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Abstract
We present burst computing, a novel serverless solution

tailored for burst-parallel jobs. Unlike Function-as-a-Service
(FaaS), burst computing establishes job-level isolation using
a novel group invocation primitive to launch large groups
of workers with guaranteed simultaneity. Resource alloca-
tion is optimized by packing workers into fewer containers,
which accelerates their initialization and enables locality. Lo-
cality significantly reduces remote communication compared
to FaaS and, combined with simultaneity, it allows workers
to communicate synchronously with message passing and
group collectives. Consequently, applications unfeasible in
FaaS are now possible. We implement burst computing atop
OpenWhisk and provide a communication middleware that
seamlessly leverages locality with zero-copy messaging. Eval-
uation shows reduced job invocation and communication la-
tency for a 2× speed-up in TeraSort and a 98.5% reduction
in remote communication in PageRank (13× speed-up) com-
pared to standard FaaS.

1 Introduction
The cloud offers compute infrastructure on demand, but pro-
visioning, adjusting, and managing these resources for large-
scale data processing applications is an arduous task, espe-
cially for non-experts. Furthermore, when the load is unpre-
dictable, dynamic, with varying volumes of data, user-driven,
and sometimes interactive, finding the right scale to avoid
misprovisioning [25, 39, 54] becomes very complex.

Function-as-a-Service (FaaS) has gained traction as a so-
lution to the resource provisioning problem as it offers rapid,
on-demand, no-ops scaling and a pay-as-you-go billing model
at very fine granularity (MB per ms). Users do not need to
set up a cluster, but the service simply accepts function in-
vocations and fully manages the rest. Moreover, its resource
burstability has set FaaS aside from traditional engines like
Spark or Dask, allowing to start thousands of short-lived func-
tions in seconds instead of minutes (see Table 1). Several
research works [15, 16, 23, 44] have used FaaS for a myriad
of data- and compute-intensive tasks.

Table 1: Time to provision cloud compute resources on
different services and technologies.

Technology Total vCPUs Nodesa Start-up time

EMR Spark 96 6 296 s
24 431 s

Dataproc 96 6 95 s
24 113 s

Dask 128 8 184 s
64 253 s

Ray 128 8 187 s
64 229 s

Knative (Kubernetes) 960 960 54 s
OpenWhisk 960 960 21 s
AWS Lambda (2 GiB) 960 960 6 s
Burst Computing 960 960 1.7 s
a AWS EMR Spark and GCP Dataproc use m5 and E2-standard VM

families, respectively. Dask and Ray are deployed on user-managed
m6i family EC2 VMs. Knative, OpenWhisk, and Burst deployed on
20 c7i.12xlalrge VMs but start 960 functions/workers.

This has brought a new concept in cloud computing that
refers to the ability to quickly respond to sudden, parallel
workloads without provisioning a cluster in advance. Fouladi
et al. [16] talk about a “burstable supercomputer-on-demand”
and a “burst-parallel swarm of thousands of cloud functions,
all working on the same job.” However, literature admits that
the current FaaS model is too narrow and precluding for mas-
sively parallel data processing programs (MPP) [24].

In this work, we highlight that the key issue of FaaS hinder-
ing burst-parallel jobs is its lack of group awareness. Indeed,
FaaS users need multiple independent service calls to spawn
a fleet of workers, which become strongly isolated from each
other. We note that such fine-grained isolation is damaging
and unnecessary for collaborative jobs, and thus propose to
raise the multi-tenant boundaries to the job level.

We present burst computing, a new cloud computing model
to deal with quick, sudden, massively parallel workloads,
which we call bursts. To this end, we offer a group invo-
cation primitive to handle the whole job as a unit. To the best
of our knowledge, we are the first to implement this feature
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in a FaaS platform, clearly differing from all other research
efforts that suffer the burden of handling and orchestrating
individual function invocations. A group invocation allows to
optimize resource allocation, ensure worker parallelism, and
perform packing: running multiple workers co-located in the
same environment. In addition to speed up worker start-up
latency, this enables worker locality and simultaneity, which
can be exploited to improve code and data loading, and to
aid powerful worker-to-worker communication patterns (e.g.,
broadcast, all-to-all) that seamlessly leverage shared memory
channels with zero-copy mechanisms.

From the user side, a burst spawns a fleet of workers that
communicate with message-passing, a simple but very power-
ful abstraction that creates a novel serverless substrate versa-
tile to many applications beyond what is feasible in FaaS. This
gives extensive control of the job to advanced users and allows
to design compute engines or frameworks on top (e.g., DAG-
based) to simplify development, manage the execution, and
handle failures. Massively parallel computations are prime
burst applications, especially when sudden, unpredictable, and
user-driven in nature. Batch-like jobs are also good candidates
when run interactively. Some examples are data processing,
analytics, and machine learning workloads like exploratory
model tuning, SQL, k-means, and large-scale sorting. Bursts
may be stateless (e.g., grid search or Monte Carlo simulations)
or stateful (e.g., table joins and aggregations).

We make the following contributions:
• We present burst computing, a novel cloud service model

for short, sudden, massively parallel jobs (bursts). We be-
lieve that no cloud vendor or research effort has created
the necessary substrate to support them.

• Burst computing evolves FaaS with a key novel group
invocation primitive (a flare) that raises multi-tenant iso-
lation from a single function invocation to the whole job.
In consequence, the system launches massive process
groups faster, with guaranteed parallelism, and packs
workers together to exploit locality.

• We implement a burst computing platform by extending
OpenWhisk, a state-of-the-art FaaS system. Our imple-
mentation includes a specialized Rust worker runtime
and a burst communication middleware that seamlessly
leverage worker locality with collective code/data load-
ing and zero-copy messaging.

• Under evaluation on several burst-parallel workloads
against FaaS, burst computing improves job invocation
latency (up to 11.5× faster), worker simultaneity (up
to 26.5× lower median absolute deviation), and group
communication (up to 98% in a broadcast), for a speed-
up of 13× in PageRank and 2× in TeraSort.

2 Motivation: in search of burstability
Many works are leveraging serverless services for massive
data processing [3, 7, 9, 15, 16, 23, 40, 60] despite current
(FaaS) hindrances [5, 18, 24] due to the resource burstability
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Figure 1: Start-up time (cold start) of 100 and 1000 FaaS
functions in AWS Lambda for two memory sizes.

of this model [17, 38]. Applications benefit from quick, on-
demand, no-ops resources at very fine granularity, and pay
precisely for what they need, when they need it.

This has brought what we call bursts, massively parallel pro-
cessing (MPP) workloads that appear suddenly and process
large, variable volumes of data in a very short time (under 1 or
2 minutes). Such applications have dynamic resource needs
that cannot be predicted easily, thus serverless burstability be-
comes essential [49, 50, 52, 56]. Consider, e.g., an interactive,
scientist-driven workflow in a Jupyter Notebook, where the
user dynamically explores large datasets and modifies parame-
ters that significantly impact the workload size. Although they
may resemble batch jobs, they are characterized by their sud-
den, sporadic occurrence, highly dynamic and unpredictable
data volumes, and the expectation of low-latency execution.
Representative use cases include interactive model tuning
via grid search, exploratory data analysis with SQL queries
and algorithms such as logistic regression, and data prepara-
tion operations like filtering and sorting. The MilliSort and
MilliQuery benchmarks [31] exemplify such short-running
workloads. Additional scenarios include real-time data stream
or video feed processing, where both data volume and analyt-
ical complexity may fluctuate dramatically over time.

Current data processing solutions such as Spark, Dask,
Flink, or Ray fail to support bursts. A long-lived deployment
of these engines is impractical, as it would easily become mis-
provisioned. They are not offered as a service by any cloud
either, which could palliate the issue by multiplexing jobs
from multiple tenants, and thus forces per-user deployments
that are too slow to set up [38], even on cloud-managed of-
ferings (e.g., Amazon EMR). Table 1 shows that starting one
of these technologies is intolerable for critical sporadic or
dynamically sized applications.

In contrast, FaaS services provide a large-scale compute
substrate much faster. Fig. 1 shows that AWS Lambda may
spawn a fleet of 1000 functions in 6 s; a much more appropri-
ate time range for bursts.1 FaaS is also more attractive than
Container-as-a-Service (CaaS) or managed Kubernetes ser-

1Note that small functions (256 MiB) incur higher invocation latency
than large ones (10 GiB). Also found on other providers (e.g., GCP), it is
likely due to the overhead of scheduling finer-grained resources.
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Figure 2: Running a data processing job of 6 workers in FaaS
and burst computing with granularity (g) 3.

vices due to simpler abstractions [26] and quicker resource al-
location. For example, Knative, a Kubernetes-based FaaS-like
implementation, is noticeably slower in spawning workers
than dedicated FaaS platforms (Table 1).

2.1 FaaS is holding us back
A review of the literature will show us that running bursts atop
FaaS brings many challenges [18, 24, 38]. We highlight three
friction points: (F1) worker isolation, (F2) job fragmentation
with complex orchestration, and (F3) huge data movement.

To illustrate them, Fig. 2 follows the execution of a parallel
job on a FaaS platform. It shows a parallel job with 6 workers.
The job could be embarrassingly parallel (stateless) such as
a data filtering, or require the workers to coordinate at some
point (stateful) such as a table join or, more intensively due
to its iterative nature, PageRank.

F1 appears because multi-tenant isolation is at the level of a
function invocation. FaaS spawns function instances indepen-
dently, one at a time, requiring multiple HTTP requests A1
to obtain the 6 workers. Besides the added latency of several
requests, this is an issue for parallel jobs because the plat-
form is not aware of these workers being collaborators, and
thus cannot guarantee their parallelism. This creates delays or
skews between workers that potentially harm job execution.
Take, for instance, Fig. 1, where the last function starts up
to 6 s after the first one.2 Even more, the platform populates
identical environments (instances) for each invocation A2 ,

2Further evaluation (not shown in the plot) reveals that this dispersity
may increase to 44 s in GCP, or 20 s in an OpenWhisk deployment.

which stresses the system with code, dependency, and data3

loading that creates memory duplication [41, 53].
F2 occurs when workers need to coordinate. For instance,

TeraSort à la MapReduce includes a data shuffle amidst the
job, and PageRank iteratively globally aggregates a vector.
Workers cannot communicate effectively because they may
not exist at the same time (F1). Instead, workers read and write
intermediate data asynchronously through an external storage
solution. This pattern (depicted in Fig. 3) creates job frag-
mentation (function stages) and complicates its orchestration,
especially in iterative algorithms like PageRank (unfeasible
with this approach [6]). First, it increases data movement and
requires worker recreation at each stage (adding code and data
loading overhead). Second, it needs an active workflow or-
chestration process to monitor the state of workers and oversee
the overall job progress.4 Centralized solutions add a mostly-
idle driver component while decentralized task scheduling
adds a layer of complexity to applications [9, 29, 32]. Neither
can solve the underlying problem of worker isolation.

These issues are emphasized by F3. With so many tiny iso-
lated workers, most communication patterns (e.g., a shuffle)
require numerous remote connections A3 . In data processing
workloads, this may result in very large data transfers, pre-
cluded by the (FaaS) lack of direct communication [10, 35].

3 Burst Computing
Burst computing is a novel paradigm for running bursts in
the cloud. It overcomes the above frictions with two key
principles that evolve FaaS: group awareness and locality
exploitation. Fig. 2 shows how this changes job invocation.

FaaS hinders worker collaboration because multi-tenant
isolation is at the level of a single function (F1). Because a job
belongs to a single tenant, it makes sense to raise isolation to
the job level and handle all its workers as a group. To this end,
burst computing provides a group invocation primitive, which
we call flare B1 , to instantly launch massive process groups
with guaranteed parallelism. To the best of our knowledge, we
are the first to implement this kind of primitive in a serverless
system. Flares bring group awareness to the service, which
is key to perform worker packing B2 , i.e., running multiple
workers of a job in the same isolated environment. Packing
establishes worker locality and enables several optimizations
discussed below.

In a flare, all workers have guaranteed parallelism and
access to the job context (e.g., the burst size, IDs, or locality),
which allows them to communicate synchronously in patterns
unfeasible in FaaS, such as worker-to-worker message passing
and collectives, that simplify job orchestration and avoid F2.
This difference is depicted in Fig. 3. F3 is addressed because
communication B3 can seamlessly exploit locality and use
shared memory mechanisms between workers in the same
pack, which reduces remote transfers.

3For instance, hyperparameter tuning uses the same data in all workers.
4This can be painful since FaaS does not provide monitoring mechanisms.
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3.1 Worker packing and communication
Worker packing To run a flare, the burst platform allocates
n workers into m packs; we say that n is the burst size. The
number of workers per pack is the burst’s granularity (g =
n/m). Thus, Fig. 2 shows a burst of size n = 6 where, by
setting g = 3, the platform only spawns 2 packs, each with
3 workers. The higher g, the lower m, reducing the number
of environment creations, which is a critical part of function
invocation time in FaaS. Then, worker code and dependencies
are loaded only once per pack and shared by all co-located
workers. This further helps with initialization time (especially
when dependencies are large) and optimizes resource usage
(e.g., avoiding memory duplication [41]). A similar reasoning
applies for data loading: workers processing the same data
(like in hyperparameter tuning) download it just once per pack
and utilize their aggregated resources to speed up the transfer
(i.e., with parallel downloads).

Choosing g is a trade-off between ease of system manage-
ment and locality maximization. To illustrate that, we identify
three strategies5 for worker packing: (i) heterogeneous, where
workers are placed in containers as big as possible in the un-
derlying system machines; (ii) homogeneous, where workers
are placed in fixed-size containers; and (iii) mixed, where
workers are put in fixed-size packs, but if multiple packs
fall onto the same machine, they are merged into a single
container. The first approach maximizes locality, but it can
become a resource scheduling problem, as it is prone to frag-
mentation. The homogeneous packing mitigates that issue,
but it restricts worker locality. The third strategy is the com-
promise that allows a fast and flexible management while still
maximizing locality (see §5). Given this complexity, we argue
that the responsibility for setting the granularity should lie
with the platform rather than the user, enabling better control

5Strategies must consider how many resources we assign to each worker.
For simplicity, this paper considers only vCPUs and applies 1 vCPU per
worker, but the strategies work for any such assignment.

over resource scheduling and providing a more streamlined
and user-friendly service.

Worker communication Burst applications are elastically
distributed and collaborative. They are coded as a single
function run by all workers that accepts any worker multiplic-
ity transparently. Then, because workers are guaranteed to
be parallel, they may coordinate synchronously by sending
messages and with common communication patterns.

To simplify this, burst computing includes a worker-to-
worker, message-passing communication middleware readily
available to workers. The middleware seamlessly identifies
messages between workers placed in the same pack for local
communication (zero-copy). Only messages between packs
are transferred remotely, and the middleware optimizes these
connections (e.g., a broadcast only sends one message per
pack). Remote delivery may be implemented with several
technologies. Our contributions are independent of this choice
because burst computing reduces any remote communication
through packing. In this work, we follow the usual approach
in FaaS and only consider indirect solutions using an external
communication server B3 .

4 Design and implementation
We put the above ideas into a prototype burst computing plat-
form and communication middleware. Here we provide the
design details and implementation. Fig. 4 shows an overview
of the main components and their interactions.

The burst platform extends the design of a FaaS platform
to implement group invocation and worker packing. Built
atop Apache OpenWhisk, our platform shares its components
with important modifications (see §4.4). The controller man-
ages user interaction with the platform, it handles inbound
HTTP requests to deploy and invoke bursts, oversees sys-
tem resources, and performs worker packing. A database
stores the burst definitions and configuration, as well as the
results and execution metadata. Computational resources in
the platform are provided by the invokers, a set of machines
with capacity for burst packs. Packs are run in containers that
isolate a custom runtime environment to run workers.

Our burst communication middleware (BCM) has two main
components: the core communication library and the remote
backends. The library exposes message-based communica-
tion to workers, and it is extensible with backends to use
different remote message delivery solutions.

4.1 Life cycle overview
Fig. 4 depicts the life cycle of the system. To deploy a new
burst definition, the user first sends 1 a deploy HTTP re-
quest. The controller receives it and registers 2 the new
definition in the database. Later, when the user desires to trig-
ger the execution of the burst, they send 3 a flare HTTP
request with specific parameters. The controller handles the
invocation and decides worker allocation 4 based on the
current state of the invoker machines. The affected invokers
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Figure 4: Burst computing platform overview.

receive the task to spawn the required runtime environments
(packs) with space for as many workers as needed. When
the environments boot, their host invoker tells them which
burst definition and parameters to load 5 from the database.
Then, each pack spawns its workers internally, which will
execute the user-defined function (work in Table 2) in paral-
lel. Workers may use the BCM to coordinate and share data.
This seamlessly uses shared memory or remote connections
to communicate workers 6 in the same or a different pack,
respectively. Additionally, workers may read or write data
to external storage systems (e.g., object storage) or produce
a result that is stored back to the database, where it may be
retrieved later by users through another HTTP request.

4.2 Developing and running bursts
User experience is key for burst computing. As a serverless
service, all resource management remains hidden. Users in-
teract with the service through a simple interface that allows
to define bursts with resource-agnostic code and to schedule
their execution. This is similar to FaaS services that allow
users to upload their function definitions and then set up trig-
gers or invoke them as needed. The interface and abstractions
are summarized in Table 2.

Deployment Similar to functions in FaaS, developers pack-
age and upload their burst definitions (code) to the cloud,
giving them a name and configuration. The configuration in-
cludes runtime parameters and worker characteristics (such
as language and memory size).

Invocation Burst definitions are triggered for execution like
functions in FaaS: an event or HTTP request notifies the intent
to execute a burst with specific input parameters. We call each
burst invocation a burst flare (Table 2). The main difference
with FaaS is that a flare will spawn a group of parallel workers
(instead of a single function instance). The service ensures
that all workers run simultaneously and applies packing. In
our prototype, the burst size is explicit on the size of the in-
putParams array. Hence, users have direct control over it. We
believe this to be important because parallelism is strictly
application-specific and depends on data volume (e.g., ETL

Table 2: Burst computing abstractions and API.

Interface Functions

Burst deploy(defName, package, conf )
Service upload and deploy a burst definition

flare(defName, [inputParams])
invokes a burst

Burst abstract work(inputParams, burstContext)
Function function to run on each worker

Burst workerID → unique ID of this worker within the flare
Context burstSize → number of total workers in the flare

packID → unique ID of the current pack
packSize → number of workers in the current pack
numPacks → number of packs within the flare
belongToPack(workerID) → packID

returns the pack ID to which a worker belongs to
isPackLeader() → bool

returns true if this worker is its pack’s leader

Comm. send(data, dest) → none
Primitives recv(source) → data

broadcast(data, root) → data
allToAll([data]) → [data]
reduce(data, f (data, data) → data) → data

tasks), data content (e.g., dimensionality or sparsity), or algo-
rithm configuration (e.g., the number of clusters in k-means).
Smart burst sizing is left for future work, i.e., the platform
may automatically calculate the number of workers based on
application and data information.

Coding Burst definitions are coded as a single function that
is run by each worker in the burst (work in Table 2). This
function must be programmed elastically so that it accepts
and runs correctly for any burst size. The code is also agnostic
to the packing performed by the service. To that end, the work
function receives a burst context object through which each
worker may obtain information about the worker distribution
within the particular flare. For example, a worker can query its
own unique ID, the burst size, granularity, or which workers
belong to each pack (Burst Context in Table 2). With this
information (provided by the platform invoker), the code can
implement logic to apply locality optimizations at the pack
and burst levels (see an example in §5.4.1). This context
object also gives access to the BCM.

Communication interface The BCM offers simple yet pow-
erful worker-to-worker communication through message pass-
ing similar to MPI. The abstractions are elastic (adapt to the
burst size) and available through the burst context. Burst com-
puting programs make use of two basic primitives to connect
workers: send and receive. These primitives enable point-to-
point communication between workers and are designed to
send arbitrary volumes of data efficiently within the burst. To
facilitate common communication patterns in parallel jobs,
bursts may also use group collectives. As listed in Table 2,
our prototype implements broadcast, all-to-all, and reduce.
Primitives and collectives are locality-aware, although the
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fn work(params: Input, burst: &BurstContext) -> Output {
let num_nodes = params.num_nodes;
let mut page_ranks = vec![1.0 / num_nodes; num_nodes];
let mut sum = vec![0.0; num_nodes];
let adjacency_matrix = get_adjacency_matrix(&params);
while err < ERROR_THRESHOLD {

page_ranks = burst.broadcast(page_ranks, ROOT_WORKER);
for (node, links) in graph {
for link in links {
sum[*link] += page_ranks[*node] / out_links(*node);

}
}
let reduced_ranks = burst.reduce(sum, |vec1, vec2| {

vec1.zip(vec2).map(|(a, b)| a + b).collect()
});
if burst.worker_id == ROOT_WORKER {
err = calculate_error(&page_ranks, &reduced_ranks);
page_ranks = reduced_ranks;

}
err = burst.broadcast(err, ROOT_WORKER);
reset_sums(&mut sum);

}
Output { page_ranks }

}

Figure 5: Simplified source code of the PageRank work func-
tion for burst computing. The accesses to the burst context to
obtain the worker ID or communicate are highlighted.

programs remain agnostic to it, i.e., co-located workers (same
pack) communicate on shared memory and only remote work-
ers hit the network.

4.3 Application example
Fig. 5 shows an example in Rust code (simplified) of the work
function that implements the PageRank application. The al-
gorithm consists of an iterative process in which each worker
holds a portion of the adjacency graph (relating links between
web pages). In each iteration, the new global ranks are com-
puted in parallel, aggregated, and reduced in a tree structure,
then broadcasted from the root worker to the rest of them. The
algorithm runs until it converges past a threshold or reaches a
limit of iterations.

Similarly to the MPI computing model, all workers execute
the same code but perform different logic based on the worker
ID (the rank in MPI). The example highlights the worker
accesses to the BurstContext object to perform collectives
and obtain information about the current flare. For example, it
is used to perform a collective broadcast to share the updated
ranks vector, and later a reduce to aggregate the partial ranks
computed among the workers. It also shows how a worker
checks its ID when it needs to calculate the convergence,
since this is only done by the root worker after collecting the
aggregated vector in the reduce.

4.4 Burst platform implementation
The prototype implementation is built on top of the popu-
lar Apache OpenWhisk platform (v1.0.0). We used Open-
Whisk as the basis because it is a well-known, open-source,
production-tested FaaS implementation and provides higher
burstability than other platforms like Knative (Table 1). Our
changes amount to approximately 2K SLOC. They affect the

main components of the platform, including the controller,
the invoker, and the runtime environment.

The controller now supports two new HTTP endpoints for
bursts: deploy and flare. It also implements the logic to
handle them (§4.1). This includes the packing strategy in the
three flavors (§3): heterogeneous, homogeneous, and mixed.
Granularity can be configured. In any case, the controller
calculates the number and size of the packs based on the
specific burst size and the resources available in the invokers.

Invokers run a new monitoring logic that can be adjusted
to report their load to the controller based on CPU instead
of RAM. Our prototype is set to assign 1 vCPU per worker
because bursts tend to be compute-intensive jobs and we do
not consider parallelism within a worker,6 but other config-
urations are possible. Invokers also implement new logic to
support the creation and execution of packs, spawning Docker
containers of the appropriate size for each burst (by specifying
resource limits) and telling each container/runtime the num-
ber of workers to run, plus their IDs and context. Containers
are currently not reused across bursts.

For the runtime, we adapted the official OpenWhisk Rust
environment, but it is possible to support others. The new
logic allows to spawn multiple workers within it as requested
by its host invoker. In particular, the Rust runtime spawns one
thread per worker to provide parallelism. Finally, the runtime
also includes our BCM built-in.

4.5 BCM implementation
The burst communication middleware (BCM) is coded in
Rust in about 5K SLOC. It is readily available for our custom
Rust runtime and we are working on a binding for Python.7 It
enables the transmission of intra-pack (zero-copy) and inter-
pack (via remote backend) messages. The BCM is instantiated
by the runtime (once per pack) and made available to workers
as a parameter (in the work function as shown in Table 2).

For local communication, BCM uses in-memory queues
to send and receive data between workers in the same pack.
In the Rust runtime, workers are threads and reside in the
same memory space, so shared memory mechanisms are not
necessary (e.g., shm_open or mmap). Instead, workers just pass
memory pointers between them. Thanks to Rust’s memory
safety guarantees, access to shared data is thread-safe. Rust
also provides a reference-counting mechanism for immutable
data, so shared data is released when it is no longer used at
runtime. For example, the root worker in a broadcast sends a
read-only memory pointer to its local workers, and they safely
access the message concurrently. To modify the data, one may
use mechanisms such as copy-on-write.

For remote communication, each pack has a shared connec-
tion pool to the remote backend, which allows each worker
within the pack to send and receive messages concurrently,
with the goal of maximizing the container’s bandwidth. This

6The burst size (number of workers) determines total job parallelism.
7Other languages may be supported through bindings (Java, C++, Go. . . ).
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is especially useful in primitives like all-to-all, where all work-
ers must open channels with all the others. For large messages,
the data is split into smaller chunks that are sent and received
concurrently. This maximizes network utilization and allows
readers to start receiving data from the first chunk, instead of
waiting for the full message to be available at the backend.

The BCM is extensible, allowing the implementation of
more remote backends. Currently, we support Redis, Drag-
onflyDB, RabbitMQ, and S3. The backend interface differ-
entiates between sending direct messages (one-to-one) and
broadcast messages (one-to-many). The reason is that direct
messages are read only once, while broadcast messages mul-
tiple times, so we want to optimize this particular case. For
instance, in RabbitMQ, one-to-one messages use direct bro-
kers, while one-to-many use fan-out brokers.

To ensure that no messages are lost (at-least-once deliv-
ery semantics), the BCM relies first on the backend delivery
guarantees (e.g., RabbitMQ uses durable queues to avoid
dropping messages). Additionally, the BCM keeps a count of
direct messages sent between each pair of workers, and for
each collective operation. The middleware handles duplicate
and/or out-of-order messages. For that, messages include a
header with the source and destination worker, collective type,
counter, and, if chunked, the number of chunks and chunk
number. Messages with a counter lower than the expected
value are ignored and assumed as already processed. Those
with a counter greater than expected are cached locally until
needed. For chunked messages received out-of-order, a mem-
ory region is reserved for the total payload and chunks are
written to their respective offset as they come in.

5 Evaluation
Our evaluation aims to assess burst computing against current
FaaS on the three friction points described in §2.1. Impor-
tantly, we show and analyze the effects of worker packing
and locality. All experiments run on Amazon Web Services
(AWS) in the us-east-1 region.

5.1 Burst group invocation
Group invocation is the key element against friction F1. Here
we evaluate how job-level isolation improves worker readi-
ness time (invocation latency), ensures their simultaneity, and
provides locality for collaborative code and data loading.

Setup: The burst platform runs on an Amazon EKS cluster,
with the control plane on a t4i.xlarge VM (4 vCPUs and
16 GB RAM), and the invokers on up to 20 c7i.12xlarge
VMs (48 vCPUs and 96 GB RAM). This gives us space to
accommodate up to 960 workers with 1 vCPU each.

Impact on burst invocation latency First, we use the homo-
geneous packing policy to evaluate how assigning different
granularity (g) affects burst invocation latency. The explo-
ration is depicted in Fig. 6 for two bursts of sizes 48 (left) and
960 (right).8 It is quickly apparent that as g increases (up to

8We conducted experiments with similar results for burst sizes in-between.
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Figure 6: Worker start-up latency distribution within one job
for burst computing with different packing granularity and
FaaS (equivalent to g = 1). Left and right show, respectively,
burst sizes of 48 and 960.
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Figure 7: Simultaneity (number of workers running at an
instant) in FaaS (left) and Burst with g = 48 (right). Each bar
represents the life-time of a worker.

48 in both cases), the start-up time decreases, and generally
becomes more consistent across workers for all burst sizes.
For instance, the latency of having all workers ready in a burst
of size 960 reduces by 11.5× from g= 1 (FaaS) to g= 48. We
found that container creation dominates invocation latency,
hence higher g performs best. This proves that creating the
biggest possible containers, and thus the less amount of them
(heterogeneous packing), achieves the best start-up latency,
since it creates a single container per invoker per flare. By ex-
tension, the mixed packing strategy exhibits the same results,
but allows the system to manage resources more effectively
in small portions to facilitate allocation and avoid resource
fragmentation. To assess the impact of granularity, the rest of
the evaluation uses homogeneous packing.

Impact on worker simultaneity We run a burst with size
960 on FaaS against burst computing with g = 48. For demon-
stration purposes, each worker performs a 5-second sleep and
we plot their execution timeline in Fig. 7. The plot shows
that burst computing achieves faster resource allocation and
quicker readiness of workers. This ensures worker parallelism.
Analyzing dispersity of worker start-up time (also in Fig. 6),
the FaaS execution evinces a range of 18.8 s between the
start of the first worker and that of the last one, with a median
absolute deviation (MAD) of 2.65 s. In contrast, the range
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Figure 8: A burst of 96 workers loading the same 1 GiB object
from S3 with different granularity.

with g = 48 is just 0.44 s (MAD is 0.1 s). Compared, the
range is 43× lower in burst computing, with MAD show-
ing 26.5× lower dispersity than FaaS. Dispersity in worker
start-up latency precludes FaaS to achieve full parallelism (all
workers running simultaneously from start to finish), while
burst guarantees it.

Impact on data loading Burst computing mitigates the FaaS
problem of loading the same data on all functions (§2.1), e.g.,
in a grid search. We can leverage worker access to locality
information to optimize this problem and download the data
only once per pack, trivially reducing data ingestion. Specifi-
cally, each worker in a pack retrieves a part of the data based
on calculations from pack information in the burst context
(Table 2). Then they recreate the full data in a local shared
memory region. This allows to parallelize the download and
complete the process faster than choosing a leader to perform
it (also possible through the isPackLeader function in the
context, which returns true for the worker with lowest ID
within its pack). We evaluate this approach on multiple g and
present it in Fig. 8. Burst optimizations achieve a download
time speed-up of 32.6× with g = 48 compared to FaaS.

Takeaway Flares eliminate friction F1 through faster worker
group initialization (11.5×) and ensured simultaneity (43×
less dispersed workers) that enables locality with packing. In
turn, locality may accelerate data download in applications
(32.6×), tackling friction F3.

5.2 Burst inter-pack communication
Before we evaluate the effects of the BCM on frictions F2 and
F3, we want to ensure that an indirect communication model
is feasible and to find a backend that sustains the load of
bursts at scale. For this, we measure the throughput of several
indirect communication backends. Specifically, we test Redis,
DragonflyDB (a Redis-compatible multi-threaded alternative),
RabbitMQ, and S3. Redis and DragonflyDB evaluate two
flavors: using lists or streams.

Message chunk size The BCM chunks messages into sev-
eral blocks to optimize network utilization and allow parallel
read/write. The optimal chunk size is a trade-off between
latency to first byte and operation overhead, and it varies
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(b) Aggregate throughput of two remote packs, A and B, of varying
size (g =burst size/2), where each worker from pack A sends a
256 MiB payload to another worker from remote pack B.

Figure 9: Throughput experiments for the different BCM
backends. Median values with standard deviation (10 runs).

for each communication backend. To find the optimal con-
figuration, we measure the throughput of sending a 1 GiB
message between two remote workers. The workers run on
two c7i.large machines (4 vCPUs, 8 GB) and we deploy
a c7i.16xlarge (64 vCPUs, 128 GB) for the intermediate
server. Fig. 9a plots the results. RabbitMQ offers a constant
throughput for larger chunk sizes, but does not allow payloads
larger than 128 MiB due to AMQP protocol limitations. Re-
dis and DragonflyDB work best at 1 MiB, the latter being
slightly superior. S3 offers the lowest throughput because
object stores are not designed for small files (1 MiB or less
exceeds the allowed service request rate limits).

Maximum throughput To understand how the different
backends scale under parallel load, we measure the aggre-
gated throughput between several pairs of workers commu-
nicating simultaneously. In this experiment, we launch a
group of workers (burst size from 8 to 384) split into two
remote groups. Each worker in a group A sends a fixed mes-
sage (256 MiB) to a worker in the other, remote group B.
As the burst size increases, so does the total data volume
sent. Each backend uses the optimal chunk size assessed
in the micro-benchmark above. Workers run on two VMs
scaled to the burst size (from c7i.xlarge for 8 workers to
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Figure 10: Latency and its reduction percentage with respect
to g = 1 of two collectives, for varying g and burst size.

c7i.48xlarge for 384), and the communication server runs
on one c7i.48xlarge instance. The results are shown in
Fig. 9b. We observe that RabbitMQ does not scale beyond
1 GiB/s. For the in-memory stores, the approach with lists
performs better than streams. Like RabbitMQ, Redis does
not scale with parallelism because it is single-threaded. In
contrast, DragonflyDB does scale and achieves the highest
throughput, surpassing 2.5 GiB/s for large burst sizes. S3 also
scales with parallelism but remains slower.

Takeaway The BCM achieves high throughput even with
indirect communication, and some backends sustain up to the
evaluated 384 workers with individual connections, suggest-
ing a feasible approach. In view of the results, the rest of the
evaluation uses DragonflyDB List with 1 MiB chunks.

5.3 Burst group collectives
We assess the impact of locality on group collectives as a
means to face friction F3. We measure end-to-end latency,
i.e., the total time it takes for all workers to complete the
collective, as we vary g. We present results for broadcast and
all-to-all. Reduce behaves similar to broadcast because they
follow the same data movement pattern.9

Setup: We employ one, two and four c7i.12xlarge VMs
(48 vCPUs, 96 GB) for bursts of sizes 48, 96 and 192, respec-
tively. g varies from 1 to 48. Each worker uses 256 MiB of
data for each collective call. The backend server runs on one
c7i.48xlarge (192 vCPUs, 384 GB).

9Other collectives like gather and scatter are similar to all-to-all.

Overall, Fig. 10 shows that latency decreases as the gran-
ularity increases. This is because remote communication is
the main bottleneck of collective operations and its volume
decreases as g increases and more data movement becomes
local. The cost of local communication is insignificant com-
pared to the remote one. Broadcast sends the message once,
but reads it once per pack, i.e., remote data movement is di-
rectly proportional to the number of packs: if we halve the
packs, we move half the data. Thus, latency quickly decreases
as we increase g; near 98% reduction with g = 48 (Fig. 10a).
All-to-all is more intensive in data traffic because all workers
have a message of 256 MiB for each of the other workers
(48 GiB total with 192 workers). This means that even if we
only have two packs, half the data traffic is remote. This is
clearly evident in Fig. 10b. Considering g = 48, burst sizes
48, 96, and 192 create one, two, and four packs; thus latency
reduction is ca. 100%, 50%, and 25%, respectively.

Takeaway Locality-aware group collectives heavily mitigate
friction F3 by seamlessly reducing remote data traffic.

5.4 Burst applications
We evaluate three real-world bursts: hyperparameter tuning,
PageRank, and TeraSort. These (or similar) applications are
commonly used in the literature to assess the performance
and show the limitations of FaaS platforms for parallel jobs
and serverless data analytics [4, 7, 15, 16, 28].10 These ap-
plications clearly show all friction points while providing
an overall view of the effects of burst computing compared
to FaaS-based implementations. Further, they are representa-
tives of short jobs a scientist may want to run interactively in
a dynamic analysis session: sudden and quick (under 2 min).

Our baseline for comparison is thus the current FaaS
paradigm available in public clouds as used in the serverless
data analytics literature. Since MPI-like communication is not
supported on any serverless service, we opt to use unmodified
OpenWhisk and AWS Lambda as our baselines, employing
external storage for communication and data sharing to align
with the state of practice.

5.4.1 Hyperparameter tuning
Grid search is a machine learning technique in which a set
of hyperparameter values are evaluated to find the combina-
tion that yields the best performance for a given model. This
evaluation is done in parallel, with each worker processing a
full copy of the training dataset. Since there are no dependen-
cies between parallel tasks, FaaS seems suitable for this job.
However, each function would download a copy of the data,
regardless of whether there are functions co-located on the
same node. This results in a waste of bandwidth and memory
due to duplicate data downloads. Burst computing provides
an optimization opportunity by exploiting locality (see impact
on data loading in §5.1).

10We do not use FaaS benchmarks (e.g., FunctionBench [27]) because
they focus on applications where FaaS already does a good job (independent
function invocations and stateless or embarrassingly parallel workloads).
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Table 3: Time to start 96 workers and gather input data in
hyperparameter tuning for different granularity.

Granularity 1 (FaaS) 6 12 24 48 96
Ready time (s) 17.51 5.65 3.64 3.18 2.96 2.57

Setup: The grid search is applied to a stochastic gradient de-
scent model in a sklearn Python application and distributed
to 96 workers. We use a 500 MiB Amazon reviews dataset
(CSV), available at Kaggle11 and stored in an S3 bucket. AWS
Lambda is the baseline (denoted as g = 1), with a memory
configuration of 1769 MiB, which provides a full vCPU. The
burst platform uses a c7i.24xlarge instance.

Table 3 collects the “ready time”, meaning the time elapsed
from client-side job invocation until the input data is available
to all workers and they are ready to compute. We see how
burst computing quickly reduces this time as g increases. This
effect has two causes. First, the group invocation primitive
speeds up invocation time compared to FaaS, from approx. 4
to 1.5 s with g = 96. Second, data download can be optimized
as assessed in Fig. 8. While FaaS has to download a copy
of the data on each worker, workers co-located in a pack
collaborate in downloading the input in parallel. Hence, as
g increases, the input download time decreases, going from
14 s in FaaS to 1 s with g > 48.

5.4.2 PageRank
PageRank is a well-known data analytics workload with in-
tensive worker coordination. It involves iterative and heavy
data aggregation for large datasets, which is of interest for
benchmarking worker communication in burst computing. We
adapted PageRank for burst computing from the Hi-Bench
suite [19] (MapReduce approach). The implementation is
detailed in §4.3. In this case it is not possible to make opti-
mizations regarding data ingestion (like in §5.4.1), since each
worker takes a different partition of the dataset. We skip report-
ing the MapReduce version atop FaaS because the number of
(short) stages necessary to perform the iterative aggregations
make it obviously slower. Spark has a similar problem [7];
evaluation on AWS EMR with an equal-sized deployment
(needing 5 min to start up) shows that this application takes
over an hour.

Setup: This experiment uses four c7i.16xlarge VMs (64
vCPU, 128 GB). The graph dataset is generated with Hi-
Bench consisting of 50M nodes (ca. 30 GiB) in 256 partitions.
The algorithm runs over 10 iterations, with a burst size of 256,
varying the granularity between 1 and 64.

Fig. 11 shows the total execution time of all iterations split
into phases: the time dedicated to download input data (from
S3), compute the ranking, and communicate (collectives) be-
tween workers. Times for each phase are averaged across
workers, and all iterations added. Table 4 shows the network

11https://www.kaggle.com/bittlingmayer/amazonreviews
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Figure 11: PageRank execution time by phase, varying g.

Table 4: Aggregated network traffic volume and percentage of
traffic reduction compared to g = 1, varying g in PageRank.

Granularity 1 2 4 8 16 32 64
Traffic (GiB) 3068 1532 764 380 188 92 44
% Reduction n/a 50.0 75.0 87.6 93.8 97.0 98.5

traffic and % of reduction compared to g = 1. Communica-
tion accounts for the majority of the execution time because
the rank vector must be aggregated and shared at each itera-
tion. Our configuration uses a vector of 40 MiB that is sent,
received, and aggregated in a tree pattern across the work-
ers, and then broadcast from the root worker to the rest of
them. As g increases, the remote portion of this movement
decreases. For example, with g = 2, only the first level of
the (binary) reduction tree is local (the leaves), and the rest
communicate remotely. With g = 64, there are 4 packs, so
remote communication occurs only in the last 2 tree levels.
With this setup, we achieve a 98.5% reduction in data traffic
and a 13× speed-up compared to g = 1.

5.4.3 TeraSort
We have implemented TeraSort based on the MapReduce
version in Hi-Bench suite [19]. TeraSort is of particular inter-
est because it involves a heavy data shuffle phase. We want
to compare a TeraSort following the serverless MapReduce
approach [33, 40, 46], with a single-stage burst computing ver-
sion where we exploit locality for the shuffle phase. The main
advantages of burst are: (i) the MapReduce version requires
two rounds of function invocations (map and reduce), while
the burst model requires a single flare, and (ii) the MapRe-
duce version shuffles data through object storage, while burst
employs the (locality-aware) all-to-all collective.

Setup: This experiment sorts a 100 GiB dataset generated
with Hi-Bench with 192 partitions. The burst platform runs on
EKS with two m7i.24xlarge (96 vCPUs, 384 GB) invokers
and a c7i.xlarge controller. The input data is in an Amazon
S3 bucket located in the same region. For reference, an equal-
sized Spark deployment solves this problem in 106 s average
but needs 5 min to start up the cluster.
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Figure 12: TeraSort timeline comparison between (12a)
serverless MapReduce and (12b) burst computing. MapRe-
duce comprises two function rounds (map and reduce), with
data exchange via object storage. Burst uses a single flare,
exchanging data through the all-to-all collective.

Fig. 12 shows the timeline of two executions comparing
serverless MapReduce and burst. The execution time of each
worker is shown in horizontal black bars, stacked by Worker
ID on the vertical axis. Superimposed in red, we see the time
elapsed for the shuffle phase of the TeraSort algorithm. In
the MapReduce version (Fig. 12a), we highlight (i) the dis-
persity in function start-up time, as we have seen in Fig. 7;
(ii) a gap where no functions are running, caused by split-
ting the workload into two phases (map and reduce), with
an externally-managed synchronization phase between them,
adding further overhead; and (iii) an outlier in the map phase
(worker #121), which slows down the entire workflow.

All these points are addressed in burst computing (Fig. 12b).
First, the group invocation packs all workers into two con-
tainers of 96 workers, making start-up faster, and ensuring
parallelism, which eliminates (latency-induced) outliers. Sec-
ond, worker-to-worker collectives avoid splitting the job into
two phases. Finally, remote communication is reduced thanks
to locality (see §5.3). To wit, we achieve a 2× speed-up for
this particular execution—1.91× mean across six executions.

For completeness, we also run TeraSort on Spark using
AWS EMR on a cluster of equivalent resources. Best results

are achieved with 74 executors of 4 GB of memory each. The
total run time ranges between 100 and 110 seconds, placing
it between the FaaS and Burst implementations. Although
the execution times are relatively close, there are substantial
differences that make a comparison and analysis of results
complex. To start, the programming language changes (Scala
to Rust), and Spark’s execution model and its peer-to-peer
communication capability impact application performance
in different ways: Rust may be more performant, the burst
execution model simpler and more effective, but Spark’s direct
communication is faster. Moreover, it is worth noting that
cluster creation time on AWS EMR took over 5 minutes,
adding additional overhead for an sporadic workload. Neither
FaaS nor Burst require the user to set up a cluster.

Takeaway Frictions F1, F2, and F3 appear in real-world
applications. Hyperparameter tuning shows duplication in
worker initialization due to friction F1, which also slows
down worker start-up in PageRank and TeraSort. PageRank
and TeraSort evidence the issues of friction F2: the iterative
nature of PageRank makes it unfeasible in FaaS due to ex-
cessive stages, and TeraSort is hindered considerably due to
slower coordination. Burst computing mitigates this by allow-
ing workers to coordinate and share data in a single stage,
instead of requiring multiple stages orchestrated externally
that communicate asynchronously through storage. PageR-
ank and TeraSort also emphasize friction F3: Page-Rank with
iterative, large communication to aggregate the vector and
TeraSort with a single, large data shuffle.

6 Discussion and limitations
Burst as a cloud service One potential concern regarding
the adoption of burst computing as a public cloud service is
the added scheduling complexity of packing multiple workers,
along with its implications for billing. Giving burst granular-
ity control to the provider addresses this by enabling more
effective resource management. The mixed packing policy
we propose further enhances scheduling efficiency by tar-
geting small resource gaps and maximizing locality through
co-located resource consolidation. Burst computing aligns
with the trend toward “Big Lambda” architectures, seen in
platforms such as AWS Lambda, Google Cloud Functions,
and CaaS offerings like IBM Code Engine. For example,
AWS already supports functions with up to 6 vCPUs, indi-
cating that its infrastructure can already schedule resource
bundles at this scale. Setting a burst granularity of 6 would
thus mirror current AWS capabilities. Implementing burst
computing requires the concurrent allocation of multiple such
high-capacity functions, similar to existing multi-invocation
FaaS handling, while optimizing locality. Though this may
introduce slightly higher latency than a single function invo-
cation, it remains more efficient than coordinating numerous
remote HTTP calls. Our evaluation on OpenWhisk confirms
the viability of this model, demonstrating that it preserves in-
ternal resource management and auto-scaling typical of FaaS.
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We see burst computing as a natural evolution of FaaS: despite
the constraint of parallel provisioning, bursts are ephemeral
and may be bounded in time or concurrency, clearly distinct
from long-running serverful processes. Thus, we argue that
burst support in public clouds is not prohibitively complex
and can follow FaaS-like billing models. Moreover, there is
clear evidence that users are already willing to pay for “Big
Lambdas” or containers when the workloads justify it [18].

Burst applications The suitability of burst computing versus
traditional FaaS depends on an application’s communication
patterns, performance demands, and tolerance to execution im-
balances. Burst computing is designed for massively parallel
workloads with collaborating workers, enabling co-location
and synchronized execution. Applications with strong locality
requirements and intensive data sharing—such as PageRank,
SQL queries, or large-scale sorting—are prime candidates.
However, even loosely coupled workloads like grid search or
Monte Carlo simulations can benefit from shared data down-
loads (see §5.4.1), faster initialization, and coordinated result
aggregation. Burst computing also facilitates optimizations
such as function fusion, where stateless functions within a
dataflow are merged into a single, stateful burst to reduce com-
munication overhead and improve locality [47]. Interactive
workloads or those requiring synchronized responses across
workers similarly gain from burst simultaneity. In contrast,
those with minimal data sharing or high variance in execution
time across workers are typically better served by conven-
tional FaaS. While our current prototype reclaims resources
per pack—leading to potential idle resources when worker
durations differ—it targets short-lived, coordinated workloads
(i.e., workers typically progress in lockstep) where imbalance
is rare, as seen in PageRank and MilliSort/MilliQuery [31].
Addressing this limitation via dynamically sized packs is a
path for future work. Ultimately, choosing between burst and
FaaS depends on locality needs, parallelism requirements, and
the importance of coordinated execution.

Coding limitations While burst computing introduces new
capabilities for expressing parallel and stateful workloads, it
also imposes certain programming constraints that must be
acknowledged. The model is designed as a low-level prim-
itive, offering developers greater flexibility rather than pre-
scribing orchestration logic. Similar to MPI, it executes the
same code across all workers while assigning each a unique
identity, enabling divergence in behavior. However, unlike
MPI, bursts are triggered with FaaS-like simplicity, abstract-
ing away explicit resource management. The primary coding
complexity introduced lies in inter-worker communication,
yet this is mitigated by using programming primitives that are
agnostic to worker count and locality, thereby simplifying de-
velopment. Although multi-burst orchestration—e.g., for full
DAG-based workflows—remains future work, it can leverage
well-established techniques such as dependency persistence
in object storage or worker reuse across flares. A higher-level

framework could encapsulate this coordination, offering ab-
stractions for DAG scheduling and state propagation across
bursts [9, 36, 43]. Many real-world applications (e.g., clus-
tering, gradient descent, aggregation queries, N-body simula-
tions) can already be implemented within a single burst, avoid-
ing orchestration overhead altogether. Furthermore, libraries
could expose common distributed patterns (e.g., a distributed
sort) via simple APIs, hiding burst-level details from end users.
Thus, while the model lacks full orchestration capabilities out
of the box, it provides foundational support for powerful ab-
stractions and ensures parallel execution—a property often
missing in existing FaaS-based solutions, where developers
must manually coordinate parallelism without system-level
guarantees [5, 9, 16].

Serverless clusters Burst computing poses a step towards
redefining the boundary between serverless architectures and
traditional cluster-based systems [17, 38]. Recent work has
explored how to emulate cluster-like capabilities atop exist-
ing FaaS platforms [9, 57]. However, our approach takes a
fundamentally different perspective: rather than adapting con-
ventional cluster technologies to work around the limitations
of current FaaS substrates, burst computing seeks to evolve
serverless services themselves, introducing native abstractions
and execution models that offer the parallelism, coordination,
and locality benefits traditionally associated with clusters—
yet within a fully serverless paradigm. This opens the door
to realizing truly serverless versions of platforms like Spark,
Dask, or Flink, moving beyond the managed, but still server-
ful, offerings available today.

7 Related work
The concept of resource burstability has already been dis-
cussed in the serverless literature. FaaS has been referred to
as a “burstable supercomputer-on-demand” [16] for “burst-
parallel serverless applications” [55], albeit with limitations.
“Flash bursts” in HPC [31] explore the feasibility of 1 ms
jobs spanning a large number of servers, which is attractive
but unfeasible with existing technologies in public clouds.
Granular computing [30, 42, 48] explores very similar ideas
to improve cluster utilization. Müller et al. [38] pursue server-
less burstability for batch jobs, highlighting that functions are
too limited for the job.

Burst computing goes a step further in defining a new way
of running burst-parallel jobs in the cloud. It evolves from
FaaS to exploit serverless burstability, but it unlocks the lim-
itations of working with functions to provide a compute en-
vironment tailored for massively parallel collaborative jobs.
Recent works also promote the need to evolve the FaaS model
to overcome important challenges [11, 13]. To our knowledge,
we are the first ones to raise the unit of management from a
function to the job level in a serverless service with a group
invocation abstraction to pack workers together and enable
locality within the job.

50    2025 USENIX Annual Technical Conference USENIX Association



Several papers [12, 21, 59] tackle handling function invo-
cations faster. They aim to respond to thousands of function
calls with very low latency. Others relax function isolation to
handle multiple invocations together and cut on start-up and
data sharing overhead [2, 50]. Similarly, some works perform
opportunistic function packing, placing multiple function in-
vocations from the same user on the same container to im-
prove invocation latency and resource usage [1, 8, 22, 53, 61].
This shows that burst jobs are becoming widely accepted in
FaaS settings, and locality is a key enabler. All these works
only consider individual function invocations and are thus lim-
ited. Burst computing further optimizes job execution thanks
to group invocations and guaranteed worker parallelism. Still,
the mentioned works may be combined with burst computing
to accelerate resource allocation.

A different line of work handles complex computations
atop FaaS through higher-level function orchestration, task
schedulers, or workflow optimizers [9, 29, 32, 34, 36, 37, 62,
63]. Since they operate with individual function invocations,
they cannot be compared with burst computing, but benefit
from it to guarantee task parallelism and fast start-up time. Or-
chestration techniques may be applied atop burst computing,
e.g., to coordinate multiple bursts, manage data dependencies
between them, optimize task parallelism, and handle faults.

Other works explore a hybrid approach where traditional
compute engines (e.g., Spark or Flink) offload computation
spikes to serverless functions [14, 20, 51] to achieve faster
adaptation to dynamic loads. This requires the deployment
and management of the traditional compute engine, which
is not ideal to achieve serverless execution of parallel jobs.
Burst computing fully hides infrastructure: users only deploy
their code and run jobs, while the cloud handles the rest.

Communication and state sharing in FaaS has been widely
explored. Some works combine a data store and a FaaS plat-
form into the same system to optimize data access by placing
functions where the data they use is kept [52]. This is a fun-
damentally different kind of locality than in burst computing
as it does not support any function grouping semantics and
may present resource contention problems [45]. Other solu-
tions [4, 6, 28, 40] target applications that require function
coordination and communication, close to the objectives of
burst computing. However, they employ a disaggregated stor-
age solution to relay data between stateless functions and
cannot exploit any form of locality. Boxer [58] explores direct
communication, and FMI [10] builds a library of collectives
between groups of FaaS functions (with NAT traversal). They
only tackle current FaaS platforms and do not provide any
locality optimizations (in contrast to burst computing). These
solutions are orthogonal to our contributions. For instance,
FMI may be used as a BCM remote backend to accelerate
pack-to-pack transfers, but burst computing still contributes
zero-copy communication between workers in the same pack.

Finally, we highlight a clear trend in FaaS that is aligned
with burst computing: the emergence of “Big Lambdas” with

multiple CPU cores (currently up to 6 vCPUs in AWS). Jobs
may leverage function intra-parallelism and, similar to burst
computing, worker locality becomes relevant and improves
the execution of parallel applications. these high-capacity
functions still lack group-aware mechanisms and parallel guar-
antees, requiring complex user-side handling.

8 Conclusion
In this paper, we have presented burst computing, a novel
cloud computing model designed to address the growing de-
mand to run sudden, variable, burst-parallel workloads with-
out provisioning resources in advance. We have reviewed
the challenges and shortcomings of current technologies (i.e.,
FaaS), and we have demonstrated the effectiveness and versa-
tility of our proposed solution.

Burst computing offers several key advantages over ex-
isting FaaS technologies, primarily the addition of a group
invocation primitive that allows the platform to manage jobs
as a unit, instead of independent function invocations. This
raises tenant isolation to the job level and allows to allocate
resources en masse and apply worker packing, which in turn
enables powerful locality between workers. Our experiments
and performance evaluations have shown that our platform
achieves significant improvements by exploiting this locality
in job invocation latency, worker simultaneity, code and data
loading, and worker-to-worker communication with group
collectives. Further, we demonstrated speed-ups of 13×, and
2× in PageRank, and TeraSort, respectively, thereby validat-
ing efficacy in real-world scenarios.

In conclusion, burst computing represents a significant ad-
vancement for serverless data processing in the cloud, with
potential to become a new paradigm of cloud services. It un-
locks key limitations of FaaS, becoming the next step forward
to support applications previously stymied by its restrictive
model [18]. We believe that our contributions are just the sub-
strate for further innovation such as new workflow definition
tools and orchestration engines that leverage burst computing
jobs and strive towards a simplified dynamic utilization of
cloud resources.
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