
Harmonizing Efficiency and Practicability: Optimizing
Resource Utilization in Serverless Computing with Jiagu

IPADS, SJTU; Huawei Cloud; EPFL

Qingyuan Liu, Yanning Yang, Dong Du,
Yubin Xia, Ping Zhang, Jia Feng, James Larus, Haibo Chen

BACKGROUND & MOTIVATION

2

Serverless Computing is Popular

3

Invoke query

Serverless platform

Function
Upload functions

Compiled and
distributed

Boot

Developers

Users

API
Gateway Sandbox

AWS Lambda Microsoft Azure Huawei FunctionGraph Knative

• Popular cloud paradigm
– Users upload the code and platforms are responsible for dev/ops.

Key Components of Serverless Systems: Scheduler

4
Scheduler: assigning each instance to a right server

func 1 Scheduler

Node 2Node 1

An instance of
function 1 is created

func 1

Choose Node 2

Deploy

Key Components of Serverless Systems: Router

5
Router: distribute requests to specific instances

Router

Node 2Node 1

Requests of
function 1

func 1

func 1 RPS: 20

RPS: 20

Key Components of Serverless Systems: Autoscaler

6
Autoscaler: scaling instances according to user loads

Router

Node 2Node 1

Requests of
function 1

func 1

func 1 RPS:
20→30

RPS: 30

Overload!!!
Autoscaler

Saturated Load:
RPS = 20

func 1 func 1

Create new
instances

Require 2 instances

Key Components of Serverless Systems

7

Router

Node 2Node 1

Requests of
function 1

func 1

func 1 RPS: 30

RPS: 15

Saturated Load:
RPS = 20

func 1 func 1

Load balance

RPS: 15

Key Components of Serverless Systems: Autoscaler

8
Autoscaler: scaling instances according to user loads

Router

Node 2Node 1

func 1

Requests of
function 1

func 1

func 1

RPS: 5 RPS: 5

Underload!!!

Saturated Load:
RPS = 20

func 1
Evict existing instances

RPS:
30 → 10

Autoscaler

1 instance is enough

Low Resource Utilizations for Serverless Computing

10

~90% nodes have
<10% CPU util

Cost saving is the
mostly concerned

issue for most
organizations (62%)

Resources are under-utilized in serverless computing

“+1% resource util, Billons of $ saved”

~90% nodes
have <10% CPU

utilization

Identify Two Causes of Resource Wastage

11

Part II

Part I

Part I: caused by resource overprovisioning
Part II: caused by load overestimation

func 2

Wastage Part I: Resource Overprovisioning

12

func 1

1.2 cores are enough to serve
20 RPS & guarantee QoS

Case 1

Saturated Load:
RPS = 20

func 1

Case 2

func 2

Neighbors
Resource

Interference

Require 2 cores to serve 20 RPS
& guarantee QoS

func 1

func 1

Conservative user configuration to
guarantee QoS for both Case 1&2:

Allocate 2 cores

Waste 0.8 cores

QoS
Case N…

…

Wastage Part I: Resource Overprovisioning

13

Part I: resources are overprovisioned even for saturated instances

Part I

Wastage Part II: Load Overestimation

14

func 1

Require 1.2 cores to
serve 20 RPS

Node

Node

User load
fluctuates

Unpredictable load fluctuation causes
load overestimation 0.9 core is enough

to serve 15 RPS func 1

func 1

Require 1.2 core
to serve 20 RPS

Node

Waste 0.3 cores

Actual
Load

Wastage Part II: Load Overestimation

15

Part II: resources are overestimated due to load fluctuation

Part II

Challenges to Mitigate the Two Parts of Wastage

16

Part II

Part I

Challenges for prior methods:
Tradeoffs between high effectiveness & low cost

Mitigate Wastage Part I: Overcommitment

17

Node

The node has 3 CPU cores

func 1

Allocate 2 cores

Scheduler
func 1

func 1func 1

func 1

Actually require 1.2 cores

deploy

Can 2 func1 deployed
together & guarantee QoS?

Overcommitment: increase deployment density

Requirement:
the scheduler should accurately predict QoS violations

Yes!

Challenges of Overcommitment

18

Scheduler
func 1

func 1

Can QoS be guaranteed after deployment?

Predictor

Apply a model to
predict QoS violations

• Predict with complex models
– Accurate prediction
– Costly (>tens of ms)

• Predict with heuristic models
or historical information

– Inaccurate prediction or
unscalable profilings

– Fast (~1ms)

Challenge I:
Achieve accurate prediction & practical cost (<10ms) simultaneously

Mitigate Wastage Part II: Sensitive Autoscaling

19

func 1

Each serve 20 RPS

func 1func 1

func 1

func 1 func 1

func 1 func 1
Each serve 15 RPS

func 1

func 1

func 1

Load drops

Waste 25% resources
Evict an instance

by autoscaler

After keep-
alive duration

Each serve 20 RPS

RPS: 80→60

More sensitive eviction means higher utilization

Autoscaling: dynamically reclaim unused resources upon load drops

Challenges of Sensitive Autoscaling

20

Challenge II:
Achieve high utilization and low cold start costs simultaneously

Problem: more sensitive eviction could mean more cold starts

Load drops:
sensitive eviction

Load rises:
costly cold starts

User loads are unpredictable

Jiagu: Two Designs to Break the Tradeoffs

21

Design I for Part I: pre-decision scheduling

Design II for Part II: dual-staged scaling

Part II

Part I

DESIGN I: PRE-DECISION SCHEDULING
1. Achieve both efficiency and performance for overcommitment

22

Insight I: Decouple Prediction and Decision Making

23

Create
instance

Predict performance
under interference

Make
decisions Deployment

Timeline

> 20ms ~1ms

Costly predictions are on the critical path

Critical path
Scheduling

Costly

Insight I: Decouple Prediction and Decision Making

24

Create
instance

Predict future
colocation scenarios

Make
decisions Deployment

Timeline

Predict performance
under interference

Results

Advance Prediction

Remove costly predictions
from the critical path

If the colocation
scenario matches

Challenge:
impossible to traverse all possible colocation environments

Critical pathWhat if a
func1 comes?

What if the new func1 collocate
with current instances on node 1?

A func1 happens to come

Serverless Highly-replicated Nature

25

~56% instances are of
functions that have >12

replicated instances

Serverless instances are highly replicated

Insight I: Decouple Prediction and Decision Making

26

Create
instance

Predict future
colocation scenarios

Make
decisions Deployment

Timeline

Predict performance
under interference

Results

Advance Prediction

Critical path

Predict for the next instances of existing functions in advance

Advance Prediction to Construct the Capacity Table

27

Predict future
colocation scenarios

Predict performance
under interference

Results

Advance Prediction

Predict for the next instances of existing functions in advance

func 1func 1

Node 1

func 2

Capacity Table

• func 1: 8

• func 2: 1
At most 8 func1 is okay with 1 func2

At most 1 func2 is okay with 2 func1
Predict capacities

(maximum concurrency)

func 1

Pre-decision Scheduling: Basic Idea

28

func 1

Node 1

func 2

Capacity Table

• func 1: 8

• func 2: 1
2 + 1 < 8: 3 func1 is okay with 1 func2

Scheduler func 1
Guarantee QoS

Assign Node 1?

Offline predictions

Fast Path

Check the Capacity Table

func 1

Pre-decision Scheduling: Basic Idea

29

func 1

Node 1

func 2

Capacity Table

• func 1: 8

• func 2: 1 1 + 1 > 1: 2 func2 is not okay with 2 func1

Scheduler func 2

Violate QoS
Assign Node 1?

Offline predictions

Fast Path

Check the Capacity Table

func 1

Pre-decision Scheduling: Basic Idea

30

func 1

Node 1

func 2

Capacity Table

• func 1: 8

• func 2: 1

• func 3: 3

Scheduler func 3
Guarantee QoS

Assign Node 1?

Runtime predictions

3 func3 is okay with 2 func1 and 1 func2

Slow Path

Reconstruct the Capacity Table

Create new entry for func 3

func 1

Pre-decision Scheduling: Basic Idea

31

func 1

Node 1

func 2
Scheduler func 3

Guarantee QoS

Assign Node 1?

Slow Path

Highly-replicated nature:
number of slow path << fast path

Asynchronous Update

32
(Details in the paper)

• Capacity table:
– Require timely update: the colocation environment is constantly changing

• Asynchronous update:
– Keep the capacity table up-to-date
– Prevent the updating from introducing prediction overhead in the critical path

Calculate the Capacity

33

Solo-run performance Profiles Concurrency

Features of co-located functions

Find the maximum QoS-guaranteed concurrency:
(Details in the paper)

Pre-decision Scheduling: Put It All Together

34

(Details in the paper)

DESIGN II: DUAL-STAGED SCALING
2. Achieve sensitive autoscaling for high utilization without additional cold starts

35

Insight 2: Decouple Resource Releasing and Instance
Eviction

36

Autoscaler

Instance eviction:
release resources

Instance creation:
reallocate resources

Root cause of overheads:
The coupling between resource allocation/release and instance creation/eviction

Dual-staged Scaling: Basic Idea

func 1 func 1

func 1

After keep-
alive duration

0 s

60 s

0 s

60 s

func 1

func 1

func 1 func 1

func 1

After release duration

func 1

func 1

func 1 func 1 func 130 s

After keep-
alive duration

Update
routing

Evict
instance

Evict
instance

Saturated instances Cached instances

Release resources with a higher sensitivity
without evicting instances

Load drops Load drops

Original Autoscaling Dual-staged scaling

Dual-staged Scaling: Basic Idea

0 s

60 s

func 1 func 1

func 1

After release duration

func 1

func 1

func 1 func 1 func 130 s

After keep-
alive duration

Update
routing

Evict
instance

Saturated instances Cached instances

Capacity Table

• func 1: 8

• func 2: 2 → 4Update Capacity Table

Free space for other instances

Increase deployment density

Dual-staged Scaling: Logical Cold Start

func 1 func 1

func 1

After release duration

func 1

func 1

func 1

func 1 func 1 func 1

Logical cold start:
convert cached instances

to saturated instances

Saturated instances Cached instances

Capacity Table

• func 1: 8

• func 2: 2 → 1Asynchronous Update

40 s: load rises again

Re-routing: < 1ms

30 s

0 s

40 s

Dual-staged Scaling: On demand Migration

func 1 func 1

After release duration

func 1

func 1 func 1 func 1
Saturated instances Cached instances

Capacity Table

• func 1: 2

• func 2: 2
30 s

0 s

2 capacity < 2 (saturated instances) + 1 (cached instances)

No room for func1’s logical cold startfunc 1 func 1

Migrate excessive
cached instances

in advance

(Details in the paper)

EVALUATION

41

Evaluation: Effective Scheduling with Practical Cost

Reduce 83.8%–92.1% inferences on critical path

81.0%–93.7% lower scheduling costs

Dual-staged Scaling (DS):
reduce the number of cold starts

Pre-decision Scheduling (PS):

reduce the cost of each cold start

Different releasing sensitivities
(30 or 45 seconds)

Optimize scheduling costs Optimize total cold start costs

Evaluation: Effective Scheduling with Practical Cost

43

Up to 22% higher deployment density than Gsight

38.3% higher deployment density than Owl

Optimize resource utilization Ensuring QoS with accurate prediction

QoS violation rate meets the goal

Conclusion

• Jiagu: optimize resource utilizations of serverless platforms

• Pre-decision scheduling: reduce resource overprovisioning
– Overcommitment: effective scheduling with accurate performance prediction

– Reduce the prediction cost in the scheduling critical path

• Dual-staged scaling: reduce load overestimation
– Achieve high resource utilization with sensitive autoscaling
– Eliminate the side effect of incurring additional cold starts

Q&A / Contact Us

45

• Qingyuan Liu
– PhD student, IPADS Lab, SJTU
– liu_qy@sjtu.edu.cn

– Personal Website (Chinese):
• https://ipads.se.sjtu.edu.cn/zh/pub/member
s/qingyuan_liu/

• Dong Du
– Assistant Professor, IPADS Lab, SJTU
– dd_nirvana@sjtu.edu.cn

– Personal Website:
• https://dongd.info/

