USENIX

ATC ‘24

Harmonizing Efficiency and Practicability: Optimizing
Resource Utilization in Serverless Computing with Jiagu

Qingyuan Liu, Yanning Yang, Dong Du,
Yubin Xia, Ping Zhang, Jia Feng, James Larus, Haibo Chen

IPADS, SJTU; Huawei Cloud; EPFL

) BACKGROUND & MOTIVATION

Serverless Computing is Popular

Popular cloud paradigm

— Users upload the code and platforms are responsible for dev/ops.

9

00

o070
(0}

{

=

/7 | \TF

Upload functions

Serverless platform

7o

Developers

Invoke query

» Function |

l

API

2

Users

A

AWS Lambda

Compiled and
distributed

Boot
r—1 Sandbox
Gateway

<

Microsoft Azure

v O

Huawei FunctionGraph Knative

[R—

“>outull 1L

} Key Components of Serverless Systems: Scheduler

An instance of
function 1 is created LIRS Scheduler

Choose Node 2

Node 1 Node 2

Scheduler: assigning each instance to a right server

} Key Components of Serverless Systems: Router

3 RPS:20
~

Requests of
function 1

RPS: 20

Node 1 Node 2

Router: distribute requests to specific instances

} Key Components of Serverless Systems: Autoscaler

e ————
- =~a
-

RPS:® | @ = . T P
O @ &5t Router |
Autoscaler
1

Requests of e
function 1 QOverIoad!..

Create new
RPS: 30 instances

A 4

Saturated Load:
RPS =20

Node 1 Node 2

Autoscaler: scaling instances according to user loads

} Key Components of Serverless Systems

e,

N\

function 1

Saturated Load:
RPS =20

RPS: 30
,

Requests of

RPS: 15

Node 1

Load balance

RPS: 15

Node 2

} Key Components of Serverless Systems: Autoscaler

e
- -
- ~
~

-~ ~

. 1instance is enough

~o -

RPS: et
Qe o)

Requests of | Autoscaler
function 1 M Underload!!!

Saturated Load: Evict existing instances
RPS = 20

A

Node 1 Node 2

Autoscaler: scaling instances according to user loads

Y - { B
} Low Resource Utilizations for Serverless éomputiwg

Cost saving is the
mostly concerned
Resources are under-utilized in serverless computing issue for most
organizations (62%) .
~90% nodes Which of the following initiatives are you plannin
have <10% CPU to make progress onin the nextyear?

tiliza tion] CPU _ Optimizing existing use of cloud
f Memory Progredng ona

cloud-first strategy

Migrating more workloads
to cloud

T 0.6

Automated policies
for governance

Manage software licenses
inthe cloud

Expand public clouds we use |
0 0.2 0.4 0.6 0.8 1 ot s
Used/Allocated Resources

Expand use of containers
Implement CI/CD in the cloud
Enabling IT to broker

cloud service Ao

Expand use of cloud MSPs

Expand use of cloud
marketplaces

“+1% resource util, Billons of $ saved”

Identify Two Causes of Resource Wastage

A g .
Utilization Configured
 Resources

' Saturated
Load

Partl -

Actual
Load

Part Il -

I —

Interference) lnteﬁe;;nce 1

Time

Part I: caused by resource overprovisioning

Part Il: caused by load overestimation
11

} Wastage Part |: Resource Overprovisioning

QoS

Saturated Load:

RPS =

Case 1 Case 2 Case N

Resource
Interference Neighbors

\ func 2 J

cores are enough to serve Require 2 cores to serve 20 RPS
RPS & guarantee QOS & guarantee QoS

>

\ Waste 0.8 cores

——”

Conservative user configuration to
guarantee QoS for both Case 1&2:
Allocate 2 cores

12

__/Y*f—?—{SJTﬂ

} Wastage Part I: Resource Overprovisioning

T Utilization Configured

' Resources

Saturated
Load

Interference ! Interference 0 Time

Part I: resources are overprovisioned even for saturated instances

13

} Wastage Part ll: Load Overestimation

Configured

A Utili
N

/

/\

zation

I
@ A
Sy

v £ D

\/

'Resources

\ ' Saturated

Load
Actual

Load

Interference ! lnten‘e;gnce 1

Unpredictable load fluctuation causes

load overestimation

. >
Time

core is enough

to serve

Node
Require core
to serve RPS

{ Waste 0.3 cores

\
v

RPS

/" M\¥=esuTdll]
} Wastage Part Il: Load Overestimation .

Configured
 Resources

' Saturated
Load

Part Il -

Actual
Load

— N —

Interference l Interference 0 Time

Part Il: resources are overestimated due to load fluctuation

15

AN
} Challenges to Mitigate the Two Parts of Waéi?gimﬁ

Partl -

Part Il -

A g .
Utilization Configured

 Resources

Actual
Load

— — 2

Interference l Interference 0 Time

Challenges for prior methods:
Tradeoffs between high effectiveness & low cost

N

16

e

< >

~=rsotul L

} Mitigate Wastage Part I: Overcommltmenf/ |

Overcommitment: increase deployment density

Node dwm

) R —
-
~~

-
—
-

- Can 2 func1 deployed ‘\
func 1 s.together & guarantee QoS?. /

~
~ -
S~ - N

Allocate 2 cores - .-
(m) (m] (m)

s Actually require 1.2 cores - Yes!

The node has 3 CPU cores
Requirement:

the scheduler should accurately predict QoS violations -

e

] aaSN—a i nN
} Challenges of Overcommitment

* Predict with complex models

— Accurate prediction I‘
— Costly (>tens of ms) ,I

Scheduler

 Predict with heuristic models
or historical information

Predictor — Inaccurate prediction or &
¥ unscalable profilings
Apply a modelto | P J |‘
predict QoS violations | — Fast (~1ms)
Challenge I:

Achieve accurate prediction & practical cost (<10ms) simultaneously

18

sl
} Mitigate Wastage Part II: Sensitive Autoscaling o

Evict an instance
by autoscaler

After keep- i":; ----- i
func 1 iae | Load drops WW alive duration func 1 i i
1

Each serve 20 RPS Each serve 15 RPS \ Each serve 20 RPS

Waste 25% resources

Autoscaling: dynamically reclaim unused resources upon load drops

19

_/INT=TsJTUl I

} Challenges of Sensitive Autoscaling

Problem: more sensitive eviction could mean more cold starts

4 User Load Load rises:
costly cold starts

Load drops:
sensitive eviction

User loads are unpredictable
>

Time

Challenge lI:
Achieve high utilization and low cold start costs simultaneously

20

PR

I \T=TSJTUll 1L

Jiagu: Two Designs to Break the Tradeoffs

1 Utilization Confi
onfigured
| < N N ' Resources
Part| \\\S*Z /’7§' /7<\ \/ “\7 : Saturated
/| Load
7‘ / xé/ N 7N / >
Part Il NIl @ / NN AN 7 Actual
\ y \/ \Vi Load

T~

b —— - >
Interference | Interference 1 Time

Design | for Part I: pre-decision scheduling

Design Il for Part ll: dual-staged scaling 21

1. Achieve both efficiency and performance for overcommitment

) DESIGN I: PRE-DECISION SCHEDULING

22

)

CSJTUN I

Insight I: Decouple Prediction and DeC|S|on Maklng

Timeline

Create
instance

Scheduling

A

[

Predict performance
under interference

Make
decisions

|

Critical path

g @ > 20ms

Costly

~1ms

\ 4

Deployment

Costly predictions are on the critical path

o

23

SJTUIN 1L

Insight I: Decouple Prediction and DeC|S|on Maklng

Timeline
______________ e
______________________ . Whatifa ™, <___ Afunc1 happens to come > Critical path
> ___funct comes? .- ezzzzo
Predict future o Create | Make 5| Deplovment
colocation scenarios | ! instance decisions Ploy
AT What if the new func1 co/loc-éz:é“""""“\, Remove costly predictions
el with current instances on node 1?2 .-~ iti
e R from the critical path
. i !
Predict performance | Results !
under interference I 57 If the colocation

scenario matches

Challenge:
Advance Prediction impossible to traverse all possible colocation environments

24

_ T SJTU

Serverless Highly-replicated Nature

Serverless instances are highly replicated ~56% instances are of
functions that have >12
replicated instances

1 o5
0.8 I 0.4 :
506/ / 503 / i
Q0.4 02|/ i
0.2 1 0.1 l
00100 200 300 400 06 2 4 6_8 10 12 14
Weighted Concurrency Weighted Concurrency
(a) Weighted instance (b) Weighted instance
concurrencies of functions. concurrencies (<13) of functions.

25

SJTU L

} Insight I: Decouple Prediction and Decisi6nM:a—king

Timeline
e

........................ Critical path

Create - Make
instance decisions

Predict future
colocation scenarios

4

Deployment

. T !
Predict .performance :, | Results !
under interference o 57

26

} Advance Prediction to Construct the CapaC|ty "Table

Predict for the next instances of existing functions in advance

Predict future
colocation scenarios

Predict performance
under interference

Advance Prediction

Predict capacities

(maximum concurrency)

func 1; 8‘
func2:1*

1--
-

~ b Atmost 1 func2 is okay with 2 func

Node 1

1 func 2

:’ At most 8 func1 is okay with 1 func

= N

} Pre-decision Scheduling: Basic Idea

Node 1

Guarantee QoS

func 2: 1

]| e B
... Chock the Capacity Table
Capacity Table
_________________________ e,
* func 1 “| 1 2 + 1 < 8: 3 funct is okay with 1 func2 !

Offline predictions

28

} Pre-decision Scheduling: Basic Idea

Node 1

m—_-— -
- -
- -

Violate QoS Tt

—X

func 2 Fast Path
CapaCIty Table ...
° funC 1 8
--------------- (e
* func 2 o *=" 1+1>1:. 2 func2is not okay with 2 func1 i

Offline predictions

29

/ ;\\‘J‘i ‘J = jijJTLJ —

} Pre-decision Scheduling: Basic Idea
Node 1 eI .

~

-
-
- ————

Guarantee QoS

Capacity Table
Ctnetie |

cfunc2:1 A

QoD | [T ovey win 2 e and 1 s

Create new entry for func 3 Runtime predictions %0

M\ F=esutull 1L

} Pre-decision Scheduling: Basic Idea
Node 1

Guarantee QoS

Highly-replicated nature:
number of slow path << fast path

31

-

DasN—utifRn
} Asynchronous Update
« Capacity table:

— Require timely update: the colocation environment is constantly changing

 Asynchronous update:
— Keep the capacity table up-to-date

— Prevent the updating from introducing prediction overhead in the critical path

(Details in the paper)

32

Features of co-located functions

} Calculate the Capacity Pasisc..s = RFR{Py,R4,Ca,Rp,Cp,Rc,Cc, ...}

Solo-run performance Profiles Concurrency

Input profiles Predictor Output

([Pa, Ry, Ca=1, Rp, CB, o Py QoS Vv
PA: RA: CA=5, RB, CB, PA5 QoSA A
Pa. Ra, Ca=6, Rp, Cp ... Pas QoSa X
\ Pg Rs Cg Ra Ca=1 ... F—> —>4 Pgs QoSz /
PB, RB! CB’ RA’ CA=4, PB4 QOSB Vv
Ps, Rg, Cg, Ra, CA=5’ Pgs QoSg X

_ eee T

-/
Capacity of FuncA = 4

Find the maximum QoS-guaranteed concurrency:
(Details in the paper) 33

/ IN\F=esdTull I

Pre-decision Scheduling: Put It All Togeth—/r

Capacit
b @B [me—s] B f1:5-3 3 f1:34
_ @ Update _ Asynchronous . Asynchronous,]
f1: 6 Wf2.8—>8 Update »| f2:8 -6 Update P f2:6 -7
f2: 8 (3>0) f3:3 |« f3: 3 f3:3
@® Check 4 @ Check A
(Not found) (321+2)
Scheduler
Slow path —
Instance T l l T 2 x Instance Evict 3
f3 comes @) Deploy @ Deploy f3 comes Fast path —
Event | Event Il Eventlll Non-critical path —

(Details in the paper)

34

2. Achieve sensitive autoscaling for high utilization without additional cold starts

) DESIGN II: DUAL-STAGED SCALING

35

} Insight 2: Decouple Resource Releasing and Instance

Eviction

Autoscaler

The coupling between resource allocation/release and instance creation/eviction -

A User Load

Instance creation:
reallocate resources

Instance eviction:
release resources

Time

Root cause of overheads:

) Dual-staged Scaling: Basic Idea e

Original Autoscaling Dual-staged scaling

‘ After release duration

After keep-
alive duration
N 30s | it |} it] func 1
Update | J
routing Saturated instances Cached instances

Release resources with a higher sensitivity ‘ After keep-
: 1
. | 60 s
1 1

without evicting instances alive duration
P i
60s | itiaie L) it func 1 | func 1 i i
Evict B iy Evict bm—m— e
instance instance

} Dual-staged Scaling: Basic Idea

Os

30s
Update
routing

60 s

Evict
instance

After release duration

func 1

Saturatedvinstances

|

After keep-
alive duration

Cached instances

Update Capacity Table

_a

Capacity Table

« func 1: 8

. func2:2G D

Free space for other instances

Increase deployment density

e=rssmul L
) Dual-staged Scaling: Logical Cold Start —~

Sl Forc T | Torc T e T

‘ After release duration

30's func 1| 40s: l0ad rises again M

Saturated instances Cached instances
Logical cold start: Capacity Table
convert cached instances Re-routing: < 1ms
to saturated instances .
« func1:8

'V func 1 | func 1 | func 1 > |« func?2: 2 — 1
Asynchronous Update |

} Dual-staged Scaling: On demand Migration

0s (Details in the paper)
After release duration i
Capacity Table
 func1:2 —__
30's | func 1
! , , « func 2: 2
Saturated instances i Cached mstancesji

Migrate excessive
cached instances
in advance

|

2 capacity < 2 (saturated instances) + 1 (cached instances)

A4

No room for func1’s logical cold start

) EVALUATION

41

Evaluation: Effective Scheduling with Practical Cost

Optimize scheduling costs

30 Gsight &2 Gsight-infers %
2 Jiagu &2 Jiagu-infers 8
=
E st 1 3)
b]
7 %9 — Gy
S8 -
K3 5 (.
215t :{: 5 0.67%
8 | & : 5
O 10X 5 0425
% 51 022

K | %

o]t .

0 1 d P o 22
Trace A Trace B Trace C Trace D

Reduce 83.8%-92.1% inferences on critical path

81.0%—-93.7% lower scheduling costs

Optimize total cold start costs

Scheduler 1 Different releasing sensitivities
Runtime P (30 or 45 seconds)
> Scale-30 - > Scale-30
S 1 | § 1l
= \\| Scale-45 = \
0.8\ / 0.8
= NN = L
_@0.6* \ .§0.6
<0.4} =0.47¢
e £
50.2¢ W 1 802+
Z \\ Z s B\
0 0 -
BL +DS +PS BL +DS +P

cfork docker
Dual-staged Scaling (DS):

reduce the number of cold starts

Pre-decision Scheduling (PS):

reduce the cost of each cold start

} Evaluation: Effective Scheduling with Practical Cost

Ensuring QoS with accurate prediction

Optimize resource utilization

J

 Owl 7 Jiagu-NoDS =

Gsight mm

Jiagu-45 =3

J iagu-30 [

160%

140% 1

120% -

Normalized Densit

100%

Up to 22% higher deployment density than Gsight

1

Trace A

Trace B

Trace C

Trace D

38.3% higher deployment density than Owl

2

Goal
/

Oowl 3 |
Gsight mmm
Jiagu-NoDS £
Jiagu-45 =3
Jiagu-30 ==

QoS Vio_lation (%
e}

H

Cha Gzip Img Lin Log RNN

QoS violation rate meets the goal

43

SIN\TF=sITUll L

} Conclusion

« Jiagu: optimize resource utilizations of serverless platforms

* Pre-decision scheduling: reduce resource overprovisioning

— Overcommitment: effective scheduling with accurate performance prediction

— Reduce the prediction cost in the scheduling critical path

« Dual-staged scaling: reduce load overestimation

— Achieve high resource utilization with sensitive autoscaling
— Eliminate the side effect of incurring additional cold starts

N\ =rsutull]

Q&A / Contact Us
* Qingyuan Liu « Dong Du
— PhD student, IPADS Lab, SJTU — Assistant Professor, IPADS Lab, SJTU
— liu_qy@sijtu.edu.cn — dd_nirvana@sijtu.edu.cn
— Personal Website (Chinese): — Personal Website:
+ https://ipads.se.sjtu.edu.cn/zh/pub/member * https://dongd.info/

s/qingyuan_liu/

45

