e/;usemx
"4 ATC ‘24

o)
PaS$
Expeditious High-Concurrency MicroVM SnapStart in PMem

with an Augmented Hypervisor

Xingguo Pang, Yanze Zhang, Liu Liu, Dazhao Cheng, Chengzhong Xu, and Xiaobo Zhou

Xingguo.pang@connect.um.edu.mo

= L I =<
UNIVERSIDADE DE MACAU
UNIVERSITY OF MACAU

——T

Slide 1 /32

mailto:xingguo.pang@connect.um.edu.mo

Background: SnapStart

Sandbox Resource Load Library Function
request Initialization Allocation &Packages Loading

SnapStart
(non-SnapStart) = ———— = - - Cold-start Delay(™s) == = = = = = = =

request = Restore snapshot ‘

(SmapStart) | _ _ _ _ - — — Cold-start Delay("ms) = = = = = = = =

SnapStart is an approach that leverages snapshot-restore technique to bypass the
time-consuming cold start and expedites function execution by reusing previously
saved memory state.

Slide 2 /32

Background: MicroVM SnapStart

#) AWS Firecracker[NSDI’20] MicroVM
* A lightweight VM tailored for short-lived workloads
* An ideal sandboxing solution for production SnapStart.

o ‘v

Lightweight Virtualization VM-like Security Rapid Startup

v

Slide 3 /32

Background: Why SnapStart

" 4 @

Booting time mitigation Memory state reuse Snapshots
LightVM [SOSP'17] Keep-alive (warm start) Catalyzer [ASPLOS20]
Firecracker [NSDI20] SEUSS [EuroSys'20] Firecracker snapshots
Pagurus[OSDI'22] Icebreaker [ASPLOS22] * REAP[ASPLOS'21]
Nephele [EuroSys '23] ORION [OSDI'22] « FaaSnap [EuroSys'22]

SnapStart serves as a tradeoff between cold start latency & memory resource occupation.

Slide 4 /32

Background: SnapStart

Sandbox Resource Load Library Function
Initialization Allocation &Packages Loading

———————— Cold-start Delay(~s) == = = = = = = =

request = Restore snapshot ‘

(SmapStart) | _ _ _ _ - — — Cold-start Delay("ms) = = = = = = = =

request =
(non-SnapStart)

* Fast to start
* mmap memory file (previous snapshot of guest) as guest memory
* Resume VM immediately
* Load guest pages from disk on demand (demand paging)

* Slow to finish
* Guest accessing pages not in memory causes major page faults
 Context switches, scheduling, data movement
* Slow down execution

Slide 5 /32

State of the art: FaaSnap [EuroSys’22]

* Reduce major page faults by prefetching working set
* Phase 1: Record quest working set and save it to a compact file

* Phase 2 (invoke): Prefetch working set from disk

* Prefetch stable working set

*fewer guest major page faults
‘Qfaster function execution

0’
5

High concurrency

Slide 6 /32

Motivation:

*Single-tiered Persistent Memory
* An alternative to replace DRAM+SSD tiered architecture

» High cost-effectiveness
v'Huge capacity with low price

» Good performance
v'Persistence & fast recovery capability

Slide 7 /32

Motivation: Single-tiered PMem

already loaded into memory,
Immediately return.

v v

not loaded in memory.
pagefault! Page Fault

Load from file & put it in memory.

During SnapStart execution

Slide 8 /32

read read

Motivation: Single-tiered PMem

10 us~10 ms

Capacity

* Huge gap * Single-tiered Memory
* Costly data movement * Minimal gap

Slide 9 /32

Motivation: Single-tiered PMem

Operation latency
100~300 ns

Fast

Cacheline & XPline
64 bytes /256 bytes

Byte addressable

Big capacity Max capacity

8 TB per machine

Non-Volatile

retain data without power

]

Cost-effective

Slide 10 /32

Motivation: Single-tiered PMem

 No tiered access
e No data movement from slow disk.

A A

read read always accessible Ny

(?
PMem memory.snap % l

Stable VM access

Slide 11 /32

Motivation: Single-tiered PMem

* Intel Optane persistent memory instructions

* Unified address management

DAX Mode File I/0 Mode
Application Application Application

Memory Mode

"Yolatile Memory Pool

e o - - e e e -

Slide 12 /32

Challenge #01 Efficient page mapping in PMEM

VM :
Memory : Function Extra Resource
: Restoration : : :
Loading Time Execution Time Requirement
Default Scheme

Lazy + +++ No

Partial ++ ++ Yes

Full +++ + No

Efficient page mapping in PMEM. -

fully leverage PMEM's capabilities for a MicroVM's SnapStart ‘ MicroVM

J
Access * Page Fault
i’"? Memory
2 Snapshot

During SnapStart.

Slide 13 /32

Challenge #02 Direct data access in PMEM.
* Direct data access(DAX) in PMEM.

* bypassing cache intermediaries

* Simply mounting snapshots on a DAX-enabled filesystem

r

MicroVM

Direct Acce* W

(inteD) Persistent
P NE
y Memory

During SnapStart.

Slide 14 /32

Challenge #03 Ephemeral workloads

* non-iterative, single-access workloads
* ephemeral pages:
data accessed temporarily and then quickly discarded

* unnecessary replication overhead from traditional caching-based methods

[‘j MicroVMJ
sow |

EEE B H B
Bl " B

During SnapStart.

Slide 15 /32

Case Study #01: Page Fault Overhead 1in SnapStart

(=)
o

il PMEM
wzz SSD

Ul
©

B
o

N
o

[
©

Page Fault Overhead Ratio(%)
W
o

©

.] \ «xh
Page"a“‘:mp\’ess‘on\”aes 107 ma9® paeV \»ecog“‘“o:;\ame‘eo“ gmeed
C
Page fault overhead in SnapStart execution.

Page fault is a bottleneck for end-to-end SnapStart execution in microVM.

Slide 16 /32

Case Study #02: SnapStart under Ephemeral Workloads

Table: SnapStart performance on an ephemeral workload.

Metric .. :
\ execution time memory footprint
Approac

Lambda SnapStart 240 ms 83 MB
FaaSnap 218 ms 243 MB
DRAM-cached 204 ms 1.024 MB

Ephemeral workloads does not have heavy cache dependencies for latency
performance.

Slide 17 /32

Case Study #03: SnapStart under High Concurrency

3500 |

—¥-- DRAM-Cached -
'%;3000— ~e-- FaaSnap St
‘-'2500 #_,.-#"""'
:

_ .-
= 2000 Pt
c PPt
S 1500 e
§1000-—,?mi-+-‘—".T,_ ________ I I ——
X
w 500
0 5 10 15 20 25 30

Concurrency (# of MicroVMs)

* FaaSnap has bad SnapStart performance under High Concurrency.

Slide 18 /32

Case Study #04: FaaSnap in a PMEM Filesystem

=
=]
w

Execution Time (ms)
(=]
o

=
o
[

oD icON . e esS on

era\‘\\‘ '\\-_'\onmatmu\ ﬁﬂ\peg

com®’ ‘,ecog“

SnapStart time by FaaSnap

* FaaSnap can not work properly for SnapStart on PMem.

Slide 19 /32

Case Study #05:DAX Faults in a PMEM Filesystem

Event Time Proportion
End-to-End Execution 517 ms 100%
Page Fault® 301 ms 58.2%
DAX Fault® 147 ms 28.4%

“Measured by kvm_mmu_page_fault.
®Measured by dax_iomap_pte_fault, a part of page fault overhead.

DAX fault is severe to performance of SnapStart execution.

~30% overhead

Slide 20 /32

Case Study Summary

* 1) Page fault overhead critically hinders SnapStart execution time;

* 2) The DAX feature in PMEM can enhance memory access efficiency
for certain ephemeral workloads;

* 3) High concurrency significantly degrades FaaSnap's performance;

* 4) FaaSnap's prefetching 1s incompatible with PMEM DAX feature;

* 5) MicroVM memory snapshots on a PMEM filesystem underutilize
DAX capabilities.

Opportunity:

Direct management of PMEM, avoiding traditional filesystems, may optimize
SnapStart's use of PMEM's performance potential.

Slide 21 /32

PASS

Goal

Reducing time spent on page faults and data movement

Approach

Leveraging PMem Direct Access into MicroVM with
Complete Address Indexing

PaSS: PMem-aware SnapStart

Slide 22 /32

Design Overview

MicroVM

{1)snapshotting £) mapping

PMem MicroVM
Manager Manager

PaS$s
Host Kernel

PMem

Slide 23 /32

Design #01: Pre-fault Page Mapping

e Complete Address Indexing Guest

N
* Memory snapshot to VM memory x N\ Memory

continuous address space

Snapshot

* No fragmented mapping Memory

* No online mapping reconstruction

* No data movement(only metadata) x \\\ \\\\ \\ nGngﬁf;ry
’

Snapshot
Memory

(a) page mapping in Firecracker.

(b) page mapplng in FaaSnap

Guest

* Address Indexing Lifetime Management Memory

e VM start to VM shutdown
e Unique for this VM

IIIIIIIIIIII

c) page mapping in PA

. Snapshot Memory Page @Mapped Page . Unmapped Page
- =» Page Mapping

~—— Address Indexing

Snapshot
Memory

* Address Indexing Synchronization N Workingset Page . Unrecorded Page
* Sync to KVM space k

Slide 24 /32

Design #02: Zero-copy On-demand Paging

* Embedded PMem manager .
MicroVM
{ Guest Memory J
. Snapshot

* Space 1s stable Populating DAX
* File system 1is redundant. User | L _VIrtlO

Space ~—— "T=g==7
e Less context switch Kernel PMem-aware

Space .

file system
NVDIMM

* User-space memory driver

ost Kernel

* Memory load/store

e Direct access [J

MicroVM -> VMM -> PMem-aware filesystem -> VMM -> MicroVM
MicroVM -> VMM (PMem manager) -> MicroVM

Slide 25 /32

Design:

* VM-Snapshot Memory match

- Build a match between a microVM and its snapshot memory on PMem

- replacing the need for snapshot file locating in a DAX file system.

* Pre-built Indexing on PMem

- Pass pre-built indexing (hash table) from PMem to guest memory

- Avoids rebuilding the mapping and frequent page faults during VM execution
. Snapshotted & Available PMEM Manager

Snapshotted & Unavailable Address Table

Empty & Available

0x00000000 0x40000000 0x80000000
< >

Full PMEM address space

Slide 26 /32

+More Detalils

PMem Address Management
Programming Interface

«Refer to our paper for more details!

* The corresponding author. Email: waynexzhou@um edu.mo.

Expeditious High-Concurrency MicroVM SnapStart in Persistent Memory
with an Augmented Hypervisor

Xingguo Pang', Yanze Zhang', Liu Liu', Dazhao Cheng?, Chengzhong Xu', Xiaobo Zhou'

University of Macau

Abstract

The industry has embraced snapshotting to tackle the cold
starts and efficiently manage numerous short-lived functions
for microservice-native architectures, serverless computing.
and machine leaming inference. A cutting-edge research ap-
proach FaaSnap, while innovative in reducing page faults
during on-demand paging through prefetching the profiled
working set pages into DRAM. incurs high caching overheads
and /O demands, potentially degrading system efficiency.

This paper introduces PASS, a system leveraging byte-
addressable persistent memory (PMEM) for cost-effective
and highly concurrent MicroVM SnapStart execution. PASS,
functioning as a PMEM-aware augmented hypervisor in the
user space, revolutionizes MicroVM memory restoration. It
constructs complete address indexing of the guest memory
mapped to single-tier PMEM space. enabling zero-copy on-
demand paging by exploiting PMEM's direct access feature.
This approach bypasses the cache layer and maintains guest
OS transparency, avoiding invasive modifications. Experi-
mental results, derived from real-world applications, reveal
that PASS substantially decreases SnapStart execution time,
achieving up to 72% reduction compared to the Firecracker
hypervisor on the PMEM filesystem, and 47% reduction com-
pared to FaaSnap. Moreover, PASS achieves double the maxi-
mum y compared to both Fi ker and FaaSnap.
It improves the cost-effectiveness by 2.2x and 1.6x over the
Firecracker and FaaSnap. respectively

1 Introduction

The cold start issue, characterized by the latency incurred dur-
ing instance initialization, significantly impacts short-lived
functions, leading to extended response times and negative
user experiences [4, 15, 23, 26, 33]. To address this issue,
the industry is increasingly adopting a snapshot-based ap-
proach, particularly in MicroVM environments. This ap-
proach, known as SnapStart, leverages a hypervisor feature

+

WuHan University*

to perform comp memory state checkp of
MicroVMs, storing these states as files. SnapStart dramati-
cally reduces startup times by restoring a MicroVM’s mem-
ory from a pre-saved snapshot, thus bypassing the time-
consuming process of initializing and setting up dependencies
from scratch. Beyond accelerating startup times, SnapStart
also shortens overall execution times. This is particularly
beneficial for short-lived functions in microservice-native
architectures [13, 14, 18, 52]. serverless computing frame-
works [32, 36, 44]. and machine learning inference work-
loads [21,47.51], where minimizing latency is crucial.

In current production platforms, such as AWS Lambda
SnapStart [35], the MicroVM snapshot restoration process
encounters a significant performance bottleneck. This
stems from frequent page faults during on-demand paging.
particularly problematic within modern tiered memory archi-
tectures. While lazy loading techniques are implemented to re-
duce initialization time and improve memory efficiency, they
inadvertently cause a high frequency of page faults, which in
turn, significantly slow down function execution.

FaaSnap, a forefront research approach cited in [7], intro-
duces a non-blocking method that prefetches the profiled
working set s into DRAM, thus accelerating MicroVM
SnapStart execution. This technique involves copying pages
in batches of 1,024 into user-space memory buffers before
remapping them, significantly reducing the overhead typically
associated with page faults. However, each prefetching cycle
involves a notable pre-warm time due to the movement of
data from disk to DRAM. This becomes inefficient, especially
for ephemeral workloads where the majority of pages are ac-
cessed only once, leading to the underutilization of resources
by caching snapshots into DRAM. Furthermore, the reliance
on DRAM caching limits the capacity for concurrent Snap-
Start executions. The intensive prefetching also demands a
higher level of IO, in contrast to on-demand methods like
AWS Lambda SnapStart. where pages are loaded more grad-
ually. This approach, while reducing memory overhead. can
interfere with concurrent workload disk operations, poten-
tially deteriorating the overall system efficiency.

Evaluation

* For comparison with PASS, we evaluated the following approaches for SnapStart execution:
* Lambda SnapStart: The standard approach on SSD.
* Vanilla: Lambda SnapStart on the PMEM filesystem(ext4-dax), enabling DAX for performance enhancement
* FaaSnap: The state-of-the-art. It accelerates MicroVM SnapStart by employing a prefetching technique.
* DRAM-Cached: While effective, it is unsuitable for production platforms due to substantial memory demands.

]]] Function Description Input
* Variety of applications
Compression file compression file
* Intel Optane PMEM 200 series Json deserialize and serialize json json
* an Interleaved four-DIMM Image rotate a JPEG image JPEG
Pyaes AES encryption string
* 512GB Chameleon render HTML table table size
* in AppDirect mode Recognition ~ PyTorch ResNet image recognition JPEG
: PageRank igraph PageRank graph size
* 1vCPU 5, 1GB RAM PEr function Matmul matrix multiplication matrix size
FFmpeg apply grayscale filter video

Functions from FunctionBench [Cloud'1g],
Sprocket [SoCC'18], and SeBS [Middleware’21]

Slide 28 /32

Execution time (ms)
= =
o o

=
o
-

Evaluation: End-to-End SnapStart Time

mm Lambda

wzz Vanilla

E= FaaSnap

"""" DRAM-Cached

jso

ion
omPres"""o
c

mag®

py2®®

=
o
w

|
o
N

Execution time (ms)

=
o
=

chame‘e°“ g“‘“°3age‘a““ ot gmped

rec©

SnapStart execution time of different approaches.

improved SnapStart time by 1% to 47% v.s.
3% to 72%

FaaSnap
Vanilla
DRAM-Cached

wezs Vanilla
== FaaSnap
DRAM-Cached

read-list

recognition

json

Execution latency of ephemeral workloads.

In the "read-list" test,
6.38x(4x) performance increase
compared to Vanilla (FaaSnap).

Slide 29 /32

Evaluation: Scalability

recognition

N
(=]
o
o

. E wzzz Vanilla
- o Vanilla Under the concurrency level 32. G .|| mm Fassnap
€ 10°, == FaaSnap £ w2 PASS
o 208 PASS §10%°
& 2 500
5 102 X oj h
c 2 4q 6 32 64
°) - ffmpeg
.'g §_4°°° wwz Vanilla
210 000 = rosne
(11 52000
51000
compfess‘°“ 1590 ymad® gyae® chame‘eo‘;age'a“\:ecog“‘“onﬂ‘“peg ot & oj .
2 4 16 32 64
SnapStart execution time under a high concurrency. SnapStart execution under different concurrency levels.
(top: "recognition"”; bottom: "ffmpeg")
PASS outperformed Vanilla (by 1.56x to 6.38x) In the "recognition" test,
and FaaSnap (by 1.38x to 4x) 3.5x(1.6x) performance increase

inthe execution time under the concurrency level 32, compared to Vanilla (FaaSnap).

Slide 30 /32

In Conclusion

* Problem:
* Slow SnapStart for short-lived workloads

* Technology:
* Pre-fault Page Mapping
e Zero-copy On-demand Paging

PaS$s

 Achievement:
* 72% SnapStart time reduction than Vanilla,
* 47% SnapStart time reduction than FaaSnap.
e 2x throughput than Firecracker & FaaSnap
* 2.2x cost-effectiveness than Firecracker

Slide 31 /32

Thank you! Q& A

	Expeditious High-Concurrency MicroVM SnapStart in PMem �with an Augmented Hypervisor
	Background: SnapStart
	Background: MicroVM SnapStart
	Background: Why SnapStart
	Background: SnapStart
	State of the art: FaaSnap [EuroSys’22]
	Motivation:
	Motivation: Single-tiered PMem
	Motivation: Single-tiered PMem
	Motivation: Single-tiered PMem
	Motivation: Single-tiered PMem
	Motivation: Single-tiered PMem
	Challenge #01 Efficient page mapping in PMEM
	Challenge #02 Direct data access in PMEM.�
	Challenge #03 Ephemeral workloads�
	Case Study #01: Page Fault Overhead in SnapStart
	Case Study #02: SnapStart under Ephemeral Workloads
	Case Study #03: SnapStart under High Concurrency
	Case Study #04: FaaSnap in a PMEM Filesystem
	Case Study #05:DAX Faults in a PMEM Filesystem
	Case Study Summary
	PASS
	Design Overview
	Design #01: Pre-fault Page Mapping
	Design #02: Zero-copy On-demand Paging
	Design:
	幻灯片编号 27
	Evaluation
	Evaluation: End-to-End SnapStart Time
	Evaluation: Scalability�
	In Conclusion
	幻灯片编号 32

