USENIX
ATC 24

StreamCache: Revisiting Page Cache for
File Scanning on Fast Storage Devices

Zhiyue Li and Guangyan Zhang
Tsinghua University

 Background & Motivation
e Design & Techniques
e Evaluation

e Conclusion

File scanning in data-intensive applications

O File scanning

® Most file pages are only accessed once during one |/O stage
® Low ratio of reused data

O Common in data-intensive applications

® Scientific computing and Al training

® |nitial data loading, checkpoint and restart, and result visulization

S = SRS(TW/em?
= G P . SRS{TWiem?)
4 e s S 0,0 1,0 20 30 4.0
e / . ik £
. | i b
-3 1 4 g

\ 4 i (g "
4 4 R y W, A Sk

i ! (] s 4 .

4
’ ¥
&‘lv

ChatGPT ChatGLM

Gemini OQ

Gemini Meta Llama

Climate simulation(! Laser-plasma interactionl? Large language model
Examples of common data-intensive applications
[1] E3SM. https://e3sm.org/research/cryosphere-ocean/v1-cryosphere-ocean/. 3

[2] S. H. Langer, A. Bhatele and C. H. Still. PF3D Simulations of Laser-Plasma Interactions in National Ignition Facility Experiments. 2014.

File scanning with the kernel buffered 1/O

O Buffered I/O is commonly used for file scanning

® Cutting-edge HPC clusters deploy NVMe SSD-based burst buffer (BB)
® The BB file system HadaFSIY uses buffered I/O on the burst buffer nodes

O Advantage of buffered I/O

® Transparent buffering, data aggregation, I/O alignment and prefetching
with the kernel page cache

Compute node Compute node Compute node
T S T SR 1
| | Burst buffer node Burst buffer node Burst buffer node : Ext4 and page cache
| ! ! ! |
| NVMe SSD NVMe SSD NVMe SSD | |
T e s Bl I
[Global file system] 4

[1] https://www.usenix.org/conference/fast23/presentation/he.

Performance issues on next-generation storage

O Issue 1: Poor scalability with the device bandwidth

® Aggregating 8 PCle 3.0 SSDs to simulate a next-generation storage
® Sequential read/write workloads with FIO (10GB file size, 4MB 1/0 size)
® Direct I/O scales better than buffered I/O under a large 1/O size

101

1 SSD 2 SSDs
4 SSDs 8 SSDs

(o]
1

Buffered read: 35% improvement at most

»
1

D
1

— Buffered write: no obvious improvement

W ({ Direct read/write: better scalability

Bufferéd read Direct read Buffered write Direct write
/0 mode

The kernel page cache doesn't fit for fast storage
devices under file scanning 5

Bandwidth (GB/s)

N

o

Performance issues on next-generation storage

O Issue 2: High interference from background writeback

® Sequential write workload with FIO (30GB file size)
® Performance is stable at the beginning

® The proportion of software overhead increases when writing back to fast
storage, severely degrading the buffered write performance

79 — Application 1/O = = : Background writeback
g ' X ﬁ"usl . . ,
=61 AN AL Without writeback: relative stable performance
S] M ||,'ll“|‘l']
53- onitp '
é.?‘o' _ ,M,' .l:,}u.: .lgl\!,.”-_."""" ‘i \ﬁ During writeback: about 32% degradation

0 3 6 9 12 15

Time (s)

Background writeback on fast storage severely
degrades buffered write performance

CPU time breakdown with profiling

O Profiling sequential read, sequential write and sequential write with
active writeback using perf tool

® Page allocation occupies major CPU cycles in all workloads

® Coupled page index and dirty states causes lock contention during writeback
® Data copy takes non-negligible parts of CPU time

[]Other[|Dirtying[__| Device Background writeback
[Jindex[_]JCopy [__]Allocation
100+ XArray XArray node a

< 80—_ oy \\ 15% Dirty states
T 60- —~ Page index
= 25%
5 40
§ : Kernel page

20

| 33% 36% 24% l/\\ l/\\ {/\\ l/\\ alloc;ator
0 T T T T T 1 g
Read Write Write w/ writeback Pages Page cache miss

CPU time breakdown of three workloads The procedure of file scanning buffered write

 Background & Motivation
e Design & Techniques
e Evaluation

e Conclusion

StreamCache overview

Key idea: Batch updates of dirty states (decicated stream-level index)
and fast page allocation (sharded and file-local free-page lists)

Technique 1: Lightweight stream tracking Technique 2: Stream-

based page reclaiming Backaround
STT : | : :
State index | writeback
A
dirty states dirty states ‘
XArray XArray node
S el Page cache miss
Per-file cache Page cache miss

7\ 7\ 7N\, 7—X, Mulipl.e memory regions Buffered I/O request
pages Technique 3: Two-layer 9
memory management

Technique 1: Lightweight stream tracking

O Stream tracking and stream tracking tree (STT)

® Stream refers to a range of logically continuous cached pages

® STT is the per-file tree that indexes streams with their start page indexes

» Better capturing the 1/O patterns than the system-level tracking
 Keeping the STT intact when a stream is extended

® New streams from buffered I/O requests are merged with existing ones to keep
them non-intersected

STT of file A

/

0K1

S\

K,

\
/3

<

(Cached pages in stream, dirty page

logical pages of file A //,clear]_;?age

K, ds, de,

end,

stream,| |stream;

stream, | |stream,| |stream,

Start=K3, end:end31 d I rtystart:ds3:7

dirtyenq=des, upper_limit=K,

10

Technique 1: Lightweight stream tracking

O Stream tracking optimization with stream pointer

® A per-file pointer that points to the stream of the last I/O

® Tracking each buffered I/O request firstly inspects the cached stream
® Inspecting the “upper_limit” field for any potential intersection

® Accelerating stream tracking when workload is sequential

STT of file A K, (Cached pages in stream,

/ \ logical pages of file A

o| K1 K

K, end4/ e_;l_oi4’

Ko K Ks| Ka
Streamo stream 1 Streamz Stream3 Stream4 /
N

on-intersected condition: end < upper_limit

start=K,, end=end,’, dirty,,,=K,, : 1
dirty..g=end,’, upper_limit=Infinite <:I stream pointer

Technique 1: Lightweight stream tracking

[Takeaway: Decoupled dirty states at the stream granularity J

Dirty state tracking in existing methods Dirty state tracking in StreamCache
XArray XArray node M STT State index |
Dirty _—
: Dirt Clean
Page index Y
/\ XArray XArray node M)
Dirty Clean - Clean Clean Page index
/\ /\ /\ /\
VARRN VARRN VAR VARRN
/\ /\ /\ /\
/N VARRY VAR VARRN
dirty clean clean clean pages
 Maintaining at the page granularity « Maintaining at the stream granularity

* Requiring an exlusive lock for each page dirtying « Low tracking overhead under sequential 1/0Os

Technique 2: Stream-based page reclaiming

O Stream-based page reclaiming based on STT

® Connecting streams with double-linked lists for writeback and eviction

® Keeping a pool of reclaiming threads for page writeback and eviction at
the stream granularity

® The per-file writeback counters to denote the completion of writeback in

face of the commands like “fsync”
fsync completes!

writeback counter

rreclaiming thread pool j

RERRRY

1024

eviction

writeback

0

.)
system-level

list headers

Ky

=§S:

] Ny
> Q [T
. J

stream node
[D] dirty stream node
[] clean stream
[1 dirty stream

13

Technique 2: Stream-based page reclaiming

O Locating dirty pages in stream-based writeback

® Extracting the indexes of a range of dirty pages from the STT
® Referring to the dirty pages in the XArray without an exclusive lock

No XArray exclusive lock!

Page indexes ___| XArray XArray node a
K, for writeback :

/\

o| K1 K

N L T

stream,| |stream, | |Stream, stream, stream4|

pages

STT of file A XArray of file A 14

Technique 2: Stream-based page reclaiming

[Takeaway: Changing the dirty states at the stream granularity J

Writeback in existing methods

Foreground buffered writes

Writeback in StreamCache

Foreground buffered writes

Insert a new page l Mark a page “dirty” Insert a new page \Mark pages “dirty”
N N
- & | g !
Lock-free for read-write
Array * contention under RCU! XArray STT
N N s
_ _ g
Mark a page “writeback” Mark a page “clean” Read a page for writeback Mark pages “clean”

Background writeback

» Both buffered writes and background writeback needs

an exlusive lock for each page manipulation

Background writeback

» Page-level read-write contention and

15

Technique 3: Two-layer memory management

O Two-layer memory management

® Pre-allocating zero-order pages into system-level per-core free-page lists
® Per-file cache for CPU-cache-friendly page allocation

per-file cache O per-file cache 1 per-file cache M-1

@ batch movement

i Memory pool

{m} im:

region O region 1 region N-1

16

Technique 3: Two-layer memory management

[Takeaway: Designing sharded and file-local free-page lists }

Page allocation in kernel page cache Page allocation in StreamCache
Clear on allocation Direct allocation
A A A A
PCP, ﬁ} PCPN_lﬁ} PFC, . PFCy1 .
Per-CPU page lists Per-file caches
//
N N N]] ;
[]]] .
T O-order ¢ 1-order [« < 10-order | O-order | O-order S O-order

System-level free-page lists System-level memory pool

No page splitting overhead
Minor lock contention with multiple free-page lists
Removing page clearing from the critical path17

File-local lists for better CPU cache locality

 Page splitting overhead
* Lock contention on a single free-page list
 Page clearing overhead on allocation

 Background & Motivation
e Design & Techniques
e Evaluation

e Conclusion

18

Experiment settings

[0 TestBed

® Ubuntu 18.04 (kernel version 5.4)
® 32-core AMD Rome EPYC 7542 CPU, 128GB DRAM
® RAID-0 of 8 Intel Optane 905p SSDs)

Experiment outline
0 Baseline (a” integrated N XFS) « StreamCache’s performance under real-

world workloads?

® Linux kernel page cache
» StreamCache’s performance under

® FastMap-cache different workload parameters?

0 Workloads . Effects of individual techniques in
® Synthetic workloads (FIO) StreamCache?
* More in our paper ...
® Real-world workloads (PF3DIO) \ J

Performance of real-world workload

O Scientfic computing I/O benchmark (PF3DIO kernel)

® \Writing checkpoint files in six different patterns
® StreamCache outperforms existing methods by 26%-62%

® Larger problem size triggers background writeback, and the benefit of
StreamCache is more obvious

1 Page cache [StreamCache 1 Page cache [StreamCache
18— FastMap-cache 12+ — FastMap-cache
gls- [= glo- 0 0 b
Q121 = ||| m || 35% improvements £ 8; B 53% improvements
% 9+ on average % 6T [1!]]| [on average
8 il 8 2 1
P e a0 0P qul it PTTE e a0 o@D i ot
d\f oc pd scPOPmuit,mu A\ oc pd PPty

Small problem size Large problem size 20

Performance of workloads with different parameters

O Synthetic workloads generated by FIO benchmark

® File scanning workloads can benefit from StreamCache despite the I/O
size, file size and parallelism

[ee]
1

[1Page cache
[]FastMap-cache
] StreamCache —

mmm (1] e

4KB 16KB 64KB 256KB 1MB 4MB
Block size

Different 1/O sizes (read)

]
1

Bandwidth (GB/s)
N

N

[ee]
1

[]1Page cache
[]FastMap-cache
[] StreamCache

Ll

4KB 16KB 64KB 256KB 1MB 4MB
Block size

Different 1/0O sizes (write)

]
1

29% on
average

Bandwidth (GB/s)
N EN

[1Page cache — -
[] FastMap-cache -
w] StreamCache |
[[
e
£
g 26% on
21
g WH average
0

1MB 8MB 64MB 512MB 4GB 32GB
File size

Different file sizes (read)

]
1

[]Page cache
[] FastMap-cache
w] StreamCache - _
[
Q
<
S
= 32% on
©
® average

1MB 8MB 64MB 512MB 4GB 32GB
File size

Different file sizes (write)

N
o
N

[] Page cache — — —
[] FastMap-cache
[] StreamCache |

[Eny
a1
L

Bandwidth (GB/s)
[y
o

| | 27% on
) ﬂ average
O | ;) T T
! 2 4 8 16
) Parallel_ism
Different parallelisms (read)
2] [Page cache
_0] FastMap-cache — o
3 [StreamCache — N
%15-]
é 10+ 28% on
el Hﬂ average
O I ;) T T
! 2 4 8 16
Parallelism 2 1

Different parallelisms (write)

Effects of individual techniques

O Adding main techiniques incrementally under PF3DIO kernel of
large problem size

® Memory pool brings a 1.3% improvement
® Stream tracking and stream-based writeback brings a 21.3% improvement
® Per-file cache brings a 27.5% improvement

12- [_]Page cache

[]+Memory Pool

I +Stream-based Writeback
Il +Per-file Cache

(o]

0 . |—m-‘
d\(Scd“ pd‘o SC‘)d m\)\“ Sm\)\“

Effects of individual techniques with PF3DIO large problem size

Bandwidth (GB/s)
(@]

w

22

 Background & Motivation
e Design & Techniques
e Evaluation

e Conclusion

23

Conclusion

0 Problem

® XArray lock contention and slow page allocation hinder the performance of
file scanning with buffered 1/O on fast storage devices

O Key idea

® Separating dirty states from the page cache index and keeping them in the
dedicated stream-level index

® Designing sharded and file-local free-page lists for fast page allocation

O Techniques Th an k yO y! |

® Lightweight stream tracking
® Stream-based page reclaiming

® Two-layer memory management 24

