
This paper is included in the Proceedings of the  
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the 
2025 USENIX Annual Technical Conference  

is sponsored by

μEFI: A Microkernel-Style UEFI with 
Isolation and Transparency

Le Chen, Yiyang Wu, Jinyu Gu, Yubin Xia, and Haibo Chen, Shanghai Jiao Tong University
https://www.usenix.org/conference/atc25/presentation/chen-le



µEFI: A Microkernel-Style UEFI with Isolation and Transparency

Le Chen, Yiyang Wu, Jinyu Gu�, Yubin Xia, Haibo Chen

Institute of Parallel and Distributed Systems, School of Computer Science, Shanghai Jiao Tong University

Abstract
The Unified Extensible Firmware Interface (UEFI) has es-

tablished itself as the leading firmware standard in modern
devices, offering enhanced extensibility, user-friendly graphi-
cal interface, and improved security capabilities. At the core
of UEFI security is UEFI Secure Boot, designed to ensure that
only trusted drivers and applications are loaded during system
startup. However, the growing number of UEFI-related CVEs
and the emergence of attacks that bypass UEFI Secure Boot
have highlighted its limitations, exposing vulnerabilities that
could be exploited by attackers.

We propose µEFI, the first isolation framework for UEFI
firmware that can transparently run UEFI modules in sand-
boxes. Drawing inspiration from microkernel design, we de-
privilege UEFI modules to user mode and isolate them in
different address spaces (sandboxes). To enable the trans-
parent execution of UEFI modules, we propose trampoline
injection and protocol analysis. To further strengthen UEFI
security, we incorporate a seccomp-like mechanism to restrict
module capabilities and perform automated input validation
to detect and prevent invalid inputs. Evaluation results demon-
strate that our system can run complex UEFI modules without
modifications, which incurs a small overhead of 1.91% for
UEFI boot phase.

1 Introduction
The Unified Extensible Firmware Interface (UEFI) [92] has
replaced the legacy BIOS and become the standard firmware
interface in most devices, including servers, personal com-
puters, and mobile devices [55, 58, 65]. It offers a modern
interface that initializes the hardware, loads the operating sys-
tem and provides runtime services for the OS. To strengthen
the security, the UEFI specification introduced the Secure
Boot feature, which verifies the integrity and authenticity of
all modules before allowing them to load and execute [42],
and becomes an essential security feature in the boot pro-
cess [47, 73].

However, UEFI Secure Boot cannot protect against vul-
nerabilities within those legally signed modules, which may
persist despite testing and auditing [34, 35, 71]. Besides,
improper management of cryptographic keys may allow at-
tackers to bypass UEFI Secure Boot [11]. A publicly dis-
closed UEFI bootkit capable of bypassing Secure Boot was

reported in 2022 [84]. Furthermore, UEFI-related CVEs have
been increasing in number, reflecting a concerning trend
[24, 25, 29, 31, 32, 34–37, 39, 71, 72]. Exploiting these vul-
nerabilities enables attackers to gain unauthorized access to
data or even take full control of the system.

A major factor driving the increase in vulnerabilities is
the growing complexity of the UEFI ecosystem. The UEFI
Forum community includes 365 vendors by 2025 [46]; The
open-source project EDK2 [88], the most widely used frame-
work for UEFI development and the base for most production
firmwares, witnessed the total lines of code expand 9× be-
tween 2018 and 2025. The growth is largely driven by the
rapid development of ARM architecture, as emerging ARM-
based devices adopt UEFI firmware to improve system exten-
sibility [2, 74, 83]. Consequently, the expansion of the code-
base and proliferation of UEFI modules have significantly
heightened the security risks within the ecosystem.

Moreover, the firmware supply chain is inherently intri-
cate, involving multiple stakeholders such as original equip-
ment manufacturers (OEMs), independent hardware vendors
(IHVs), chip manufacturers, and BIOS/firmware providers.
Downstream vendors build new modules atop firmware sup-
plied by upstream sources [14]. This complexity increases the
risk of introducing vulnerabilities into firmware and allows
upstream flaws to propagate downstream, potentially compro-
mising all devices that depend on the affected firmware.

To address the security risks of UEFI, we propose µEFI,
a microkernel-style isolation framework for UEFI firmware
which can run UEFI modules in sandboxes, based on the fol-
lowing observation: In UEFI, the majority of firmware logic
resides in modules such as device drivers and bootloaders,
while the UEFI core remains minimal, providing only essen-
tial functionalities. This pattern aligns with the microkernel
design philosophy [12, 52, 63], which is widely recognized
for its effectiveness in isolating errors in kernel modules.

Many UEFI modules, like the device drivers embedded in
option ROMs1, are available only as binaries. This makes
compatibility a critical requirement for any new design. Ap-
plying microkernel-style isolation to UEFI while maintaining
transparency for existing modules presents two challenges.

One key challenge is that the control flow transfer across
modules and the UEFI core is hard to determine statically.

1An option ROM is a piece of firmware that stored on an external card.
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UEFI module callouts are limited to two types: core-provided
services and protocol interfaces offered by other modules,
both accessed via function pointers. While services expose
a fixed set of core functionalities, protocols represent capa-
bilities of modules and are dynamically discovered through
runtime lookup. The dynamic nature of interface discovery
makes static analysis techniques used for analyzing Linux ker-
nel module interactions [56, 69, 75] inadequate for resolving
UEFI module control flow.

Another challenge stems from UEFI modules being de-
signed with unconditional data sharing, without standard-
ized format for inter-module data transfer. Consequently, data
transfer between isolated modules must be explicitly coor-
dinated. Since inter-module communications occur through
protocol interfaces, and the type information of protocols is
only available at compile time, the absence of such informa-
tion at runtime makes data synchronization infeasible.

Fortunately, we make two key observations that inform
our solution to the aforementioned challenges. First, both
services and protocol interfaces are accessed through a cen-
tralized data structure known as the system table: services are
retrieved directly via fixed pointers, whereas protocol inter-
faces are retrieved indirectly through service functions such
as LocateProtocol. This unified access point allows us to in-
tercept and redirect module callouts. Building on this insight,
we introduce trampoline injection to dynamically generate
and inject codes into modules, enabling seamless control flow
redirection. Second, UEFI protocols are predefined and well-
specified, allowing developers to rely solely on their interface
contracts without requiring knowledge of the underlying mod-
ule implementations. We leverage this by performing offline
analysis of protocol definitions to extract type and structure
information, which is then used to coordinate safe and struc-
tured cross-module data transfer at runtime.

To further enhance UEFI security, we incorporate a mech-
anism inspired by seccomp [68], which enforces capability
restrictions at both the service and protocol levels. Addition-
ally, our in-depth analysis of UEFI-related CVEs reveals that
a significant portion of vulnerabilities stem from memory
safety issues and inadequate input validation. To mitigate
these risks, we implement automatic parameter validation for
cross-module communications, which further strengthens the
security of the firmware.

We have implemented a prototype of µEFI upon EDK2 [88]
on both the x86_64 architecture using QEMU/KVM [6] and
the AArch64 architecture using Raspberry Pi 4 Model B [80].
We perform security evaluations on potential vulnerabilities
and, evaluate the performance of µEFI with six widely-used
UEFI modules, ranging from simple modules like EnglishDxe
to complex ones such as FAT and DiskIo. The performance
results indicate that running all six modules in isolated sand-
boxes incurs only a small overhead of 1.91% on the UEFI
boot time.

2 BACKGROUND AND MOTIVATION
2.1 Role of UEFI
UEFI has become the dominant firmware standard in modern
devices. Most Windows machines [70], Mac with Intel pro-
cessors [4], and even IoT devices [13] are using UEFI in their
boot process. It plays a vital role in hardware initialization,
system booting, and security. During system startup, UEFI
initializes the hardware, ensuring all essential components are
ready for OS handoff. For instance, UEFI detects, enumer-
ates, and initializes USB devices, SSDs, and other peripher-
als. It also loads option ROMs from more complex devices
like graphics cards, network adapters, and storage controllers.
With the help of UEFI, users can configure the hardware and
prioritize boot options conveniently. As for security, modern
products default enforce the use of UEFI Secure Boot [94],
which verifies the integrity of UEFI modules and ensures only
trusted code is loaded. The use of UEFI Secure Boot has made
UEFI a crucial part of the boot chain of trust, which is veri-
fied by hardware root of trust and responsible for validating
subsequent OS bootloaders.

2.2 Security of UEFI
UEFI was designed to replace the legacy BIOS and featured
for its support for larger storage devices, graphical user inter-
face support, and enhanced extensibility. As malwares like
rootkits and bootloader attacks became more sophisticated,
UEFI Secure Boot was introduced as a defensive measure in
2011 [91]. It is considered to be the most important security
feature concerning UEFI boot-time security and has become
an industry-standard feature.

UEFI Secure Boot employs a signature and verification
mechanism, ensuring that only signed UEFI modules can be
loaded and executed during the system startup process. An
essential prerequisite for the effectiveness of UEFI Secure
Boot is that all trusted code must be free from vulnerabili-
ties. This prerequisite is mainly supported by the following
three reasons. First, in the early times, the codebase of UEFI
ecosystem is rather small. As a result, the likelihood of vul-
nerabilities is relatively low. Second, most UEFI driver codes
for specific devices are proprietary and closed-source, mak-
ing it difficult for attackers to identify and exploit potential
vulnerabilities. Third, before a UEFI module is certified to
be used with UEFI Secure Boot, it typically undergoes code
audit, which may include static analysis and testing to identify
security vulnerabilities, logical errors, and non-compliance
issues in the code [89, 90].
Increasing CVEs. In recent years, we have witnessed an in-
creasing trend of UEFI-related vulnerabilities in the Common
Vulnerabilities and Exposures (CVE) database. As shown
in Figure 1, not only the number of UEFI-related CVEs is
increasing, but also their criticality. The number of CVEs
reached 72 in 2022, and 73 in 2023. Out of 45 vulnerabilities
in 2024, 24 of them are rated with high severity. Besides,
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Figure 1: Annual count of UEFI-related CVEs. The CVE count
for each year is determined based on the year indicated in the
CVE ID. The latest CVE ID for 2024 is CVE-2024-8105.

many CVEs are disclosed only after fixes, suggesting that the
number of 2024 CVEs is likely to increase in future updates.
This trend can be attributed in part to the growing complexity
of the UEFI ecosystem. On the one hand, the adoption of
UEFI standards has expanded, with an increasing number of
manufacturers using UEFI firmware for device management
and initialization. The number of UEFI Forum members has
grown from 236 in 2013 to 365 by 2025. On the other hand,
the complexity of firmware modules has increased due to
the introduction of more advanced and diverse devices, such
as high-performance GPUs and smart NICs [78, 79], which
demand enhanced capabilities and functionality.

2.2.1 Exploitation of UEFI Vulnerabilities
UEFI-related attacks typically have three main goals: obtain-
ing control over the operating system, maintaining stealth
to evade conventional security mechanisms, and achieving
persistence that can survive operating system reinstallation
and hard drive replacement. To gain a deeper understanding
of UEFI-related threats, we further analyze how UEFI vulner-
abilities are exploited by attackers to achieve the objectives.

Bypassing Secure Boot. While UEFI Secure Boot prevents
the execution of unauthorized code, one prominent technique
to circumvent Secure Boot involves exploiting vulnerabili-
ties in legitimate, signed components. For example, the well-
known BlackLotus bootkit [84]—previously sold on under-
ground forums for approximately $5,000—exploited a vul-
nerability in older versions of the Windows bootloader [71]
to overwrite memory regions containing Secure Boot policy
data, effectively disabling Secure Boot enforcement. Another
notable case is CVE-2024-7344 [40], where a signed third-
party UEFI application embedded a custom image loader that
bypassed standard secure UEFI loading functions, allowing
the execution of unsigned binaries [82].

Compromising signed modules. Beyond exploiting the trust
conferred by a signature to bypass Secure Boot directly, at-
tackers also target inherent code-level vulnerabilities within
signed UEFI modules, particularly DXE (Driver Execution
Environment) drivers, to achieve arbitrary code execution
or privilege escalation. Common examples include stack-
based buffer overflows arising from the improper handling of
UEFI services. For instance, vulnerabilities [17–20, 27, 28]
have been identified in signed DXE drivers where sequential
calls to the GetVariable service occur without correctly re-

Table 1: Category of vulnerabilities and severity of corre-
sponding CVEs.

Severity Memory
Safety

Improper Input
Validation

Uninitialized
Data

Improper Access
Control Others

HIGH 44 34 5 17 40
MEDIUM 33 49 5 10 28

LOW 1 2 0 3 4
UNKNOWN 3 3 1 0 4

initializing size parameters, leading to stack overflows that
can overwrite critical data, including return addresses [43].

Hooking mechanisms. Hooking mechanisms are exten-
sively employed by UEFI firmware implants to intercept
and redirect system execution flow. For instance, rootk-
its like LoJax [81] and MosaicRegressor [61] register ma-
licious callback functions for specific UEFI events, such
as EFI_EVENT_GROUP_READY_TO_BOOT, which is trig-
gered just before the operating system bootloader is invoked.
Another approach involves patching function pointers within
UEFI service tables, redirecting calls to legitimate services
towards malicious routines. The CosmicStrand rootkit, for ex-
ample, was found to patch the entry point of a DXE driver and
deploy a multi-stage hooking process that extended control
into boot manager, OS loader, and even kernel functions [62].
Such deep-seated hooks allow firmware implants to subvert
operating system-level security controls, maintain persistence
across reboots, and operate with a high degree of stealth.

2.2.2 Vulnerability Analysis

By analyzing UEFI-related CVEs (as shown in Table 1), we
identify four major categories of vulnerability causes: memory
safety issues, improper input validation, uninitialized data,
and improper access control. The statistics show that memory
safety issues and improper input validation stand out in terms
of both frequency and severity. Improper input validation [26,
36,38] accounts for the largest proportion, representing 30.8%
of all UEFI-related CVEs. And memory safety issues [15, 16,
21–23, 27, 30] are particularly critical, constituting 31.4% of
high-severity CVEs. While the types of vulnerabilities are
consistent with those commonly found in traditional software,
their impact is significantly amplified in the context of UEFI
firmware, primarily due to three factors:
• Privileged execution environment. All UEFI modules ex-

ecute with high privileges, such as in System Management
Mode on x86 or EL1 on ARM. Although this privileged
execution is necessary for managing hardware and config-
uring the boot process, it also provides a convenient and
powerful vector for malicious code.

• Lack of inter-module isolation. UEFI modules share a
common address space and communicate via global vari-
ables or protocols. The absence of isolation allows a flaw
in one module to compromise others, potentially affecting
the entire firmware.

• Coarse-grained access control. The access control mech-
anisms in UEFI are less sophisticated compared to modern
operating systems. Concerning the interactions between
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Figure 2: µEFI’s architecture.

modules and the core, services and protocol interfaces are
both globally accessible, potentially leading to unautho-
rized modifications.

Given these inherent limitations, we propose that a more
robust isolation mechanism is needed to enhance the security
of UEFI firmware beyond its current design.

2.3 Driver Isolation in UEFI vs. OS
Device driver isolation is a critical topic for enhancing the
reliability and security of operating systems. The core prin-
ciple involves executing drivers within protected environ-
ments to contain faults and prevent unauthorized access to
kernel resources. Research in this area spans decades, lead-
ing to a diverse array of approaches. These include archi-
tectural strategies like user-mode drivers and microkernel
design [8, 45, 49, 53, 54, 67], software-enforced methods such
as software fault isolation [10, 44, 69, 95] and language-based
safety [48,76], virtualization-based containment [9,50,66,77],
and hardware-assisted mechanisms like memory protection
keys [51,52,93]. Early systems like Nooks [85] demonstrated
the feasibility of fault isolation within monolithic kernels.
More recent efforts, exemplified by KSplit [56], focus on au-
tomating the complex process of isolating existing drivers and
rely on static analysis to identify shared kernel driver states
and generate synchronization logic.

Although driver isolation techniques has been extensively
explored in traditional operating systems, the differences be-
tween the execution environment of UEFI modules and that
of OS drivers bring new challenges and opportunities. There
are three key differences. First, dynamic interface discovery.
The UEFI core does not provide runtime symbol resolution
for modules. Each module is a self-contained image, and its
provided or required interfaces are identified only at runtime
through protocol installation and lookup. As a result, static
code analysis alone is insufficient for automating UEFI mod-
ule isolation. Second, single-threaded execution. UEFI fol-
lows a single-threaded, event-driven execution model. There
are neither synchronization primitives nor complex atomic
operations, greatly simplifying concurrency concerns. Third,
well-defined parameter scheme. All of the interfaces used by
UEFI modules belong to pre-defined protocols, which means
the parameter types and semantics are explicit. This character-

istic enables effective data synchronization without reliance
on static analysis of source code or binaries.

3 OVERVIEW
To address the security threats faced by UEFI while account-
ing for its unique characteristics, we present µEFI, providing
transparent and fine-grained isolation for UEFI modules.

Design Goals. µEFI has four goals, focusing on the char-
acteristics of UEFI vulnerabilities and the shortcomings of
existing security measures.
• G1: module memory safety. µEFI must guarantee memory

safety across modules. A UEFI module can only access its
own memory and those legally shared by other modules.

• G2: full module transparency. µEFI should require no mod-
ification to the modules. Firmware images can be transpar-
ently loaded and executed with µEFI.

• G3: module access control. µEFI aims to provide seccomp-
like mechanism in UEFI firmware, restricting modules’
capabilities while ensuring that they can still perform their
intended functions.

• G4: automated input validation. µEFI should be capable
of automatically validating parameters for cross-module
calls without the need for custom handling logic for each
individual interface.

Approach: Isolation with microkernel architecture. UEFI
follows a modular design in which modules interact through
well-defined protocol functions. The majority of firmware
code resides within UEFI modules, while the UEFI core re-
mains minimal, performing only essential functionalities. The
modular design principles of both microkernel and UEFI align
closely, with the isolation of microkernel architecture fulfills
the missing parts in UEFI. As a result, we apply microkernel
architecture in UEFI firmware, deprivileging UEFI modules
to user mode and isolating them with separate page tables.

Architecture. Figure 2 presents the architecture of µEFI.
µEFI is composed of two parts: an offline analyzer and an
online sandbox manager. The offline analyzer parses the def-
initions of protocols and constructs a database containing
protocol-related information (§4.3.1). The sandbox manager
controls the capabilities of sandboxed UEFI drivers and ap-
plications and serves as the supervisor of all sandboxed UEFI
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modules. To facilitate the integration of the sandbox man-
ager into existing UEFI firmware, the sandbox manager is
implemented as a UEFI module operating alongside the core,
thereby minimizing the need for modifications to the core. In
the sandbox manager, we first introduce shadow service (§4.1)
to manage the resources of sandbox and impose seccomp-like
restrictions on sandboxed modules. Then we use trampoline
injection (§4.2) to support cross-module calls without mod-
ifying existing UEFI modules. Before a cross-module call
can be actually handled, interface proxy (§4.3) intercepts the
call, validates the parameters to prevent error propagation,
and performs necessary data transfer.
Threat model and security guarantees. µEFI assumes the
UEFI core2 is free of vulnerability and all preceding phases
work as expected. UEFI drivers and applications loaded af-
ter the initialization of the core are not trusted, even if they
are signed by legal third-party certificate authority, as these
modules may have potential vulnerabilities.

As for security guarantees, µEFI ensures the memory safety
of UEFI modules. During execution, a module cannot access
memory not belong to it, and the corresponding memory at-
tributes must be set (read/write/execute). µEFI also restricts
the services and protocols a module can use. Modules should
only be granted the capabilities they need to perform their
work. In addition, µEFI provides the ability to validate the
parameters for cross-module calls, making sure that the param-
eters are legally used by the caller. With the above guarantees,
µEFI addresses the shortcomings of UEFI Secure Boot and
further strengthens UEFI security.

3.1 Challenges and Insights
Transparent sandbox callout. The sandbox’s callouts in-
clude invocations of services provided by the core and calls to
protocol interfaces implemented by other modules. Originally,
all the communications across UEFI modules and the core are
conducted through function calls. With the deprivileging and
isolation of UEFI modules, direct function calls are no longer
feasible. However, the original calling convention must be
preserved to ensure compatibility with existing modules.
Insight- 1 : unique callout gate. System table is a central data
structure in UEFI that provides access to services and con-
figuration tables. Through the system table, we can manage
all the callouts directly or indirectly, as services are accessed
through the system table and protocol interfaces are obtained
through services (depicted in Figure 3).
Transparent data transfer. UEFI modules communicate
via protocol interfaces, with data shared directly across mod-
ules. Once isolation is enforced, explicit data synchronization
becomes necessary. Since protocol type information is only
available at compile time, the lack of such metadata at runtime
makes synchronization across sandboxes infeasible.

2Specifically, the UEFI DXE Core, which is responsible for loading and
managing DXE phase drivers.
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Figure 3: Construction of protocols [87] and UEFI system
table. Protocol defines a set of functions and data structures.
Interface refers to the implementation of protocol. All the
callouts of a module have to go through the system table
directly or indirectly.

Insight- 2 : standardized protocols. To facilitate the indepen-
dent development of UEFI modules, the UEFI specification
defines standardized protocols for various types of drivers and
applications. Thus, a caller module can interact with target
modules without concerning about their specific implemen-
tations, and device drivers by different vendors can achieve
compatibility with existing systems simply by implementing
the standard protocols.

4 DESIGN
We employ a combination of techniques to achieve transpar-
ent isolation of binary-form modules. By controlling a unique
callout gate, µEFI transparently redirects service calls to a
corresponding set of system calls (§4.1). It also supports trans-
parent protocol function calls between isolated modules by
replacing original protocol function pointers with injected
trampolines (§4.2). Leveraging the standardized nature of
protocol definitions, µEFI extracts type information through
offline analysis and stores it in a protocol database (§4.3.1).
To enable correct data transfer and automatic input validation,
µEFI employs a heuristic-based technique known as param-
eter pairing (§4.3.2). It further adopts customized tracking
strategies for different types of data involved in the invocation
process (§4.3.3).

4.1 Shadow Service
The UEFI core provides a standardized set of services to
UEFI modules, including Boot Services and Runtime Ser-
vices. These services offer essential functionalities throughout
the lifecycle of a UEFI module, such as memory allocation,
event registration, and protocol interface acquisition and in-
stallation. In the original architecture, the core focuses solely
on providing capabilities without imposing restrictions on
their usage, allowing UEFI modules to access most system re-
sources without limitations. Therefore, we present shadow ser-
vice to delegate the core services and manage the resources.

UEFI services are presented to modules as a set of function
pointers contained within the system table, a global variable
initialized by the core and passed to modules during initializa-
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tion. As µEFI isolates each module in its own address space,
the old manner of function call is no longer feasible. Combin-
ing with the fact that the set of core services is rather stable,
the primitive system call is perfectly suitable for providing
services to sandboxed modules. To achieve full transparency,
during the loading process of sandboxed modules, we replace
the origin system table pointer with a per-sandbox shadow
system table, and the services with functions that perform sys-
tem calls. Every time the services are called in the sandbox,
the control flow is redirected to the shadow service. Inspired
by seccomp, the shadow service enforces two levels of access
control before handling the request.

Service-level access control. The shadow service first regu-
lates the sandboxed module’s access to core services. Among
the services provided by the core, fundamental capabilities
such as memory allocation, protocol installation and acquisi-
tion, and event creation and signaling are universally required
by all modules. However, services like LoadImage and Star-
tImage provide more sensitive functionalities and are only
necessary for a limited number of modules, such as the UEFI
shell or GRUB. Therefore, the shadow service determines
whether to grant access to high-privilege services based on
the type of each module.

Protocol-level access control. Protocols serve as the fun-
damental mechanism for interaction between modules. An
important fact is that the proper functioning of a UEFI mod-
ule requires interaction only with modules directly related to
its functionality. For instance, a UEFI driver responsible for
hard drive I/O may invoke block device drivers, but has no
need to access network-related features. Thus, every time a
sandboxed module attempts to acquire or install a protocol
interface, the shadow service evaluates the request and de-
termines whether to grant access based on its type and the
protocol involved.

Unfortunately, under the current specification, it is not fea-
sible to directly determine a module’s type and functionality

during the process of loading its image. To address this limi-
tation, we employ two distinct approaches:
• Explicit declaration. Each module is uniquely identified

by a GUID, and developers are required to explicitly de-
clare the services and protocols a module is allowed to
invoke. This enables strict, seccomp-like sandboxing and
enforces a security-by-contract model.

• Heuristic detection. Modules are restricted to access pro-
tocols of a specific type. The module type is inferred based
on the first non-generic protocol interface it attempts to ac-
quire or install. This approach adopts a fail-stop execution
model upon missing or unexpected protocols, with type
classification resolved during pre-deployment testing.
By combining these two approaches, the system establishes

a tiered security model that balances strict least-privilege en-
forcement with backward compatibility for legacy modules.

4.2 Safe Trampoline Injection
When a module intends to use the functionality of other mod-
ules, it obtains the corresponding protocol interface through
the core services, and directly invokes functions in the pro-
tocol interface to fulfill its job. As illustrated in Figure 4 (a),
references provided in call parameters are accessed directly,
and callback functions are invoked without intermediaries.

Since µEFI isolates different modules, we can no longer
access the functionalities within protocol interfaces through
direct function calls. In the microkernel architecture, inter-
process communication (IPC) is introduced to enable cross-
module interactions. However, IPC cannot be seamlessly ap-
plied to UEFI modules because it relies on dedicated inter-
faces and requires explicit cooperation between the client and
server. The IPC client must know the IPC server’s identity,
intentionally establish a connection, request the kernel to pre-
pare IPC payloads, and invoke the server using a specialized
IPC call, as illustrated in Figure 4 (b). Moreover, the approach
of shadow service is not suitable for managing protocol inter-
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faces. Unlike core services, the functions provided by protocol
interfaces cannot be encapsulated within a fixed set, as they
represent the diverse functionalities of UEFI modules.

µEFI introduces trampoline injection to enable transparent
cross-module protocol function calls. Trampoline injection
is implemented with the assistance of shadow service. When
a sandboxed module attempts to acquire a protocol interface
provided by another module, the sandbox manager does not
provide the actual protocol interface. Instead, it dynamically
generates trampolines that includes metadata about the pro-
tocol functions and injects it into the sandbox. Figure 4 (c)
illustrates the workflow of cross-module communication fa-
cilitated by trampoline injection. When a sandboxed module
invokes a protocol function, the call is transparently redirected
to the injected trampoline ( 1 ). The trampoline then issues a
system call, carrying the parameters and transferring control
to the sandbox manager ( 2 ). The sandbox manager processes
the parameters ( 3 ) before forwarding the call to the target
module ( 4 ). For the target module, data passed through the
cross-module call is also directly accessible ( 5 ), and even
callback functions can be invoked directly with the aid of
another trampoline ( 6 ).

Trampolines are injected into the sandbox without intro-
ducing security risks. Generation of a trampoline signifies
that access to the protocol is approved by the shadow service.
Furthermore, trampolines are configured as read-only upon
injection, ensuring that their logic cannot be modified.

# protocol function parameters 
# saved on stack
mov rdx, rbp
add rdx, 0x10
mov rdi, ProtocolId
mov rsi, FunctionOffset
mov rax, SANDBOX_INTERFACE_CALL
syscall

Cross-Sandbox Trampoline Caller Module
Func  I   trampo. 

Func II trampo. 

Func  N   trampo.

…

# pass parameters
mov rax, SANDBOX_INTERFACE_CALL
call rax

Core-Sandbox Trampoline
Sandbox 
Manager

Protocol Functions

R
eturn Tram

poline

Callee M
odule

UEFI
Core

Figure 5: Three types of trampolines with different use cases
and the work mechanism of trampolines.
Three types of trampolines. In addition to facilitating
cross-module communication, trampolines are also employed
within the core to enable transparent invocation of sandboxed
modules by the core, as well as within the callee sandbox to
ensure the automatic return of control after function execution.
During module management, the core leverages several basic
protocols to retrieve module information and control module
lifecycle operations, such as obtaining the module’s name or
checking whether a driver supports a specific device. These
protocol interfaces are also obtained through core services
and accessed via function pointers. To minimize modifica-
tions to the core, the shadow service generates trampolines for
the core every time a sandboxed module installs its protocol

interface. When the core invokes these interfaces, the calls
are routed to the sandbox manager.

Figure 5 illustrates the three use cases of trampolines and
highlights their differences in detail. In summary, trampo-
lines provide a transparent mechanism for cross-module calls
and support different kinds of interfaces. For instance, asyn-
chronous processing logic is implemented using events, and
callback functions for sandbox events can be executed via
trampolines. Although their application scenarios differ, all
trampolines redirect the control flow to the sandbox manager.
Within the sandbox manager, the interface proxy handles the
preprocessing of parameters before invoking protocol func-
tions and synchronizes data upon completion of the calls.

4.3 Interface Proxy
The interface proxy is responsible for validating the parame-
ters of the call and, when necessary, copying the parameters.
Although the UEFI core manages the installation and acquisi-
tion of protocols, it only records basic information about the
installed protocols, such as the module that installed the proto-
col, the corresponding interface that implements the protocol,
and a unique GUID used to identify the protocol. Lacking
information related to the contents of the protocol, it becomes
challenging to validate the parameters of protocol function
calls without modifying the module’s code. To address this
issue, the interface proxy needs to cooperate with the offline
analyzer. During online execution, the interface proxy identi-
fies the protocol GUID corresponding to a protocol function
call and queries the protocol’s metadata with the GUID from
the protocol database, which is constructed in the offline pro-
cess. With the metadata, the interface proxy can validate the
call parameters and, guided by this metadata, formulate data
transfer strategies.

4.3.1 Protocol Database

Protocols are basic building blocks in UEFI firmware de-
signed to facilitate communication and functionality between
various components, drivers, and applications. Their defini-
tions include both data structures representing device-specific
configurations and functions for invoking device functionali-
ties. The offline analyzer reads the protocol definition, parses
the data structures, functions, and type definitions, and gen-
erates the protocol database. To reduce the size of the proto-
col database and avoid excessive query latency, the analyzer
records only the essential information. We define three tables
in the protocol database to store different types of information:
protocol, function, and type. The protocol table records the
name and GUID of each protocol, and variables contained
within each protocol. The function table stores information
about the function parameters, including their types, names,
and input/output attributes. The type table captures other cus-
tom data structures and macro definitions. Figure 6 illustrates
an example protocol definition of SerialIOProtocol, which is
defined with the above three types. Once generated, the pro-
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 1. # @param Control      A pointer to return the control signals
 2. Func GetControlBits:
 3.   OUT Type *Control
 4.
 5. # @param BufferSize   Input: size of the Buffer.
 6. #                     Output: amount of data returned.
 7. # @param Buffer       The buffer to return the data into.
 8. Func Read:
 9.   IN OUT Type *BufferSize 
10.   OUT Type *Buffer
11.
12. Func Write:
13.   IN OUT Type *BufferSize
14.   IN Type *Buffer
15.
16. # Used to communicate with all UART-style serial devices.
17. Protocol SerialIOProtocol:
18.   Func GetControlBits
19.   Func Read
20.   Func Write
21.   Type *Mode  # pointer to mode data

Figure 6: Example protocol definition for serial I/O device.

tocol database is included in the sandbox manager’s firmware
image at compile time and contains all the information re-
quired by the interface proxy during runtime.

At runtime, the interface proxy does not load the entire
protocol database at once; instead, it employs a lazy loading
approach. During the initialization process, only the protocol
table is parsed, while the types and functions associated with
each protocol are not recursively analyzed. When the inter-
face proxy processes a cross-module call request for the first
time, it dynamically queries the necessary function and type
definitions required to handle the request.

4.3.2 Call Parameter Validation

The interface proxy begins with validating the parameters
of cross-module calls. A key observation is that severe vul-
nerabilities caused by improper input validation often stem
not from logical errors (i.e., valid inputs that are logically
incorrect), but from a failure to verify the validity of input pa-
rameters. For instance, a caller might pass a memory address
to the callee that it is not authorized to access, or set the buffer
size in parameters (example in Figure 6) to 128 bytes when
the actual buffer size is only 64 bytes. Such invalid behaviors
can result in unauthorized memory access or overwrite. Thus,
the interface proxy focuses on validating the legitimacy of
pointers within parameters.

Before initiating validation, the interface proxy must deter-
mine whether a pointer references a memory buffer, represents
an array, or serves as an identifier handle/token. However, at
runtime, it is impossible to determine this solely based on
the values passed by the caller. To address this, µEFI em-
ploys a heuristic method in the offline analyzer to decide how
to validate a given pointer. The information is recorded in
the function table and is later utilized by the interface proxy
to verify whether the pointer references a valid address and
whether the caller has necessary access permissions for the
passing memory region.
Offline parameter analysis. When analyzing function pa-
rameters, the offline analyzer begins by checking the data
type of pointers. If the data type of a pointer is a protocol,
the analyzer interprets it as a handle. This approach is based

on the observation that protocols are seldom used in function
parameters to transfer data. Instead, the protocol itself serves
as an identifier, similar to the ‘this’ pointer in C++ class.

Then, the analyzer tells if a pointer references a buffer or an
array, using a heuristic method named parameter pairing. Due
to the inherent limitations of the C language, passing an un-
typed pointer to represent a memory buffer in a function call
does not allow the callee to determine the buffer size unless
both parties have established a standard logic for handling pa-
rameters. After analyzing numerous protocol definitions, we
observe that when an untyped reference to a memory buffer
is passed, it is often accompanied by an additional parameter
specifying the buffer size. Similarly, for pointers that have
a deterministic type size, the analyzer checks whether there
is another parameter indicating the number of elements in
the array. For pointers that need to be parsed with specific
methods (e.g. string and device path), the offline analyzer
leaves the job to the interface proxy, and the buffer size is
determined at runtime using standard library functions (e.g.
StrLen and GetDevicePathSize).
Approach of parameter pairing. The offline analyzer uti-
lizes parameter names and function comments from protocol
definitions to perform parameter pairing. It first examines
whether the parameter names conform to certain patterns
(e.g., Buffer and BufferLength, or Data and DataCount). If
they do not, the offline analyzer proceeds to analyze the func-
tion comments. Since developers typically focus on protocol
definitions rather than implementation details when they use
protocols, function comments within protocol definitions of-
ten provide detailed explanations of the function’s purpose
and the roles of its parameters. This enables the offline ana-
lyzer to leverage large language models (LLMs) to identify
potential relationships between parameters.
Limitation. The offline analyzer fails to resolve parameters
of type void* when they cannot be unambiguously classified
as handles, data buffers, or arrays. Such cases, which account
for less than 2.5% of instances, typically involve implicit
payload semantics between caller and callee—for example,
parsing packets passed via void* in network modules. In these
scenarios, manual effort is required to correctly process the
parameters. At runtime, the sandbox manager flags unhandled
interface arguments when such ambiguous cases are encoun-
tered without proper handler.

4.3.3 Interface-aware Data Transfer

Given that modules in different sandboxes cannot access each
other’s memory, the interface proxy not only validates the
parameters of protocol function calls but also carries out data
transfer and synchronization during the process. Without the
use of specialized hardware features, memory isolation is
typically maintained at the page level. As a result, when han-
dling memory references in cross-module calls, the interface
proxy needs to allocate a memory region for the callee and
copy the data from the caller’s address space to the callee’s.
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Figure 7: Example of data transfer in cross-module protocol
function call and the lifecycles of the memory buffers.

By utilizing information from the protocol database and re-
sults of parameter pairing, the interface proxy is capable of
recursively dissecting complex data structures and handling
parameter transfer seamlessly, thereby obviating the need for
UEFI modules to explicitly manage data transfer.
Cross-module memory management. During the handling
of protocol function calls, the callee might allocate a memory
region for the caller, write the data to be returned into this
memory, and then return a reference to this memory to the
caller—utilizing multi-level pointers. In such scenarios, the
interface proxy needs to resolve the contents of multi-level
pointers layer by layer until it accesses the actual data, and
then allocates a buffer for the caller to store the data.

The key difference between memory buffers returned by
the callee and those used for input data lies in their lifecycles.
As illustrated in Figure 7, the memory allocated for trans-
ferring input data can be immediately released after the call
finishes. In contrast, memory buffers returned by the callee
are intended for use in the caller’s subsequent execution and
thus have a lifecycle extending beyond the scope of the cur-
rent protocol function call. Moreover, the caller only accesses
the data without managing it. Memory allocated by the callee
for the caller is typically released by the callee itself, often
through another protocol function. For instance, OpenFile
returns a pointer of an EFI_FILE structure which should later
be freed by calling CloseFile.

To prevent memory leaks, it is necessary to continue track-
ing the memory buffer even after the current protocol function
call has completed. Since all memory in sandboxed modules
is managed by the shadow service, additional metadata can
be recorded for allocated buffers. When the interface proxy
allocates memory for the caller to transfer returned data, the
shadow service binds this buffer to the memory that is pre-
viously allocated by the callee, establishing a hierarchical
relationship (depicted in Figure 7). When the callee module
releases its allocated memory, the shadow service ensures that
dependent memory is also freed in a cascading manner.

5 IMPLEMENTATION
We implemented a prototype of µEFI on both the x86_64
and the AArch64 architectures. To avoid invasive modifi-
cations to the core, the sandbox manager is implemented
as a UEFI module running at the same privilege level as
the core. The core is modified to ensure that the sandbox

manager is prioritized during the module loading process. It
interacts with the sandbox manager to schedule the sand-
boxed modules exclusively through interfaces defined by
SANDBOX_PROTOCOL, facilitating operations such as CRE-
ATE_SANDBOX and START_SANDBOX. The sandbox man-
ager module consists of 4,773 SLOC in C and 253 SLOC in
assembly, while the modification to the core is less than 100
SLOC.

In terms of the offline analyzer, we leveraged LLVM Fron-
tend Infrastructure, more specifically, LibClang, to directly
traverse and parse all the protocol headers of UEFI drivers pri-
marily in the MdePkg of EDK2 Repository. We programmed
the offline analyzer in C++ to extract all the types info and
function signatures used by all protocols and selectively filter
the protocols based on the INF sections defined in firmware’s
FV definition. After the process of type extraction, the offline
analyzer is set to dump the protocol definitions inside a JSON
file which is later statically embedded inside the Sandbox
Manager Driver. The offline analyzer consists of 907 LOCs
in C++ and the generated JSON file is less than 20000 LOCS.

6 EVALUATION
We evaluated µEFI to answer three major questions:
• Can µEFI protect UEFI firmware from vulnerability ex-

ploitation and real-world attacks? (§6.1 & §6.2)
• To what extent can µEFI achieve generality in ensuring

module transparency? (§6.3)
• How much overhead does µEFI incur? (§6.4 & §6.5)

Experimental Setup. Our system is based on the edk2-
stable202402 release version of UEFI EDK2. For evaluation,
we utilize two distinct platforms:
• Intel i7-13700 Desktop: This platform supports the VT-x

virtualization feature. We use the EDK2 OVMF package
to run µEFI within KVM-enabled QEMU virtual machine.
In this setup, the core operates at Ring 3, while sandbox
modules run at Ring 0. Execution cycles are measured by
reading the TSC (Timestamp Counter).

• Raspberry Pi 4 Model B: This platform features a quad-
core Cortex-A72 (ARM v8) 64-bit SoC. On this system,
the core executes in EL1, and sandbox modules are con-
fined to EL0. Execution cycles are measured by reading
the PMU (Performance Monitoring Unit) registers.

6.1 Empirical Security Evaluation
To evaluate the effectiveness of µEFI in defending against
various vulnerabilities, we constructed multiple test cases
based on known CVEs. These cases target potential issues
within modules, including memory safety vulnerabilities and
improper input validation.
Security protection for memory safety. Memory safety
issues, such as stack overflow, heap overflow, and use-after-
free, can lead to the corruption of critical data structures and
potentially enable arbitrary code execution. To evaluate the
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effectiveness of our defense mechanisms, we designed two
test cases targeting stack and heap overflow scenarios.

Stack-based buffer overflow. CVE-2021-39297 is a stack
overflow vulnerability found in the UEFI firmware of certain
HP laptops [43]. Exploiting this vulnerability allows an at-
tacker to overwrite the return address of the parent function.
In µEFI, a temporary stack is allocated each time control is
transferred to a sandboxed environment. Upon function return,
a return trampoline is employed to securely redirect control
back to the sandbox manager. Combined with the fact that
a sandboxed module can only access its own code and data,
this design ensures that malicious code outside the vulnerable
module cannot be injected or executed via stack overflows.

Heap-based buffer overflow. Heap overflow vulnerabilities
occur when a program allocates dynamic memory on the
heap but fails to properly validate buffer lengths, allowing an
attacker to overwrite adjacent heap data or metadata [21–23].
In µEFI, the heap memory of each sandbox is managed by the
sandbox manager independently. Even if an attacker exploits
a vulnerability to overwrite heap data, the access is confined
to the heap data of the compromised module itself.
Security protection for improper input validation. We
design two types of protocol function call inputs, each rep-
resenting common scenarios that require different levels of
input validation by the callee. The first type involves cases in
which the caller passes a memory pointer that it does not own,
potentially resulting in unauthorized memory writes. The sec-
ond category involves cases where the caller supplies a valid
memory buffer but specifies a BufferSize parameter that ex-
ceeds the actual buffer size. This can cause out-of-bounds
memory access and unintended data corruption.

In µEFI, the interface proxy addresses these issues by lever-
aging parameter pairing to associate Buffer with its corre-
sponding BufferSize. It then consults metadata maintained
by the shadow service’s memory management subsystem to
verify the legitimacy of the input buffer, thereby preventing
illegal memory operations.

There are a few cases in which the interface proxy may fail.
For instance, in CVE-2023-39538 [33], two input parameters
are used to initialize a buffer without proper validation. This
can lead to an integer overflow, resulting in the allocation of a
buffer that is too small to hold the intended data and ultimately
causing heap overflow [7]. Because the vulnerable buffer
is not directly passed as a function parameter, the interface
proxy cannot detect this issue. Nevertheless, the exploit is still
mitigated by the memory isolation enforced by µEFI.

6.2 Security Analysis
We further demonstrate how µEFI mitigates vulnerability ex-
ploitation by analyzing UEFI-specific attacks in the wild and
PoC attacks proposed by researchers.

ThunderStrike represents an early firmware attack targeting
UEFI. It is launched via a compromised Thunderbolt periph-
eral, which leverages its Option ROM to inject malicious code

into the firmware. A critical step in its execution involves the
malicious module altering the normal boot sequence. Specifi-
cally, it replaces the ProcessFirmwareVolume function pointer
in the DXE services table with its own function pointer. This
manipulation allows the bootkit to seize control over subse-
quent stages of the boot process [57]. As µEFI utilizes the
shadow service to ensure that the service table accessed by
each sandboxed module is an independent copy, even if a
malicious module modifies a function pointer in its service
table, the hook will not affect other modules.

BootHole exploits a buffer overflow vulnerability within
the GRUB2 bootloader, triggered when parsing a maliciously
modified grub.cfg configuration file by an attacker with admin-
istrative or physical access. This buffer overflow overwrites
critical structures in the heap and allows for arbitrary code
execution. As GRUB2 itself is signed and verified, this ef-
fectively bypasses Secure Boot and enable the loading of
untrusted code or the installation of persistent bootkits [41].
If µEFI is deployed, the memory isolation enforced between
sandboxes prevents an attacker from overwriting memory be-
longing to other modules or the core. This significantly raises
the difficulty of exploiting such vulnerabilities.

BlackLotus is a sophisticated UEFI bootkit recognized for
its capacity to circumvent Secure Boot by leveraging vulner-
abilities like ‘BatonDrop’. A key aspect of its methodology
is that it loads a malicious module (‘grubx64.efi’) and inter-
cepts the execution of components included in the typical
Windows boot flow, such as Windows Boot Manager, Win-
dows OS loader, and Windows OS kernel, and hooks some
of their functions in memory. This deep level of interference
allows BlackLotus to effectively neutralize various security
mechanisms, including BitLocker and Hypervisor-protected
Code Integrity (HVCI) [84]. With µEFI in place, even if Se-
cure Boot is bypassed, running ‘grubx64.efi’ within a sandbox
prevents it from inserting malicious hooks into other modules.

6.3 Generality of Offline Analysis
A critical question is how general can µEFI be used for pro-
viding isolated execution environments for UEFI modules.
To answer this question, we employ the offline analyzer to
examine all protocols within the UEFI EDK2 project. Be-
cause the key to achieving module transparency is to support
different interfaces and correctly handle the pointers, we fo-
cus on analyzing pointer parameters in functions and pointer
fields in the definition of protocols and compound types. We
also include non-pointer types in the analysis to reflect the

Table 2: Number of different types of pointers in the definition
of Functions, Protocols, and Compound Types in UEFI EDK2.
Total Fields contain the parameters that are not pointers.

Definition
Buffer
w/ Size

Array
w/ Count

Handle
/Token

Parse w/
Library

Manual
Effort Total Fields

Protocol 0 0 22 10 2 1147
Compound Type 28 1 85 189 87 33278

Function 159 6 369 101 90 3639
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broader applicability of µEFI, since most interface parameters
are plain data structures in production firmware.

The offline analyzer recognizes four types of pointers that
need to be specially handled, as detailed in Table 2. Among
all the protocol fields, only two fields require manual inter-
vention for adaptation. This is because the definitions of most
protocols are composed of function pointers and a few sim-
ple data structures that represent the hardware configurations.
Similarly, the failure rate for analyzing compound types is as
low as 0.26%. Regarding functions, 17.4% of all parameters
are classified as belonging to the four special pointer types,
with a failure rate of 2.5%. Moreover, many failure cases are
clustered within a few modules that contain multiple data
structures requiring manual effort.

6.4 Performance Evaluation
6.4.1 UEFI Boot Performance
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Figure 8: The impact of the number of sandboxed modules on
UEFI boot time (measured from the entry of DxeMain to the
completion of ExitBootServices).

To evaluate the performance impact of running modules
in sandboxes, we first measure and compare the boot time of
UEFI 3 with and without sandboxed modules. The comparison
of boot latency focuses on the UEFI boot process, from the
entry into the DXE phase to the handover of control to the
operating system. We select six widely used UEFI modules,
ranging from simple modules such as EnglishDxe to complex
ones like FAT, which is among the most complex in EDK2,
interacting with other modules via a rich set of protocols and
intricate data structures.

As illustrated in Figure 8, running six modules in differ-
ent sandboxes only incurs an overhead of 1.91%. When no
modules are executed within the sandbox, the loading of the
sandbox manager introduces a latency of 0.91%. This over-
head arises from the sandbox manager’s initialization process,
during which it preloads portions of the protocol database.
The loading of each individual module incurs an average
overhead of 0.17%, with the overheads of running different
modules ranges from 0.06% to 0.22% (more details in §6.4.2).
These differences arise because modules perform distinct
tasks. Modules are occasionally invoked by the core via the
EFI_DRIVER_BINDING_SUPPORTED interface to deter-
mine whether they support specific protocols. In certain cases,
modules may be loaded but their interfaces are never invoked

3We failed to configure to boot Linux with GRUB on Raspi4, the boot
time is only tested on the x86_64 platform.

due to a failed driver binding process. In contrast, modules
such as FAT are both loaded and executed. The more complex
the protocol interfaces they expose, the higher the runtime
overhead they incur. Moreover, during system boot process,
the operating system’s boot time significantly exceeds the
boot time of the UEFI firmware, rendering the overhead of
µEFI more negligible.

6.4.2 Module Execution Performance

To evaluate the performance impact of µEFI on UEFI modules,
we conduct experiments on two frequently invoked and highly
interactive modules during the boot process: FAT and DiskIo.
The protocols provided and consumed by these modules are
sufficiently representative to cover all the parameter cases
discussed in §4.3. The end-to-end test involve creating a file
using FAT-provided interfaces, writing to and reading from
the file, and then deleting it.
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Figure 9: Execution time for end-to-end test with and without
FAT and DiskIo in sandboxes.

As illustrated in Figure 9, in the x86 virtual machine, run-
ning FAT with µEFI incurs an average overhead of only 0.35%,
while isolating FAT and DiskIo into separate sandboxes re-
sults in an average overhead of 0.78%. This increased over-
head is attributed to the additional context-switching and data
transfer involved in interactions between sandboxed modules
compared to those between sandboxed and core modules On
the Raspberry Pi 4 platform, the corresponding overheads are
3.85% and 4.11%, respectively.
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Figure 10: Execution overhead of various FAT interfaces
when executing FAT and DiskIo within µEFI.

Figure 10 shows the execution overhead of various FAT
interfaces by comparing baseline performance with that ob-
served when both FAT and DiskIo modules are executed
within sandboxes. On the x86_64 platform, Read, Write, and
Lseek operations each take less than 9,000 additional cycles.
As for others, Open, Delete, and Flush involve I/O operations,
where the time consumed by the driver’s internal logic signif-
icantly exceeds the overhead introduced by µEFI. The over-
heads shown primarily reflect the natural fluctuations in the
interface execution times, which are less than 5% compared
to the baseline.
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Figure 11: Execution time for end-to-end test with and without
FAT and Mock-DiskIo in sandboxes.

Mock test excluding I/O operations. UEFI primarily initial-
izes hardware and sets up the environment for OS booting. As
such, most UEFI modules inherently involve I/O operations
through direct or indirect hardware interaction. To better test
the overhead introduced by µEFI, we conduct a mock test that
excludes all I/O operations.

In this test, we substitute the I/O operations in the DiskIo
module with equivalent memory operations, and the results
are shown in Figure 11. Since the test involves only memory
copies and function calls, the baseline execution on x86_64
with a file size of 128 bytes takes 5,646 cycles. When FAT
is sandboxed, the execution time increases to 26,437 cycles.
When both FAT and Mock-DiskIo module are sandboxed, the
execution time further rises to 30,870 cycles. Similar results
are also observed on the Raspberry Pi 4 platform.

This increase stems from two primary sources: (1) Addi-
tional context switches. All service and protocol interface in-
vocations from sandboxed modules must enter the kernel. For
instance, FAT uses locks during file operations, implemented
via RaiseTPL and RestoreTPL, which each incur a system
call. (2) Interface parameter synchronization. The sandbox
manager is responsible for pre-invocation input transfer and
post-execution output synchronization. These operations in-
troduce overheads that scale with interface complexity and
the buffer size. This partially explains why sandboxing Mock-
DiskIo on top of FAT results in less than 20% overhead.

6.4.3 Overhead Breakdown
To assess how different sources of overhead contribute to the
overall performance impact, we examine the latency of inter-
face calls involving different parameter types. Four distinct
types are included:
• Simple call performs a call without parameters.
• Input object uses an input pointer to pass an integer object.
• Input buffer uses an untyped input pointer to pass a buffer.
• Output buffer passes in the reference of an untyped pointer

and retrieves the pointer with buffer allocated by the callee.
The combination of the four types collectively represents all
possible interface scenarios. The latency of switching between
the caller and the core is not included, as it is roughly the same
as the switch latency between the core and the callee.

As illustrated in Figure 12, when running on x86_64 ar-
chitecture using QEMU/KVM, context switching introduces
an average latency of 1,126 cycles. The average latency for
DB query is only 55 cycles, as protocol database entries are
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Figure 12: Overhead breakdown for different kinds of cross-
sandbox calls.

cached after the first analysis, making subsequent queries
nearly instantaneous. Even for initial queries, DB query re-
quires only 200–300 cycles. Handling an integer pointer in
the input consumes 1,178 cycles, which includes the allo-
cation of transient memory and data transfer. For an input
buffer of 800 bytes, the latency increases by an additional
280 cycles. After returning from the callee, 500 more cycles
are consumed to free the transient memory. If there exists an
output buffer, the overhead of synchronization accounts for
the largest proportion, which includes caller memory alloca-
tion and data transfer. In the test case of the output buffer,
the callee performs a system call to allocate memory for the
caller, introducing an additional overhead of 420 cycles.

On the Raspberry Pi 4, the proportional distribution of over-
head across different components is similar to that observed
with QEMU/KVM. However, context switching incurs an
average overhead of 5,262 cycles. This increased cost arises
because, for different sandbox calls, the transient return tram-
poline and jump buffer used for redirection may be allocated
to the same physical address. As a result, cache invalidation
is required before invoking sandbox functions.

6.5 Memory Consumption
Table 3 summarizes the additional memory consumption of
sandboxed modules. When loading a UEFI module, the core
allocates at least 32 KB memory. For more complex drivers,
such as FAT, the allocation can reach up to 112 KB. On top
of this, the additional memory overhead introduced by each
sandbox typically remains below 40 KB. Given that mod-
ern firmware environments generally support up to 4 GB
of physical memory, this overhead is negligible. The addi-
tional memory primarily consists of two parts: The memory
required for sandbox management and the memory necessary
for interface calls.

Part 1: Each sandbox maintains its own page table and in-
dependent heap manager, resulting in a memory management
overhead of 17 KB, which increases proportionally with fu-
ture allocation. To safeguard the core against malicious hooks,
system tables are not shared among sandboxes which takes
up 8 KB. Additionally, the metadata of protocol interfaces
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Table 3: Memory consumption of a sandboxed module.
Source Size Detail usage of the memory
Memory Management 17 KB Pagetable and heap metadata
Sandbox SystemTable 8 KB Shadow system table and shadow services
Interface Management 520 B Every acquired/installed interface
Core-Sandbox Trampoline 128 B Every installed protocol function
Cross-Sandbox Trampoline 128 B Every acquired protocol function
Sandbox Stack 32 KB Every call to the sandbox (transient)
Return Trampoline 64 B Every call to the sandbox (transient)
Jump Buffer 352 B Every call to the sandbox (transient)
Call Parameter Dynamic Every call from/to the sandbox

and the generated trampolines require 648 bytes of memory.
Part 2: The memory overhead of a sandbox interface call

includes a dedicated sandbox stack, a return trampoline for
transferring control back to the sandbox manager, a jump
buffer for storing core context, and memory allocated for
transferring call parameters. Except for the output values,
all of these memory occupation are transient, collectively
requiring 33 KB.

7 Discussion
µEFI TCB. Our implementation considers the core as the
trusted computing base (TCB) and assumes that all preced-
ing phases, including the SEC and PEI phases, are secure.
While vulnerabilities exist in the core and these earlier phases,
their prevalence is significantly lower compared to other com-
ponents. Moreover, as modules in the PEI phase primarily
handle basic hardware initialization, we implement µEFI to
monitor the modules loaded after the core.
Privileged instruction handling. Since UEFI firmware in-
teracts directly with hardware, UEFI modules may rely on
privileged instructions to perform their tasks. Executing such
instructions in user mode triggers system exceptions. Previous
research [1,60,64] on transitioning high privilege components
to lower privileges has explored solutions to address this issue.
In µEFI, we adopt a similar approach to trap and emulate the
execution of privileged instructions.
Usage of µEFI during OS runtime. µEFI primarily works
in UEFI boot phases to ensure the modules are loaded and ex-
ecuted safely. Beyond this, the techniques employed by µEFI
can also be utilized in the firmware runtime to monitor calls
to UEFI runtime services and SMM handlers. For instance,
µEFI can serve as a proxy to validate SMM call parameters.

8 Related Work
In addition to UEFI Secure Boot, UEFI incorporates a range
of methods and features aimed at enhancing security.

Data flow and control flow protection mechanisms used in
operating systems, such as stack guards, address space lay-
out randomization (ASLR), and control flow guard (CFG),
can be employed in UEFI [86, 96]. Microsoft, for instance,
introduced Enhanced Memory Protection [5], which enforces
section-level security by applying execution-protection flags
to data sections and read-only flags to code sections. While
these methods increase the difficulty of attacks, they fail to ad-
dress fundamental issues. All modules still operate with high

privileges, and their capabilities remain unrestricted. Conse-
quently, attackers can exploit module vulnerabilities to carry
out actions such as loading malicious images or hooking ma-
licious functions.

Static analysis and fuzzing of driver source code or binaries
are common approaches for uncovering firmware vulnerabil-
ities. Intel’s Host Based Firmware Analyzer (HBFA) is an
open-source fuzzer targeting EDK II, leveraging manually
crafted harnesses to test protocol interfaces [59]. While this
design facilitates targeted protocol analysis, its dependence
on manual setup and limited input diversity hampers both
efficiency and scalability. SPENDER [99] applies static anal-
ysis to identify SMM privilege-escalation vulnerabilities in
UEFI firmware but faces challenges with precision when an-
alyzing stripped binaries. RSFUZZER [98] adopts a hybrid
fuzzing strategy to discover vulnerabilities in SMI handlers,
but suffers from the overhead and slow performance of emula-
tion and is incapable of detecting silent vulnerabilities. While
these tools seek to discover vulnerabilities, our work takes
an orthogonal approach by focusing on attack surface reduc-
tion via module isolation, thereby complementing existing
analysis-based defenses.

Apple has proposed using OROM Sandbox to constrain
the execution of unsigned option ROMs [3]. However, its
approach focuses solely on limiting the capabilities of option
ROM invocation interfaces and does not address the challenge
of achieving module transparency. Rust for UEFI suggests
leveraging Rust’s memory safety features to enhance UEFI
security [97]. However, this requires rewriting the existing
codebase. As current firmware codes are predominantly writ-
ten in C and assembly code, integrating Rust would inevitably
introduce significant portions of unsafe code, undermining its
benefits in memory safety.

9 Conclusion
µEFI adopts a microkernel architecture to deprivilege and
isolate the execution environments of UEFI drivers and appli-
cations. To address the challenge of maintaining compatibility
with existing firmware modules, µEFI incorporates key tech-
niques such as trampoline injection and protocol analysis.
Additionally, it strengthens UEFI security by implementing
a seccomp-like mechanism and enabling automated input
validation.
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