A Difference World: High-performance, NVM-invariant, Software-
only Intermittent Computation

Harrison Willlams Saim Ahmad Matthew Hicks
hrwill@vt.edu saiml9@vt.edu mdhicks2@vt.edu

\//2

COMPUTER SCIENCE

VIRGINIA TECH.

Mobile and loT deployments are reaching massive scales

Connection Density

- . - 1M||I|on @ ® @ §)>
Billions of l1oT devices s // \ ﬁ //
- Market estimate: over 25 - Network Eergy

billion devices by 2030) e . — ey
- Dominated by tiny, resource- E3) /‘L =)

limited sensor nodes #

e 3 SMART CITY

Massive-scale applications O &5 Bl B 09;
- Industrial loT
) Wearab.lejs Battery power is a
- Smartcities non-starter at this

scale

Batteryless systems enable new deployments
System-level Benefits

[Small J [Cheap}
{ Long-lived}
Device-level Challenges
[Power }[Energy }
Interruptions constraints

{ Software bugs J

3 N7/~ | COMPUTER SCIENCE

Intermittent software execution

Voltage (V)
et %]

MO MO M

Time (s)

-

Checkpoints sustain
computation across
power cycles y

Harvester

Microcontrolle%

|] |
[Sensoa Gensoa [Sensoa

N7/~ | COMPUTER SCIENCE

SRAM-based checkpoints

Typical checkpointing depends on
performant NVM

- Flash: high-power, endurance limited
- FRAM/MRAM/ReRAM: limited

N
[=}

Voltage (V)
o

-
[=]

: - 100%
adoption/availability retention”
TotalRecall (ASPLOS "20): store °ow o m W
checkpoints in SRAM
- Data retention well below MCU minimum “Checkpoint” is a
- Full retention for hours to days checksum over all SRAM

: Verify integrity with checksum

N7/~ | COMPUTER SCIENCE

Many operations require roIIba;k

hile(1){

Isamples[count] = takeSensorReading(); |
Ic-:::-unt++; V

compressSamples(); |

lHDl Ii-F(count == 50){

}
}

~

Can be split across

power cycles

~

-

Must occur in one
power cycle

~

J

[Execution must roll back to } [Correctness, performance, }

beginning of atomic operation

programmability challenges

6

Task-based models make rollback tractable

task_sense() | task_compress() ——>| task_transmit()

M H\J\

Programmer Compiler inserts code Automatic rollback:
decomposes code for checkpointing and no need for hardware
into tasks rollback energy monitor
Foundation: “known-good” Problem: incompatible with

state stored in NVM SRAM-based checkpointing

Task-based models make rollback tractable

task_sense()

task_compress() > task_transmit()

- -
Checksum calculated Continued execution
over SRAM immediately

invalidates checksum

Question: how can we apply in-place SRAM checkpoints to task-

based intermittent systems?

Camel: mixed-volatility SRAM worlds
SRAM

Volatile “Non-Volatile” (checksum-backed)

Store working data in Store known-good state in
volatile SRAM checksum-backed region of SRAM

Main design considerations:
SRAM is scarce = minimize memory overhead
Checksum is expensive = minimize writes to NV world

Alternating world volatility
NVM-Based Task Model

NVM

@

Code, constants, etc.

Data

buffer 1

Data

@ Privatization

Task works on Updated
private data buffer

buffer 2

Three copies of working

10

data at any time

High data movement

®

Private data

committed

overhead

@

task_sense()

\ 4

(task entry)

v

©

task_compress()

®

v

(task exit)

\ 4

task_transmit()

Alternating world volatility

A Camel Approach B task_sense()
Known-good (“non-volatile”) Initial (volatile)
@ In-place work
Known-good (“non-volatile”) Updated '(volatile) =
@ Checksum over new state @ task_coinpress()
Known-good (“non-volatile”) Updated (“non-volatile”) @ (checksum)
@ Swap and update @ (swap ant:l update)
Initial (\tolatile) Known-good (“non-volatile”) task_tr;nsmit()
[Camel eliminates data privatization

11 N7/~ | COMPUTER SCIENCE

Alternating world volatility

A Camel Approach B task_sense()
Known-good (“non-volatile”) Initial (volatile)
@ In-place work
Known-good (“non-volatile”) Updated '(volatile) =
@ Checksum over new state @ task_coinpress()
Known-good (“non-volatile”) Updated (“non-volatile”) @ (checksum)
@ Swap and update @ (swap ant:l update)
Initial (\tolatile) Known-good (“non-volatile”) task_tr;nsmit()

[Only 2 copies of }[Minimal data }
12 working data movement N7/~ | COMPUTER SCIENCE

Efficient state rollback after power failures

Write-first

>

Variable temp X y result
Initial 0 1 2 4
Execution 1 3 1 2 7
Execution 2 3 1 2 10

[Read-onlyj

Write-After-Read}

(WAR)

Efficient state rollback after power failures

Variable | temp | x | y | result | | Writefirst [Read-onlyj
Initial 0 1 2 4 ANtask_co ute {
Execution 1 3 1 2 7
S P r==== D\}
Rollback 3 1] . 2 L 4 |
; ' - Write-After-Read
Execution 2 /3 1 2\ / 7 \ [hivf }

Initial state [Rolled back to

does not enforce idempotency
affect output

[Camel compiler identifies the minimum set of variables to roll back for correctness]

Evaluation scenarios and benchmarks

Two target platforms

- MSP430G2955 (Flash)

- MSP430FR6989 (FRAM)

Hardware and simulation

- Hardware: RF energy harvester

- Simulation: measure CPU cycles, deep
program instrumentation

Baselines + benchmarks

- TotalRecall and prior task-based systems
- 8 benchmarks for correctness and
performance

Efficient, correct SRAM-based intermittent execution

24 23
I AR
c 21 s BC
5 18 — Benchmark | TotalRecall | Camel
£ mm RSA . .
S Transmit Fails V4
=12
< 7 - Actuate Fails V4
= 6
2 I : Sense Hangs V4
) 3 Ill2 2112 Ill
0 III IIII L] |
Mobile Cart Obstruction
" Camel eliminates the need for on-
L chip voltage monitoring) [Camel correctly executes }
" 3-5x performance improvement | peripheral-centric software
L over TotalRecall)

Differential buffer design cuts software overhead

mmm Alpaca mmm DINO

|
E pam Chain mmm Camel i
= 1
'0320 {
8 |
€2 !
2815 :
O g i
CIJE :
£ i
S & ;
G-I S | N | S | S -
215 ! I
> 1 1
E I, ol
I llll : 1
']

o

Runtime Overhead
(X Uninstrumented Baselin

o

w

N

=

"TR"'BC"CE‘M' 'C'F"'RS?A"?Sv'g.'

Camel’s buffer design outperforms next-

best task-based system by 2x

J

N (

Differential buffer approach improves all |

intermittent systems

mmm Alpaca

mmm Camel

BC CEM RSA Avg.

AR BC CEM CF RSA | avg.
DINO [25] 1136 717 259 324 1830 | 788
Chain [5] 2008 717 231 452 315 744
Alpaca [28] 2008 717 225 452 315 743
CAMEL 1999 709 114 385 254 | 692

Commit count

W COMPUTER SCIENGE

High-performance, NVM-invariant intermittent
computation

Camel brings efficient, correct intermittent computation
to the largest class of devices today

Camel’s differential buffer design substantially improves
task-based systems on any intermittent platform

See the paper for more: memory Group: forte-research.com
consumption, checkpoint cycle Me: harriswms.github.io
overhead, integrity check methods, etc.

	Slide 1: A Difference World: High-performance, NVM-invariant, Software-only Intermittent Computation
	Slide 2: Mobile and IoT deployments are reaching massive scales
	Slide 3: Batteryless systems enable new deployments
	Slide 4: Intermittent software execution
	Slide 5: SRAM-based checkpoints
	Slide 6: Many operations require rollback
	Slide 7: Task-based models make rollback tractable
	Slide 8: Task-based models make rollback tractable
	Slide 9: Camel: mixed-volatility SRAM worlds
	Slide 10: Alternating world volatility
	Slide 11: Alternating world volatility
	Slide 12: Alternating world volatility
	Slide 13: Efficient state rollback after power failures
	Slide 14: Efficient state rollback after power failures
	Slide 15: Evaluation scenarios and benchmarks
	Slide 16: Efficient, correct SRAM-based intermittent execution
	Slide 17: Differential buffer design cuts software overhead
	Slide 18: High-performance, NVM-invariant intermittent computation

