the label selection of
leaf nodes. The training process of TrainSDT is similar to that
of the CART decision tree [9], which utilizes purity to split
nodes. The purity after splitting the node via feature A is

P(D,A) =
|DA

l |
|D|

Gini(DA
l )+

|DA
r |
|D|

Gini(DA
r ), (6)

where D is the sample set of the parent node, and DA
l and DA

r
are the sample sets of the left and right child split by feature
A, respectively. The feature with the smallest P(D,A) will be
used for node splitting. Different from the calculation of the
Gini index for hard labels, for the sample set D that contains
mixed labels, we calculate its Gini index Gini(D) as

Gini(D) = 1− ∑
yi∈Y

(
∑(X ,Y )∈D w · yi

|D|

)2

, (7)

where Y = (y0,y1, ...,yC ), yi represents the mixed label of
type i, and NC is the number of classes. The end condition of
the SDT training process is consistent with the CART.
(3) In lines 10-11, we test the Tm trained in step (2) on all
training sets and update w according to

wi =
w f ormer

i
Z

exp(− log
1− error

error
·Y hard

i ·Tm(Xi)), (8)

where wi is the weight of sample i, error = 1−accuracy, and
Z is the normalization coefficient to make the sum of weight
constant. Intuitively, the weights for misclassified samples
will be increased.
(4) We filter out samples with weights smaller than tw to
reduce the complexity of a single SDT (line 12 in Algorithm
1). The above training is conducted for nt iteration rounds.

5 Model Deployment

Trochilus deploys trained models onto the resource-limited
data plane through model representation and efficiently iden-
tifies target patterns using the sliding window algorithm.
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Algorithm 2: Entry Cluster.
Input: Entry set E, Maximum table number T ,

Maximum iterations l, Subset number k
1 Randomly init the center set c(1) = {c(1)1 , ...,c(1)k };
2 Init the target entry set S = {S1, ...,Sk},Si = /0;

iteration round h = 1;
3 while h < l & c(h) ̸= c(h−1) do
4 for ei in E do
5 for c(h)j in c(h) do
6 d j← Jaccard(ei,c

(h)
j );

7 end for
8 Assign ei to the cluster with smallest d;
9 end for

10 for c(h)i in c(h) do
11 Update c(h)i for Si;
12 end for
13 h← h+1
14 end while
15 return S(h)

5.1 Data Plane Model Representation

We present how to represent SMFs in the data plane. Our
SMF consists of multiple SDTs. We start with the data plane
representation of a single SDT. Prior studies often adopt dec-
imal features to train tree-based models [57, 65, 66]. When
converting the rules of these trained models into table entries
on the data plane, we need to perform range matching for
each feature. Since range matching is not supported by all
programmable switches, it has to be expanded into multiple
ternary matching using the traditional prefix method [31].
However, when concatenating multiple feature ranges within
a classification rule, the number of extensions is multiplied,
leading to the problem of entry explosion [66].
Tree encoding. Trochilus solves the above entry combinato-
rial explosion problem by introducing binary features [55].
For an SDT with binary features, a sequential decision pro-
cess classifies a given example by selecting a path from the
root node to a leaf node. Starting from the root node, a branch
is selected by checking the value (0/1) of the current node’s
bit feature. The tree repeats this process until reaching a leaf
node and then returns the classification result. Each path cor-
responds to a classification rule, and for each rule, we only
need to check the bit values of different features. Trochilus
converts an SDT to a model table that conducts ternary match-
ing with the concatenation of binary features and extracts
table entries from the classification rules of the SDT.

Formally, given the input feature vector X = x0 · · ·xn, where
xi ∈ {0,1}, the entry set extracted from the SDT model is de-
noted as E = {e1,e2, · · ·}, where ei = (Mi,Vi) is a ternary
matching rule, with Mi = m0 · · ·mn,mi ∈ {0,1} being the

ternary mask, and Vi = v0 · · ·vn,vi ∈ {0,1} being the ternary
value. If the condition of X = Mi AND Vi is satisfied, a hit in
ei is indicated and the corresponding action will be executed.
This implies that for each ei, we only need to consider the
indices pos(ei) = {p|Mip = 1}, and ∀ j ∈ pos(ei),x j = vi j.
For example, let X = x0x1 · · ·x7 denote an input sequence,
which is an 8-bit feature. The path to leaf node 5 in Fig-
ure 2 is: If x1 = 1 and x4 = 1 and x8 = 0; Then class← 5.
As feature values in positions 1, 4, and 8 need to be con-
sidered, the ternary masks M is 0b10010001 and the corre-
sponding ternary value V is 0b10010000. By employing wild
card matching denoted by ∗, we can specify this entry as
“1∗∗1∗∗∗0”.
Model table resource minimization problem. In model
deployment, we observe that most table entries converted from
SDTs have redundant information. Based on our statistics,
over 90% of the binary data in the masks are zero, indicating
that most entries do not require the full matching width of n.
Therefore, we can further optimize our algorithm by splitting
the original model table that requires the matching of all
features into k sub-tables, so that each table only has to match
a subset of the features, thereby reducing the overall TCAM
usage. We formalize this process as a model table resource
minimization problem as follows:

min
{S1,...,Sk}

k

∑
i=1
| ∪

ei∈Si
pos(ei)| · |Si|

s.t.


C1 : ∪

i=1,...,k
Si = E,

C2 : S j ∩S j = /0,∀0≤ i, j ≤ k, i ̸= j,
C3 : k ≤ T .

(9)

Object and Constraints: The optimization goal is to find a
k-subset partition of E that minimizes the total TCAM re-
quirement. The total TCAM requirement of each subset can
be calculated as the product of the required match length and
the number of entries in the subset. There are three constraints.
C1 ensures that the union of all subsets Si is E. C2 ensures
that there is no overlap between any two subsets Si and S j. C3
ensures that the number of subset k does not exceed the al-
lowed maximum number of tables T , as each subset requires
a match-action table.
Entry cluster. The task of partitioning N table entries into k
subsets to minimize the overall TCAM requirement is com-
putationally NP-hard. We design a highly efficient heuristic
algorithm to solve the aforementioned problem. As depicted
in Algorithm 2, we first randomly select k entries from E, each
as a cluster center, initialize k clusters of entries as empty sets,
and set iteration round h to 1 (line 1-2). Entry cluster proceeds
by alternating between two steps.
(1) In the assignment step (line 4-9 in Algorithm 2), we apply
the Jaccard distance to measure the dissimilarity between each
ei and each center c j. Afterwards, the entry ei is assigned to
the closest center in Jaccard distance.
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Figure 2: Entry cluster.

(2) In the update step, the cluster center is reassigned by
summing the distances from each element in the cluster to
other elements and selecting the element with the minimum
sum (line 10-11 in Algorithm 2).

The algorithm terminates when the entry assignment no
longer changes or the maximum iteration number is reached.

Complexity analysis: Let z denote the number of entries, k
the number of clusters, n the average feature size for comput-
ing Jaccard distance, and l the maximum number of iterations.
Each iteration requires computing Jaccard distances between
n entries and k centers, resulting in a time complexity of
O(zkn). The total worst-case complexity is therefore O(lzkn).
In the best case, the algorithm converges after a single iter-
ation, with complexity O(zkn). In the worst case, the Entry
Cluster algorithm performs no merging, resulting in the same
resource usage as the original SMF. In the best case, all rules
are merged into a single wildcard entry, reducing storage
usage by a factor of (z−1)/z.

Taking the SDT in Figure 2 as an example, the original
model table encodes from the SDT takes an 8-bit vector as the
ternary match key and has six entries, thus requiring 8∗6= 48
bits TCAM at least. Through the entry cluster algorithm, it
can be partitioned into two new tables. These two tables
respectively utilize a 3-bit and a 5-bit vector as the match key,
requiring a total of 3∗2+5∗4 = 26 bits TCAM.
Inference aggregation. We aggregate the results of each SDT
through a voting mechanism. We append an aggregation ta-
ble behind the model tables to match the concatenation of
the inference classes of each SDT and obtain the majority of
individual inference classes. Since the number of SDTs and in-
ference classes is small, the aggregation table will not induce
the problem of excessive entries caused by the combination.

5.2 Sliding Window

The length of the input sequence of each SDT must be limited
within the maximum matching length supported by the ternary
matching table (e.g., 66 bytes for the Tofino 1). However, the
maximum packet length is typically 1500 bytes, which means
a packet payload may have to be matched across multiple win-
dows. A naive solution can utilize multiple non-overlapping
windows to inspect continuous segments of the payload. How-
ever, a target pattern pi (described in Section 2.1) may occur at

win
s

Window Target patternPayload

s
win

(a) Non-overlapping (b) Overlapping

Figure 3: Sliding window.

arbitrary positions in the packet payload, as shown in Figure
3(a). In this scenario, pi may span across windows, resulting
in a failure to detect pi in any window.

To address this issue, we propose a sliding window mecha-
nism. The window size is denoted as win, and the maximum
length of a pattern is denoted as L . As depicted in Figure 3(b),
each time we move the window for s bytes, and hence retain
a win− s overlap with the previous window. To ensure that
any pi can be matched, L ≤ win− s must be satisfied.

The maximum payload length that can be inspected by
a single pipeline with the sliding window is win+MS · s,
where MS is the maximum number of MAU stages that can
be utilized. Different win and s will influence the depth that
can be inspected in a single pipeline and subsequently affect
the overall throughput, as recirculation is required for data
packets that have not been matched completely. As will be
shown in Section 6.6, the sliding window mechanism can
significantly enhance the accuracy of pattern matching. This
mechanism introduces some additional inspection of packet
segments, which can increase resource overhead and affect
throughput. Network administrators can deploy Trochilus
with carefully chosen window sizes based on the available
resources in the target scenarios to achieve the desired trade-
off between accuracy, resource overhead, and throughput.

6 Evaluation

We conducted extensive experiments to demonstrate that:
• Trochilus can achieve high initial accuracy comparable

to existing pattern-matching systems and can further
improve accuracy by around 10% through training (R1).

• Trochilus can achieve Tbps-level throughput for pattern
matching while consuming minimal data plane storage
resources. (R2).

• Trochilus can automatically update its rules, thereby con-
sistently maintaining high pattern-matching accuracy in
the face of changing traffic patterns (R3).

6.1 Dataset and Pattern Set
The pattern sets used are constructed from Snort 2.9.7.0 and
Suricata 5.0 provided by ET-OPEN [28]. We collected packet-
level traces at gateways of a large data center, which belongs
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Figure 4: Matched packet segments lengths statistics.

to one of the largest public cloud providers and serves tens
of Tbps traffic for customers with diverse cloud access re-
quirements. The collected traces are labeled by the advanced
attack detection system and application identification system
deployed in the data center. We use 10 minutes of traffic traces
collected in different time periods of a week. The collected
traffic traces mainly cover five categories of the pattern sets,
including info, web specific app, malware, sql, and exploit,
containing around 4000 patterns. The total size of collected
traffic traces is 534GB. We divide them into the training, test
sets with a ratio of 7 : 3. We use the patterns to match the col-
lected traces. The PDF and CDF of matched packet segment
lengths are illustrated in Figure 4. The patterns with a length
of fewer than 50 accounts for more than 95%.
Ethical Considerations. All data analysis was approved by
our cooperation units. We did not investigate human behavior,
surface or investigate any individual flows or IP addresses, or
store any traffic or individual records to disk. To protect user
privacy, all packets in the collected traces are anonymized. We
restricted all analysis to aggregate network statistics directly
output by Trochilus.

6.2 Baselines and Metrics
Baselines. To evaluate Trochilus’s accuracy, throughput, and
overhead, we conducted experiments under both, full pattern
matching and multi-string matching scenarios. We compared
Trochilus with several solutions:

• Traditional Pattern Matching System (TPS): It represents
the system implemented by Snort [41] or Suricata [45]
based on the given pattern set.

• To evaluate the effectiveness of pattern modelization, in
addition to TPS, we also compare BRNN with traditional
RNNs, including LSTM [20] and GRU [12], as well as
a 4-layer CNN [27] and DAN [23].

• For data plane aware model adaption, we compare our
SMF with decision tree (DT) [9], random forest (RF) [8],
multi-view forest (MF), soft decision tree (SDT), and
soft random forest (SRF). Note that SDT and SRF are
the results of distilled DT and RF via SSKD.

• BOLT [52]: As far as we know, no solution currently
can support full pattern matching in the data plane. Only

BOLT can effectively implement multi-string matching
in the data plane. We extract multi-string matching rules
from the pattern sets to implement BOLT. To maximize
the throughput of BOLT, we set the number of bytes
consumed per state transition to 5 and the number of
MAU stages used to 12.

• T-MSM-i: a trimmed version of Trochilus that only im-
plements multi-string matching rules from the pattern
set. Trochilus-i: a full version of Trochilus that imple-
ments full pattern matching. Here, i denotes the number
of MAU stages used on the programmable switch.

Metrics. Accuracy is the weighted ratio of correctly classified
packets in all packets. The weight of each category is the
product of the other categories’ packet numbers, addressing
the imbalance of collected traces. # table entries is the number
of table entries. TCAM requirement is the product of the table
entry number and the width of the matching key.

6.3 Experimental Setup
Implementation. We develop a Trochilus prototype which in-
cludes about 2000 lines of P416 [6] code for the data plane and
4000 lines of Python code for the control plane. In the data
plane, to implement the sliding window mechanism, we repli-
cate both the model and the aggregation table for each window.
For an incoming packet, the switch first extracts the payload
segments for different windows into customized headers. Af-
terward, each model table takes different payload segments
as the match field, and its action is to obtain the classifica-
tion result of an SDT. In the next stage, the aggregation table
matches the results of each model table and flags the packet
if some patterns get matched. In the control plane, we use
automata_tools library [29] to convert patterns to DFAs, Py-
torch library [38] to implement BRNN, and Python’s Numpy
library [18] to implement SSKD and SMF.
Resource breakdown. We deployed Trochilus and BOLT
to a 12-stage 6.4Tb/s EdgeCore wedge 100BF-65X Tofino
switch with a local CPU of Intel (R) Xeon (R) Gold 5218
CPU @ 2.30GHz. Two Dell R230 servers (Intel XeonE2620
v4, 64GB RAM, 40Gbps Intel Network Interface Card) are
used for data transmission. We install the DPDK Pktgen [1]
on each server to achieve high-performance traffic replay. We
run Snort 3 and Suricata 7 software experiments on a Dell
R230 server. For pattern modelization, we set the learning
rate to 10−4, the batch size to 500, and the hidden state size
to 100 for each model. We use the cross-entropy loss as the
objective function. We train each model for 200 epochs and
use early stopping to avoid overfitting. For data plane aware
model adaption, we set β to 0.5 in SSKD. To achieve a balance
between model complexity and accuracy, we set nt to 5, and
threw to 0.5 in SMF. In each SDT we set minimum samples
to 15, which is the minimum number of samples required
to be at a leaf node. For model deployment, we set k = 5 in
the entry cluster algorithm, and s = 30,w = 64 in the sliding
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Figure 5: Teacher model accuracy of pat-
tern matching (Snort and Suricata).
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Figure 6: Student model performance of
pattern matching (Snort).
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Figure 7: Student model performance of
pattern matching (Suricata).

window.

6.4 Data Plane Aware Model Performance

Pattern matching accuracy. Trochilus achieves initial ac-
curacy comparable to TPS. Moreover, through training with
labeled data, both the teacher model BRNN and the student
model SMF improve accuracy by over 11% compared to TPS.

For pattern modelization, we compare the performance
of BRNN and baseline models trained with 0%,10%,100%
training data. Figure 5 shows the average accuracy of BRNN
and each baseline on all categories, and details are shown in
the Appendix A. In zero-shot scenarios (i.e., 0% training data),
both BRNN and TPS perform the best among all, achieving
85.2% accuracy, demonstrating that BRNN can effectively
preserve the full knowledge of original patterns to achieve
high initial accuracy. On the contrary, the other baselines
only have 50% accuracies since they literally perform ran-
dom guesses. In few-shot scenarios (i.e., 10% training data),
BRNN boosts the accuracy to 96.3%, showing superior accu-
racy over all baselines. Among the baselines, TPS performs
the worst since current pattern matching systems like Snort
and Suricata cannot improve accuracy through training like
machine learning models do. DAN also performs poorly, only
obtaining an accuracy of 74.9% when given 10% training
data. The best-performing one among the baselines, i.e., CNN
also underperforms BRNN. For full training, BRNN is again
the best performing one among all, achieving an accuracy of
98.5%. DAN only achieves 83.7% accuracy. LSTM, CNN,
and GRU achieve accuracies of around 93%, which are still
inferior to that of BRNN. In a word, BRNN achieves the best
accuracy in all scenarios. This justifies the selection of BRNN
as the teacher model in the following SSKD.

For data plane model adaption, we compare SMF with
baselines trained with 0%,10%,100% training data, as shown
in Figure 6 and Figure 7, and details are shown in the Ap-
pendix A. In the zero-shot scenario, SMF also preserves the
expert knowledge of original patterns, achieving an initial
accuracy of 83.7%, which is comparable to TPS. DT, RF, and
MF are not available in zero-shot scenarios since there is
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Figure 8: Accuracy comparison of multi-string matching.

no labeled data. In the few-shot scenario, attributing to the
SSKD, the accuracy of SMF is more than 12% better than
all non-distilled models. Compared with SRF, our solution
still presents an advantage of about 5% in accuracy. When
trained with full data, SMF achieves over 97.1% accuracy.
More importantly, compared to TPS, SMF can achieve an
accuracy improvement of over 11% through data training.

We also evaluate # table entries converted from RF, MF,
SRF, and SMF. As shown in Figure 6 and 7, # table entries in
SMF are less than that in SRF, indicating the lightweightness
of the SMF. In the few-shot scenario, SMF and SRF introduce
more table entries compared to RF and MF since the SSKD
leverages more unlabeled data to train to boost the accuracy.
Therefore, SMF is the best choice for the data plane aware
model in terms of accuracy and resource efficiency.
Multi-string matching accuracy. Since existing solutions
can only perform multi-string matching in the data plane
rather than complete pattern matching, we compared the
trimmed version of Trochilus, T-MSM-12, with BOLT on
multi-string matching. T-MSM-12 consistently achieves
higher accuracy than BOLT. Additionally, T-MSM-12 still
achieves an initial accuracy comparable to TPS, and through
data training, it can improve accuracy by over 10%.

Figure 8 illustrates the accuracy of T-MSM-12, BOLT, and
TPS based on the given multi-string pattern set under different
training data proportions. In zero-shot scenarios (0% training
data), T-MSM-12 achieves similar accuracy with TPS, which
is 2% higher than BOLT. Because BOLT matches rules based
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Figure 9: Comparison with BOLT on TCAM requirement.
BOLT only supports multi-string matching and uses 12 stages.
T-MM-i represents Trochilus using i stages for multi-string
matching. Trochilus-12 represents Trochilus using 12 stages
for complete pattern matching.

on serialized state transitions of automaton, it can not han-
dle complex and elongated rules in programmable switches
with limited storage and computing resources. In contrast,
T-MSM-12 transforms rule matching into model inference,
which allows it to handle complex and elongated rules with
high effectiveness. In the few-shot and the full training sce-
narios, T-MSM-12’s accuracy is more than 15% higher than
BOLT’s and more than 10% higher than TPS’s. Obviously,
like TPS, BOLT is also unable to improve its accuracy through
training. Specifically, BOLT cannot expand its state machine
converted from multi-string patterns via learning from train-
ing data, so its accuracy remains at 82%. Meanwhile, the
accuracy of Trochilus can be significantly improved through
training attributed to its learning ability.

6.5 Model Representation Performance

We conducted experiments on pattern matching and multi-
string matching with varying pattern numbers to evaluate the
TCAM requirement. We also conducted experiments with
varying payload lengths to evaluate the throughput.
TCAM requirement. Figure 9 shows a comparison of TCAM
requirements by Trochilus and BOLT on multi-string match-
ing. T-MSM-4, T-MSM-8, and T-MSM-12 reduce the 97.8%,
95.6%, and 93.4% TCAM requirement of BOLT, respectively.
The TCAM requirement of BOLT increases rapidly with the
increase of the pattern number, due to the dramatic increase
of the state number after the patterns are converted to automa-
tons. Specifically, when the number of patterns reaches 3500,
the TCAM requirement of BOLT is 4 times that of when
the number of patterns is 500. However, Trochilus only in-
creases about 10% TCAM requirement on average. Although
more patterns add complexity to the BRNN model, SSKD
can effectively distill the knowledge and add it to the data
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Figure 10: Comparison of throughput. Note that BOLT uti-
lizes 12 MAU stages to achieve maximum throughput and
only supports multi-string matching. Trochilus supports full
pattern matching.

plane aware model, resulting in limited TCAM requirements.
Note that T-MSM-4 achieves a similar throughput with BOLT.
However, Trochilus can further improve its throughput using
more MAU stages, which will be discussed in Section 6.6.

Figure 9 also shows the TCAM requirements of Trochilus
for pattern matching under different pattern numbers. We
can find that the TCAM requirement for pattern matching is
about 15% higher than that for multi-string matching since
full patterns have more complex syntax. However, the TCAM
requirements of Trochilus on pattern matching are still much
less than that of BOLT on multi-string matching. Meanwhile,
there is still adequate space for other services after Trochilus
has deployed all the patterns in the programmable switches.
Throughput. Trochilus achieves multi-Tbps throughput when
processing packets of varying sizes. Restricted by the capa-
bility of our traffic generator, we can not fully cover the band-
width of the Tofino switch used. We use a similar method
in BOLT [52] to simulate the theoretical upper limit of the
throughput of Trochilus under different pattern sets and work-
loads. We set the total number of multi-string patterns in
Trochilus and BOLT to 3500. For the deployment of Trochilus,
we set s to 30 bytes, and use 4, 8, and 12 MAU stages. As
shown in Figure 10, with the increasing payload length, both
Trochilus and BOLT experience a decrease in throughput due
to more recirculations. Nevertheless, even with just 4 stages,
Trochilus’s single pipeline is able to detect deeper depths
than BOLT, thus having higher throughput. Leveraging more
MAU stages can improve the inspection depth of a pipeline.
Therefore, Trochilus-8 and Trochilus-12 achieve 2.3, and 2.8
times the throughput of BOLT, demonstrating their ability to
achieve high throughput in various scenarios.

6.6 Trochilus Deep Dive
We explored the hyperparameters affecting Trochilus in the
sliding window and the entry cluster. Note that we extend
Trochilus to 12 MAU stages.
Sliding window parameters s and win. The window size
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Figure 11: Analysis of the sliding window step s.

win and moving step s are important parameters affecting
Trochilus’s accuracy and throughput. The larger the win is,
the larger the packet length that can be inspected by a sin-
gle window. However, since the key length supported by a
ternary match-action table is limited (e.g., no more than 66
bytes in Tofino 1), we fixed the win at 64 bytes. Afterward, we
apply different s to demonstrate how s affects accuracy and
throughput. The short-packet traces and large-packet traces
are selected from our dataset, with an average length of 200
bytes and 1000 bytes, respectively. Figure 11(a) shows the
impact of different s on accuracy under two traces. As s in-
creases, accuracy first increases and then decreases. The rea-
son behind this is that as s increases, the number of inspection
windows decreases, reducing the probability of misclassifi-
cation. However, it also reduces the probability of a single
window capturing patterns, thus decreasing the accuracy.

The throughput of Trochilus over two traces are shown in
Figure 11(b). Trochilus can provide high throughput for short
packets under different s because they require only a few or
even no recirculations which consume negligible bandwidth.
However, Trochilus provides relatively low throughput for
large packets due to more recirculations. Meanwhile, the PHV
resource for storing the extracted payload in the switch re-
stricts the maximum depth that can be resolved in a single
pipeline. As a result, the overall throughput for large packets
has an upper bound.

Entry cluster parameter k. To further evaluate the perfor-
mance of the entry cluster, we vary k from 2 to 9 and illustrate
the results of the TCAM requirements in Figure 12. When k
increases, the TCAM reduction ratio improves from 80.9%
to 92.5%, revealing the superior performance of the entry
cluster on saving resources. However, the increase of k results
in that more tables should be defined and configured in the
data plane, introducing a trade-off between the complexity
of table management and the TCAM requirement. However,
an increase in k results in the need to define and configure
more tables in the data plane. Users need to make a trade-off
between the complexity of table management and the TCAM
requirements.
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Figure 12: TCAM reduction achieved by entry cluster under
different cluster number k.
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Figure 13: Comparison of accuracy over a 30-day experiment.

6.7 Why is Trochilus Easy-to-maintain?

We evaluated Trochilus over multiple weeks of traffic to as-
sess its low maintenance requirements through continuous
training. We sampled packet-level traffic for 30 consecutive
days at gateways of a large data center and replay the traffic to
the Trochilus system and the Snort system. When replaying
traffic, we continuously injected different types of zero-day
attack traffic on the 10th and 20th days, where the amount of
the new attack traffic accounts for 10% of the original attack
traffic. On the initial day, Trochilus employed the original
pattern set to cold-start since there was no labeled data. At the
end of each day, Trochilus was automatically updated based
on labeled data collected offline that day.

As shown in Figure 13, Snort exhibits a significant accu-
racy decline of about 4% and 6% on the 10th and 20th days,
respectively. This is because the existing rules are unable to
cover new attacks. While Trochilus experiences an accuracy
drop of 3% and 4% on the 10th and 20th days, respectively,
its accuracy rebounds to about 97% on the 11th and 21st days.
Through training with labeled data, Trochilus can automat-
ically mine data patterns and update the transition weights
W of the BRNN. Based on W , we can reconstruct the DFA
by mapping the weights into {0,1} and convert a trained
BRNN back to patterns. Therefore, updating Trochilus param-
eters through training is equivalent to adding representative
new rules. However, Snort requires manual rule extraction
from attack traffic to detect new threats, which is both labor-
intensive and necessitates special expertise. Conversely, the
automated updating process of Trochilus is not dependent
on expert knowledge or human efforts, which significantly
enhances the system’s manageability compared to existing

1704    2025 USENIX Annual Technical Conference USENIX Association



pattern-matching systems.
In summary, in long-term deployments, traditional pattern-

matching systems face challenges in adapting to emerging
attacks, while Trochilus sustains a stable accuracy through
automatic updates.

7 Discussion

Security analysis. We discuss several adaptive (or white-
box) attacks targeting Trochilus. The first type is a through-
put exhaustion attack, in which the adversary sends a large
volume of jumbo frames (Ethernet packets with payloads
exceeding the standard maximum transmission unit (MTU)
of 1500 bytes). These oversized packets trigger excessive
recirculations within the programmable switches, rapidly de-
pleting their processing capacity. To mitigate such attacks,
we propose integrating existing network measurement tech-
niques [14,63] to track both the size and recirculation count of
network flows. When statistical indicators surpass predefined
thresholds, the system can promptly block the attack traffic
and alert network administrators.

The second type is the adversarial attack, where the at-
tacker feeds adversarial inputs to the model to cause model
misclassification due to small adversarial perturbations. For
example, attackers can add benign bytes to malicious pack-
ets to bypass network intrusion detection systems. To tackle
this problem, Trochilus can be extended to fuzzy matching
to improve its robustness against adversarial attacks. Fuzzy
matching (also called approximate pattern matching) is a tech-
nique that evaluates the similarity between an observed traffic
payload and known malicious patterns, rather than requiring
exact matches. Specifically, we can modify our SSKD and use
the probability values output by BRNN to train the regression
tree instead of the SDT as the fundamental unit of the SMF.
We then compare the probability values output by the SMF
with a predefined threshold to achieve fuzzy matching.
Scalability analysis. As the number of patterns increases,
the required storage may exceed the capacity of a single
programmable switch. To address this, the model can be
distributed across multiple switches. During packet process-
ing, switches cooperate by forwarding packets to other nodes
based on intermediate detection results, thereby forming a
complete pattern matching system. We plan to further in-
vestigate and optimize this distributed approach in future
work. Real-world network applications also require support
for encrypted traffic and emerging transport protocols. To
handle encrypted traffic, Trochilus can be integrated with
existing decryption mechanisms (e.g., [43]). For new proto-
cols, Trochilus can collect relevant packets and update the
model accordingly. As data collection is performed offline
and model updates are incremental, the system’s operation
remains unaffected by peak traffic conditions.

8 Related Work

Intelligent model deployment in the data plane. To leverage
both the inference ability of the learning model and the line-
rate processing ability of the programmable switch, existing
methods try to embed learning models into the data plane [55,
57, 65, 66]. However, they need to train the model for a long
time using large-scale datasets. The current frameworks and
models can not adapt to pattern matching that involves parsing
of payloads.
Using programmable switches to accelerate pattern
matching. As for the existing methods using programmable
switches to accelerate pattern matching, some of them can
only support simple multi-string matching [25, 52], while
others just use switches for packet forwarding and offload
complex pattern matching functions onto additional dedicated
hardware (e.g., network processors [22]). Trochilus is the first
to implement complex pattern matching entirely in the pro-
grammable switches and can be integrated into other data
plane hardware (e.g., SmartNICs [36]) with minor changes.

9 Conclusion

In this paper, we propose Trochilus, a learning-enhanced,
high-throughput pattern matching framework that leverages
programmable data planes to address the pressing challenges
of scalability, accuracy, and manageability in modern network
pattern matching systems. By integrating model inference
with low-cost data plane processing, Trochilus delivers a sig-
nificant improvement in throughput, achieving multi-Tbps
throughput without compromising on pattern matching accu-
racy. Through innovative techniques like BRNN-based pat-
tern modelization, semi-supervised knowledge distillation,
and entry cluster optimization, Trochilus efficiently deploys
high-performance models in resource-constrained data planes
while ensuring automatic system updates, crucial for real-time
adaptation to emerging network traffic and threats. As network
bandwidth continues to grow and new applications emerge,
Trochilus provides a future-proof pattern matching frame-
work that can adapt and scale to meet the evolving needs of
next-generation network infrastructures. Looking ahead, our
framework opens several avenues for future research, includ-
ing the integration of Trochilus with encrypted traffic analysis,
SmartNICs, and other hardware-accelerated platforms.
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A supplementary materials

We show supported PCRE syntax in Table 2. The detailed
results of pattern modelization and data Plane aware model
under different pattern sets are shown in Table 3-6.
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Table 2: PCRE syntaxes supported in this paper.

Syntax Description

α Matches a single character.

αβ CONCAT operation. Matches αβ.

α|β OR (|) operation. Matches α or β.

α∗ Kleene (∗) star. Matches α zero or more times.

. Wildcard. Matches any character.

α+ PLUS (+) operation. Matches α one or more times.

α̂ Matches α only appears at the beginning of the string.

$α Matches α only appears at the ending of the string.

[α−β] Character class. The character class uses OR operation to match a character included in the character class.

α{β,δ} Range Matching. Matches α subexpression β to δ times.

α{β,} AtLeast Matching. Matches α subexpression β or more times.

α{β} Exactly Matching. Matches α subexpression β times.

\d Matches any number, equivalent to [0−9].

\D Matches any non-number.

\w Matches any letter, equivalent to [a− zA−Z].

\W Matches any non-letter.

\s Matches any non-whitespace character.

\S Matches any whitespace character.
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Table 3: The results of teacher model on Snort.
# TD info web specific app malware sql exploit

TPS - 86.14 85.24 85.54 85.84 84.94

0% 52.27 51.98 52.86 52.57 51.67
10% 93.16 88.96 92.56 92.26 92.86LSTM
100% 94.64 93.75 94.43 94.32 94.24

0% 51.42 48.12 49.04 51.13 51.71
10% 95.48 92.79 94.86 92.47 92.20CNN
100% 96.25 95.82 95.58 94.64 93.96

0% 51.48 52.04 48.93 51.71 48.02
10% 88.76 87.79 91.27 91.29 87.88GRU
100% 93.10 95.33 95.94 92.23 95.29

0% 53.00 49.56 49.86 49.53 49.26
10% 75.85 75.86 75.56 76.14 76.15DAN
100% 83.38 83.69 83.39 79.97 83.35

0% 84.368 84.967 88.71 84.378 85.268
10% 98.254 96.164 97.374 96.094 98.814BRNN
100% 99.17 96.69 97.84 97.36 99.75

Table 4: The results of student model on Snort.
# TD info web specific app malware sql exploit

TPS - 86.14 85.24 85.54 85.84 84.94

0% 52.27 51.98 52.86 52.57 51.67
10% 93.16 88.96 92.56 92.26 92.86DT 100% 81.24 82.14 85.14 80.94 85.44

10% 80.26 70.95 80.56 82.96 80.86RF 100% 82.89 84.08 83.43 82.88 83.45

10% 81.04 81.00 84.16 80.76 81.02MF 100% 85.78 82.63 85.71 86.09 85.79

0% 81.21 80.83 77.16 80.54 80.26
10% 88.27 91.34 87.91 88536 87.97SDT
100% 90.80 91.88 91.25 89.46 90.07

0% 84.35 80.66 80.91 81.52 81.24
10% 90.24 90.83 90.85 88.08 87.99SRF
100% 93.99 91.65 92.36 93.67 93.08

0% 85.35 85.02 81.99 83.00 82.33
10% 96.08 96.34 93.22 92.58 96.32SMF
100% 98.93 96.73 99.54 99.59 96.44

USENIX Association 2025 USENIX Annual Technical Conference    1711



Table 5: The results of teacher model on Suricata.
# TD info web specific app malware sql exploit

TPS - 84.56 85.08 85.44 84.55 84.21

0% 53.41 50.08 49.40 49.74 53.14
10% 91.69 88.91 91.39 93.96 94.00LSTM
100% 93.81 90.08 93.35 95.96 95.23

0% 46.66 50.08 50.42 50.69 49.81
10% 90.95 90.05 93.53 93.80 94.43CNN
100% 91.96 96.01 95.32 95.97 95.08

0% 52.26 51.72 51.38 54.81 52.01
10% 87.87 87.25 87.30 86.97 87.59GRU
100% 90.76 90.47 91.06 94.16 90.42

0% 46.98 47.30 46.73 50.38 49.79
10% 73.90 73.84 74.13 73.83 73.89DAN
100% 86.47 86.53 86.17 82.45 82.16

0% 84.56 85.08 85.44 84.55 84.21
10% 93.65 97.96 93.67 97.09 94.32BRNN
100% 99.40 98.31 99.36 98.72 98.34

Table 6: The results of student model on Suricata.
# TD info web specific app malware sql exploit

TPS - 84.56 85.08 85.44 84.55 84.21

0% 53.41 50.08 49.40 49.74 53.14
10% 91.69 88.91 91.39 93.96 94.00DT
100% 81.24 82.50 82.48 84.68 81.53

10% 80.02 79.79 80.05 82.26 80.01RF 100% 82.03 81.17 85.39 84.83 82.31

10% 83.25 83.22 80.10 79.57 79.85MF 100% 86.40 87.28 83.32 84.23 83.26

0% 81.24 78.74 78.48 77.79 81.22
10% 90.74 87.50 87.58 88.16 87.04SDT
100% 91.98 89.11 88.80 92.52 88.55

0% 80.76 80.12 83.21 83.22 79.86
10% 87.66 91.10 88.00 90.86 88.34SRF
100% 93.66 91.39 93.96 91.09 91.12

0% 85.35 82.28 81.40 85.68 81.98
10% 95.21 95.45 95.17 95.16 92.04SMF
100% 98.93 95.46 96.70 99.78 98.86
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