ARTIFACT ARTIFA ARTIFACT
I EVALUATED EVALUATED EVALUATED
USENIX ATC '24
AVAILABLE REPRODUCED

A Secure, Fast, and Resource-Efficient
Serverless Platform with Function REWIND

Jaehyun Song', Bumsuk Kim?!, Minwoo Kwak?,
Byoungyoung Lee?, Euiseong Seo?, and Jinkyu Jeong?

Sungkyunkwan University?
Yonsei University?
Seoul National University3

Serverless Computing

* Serverless computing has gained traction in cloud computing

* Major cloud vendors adopted serverless computing
* Developers write functions, each function handles requests from multiple users

flarg A) fl)
® — | functionf | ==
result A
flarg B) ll result B

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Security in Serverless Computing

* Original serverless computing has no security concerns Sandbox (Container)

* Functions are stateless f Process
. . . f Code
* States of the function disappears after execution :
. . @ flereA f Data
* Functions run in an ephemeral sandbox —
» Sandbox (i.e., container) provides isolation result A ;
llsolated
f Process
flarg B) fCode
‘)
C— f Data'

result B :
User-private Data

Sandbox (Container)

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Security in Serverless Computing

* Original serverless computing has no security concerns Sandbox (Container)

* Functions are stateless ST ettt
* States of the function disappears after execution 5 :

* Functions run in an ephemeral sandbox

 Sandbox (i.e., container) provides isolation

* Ephemeral sandbox eliminates persistence of any data

--

Sandbox (Container)

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Security in Serverless Computing

* Original serverless computing has no security concerns Sandbox (Container)
f Process

f Code

* Functions are stateless

* States of the function disappears after execution

| | flattack) f Data’
* Functions run in an ephemeral sandbox —

» Sandbox (i.e., container) provides isolation result

* Ephemeral sandbox eliminates persistence of any data llsolated
fProcess
* Cold-start overhead degrades performance e A f Code

—)
C— f Data'

result A :
User-private Data

Sandbox (Container)

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Container Reuse in Serverless Computing

e Container reuse is a prevalent technique to mitigate the cold-start overhead

* However, container reuse raises a security problem

* Quasi-persistence [1, 2] of data
* Attack opportunities of data exfiltration, rootkit, etc.

from code import func f Process
do f Code flarer) o
args = r'ecv() .fData' [-
result = func(args) result A
send(result) :
while keepalive == True :
4 Container

Function Handler

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398—415, 2023.

[2] Datta, Pubali, et al. "{ALASTOR}: Reconstructing the provenance of serverless intrusions." 31st USENIX Security Symposium (USENIX Security 22). 2022.

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Container Reuse in Serverless Computing

e Container reuse is a prevalent technique to mitigate the cold-start overhead

* However, container reuse raises a security problem

* Quasi-persistence [1, 2] of data
* Attack opportunities of data exfiltration, rootkit, etc.

from code import func f Process
do f Code flattack)
args = recv() f Data’ hm—
result = func(args) result
send(result) : (data exfiltration)
while keepalive == True :
4 Container

Function Handler

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398—415, 2023.

[2] Datta, Pubali, et al. "{ALASTOR}: Reconstructing the provenance of serverless intrusions." 31st USENIX Security Symposium (USENIX Security 22). 2022.

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Container Reuse in Serverless Computing

e Container reuse is a prevalent technique to mitigate the cold-start overhead

* However, container reuse raises a security problem

* Quasi-persistence [1, 2] of data
* Attack opportunities of data exfiltration, rootkit, etc.

from code import func f Process
do f Code farer) o
args = recv() fData’ hm— S
result = func(args) result
send(result) .
while keepalive == True :
4 Container

Function Handler

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398—415, 2023.

[2] Datta, Pubali, et al. "{ALASTOR}: Reconstructing the provenance of serverless intrusions." 31st USENIX Security Symposium (USENIX Security 22). 2022.

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Alleviating Security Issues #1 - Fork

 fork() removes memory persistence through process isolation for each request

* The function handler process forks a child process to handle each function request

from code import func

do Handler Process f Process
args - r?ccvlc()o f Code f Code flarg A) ®
cni = Tor ' [
if (child == 0): fData — f Data euit s R
xitresulty f fork()
exit(resu . .
else: ; i
wait(child, &result) .
send(result) Container
while keepalive == True

4

Function Handler

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Alleviating Security Issues #1 - Fork

 fork() removes memory persistence through process isolation for each request

* The function handler process forks a child process to handle each function request

from code import func

do Handler Process f Process
q;g.ls-d= r'efcvi)() f Code f Code flattack)
child = for S—
;] 1 E——>
if (child == 0): f Data —— f Data result

result = func(args) : fork()
exit(result) . .
else: i :

wait(child, &result)
send(result)
while keepalive == True

/~ No attacks made effective!

Container

Function Handler

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Alleviating Security Issues #2 - Checkpoint/Restore

* Groundhog (GH) 1l removes memory persistence by using checkpoint/restore
* Checkpoint a function handler process before handling any function request
* Restore a function handler process to its initial state after handling a function request

from code import func
do
checkpoint()
args = recv(Q)
result = func(args)

send(result)
restore()

while keepalive == True

y

Function Handler

snapshot f Process
fCode C— fCode
fData checkpoint fData'
— User-private Data
restore .
Container

flarg A)
E——> '
result A -

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398—415, 2023.

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Alleviating Security Issues #2 - Checkpoint/Restore

* Groundhog (GH) 1l removes memory persistence by using checkpoint/restore
* Checkpoint a function handler process before handling any function request
* Restore a function handler process to its initial state after handling a function request

from code import func snapshot f Process
C.|. . f Code f Code f(attack)

0 e——
checkpoint() fData f Data' m 6
args = recv(Q) :
result = func(args) : m & & &
send(result) : :
restore() -

while keepalive == True Container
Function Handler No attacks made effective!

[1] Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak Garg. Groundhog: Efficient request isolation in faas. In Proceedings of the Eighteenth European Conference on Computer Systems, pages 398—415, 2023.

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

* Problem #1: memory space overhead
* GH copies all data to the snapshot
to recover initial state
* The repeated execution allows further
optimization opportunities

f Process

Snapshot

[ro] fcode

[ro] fcode

[rw] fdata

[rw] fdata

[rw] mmap

[rw] mmap

0
.
i
.

E 4

.
we®
ws®
.............................

checkpoint GH

Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

* Problem #2: repeated page fault overheads

* GH recovers modified data after request handling
* Tracking modified data requires page faults
(Linux's soft-dirty feature)

f Process Snapshot
[ro] fcode [ro] fcode
> [rw] fdata [rw] fdata
E-* [rw] mmap [rw] mmap
L. clear soft-dirty bits GH
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

f Process Snapshot
* Problem #2: repeated page fault overheads *{::3] ;Z‘;f: {:“:,]] ’;co‘l’iz
* GH recovers modified data after request handling 5 ;
* Tracking modified data requires page faults flarg) ﬁrgv:]far:;;ap I [rw] mmap
(Linux's soft-dirty feature) GH
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

* Problem #2: repeated page fault overheads

* GH recovers modified data after request handling
* Tracking modified data requires page faults
(Linux's soft-dirty feature)

f Process

Snapshot

[ro] fcode

[ro] fcode

[rw] fdata

[rw] fdata

[rw] mmap

[rw] mmap

».

L
.

.

X3
.
.
.
ws®
wunr®
............................

restore

GH

Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

* Problem #2: repeated page fault overheads

* GH recovers modified data after request handling
* Tracking modified data requires page faults
(Linux's soft-dirty feature)

f Process Snapshot
[ro] fcode [ro] fcode
> [rw] fdata [rw] fdata
E-* [rw] mmap [rw] mmap
L. clear soft-dirty bits GH
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

f Process Snapshot
* Problem #2: repeated page fault overheads *{::3] ;Z‘;f: {:“:,]] ’;co‘l’iz
* GH recovers modified data after request handling 5 ;
* Tracking modified data requires page faults flarg) ﬁrgv:]far:;;ap I [rw] mmap
(Linux's soft-dirty feature) GH
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

* Problem #2: repeated page fault overheads

* GH recovers modified data after request handling
* Tracking modified data requires page faults
(Linux's soft-dirty feature)

* fork() causes copy-on-write page faults
for modified data

=
flarg)

flarg)

f Process Snapshot
[ro] fcode [ro] fcode
*[rw] f data’ [rw] fdata
*[rw] mmap' [rw] mmap
It
page faults GH
Container
f Process Handler Process
[ro] fcode [ro] fcode
[rw] f.data - [rw] f-data
' fork() ‘
[rw] mmap [rw] mmap
Fork
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

* Problem #2: repeated page fault overheads

* GH recovers modified data after request handling
* Tracking modified data requires page faults
(Linux's soft-dirty feature)

* fork() causes copy-on-write page faults
for modified data

=
flarg)

flarg)

f Process Snapshot
[ro] fcode [ro] fcode
*[rw] f data’ [rw] fdata
*[rw] mmap' [rw] mmap
It
page faults GH
Container

f Process Handler Process
[ro] fcode copy [ro] fcode
*[rw] fdata"' [ereee [rw] fdata
*{rw] mmap' [[rw] mmap

copy-on-write page faults

Fork

Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

f Process Snapshot
d d
* Problem #2: repeated page fault overheads *{::3] ;Z‘;t: {::,]] ’;cjatz
* GH recovers modified data after request handling 5 ;
* Tracking modified data requires page faults flarg) ﬁrgv:]far:”n;ap [rw] mmap
(Linux's soft-dirty feature) GH
: Container
* fork() causes copy-on-write page faults
for modified data Handler Process
[ro] fcode
[rw] fdata
[rw] mmap
Fork
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

* Problem #2: repeated page fault overheads

* GH recovers modified data after request handling
* Tracking modified data requires page faults
(Linux's soft-dirty feature)

* fork() causes copy-on-write page faults
for modified data

=
flarg)

flarg)

f Process Snapshot
[ro] fcode [ro] fcode
*[rw] f data’ [rw] fdata
*[rw] mmap' [rw] mmap
It
page faults GH
Container
f Process Handler Process
[ro] fcode [ro] fcode
[rw] f.data - [rw] f-data
' fork() ‘
[rw] mmap [rw] mmap
Fork
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

* Problem #2: repeated page fault overheads

* GH recovers modified data after request handling
* Tracking modified data requires page faults
(Linux's soft-dirty feature)

* fork() causes copy-on-write page faults
for modified data

=
flarg)

flarg)

f Process Snapshot
[ro] fcode [ro] fcode
*[rw] f data’ [rw] fdata
*[rw] mmap' [rw] mmap
It
page faults GH
Container

f Process Handler Process
[ro] fcode copy [ro] fcode
*[rw] fdata"' [ereee [rw] fdata
*{rw] mmap' [[rw] mmap

copy-on-write page faults

Fork

Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

f Process Snapshot
o . [ro] fcode [ro] fcode
Problem #2: repeated page fault overheads Wirw] f data (rw] Fdata
* GH recovers modified data after request handling - [rw] mmap ;
* Tracking modified data requires page faults f(arg) ﬁrgv:]far:”n;ap [rw] mmap
(Linux's soft-dirty feature) GH
: Container
* fork() causes copy-on-write page faults
for modified data f Process Handler Process
d d
* New mmap()s after snapshot/fork causes overheads *{:OW]] ;Z‘;t: {::,]] ;;‘;t:
(page allocation + page faults) [rw] mmap s
- .
—>These overheads repeat on flarg) lrw] mmap [rw] mmap
every function request handling : Fork
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* No consideration for the repeated execution of function request

f Process Snapshot
* Problem #2: repeated page fault overheads *{:331 ;Z‘;f: {::,]1 ’;f:;z
* GH recovers modified data after request handling - *{rw} il :
* Tracking modified data requires page faults flarg) pargv:]fa':zap [rw] mmap
(Linux's soft-dirty feature) GH
* fork() causes copy-on-write page faults Container
for modified data f Process Handler Process
* New mmap()s after snapshot/fork causes overheads *{:OW]] ;Z‘;ﬂ: {::,]] ;;Zf:
(page allocation + page faults) [rw] mmap' s
—>These overheads repeat on f(?rg) ¥lrw] mmap [rw] mmap
every function request handling T— Fork

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Problems of Previous Approaches

* Problem #3: no consideration of file persistence

* Both schemes leave files after function executions
* Files can contain privacy-sensitive data
* Remaining files can be leaked or maliciously used

flarg)

flarg)

f Process Snapshot
[ro] fcode [ro] fcode
[rw] fdata' [rw] fdata
[rw] mmap' :

[rw] mmap' [rw] mmap
File System |[) * file persistence | GH
Container

f Process Handler Process
[ro] fcode [ro] fcode
[rw] fdata' [rw] fdata
[rw] mmap' :

[rw] mmap' [rw] mmap

File System |[) * file persistence |Eqrk

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Our Approach: REWIND

* Goal: performance and memory efficient snapshot/restore
* Elimination of memory and file persistence
* Minimize memory usage for snapshot and reduce page faults
* Key idea: exploiting repeated handling of function requests

* Challenges:
* How does REWIND put only the original data of dirty pages to the snapshot?
* How does REWIND track pages to dirty without page faults?

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* snapshot()

* Take a snapshot of each page only when a page is
about to be dirtied f Process Snapshot

. P . [ro] fcode
Copy-on-write protection + buddy page table rw] fdata

[rw] mmap

0

g
.
. .
. .

...........
........................

snapshot

Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* snapshot()

* Take a snapshot of each page only when a page is
about to be dirtied
* Copy-on-write protection + buddy page table

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

4

i

f Process

[ro] fcode

Snapshot

[rw] fdata

[rw] mmap

" CoW protection

Container

Snapshot/Rewind Operations

* snapshot()

 Take a snapshot of each page only when a page is 1§ flarg)
about to be dirtied f Process Snapshot
 Copy-on-write protection + buddy page table [ro] f code
rw] fdata » [rW] fdata
: copy
rw] mmap [o [rw] mmap
page faults
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* snapshot()

* Take a snapshot of each page only when a page is
about to be dirtied

* Copy-on-write protection + buddy page table

* For repeated dirty pages, keep pages duplicated
(snapshot + original)

* For zero pages, do NOT maintain in a snapshot to save
memory

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

J flarg)
f Process Snapshot
[ro] fcode
[rw] fdata’ [rw] fdata
[rw] mmap' [rw] mmap
Container

Snapshot/Rewind Operations

* snapshot()

* Take a snapshot of each page only when a page is
about to be dirtied

* Copy-on-write protection + buddy page table

* For repeated dirty pages, keep pages duplicated
(snapshot + original)

* For zero pages, do NOT maintain in a snapshot to save
memory

* Keep snapshot of files

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

f Process

Snapshot

[ro] fcode

[rw] fdata’

[rw] fdata

[rw] mmap'

[rw] mmap

File System

Snapshot

[

]

snapshot

Container

Snapshot/Rewind Operations

* rewind()

* Restore dirty pages to original ones

* Reset pages to zero if necessary

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

f Process

Snapshot

[ro] fcode

DI [rw] fdata

[rw] fdata

[rw] mmap

S [rw] mmap

L
"~
"y
Taay
.

-"‘
.
Py
(L

..........

File System Snapshot

[

)

Container

Snapshot/Rewind Operations

* rewind()

* Restore dirty pages to original ones § flarg)
* Reset pages to zero if necessary f Process Snapshot
i [ro] fcode
* Delete memory mappings mapped after snapshot [rw] f data [rw] f data
* Keep pages and related metadata to accelerate mmap()s [rw] mmap'
in next function execution [rw] mmap [rw] mmap
File System Snapshot
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* rewind()

* Restore dirty pages to original ones

* Reset pages to zero if necessary f Process Snapshot
] [ro] fcode
* Delete memory mappings mapped after snapshot [rw] f data [rw] fdata
* Keep pages and related metadata to accelerate mmap()s : :
in next function execution [rw] mmap [rw] mmap
Reuse Area
e ereereeeaereeeaeeeeaaneeeeaeeeeaannees » [rw] 00
move
File System __Snapshot _
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* rewind()

* Restore dirty pages to original ones § flarg)
* Reset pages to zero if necessary f Process Snapshot
. [ro] fcode
* Delete memory mappings mapped after snapshot [rw] f data [rw] f data
* Keep pages and related metadata to accelerate mmap()s :* [rw] mmap
in next function execution i [[rw] mmap [rw] mmap
Reuse Area
S sssEEEE S EEEEE NS EEEEEEEEEEEEEEEE ;;‘; .o";é".
File System __Snapshot _
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* rewind()

* Restore dirty pages to original ones

§ flarg)

* Reset pages to zero if necessary f Process Snapshot

i [ro] fcode
* Delete memory mappings mapped after snapshot [rw] fdata’ [rw] fdata

* Keep pages and related metadata to accelerate mmap()s [rw] mmap'
in next function execution [rw] mmap' [rw] mmap

no page faults saving memory
Reuse Area
File System __Snapshot _
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* rewind()

* Restore dirty pages to original ones

§ flarg)
* Reset pages to zero if necessary f Process Snapshot
i [ro] fcode
* Delete memory mappings mapped after snapshot [rw] fdata’ [rw] fdata
* Keep pages and related metadata to accelerate mmap()s [rw] mmap'
in next function execution [rw] mmap' [rw] mmap
: no page faults saving memor
 Restore files to the snapshot page f g Y
Reuse Area
File System __Snapshot _
[0J]< L
rewind
Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* Efficient kernel-level snapshot/rewind state: snapshot

* Introduce buddy page table for efficient snapshot management
 Copy original page table to buddy page table when snapshotting

rw, anon
roob X
Copy|ro, X

rw, X

* Enable copy-on-write protection to track dirty pages

Buddy
Page Table

.
. %
Y
Y
s
s
.
s
.
3
R4S
o
K .
0d <
8
o
0 v
0 8
o .

o
o
-
S
o
-

o
3
o
o
. e
o *
| S
14 .
S
S

/rw,X

: Vi I M
CoW protection Page Table irtual Memory

o
o
S

* X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* Efficient kernel-level snapshot/rewind state: execution
* Introduce buddy page table for efficient snapshot management Snapshot
 Copy original page table to buddy page table when snapshotting
* Enable copy-on-write protection to track dirty pages A1 AB_ :
* Copy a page during page fault handling to the snapshot ro, X i
rw, X :
Buddy : coPy
Page Table :
rw, anon [.~ 1 _¢D E
ro, X o N
ro, X ““““““ p;*;e N write
rw, X " faults

Page Table Virtual Memory

* X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* Efficient kernel-level snapshot/rewind state: execution
* Introduce buddy page table for efficient snapshot management Snapshot
 Copy original page table to buddy page table when snapshotting
* Enable copy-on-write protection to track dirty pages :2’ a):‘°“ . A8
* Copy a page during page fault handling to the snapshot ro: X hue
 Zero (anonymous) pages allocated after snapshot rw, X page
are not copied Buddy faults
Page Table ™
write
rw, anon | .
ro, X " m__AB
ro, X e
rw, X
Anonymous pages are Page Table Virtual Memory

initialized to zero at allocation X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* Efficient kernel-level snapshot/rewind state: execution
* Introduce buddy page table for efficient snapshot management Snapshot
 Copy original page table to buddy page table when snapshotting
* Enable copy-on-write protection to track dirty pages :2’ a):‘°“ S .
* Copy a page during page fault handling to the snapshot ro: X |y
 Zero (anonymous) pages allocated after snapshot rw, X page
are not copied Buddy faults
Page Table #
X B | O write
rw, anon CD
ro' X s r ABl
ro, X “““““““
rw, X
Anonymous pages are Page Table Virtual Memory

initialized to zero at allocation X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* Efficient kernel-level snapshot/rewind state: rewind
* Introduce buddy page table for efficient snapshot management Snapshot
 Copy original page table to buddy page table when snapshotting
* Enable copy-on-write protection to track dirty pages :2’ a);‘°“ . S AB I
’ 1
* Copy a page during page fault handling to the snapshot ro, X !
 Zero (anonymous) pages allocated after snapshot w, X E
are not copied Buddy , COPY
» Rewind dirty pages to the snapshot PageTable ' w |
L Y EF
* Copy back snapshot pages to restore to initial state o :
e All : .. rw, anon """"" cD :
Allow write permission o, X """""" 4 AB e
— No page faults on repeated execution ro, X e
rw, X

Page Table Virtual Memory

* X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* Efficient kernel-level snapshot/rewind

* Introduce buddy page table for efficient snapshot management

state: rewind

Snapshot

 Copy original page table to buddy page table when snapshotting
* Enable copy-on-write protection to track dirty pages :2’ a):‘°“ A A8
* Copy a page during page fault handling to the snapshot ro, X

 Zero (anonymous) pages allocated after snapshot w, X

are not copied Buddy
» Rewind dirty pages to the snapshot PageTable %'J 00 j— clear

* Copy back snapshot pages to restore to initial state . . E;

* Allow write permission ro" > v AB

— No page faults on repeated execution o, X__ | .~
* Clear anonymous pages allocated after snapshot to zero rw, X

Page Table Virtual Memory

* X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Snapshot/Rewind Operations

* Efficient kernel-level snapshot/rewind state: execution
* Introduce buddy page table for efficient snapshot management Snapshot
 Copy original page table to buddy page table when snapshotting
* Enable copy-on-write protection to track dirty pages :2’ a):‘°“ . 1 AB
* Copy a page during page fault handling to the snapshot ro, X
 Zero (anonymous) pages allocated after snapshot w, X 5
are not copied Buddy No page faults!
 Rewind dirty pages to the snapshot Page Table L N
* Copy back snapshot pages to restore to initial state) EF write
* Allow write permission e ? 2;'
— No page faults on repeated execution ro: X """""" | I write
* Clear anonymous pages allocated after snapshot to zero rw, X

Page Table Virtual Memory

* X indicates don't care

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Memory Area Reuse

* Additional memory area can be allocated and used after snapshot

* mmap() followed by page fault and page allocation

* These overheads repeat on every function request handling

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

f(arg)

!

f Process Reuse Area

[ro] fcode

[rw] fdata'

[rw] mmap'

Container

Memory Area Reuse

* Additional memory area can be allocated and used after snapshot

* mmap() followed by page fault and page allocation
* These overheads repeat on every function request handling

f(arg)
* Memory area reuse minimizes overhead J

f Process Reuse Area
from page faults of new mmaps
[ro] fcode

[rw] fdata'

[rw] mmap'

[rw] mmap' |Pa9€ faults

Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Memory Area Reuse

* Additional memory area can be allocated and used after snapshot

* mmap() followed by page fault and page allocation

* These overheads repeat on every function request handling

* Memory area reuse minimizes overhead
from page faults of new mmaps

* Pages, page tables and associated metadata are
reused in the next function execution

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

f Process

[ro] fcode

[rw] fdata'

[rw] mmap'

=)

move

Reuse Area

[rw] mmap'

Container

Memory Area Reuse

* Additional memory area can be allocated and used after snapshot

* mmap() followed by page fault and page allocation

* These overheads repeat on every function request handling

* Memory area reuse minimizes overhead
from page faults of new mmaps

* Pages, page tables and associated metadata are
reused in the next function execution

* Pages are cleared to zero to prevent data leakage

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

f Process

[ro] fcode

[rw] fdata'

[rw] mmap'

clear

Reuse Area

\

[rw] mmap

Container

Memory Area Reuse

* Additional memory area can be allocated and used after snapshot

* mmap() followed by page fault and page allocation
* These overheads repeat on every function request handling

f(arg)
* Memory area reuse minimizes overhead J
f Process Reuse Area
from page faults of new mmaps

[ro] fcode

* Pages, page tables and associated metadata are [rw] fdata’
reused in the next function execution [rw] mmap -

* Pages are cleared to zero to prevent data leakage [rw] mmap' | T°V¢

Container

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Memory Area Reuse

* Additional memory area can be allocated and used after snapshot

* mmap() followed by page fault and page allocation
* These overheads repeat on every function request handling

f(arg)
* Memory area reuse minimizes overhead J
f Process Reuse Area
from page faults of new mmaps
[ro] fcode
* Pages, page tables and associated metadata are [rw] fdata’

reused in the next function execution [rw] mmap’

 Pages are cleared to zero to prevent data leakage [rw] mmap'

* Reuse is limited to anonymous memory Container

Good performance: no page faults!

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Remove File Persistence

* File persistence is removed by rewinding the file system from the snapshot

* User-level implementation on OverlayFS (file system used by Docker)

update create

Merged File System T T i —~Merged File System N
{ A B | | D |] | A B |
I . J
: ~Snapshot N
| [\
! B snapshotting
| \. J
~Upper File System N i ~Upper File System N
I
B \ C \ D \ I B
. J : . J
~Lower File System N ; ~Lower File System N
1
A] B . B
. Y, " \. Y,
1
Docker ! REWIND

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Remove File Persistence

* File persistence is removed by rewinding the file system from the snapshot

* User-level implementation on OverlayFS (file system used by Docker)

update create update create
Merged File System T T i ~Merged File System T T
D B0 (A [[
| N Y,
: ~Snapshot N
|
: B
| \. J
~Upper File System N i ~Upper File System N
5] [e] [o)) 5] [e] [o]
. J : . J
~Lower File System N ; ~Lower File System N
1
A]] - [A]]
. Y, " \. Y,
1
Docker ! REWIND

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Remove File Persistence

* File persistence is removed by rewinding the file system from the snapshot

* User-level implementation on OverlayFS (file system used by Docker)

update create

Merged File System T T i —~Merged File System N
{ A B | | D |] | A B | C |
I . J
: ~Snapshot N
|
: B
| \. J
~Upper File System N i ~Upper File System N
. J : . J
~Lower File System N ; ~Lower File System N
1
A]] .]
. Y, " \. Y,
1
Docker ! REWIND

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Evaluation

* Key questions:

* Does REWIND effectively save memory size of the snapshot?

* How much do the snapshot/rewind operations impact function execution time?
* How much does REWIND accelerate function execution time?

* Comparison with

* Baseline — execute function with container reuse
* Fork — employ the fork() system call on the baseline
* Groundhog (GH) — create a snapshot of a function process and restore to the snapshot

[1] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for serverless cloud function service. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pages 502—-504. IEEE, 2019.

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Microbenchmark

 REWIND shows less overheads than Fork and GH
e 1:1 ratio of random read/write
* Increase memory working set size 128MB to 1GB

| Restore [Function [
No page faults during function execution
0.8 | - good function time ™
@ 6 | Copy of only snapshot data to dirty during rewind()]
O 0. -» short restore time
£ 04 | -
] H
0.2 | | 15x]
Oﬁmmm%ﬂﬂﬁ.@% A 1
L FRN/R] LFERQR]| L FL]| L ¥R
FUIS O RUFS O QPO O FUIS O
128MB 256MB 512MB 1GB

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Function Latency

* REWIND shows better performance even than the baseline

* Real workloads — FunctionBench [1]
* Break down the latency into function time and restore time

VMA reuse minimizes page faults and allocation overheads! = Only REWIND enforces the isolation to the file persistence!

-19% -8%
0.14 i = 1 6 —— —
0.12 MU E oo 5
@ 0.1T s [@ 4 e i X means no results |
o 0.08 = o 3|
£ 0.06 | £
0.02 | H | :

0 AT 0 X X X X
VLT | Q¥R 2ETR| YETR| ¥R PR IR 2T |2 IR 2 ¥EDR
SEOR|2E0R 250K 250X S20R SECR|SEOR SEUR FEC
Float | Linpack | MatMul | PyAES | Cham ImgProc VidProc LR_Train | LR_Serve

Restore [Function [Restore [Function [

[1] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for serverless cloud function service. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pages 502—-504. IEEE, 2019.

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Memory Consumption

* REWIND consumes lower memory than Fork and GH

* Real workloads — FunctionBench
* Measure peak memory usage (RSS)

Base Fork [GH Rewind I
350
300 |]
m 250 |
= 200 |
va 150 |

2 100
50 |

REWIND makes a copy of only dirty data in the snapshot - Low memory usage

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

Conclusion

 REWIND: secure, fast, and resource-efficient serverless platform

e Security: remove quasi-persistence of data in containers
* Performance: provide efficient snapshot/rewind and reuse memory for next run
* Resource usage: do not copy all data to the snapshot

REWIND is available at:
https://github.com/s3yonsei/rewind serverless

Thank you!

ARTIFACT
EVALUATED

susenix
.’ ASSOCIATION

AVAILABLE

ARTIFACT
EVALUATED

é’ usenix
.’ ASSOCIATION

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

ARTIFACT
EVALUATED

é(’ usenix
.’ ASSOCIATION

REPRODUCED

https://github.com/s3yonsei/rewind_serverless

Backup

A Secure, Fast, and Resource-Efficient Serverless Platform with Function REWIND, USENIX ATC '24

