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Mobile and loT deployments are reaching massive scales
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Batteryless systems enable new deployments
System-level Benefits
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Intermittent software execution
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SRAM-based checkpoints

Typical checkpointing depends on
performant NVM

- Flash: high-power, endurance limited
-  FRAM/MRAM/ReRAM: limited
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adoption/availability retention”
TotalRecall (ASPLOS "20): store °ow o m W
checkpoints in SRAM
- Data retention well below MCU minimum “Checkpoint” is a
- Full retention for hours to days checksum over all SRAM

: Verify integrity with checksum
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Many operations require roIIba;k

hile(1){

Isamples[count] = takeSensorReading(); |
Ic-:::-unt++; V

compressSamples(); |

lHDl Ii-F(count == 50){

}
}
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[ Execution must roll back to } [ Correctness, performance, }

beginning of atomic operation

programmability challenges
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Task-based models make rollback tractable

task_sense() | task_compress() ——>| task_transmit()

M H\J\

Programmer Compiler inserts code Automatic rollback:
decomposes code for checkpointing and no need for hardware
into tasks rollback energy monitor
Foundation: “known-good” Problem: incompatible with

state stored in NVM SRAM-based checkpointing




Task-based models make rollback tractable

task_sense()

task_compress() > task_transmit()

- -
Checksum calculated Continued execution
over SRAM immediately

invalidates checksum

Question: how can we apply in-place SRAM checkpoints to task-

based intermittent systems?



Camel: mixed-volatility SRAM worlds
SRAM

Volatile “Non-Volatile” (checksum-backed)

Store working data in Store known-good state in
volatile SRAM checksum-backed region of SRAM

Main design considerations:
SRAM is scarce = minimize memory overhead
Checksum is expensive = minimize writes to NV world




Alternating world volatility
NVM-Based Task Model
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Alternating world volatility

A Camel Approach B task_sense()
Known-good (“non-volatile”) Initial (volatile)
@ In-place work
Known-good (“non-volatile”) Updated '(volatile) =
@ Checksum over new state @ task_coinpress()
Known-good (“non-volatile”) Updated (“non-volatile”) @ (checksum)
@ Swap and update @ (swap ant:l update)
Initial (\tolatile) Known-good (“non-volatile”) task_tr;nsmit()
[ Camel eliminates data privatization
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Alternating world volatility

A Camel Approach B task_sense()
Known-good (“non-volatile”) Initial (volatile)
@ In-place work
Known-good (“non-volatile”) Updated '(volatile) =
@ Checksum over new state @ task_coinpress()
Known-good (“non-volatile”) Updated (“non-volatile”) @ (checksum)
@ Swap and update @ (swap ant:l update)
Initial (\tolatile) Known-good (“non-volatile”) task_tr;nsmit()

[ Only 2 copies of }[ Minimal data }
12 working data movement N7/~ | COMPUTER SCIENCE




Efficient state rollback after power failures

Write-first

>

Variable temp X y result
Initial 0 1 2 4
Execution 1 3 1 2 7
Execution 2 3 1 2 10

[ Read-onlyj

Write-After-Read}

(WAR)




Efficient state rollback after power failures

Variable | temp | x | y | result | | Writefirst [ Read-onlyj
Initial 0 1 2 4 ANtask_co ute {
Execution 1 3 1 2 7
S P r==== D\}
Rollback 3 1] . 2 L 4 |
; ' - Write-After-Read
Execution 2 /3 1 2\ / 7 \ [ hivf }

Initial state [ Rolled back to

does not enforce idempotency
affect output

[ Camel compiler identifies the minimum set of variables to roll back for correctness ]




Evaluation scenarios and benchmarks

Two target platforms

- MSP430G2955 (Flash)

- MSP430FR6989 (FRAM)

Hardware and simulation

- Hardware: RF energy harvester

- Simulation: measure CPU cycles, deep
program instrumentation

Baselines + benchmarks

- TotalRecall and prior task-based systems
- 8 benchmarks for correctness and
performance




Efficient, correct SRAM-based intermittent execution

24 23
I AR
c 21 s BC
5 18 — Benchmark | TotalRecall | Camel
£ mm RSA . .
S Transmit Fails V4
=12
< 7 - Actuate Fails V4
= 6
2 I : Sense Hangs V4
) 3 Ill2 2112 Ill
0 III IIII L] |
Mobile Cart Obstruction
" Camel eliminates the need for on-
L chip voltage monitoring ) [ Camel correctly executes }
" 3-5x performance improvement | peripheral-centric software
L over TotalRecall )




Differential buffer design cuts software overhead
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Camel’s buffer design outperforms next-

best task-based system by 2x
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Differential buffer approach improves all |

intermittent systems

mmm Alpaca

mmm Camel

BC CEM RSA Avg.

AR BC CEM CF RSA | avg.
DINO [25] 1136 717 259 324 1830 | 788
Chain [5] 2008 717 231 452 315 744
Alpaca [28] 2008 717 225 452 315 743
CAMEL 1999 709 114 385 254 | 692

Commit count
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High-performance, NVM-invariant intermittent
computation

Camel brings efficient, correct intermittent computation
to the largest class of devices today

Camel’s differential buffer design substantially improves
task-based systems on any intermittent platform

See the paper for more: memory Group: forte-research.com
consumption, checkpoint cycle Me: harriswms.github.io
overhead, integrity check methods, etc.
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