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Why We Need All-Flash Array (AFA)?

All-flash array are widely adopted in diverse domains.

SupercomputersDatacenters

PureStorage FlashArray

DELL EMC VMAX
FUJITSU ETERNUS

NetAppAFF

AFA → Superb performance & reliability!



Background: Evolvement of SSD and AFA

Continual advancement in SSD performance. 

SATA SSD: 500 MB/s PCIe5 SSD: 13 GB/s

How can AFA fully leverage high-performance SSDs？



Background: Evolvement of SSD and AFA
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⚫ Stripe write AFA: mdraid [Linux], ScalaRAID [HotStorage’22], stRAID [ATC’22]
- Partial writes issue: read-construct-write → significantly delay the I/O completion time 

Stripe Write AFA Two-phase Write AFA

⚫ Two-phase write AFA: LDM [TOS’16], FusionRAID [FAST’21]

- Replication as the prelude of striping, out-of-place update



Challenge in Replication Phase 

Only 36.9% of ideal

Software overhead is the bottleneck for achieving high performance.

⚫ Only 36.9% of ideal with 1 thread 
- I/O only accounts for 20.8% 

- block layer: 18.8%, context switch: 35.6%

⚫ Not scalable with more threads
- Lock issue: 72.2%

- Real AFA: CPU:SSD ≈ 1:3

Context 
Switch…

35.6%

Block
Layer…

18.8%

Lock-based
Sync.Challenge 1

72.2%



Challenge in Conversion Phase
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Challenge in Conversion Phase
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88.5% throughput ↓ & 13.7x latency ↑ in conversion phase.
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Challenge in Conversion Phase
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88.5% throughput ↓ & 13.7x latency ↑ in conversion phase.

Background parity generation, especially host-SSD I/O.

Challenge 2

88.5% degrad.
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Challenge in Conversion Phase
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88.5% throughput ↓ & 13.7x latency ↑ in conversion phase.

Background parity generation, especially host-SSD I/O.

Challenge 2

Challenge 4

Other intrinsic issues of two-phase write

Replicating + Striping → Write Amp. → Lifetime↓

Challenge 3 Out of Place → Mapping → Crash Consist. Cost



Our Solution: ScalaAFA

✓ Embracing user-space storage stack to lighten software overhead 
• Adopt SPDK to take advantage of its high-performance storage stack

• Enable lock-free multi-thread access with message-passing mechanism

✓ Enjoying SSD architectural innovations to tackle the intrinsic issues 
• Store sliced mapping tables in SSD OOB for low-cost crash consistency

• Avoid flushing transient replicas from SLC to the vulnerable MLC blocks* 

✓ Harnessing SSD-internal hardware resources for parity generation  
• Employ a novel data placement policy to curtails background I/O

• Leverage the SSD built-in XOR engine to calculate the parity codes in situ

Challenge 1

Challenge 2

Challenge 3&4

*Please refer to our paper for more details.



Storage Space Abstraction of ScalaAFA
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Enable Lock-free Multi-Thread Access 

Prohibit threads from placing data on the same SSD address.

Idea: Manage the write permission of SSD storage space.
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Evolve the Write Path: Data Placement Policy 

User Address

0x0 0x1…

AFA Address

Data to be written1. Replication phase: transparently gather 

chunks of the same stripe in VHs 
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Evolve the Write Path: Conversion Offloading

User Address

0x0 0x1…

AFA Address

Data to be written1. Replication phase: transparently gather 

chunks of the same stripe in VHs 

2. Conversion phase: generate parity in SSDs
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Dr. SSD 3:

    Src: @VH #3-0, 

    Dst: @HH #1, 

    ChunkSize, Num

Yours,
Host



Evolve the Write Path: Conversion Offloading

User Address

0x0 0x1…

AFA Address

Data to be written1. Replication phase: transparently gather 

chunks of the same stripe in VHs 

2. Conversion phase: generate parity in SSDs

SSD Logical

Address

VH #3-0

VH #3-0

VH #3-0

HH #1 HH #1 HH #1 HH #1

SSD 0 SSD 1 SSD 2 SSD 3

Dr. SSD 3:

    Src: @VH #3-0, 

    Dst: @HH #1, 

    ChunkSize, Num

Yours,
Host

Compute ParityXOR Engine



Persist the Mapping Table 

User Address

0x0

AFA Address

SSD Logical
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How to persist mapping tables with low cost？
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Persist the Mapping Table: SSD OOB 

⚫ Key insight: flash page and its OOB can be written with one program operation
1. Convert mapping tables to a segmentable data structure

2. Slice persistent mapping table based on SSD LPN 

AFA Mapping Table

Hero Group Mapping Table

Persistent Mapping Table



Persist the Mapping Table: SSD OOB 

⚫ Key insight: flash page and its OOB can be written with one program operation
1. Convert mapping tables to a segmentable data structure

2. Slice persistent mapping table based on SSD LPN 

3. Piggyback the sliced metadata in write requests 

4. Persists the metadata to OOB via the same program operation

AFA Mapping Table

Hero Group Mapping Table

Sliced Metadata

User chunk No. Slot SSD LPN

0x0 0 0x20

User chunk No. Slot SSD LPN

0x0 1 0x20

User chunk No. Slot SSD LPN

0x3 0 0x40

Data Metadata

User chunk No. Slot SSD LPN

0x0 0 0x20

Write Request of Chunk 0

SSD Physical Page

MetadataData

Normal OOB

One Program Operation



Prototype and Testbed Setup

Component Configuration

CPU
Intel Xeon Gold 5320, 26 cores

2.2 GHz with hyper-threading

Memory DDR4 3200 MT/s, 8 × 64GB

Real

SSD

Up to 8 × Samsung 980 Pro

Read/Write : 7000/5200 MB/s

VM 32 CPU cores & 32 GB DRAM

FEMU

SSD

8 Channel / 12 Die / 1 Plane

352 Block / 512 Page / 4 KB

Read / Write : 7500 / 4890 MB/s

XOR Cost 20 us / 64 KB, 16 mW DP

OS Ubuntu 20.04 LTS, Linux v5.11.0

Software fio v3.30, perf v5.11, mdadm v4.1

Testbed Configuration

Name Description

mdraid Default stripe write AFA of Linux kernel.

ScalaRAID Mitigates lock overheads of mdraid.

stRAID Alleviates sync. overheads in mdraid.

RAID5F Ideal, only serve RAID5 full-stripe I/O. 

FusionRAID SOTA two-phase write AFA engine.

Counterparts

Component LOC

SPDK v22.05 6K

FEMU Emulator 1K

Implementation Complexity



Microbenchmark

Bandwidth Latency

ScalaAFA improves bandwidth by 2.5x while 

decreasing average latency by 52.7%!

2.5x



CPU Overhead

ScalaAFA achieves almost the ideal performance with 

1/2 threads for 4+1/6+1 AFA (Thread:SSD=1:3)! 



Macrobenchmark

ScalaAFA shortens the runtime by 2.8x!



Application & Incremental Tests

Throughput on RocksDB Incremental Tests

58.4%

37.9%

41.4%

User-space & Lock-free

Conversion Offloading



Conclusion

⚫ Existing AFA engines fail to adopt high-performance SSDs
- Software overhead and AFA internal tasks 

⚫ ScalaAFA: deliver high performance at low CPU costs
- Key insight: embracing user space & harnessing SSD built-in resources

- Lock-free permission management for concurrent access (Design 1)

- Offloading conversion tasks to SSDs with novel placement policy (Design 2)

- Store sliced metadata in SSD OOB for low-cost crash consistency (Design 3)

- Avoid flushing transient replicas to the vulnerable MLC blocks (Design 4)*

⚫ Significantly improves write throughput and reduces latency 

*Please refer to our paper for more details.
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