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File scanning in data-intensive applications

O File scanning

® Most file pages are only accessed once during one |/O stage
® Low ratio of reused data

O Common in data-intensive applications

® Scientific computing and Al training

® |nitial data loading, checkpoint and restart, and result visulization
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Examples of common data-intensive applications
[1] E3SM. https://e3sm.org/research/cryosphere-ocean/v1-cryosphere-ocean/. 3

[2] S. H. Langer, A. Bhatele and C. H. Still. PF3D Simulations of Laser-Plasma Interactions in National Ignition Facility Experiments. 2014.



File scanning with the kernel buffered 1/O

O Buffered I/O is commonly used for file scanning

® Cutting-edge HPC clusters deploy NVMe SSD-based burst buffer (BB)
® The BB file system HadaFSIY uses buffered I/O on the burst buffer nodes

O Advantage of buffered I/O

® Transparent buffering, data aggregation, I/O alignment and prefetching
with the kernel page cache
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[1] https://www.usenix.org/conference/fast23/presentation/he.



Performance issues on next-generation storage

O Issue 1: Poor scalability with the device bandwidth

® Aggregating 8 PCle 3.0 SSDs to simulate a next-generation storage
® Sequential read/write workloads with FIO (10GB file size, 4MB 1/0 size)
® Direct I/O scales better than buffered I/O under a large 1/O size

101

1 SSD 2 SSDs
4 SSDs 8 SSDs

(o]
1

Buffered read: 35% improvement at most

»
1

D
1

— Buffered write: no obvious improvement

W ( { Direct read/write: better scalability

Bufferéd read Direct read Buffered write Direct write
/0 mode

The kernel page cache doesn't fit for fast storage
devices under file scanning 5

Bandwidth (GB/s)

N

o




Performance issues on next-generation storage

O Issue 2: High interference from background writeback

® Sequential write workload with FIO (30GB file size)
® Performance is stable at the beginning

® The proportion of software overhead increases when writing back to fast
storage, severely degrading the buffered write performance
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CPU time breakdown with profiling

O Profiling sequential read, sequential write and sequential write with
active writeback using perf tool

® Page allocation occupies major CPU cycles in all workloads

® Coupled page index and dirty states causes lock contention during writeback
® Data copy takes non-negligible parts of CPU time
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StreamCache overview

Key idea: Batch updates of dirty states (decicated stream-level index)
and fast page allocation (sharded and file-local free-page lists)

Technique 1: Lightweight stream tracking Technique 2: Stream-

based page reclaiming Backaround
STT : | : :
State index | writeback
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dirty states dirty states ‘
XArray XArray node
S el Page cache miss
Per-file cache Page cache miss
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pages Technique 3: Two-layer 9
memory management




Technique 1: Lightweight stream tracking

O Stream tracking and stream tracking tree (STT)

® Stream refers to a range of logically continuous cached pages

® STT is the per-file tree that indexes streams with their start page indexes

» Better capturing the 1/O patterns than the system-level tracking
 Keeping the STT intact when a stream is extended

® New streams from buffered I/O requests are merged with existing ones to keep
them non-intersected
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Technique 1: Lightweight stream tracking

O Stream tracking optimization with stream pointer

® A per-file pointer that points to the stream of the last I/O

® Tracking each buffered I/O request firstly inspects the cached stream
® Inspecting the “upper_limit” field for any potential intersection

® Accelerating stream tracking when workload is sequential
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Technique 1: Lightweight stream tracking

[ Takeaway: Decoupled dirty states at the stream granularity J

Dirty state tracking in existing methods Dirty state tracking in StreamCache
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Technique 2: Stream-based page reclaiming

O Stream-based page reclaiming based on STT

® Connecting streams with double-linked lists for writeback and eviction

® Keeping a pool of reclaiming threads for page writeback and eviction at
the stream granularity

® The per-file writeback counters to denote the completion of writeback in

face of the commands like “fsync”
fsync completes!

writeback counter

rreclaiming thread pool j

RERRRY

1024

eviction

writeback

0

. )
system-level

list headers

Ky

=§S:

] Ny
> Q [T
. J

stream node
[ D ] dirty stream node
[ ] clean stream
[ 1 dirty stream

13



Technique 2: Stream-based page reclaiming

O Locating dirty pages in stream-based writeback

® Extracting the indexes of a range of dirty pages from the STT
® Referring to the dirty pages in the XArray without an exclusive lock

No XArray exclusive lock!

Page indexes ___| XArray XArray node a
K, for writeback :

/\

o| K1 K

N L T

stream,| |stream, | |Stream, stream, stream4|

pages

STT of file A XArray of file A 14



Technique 2: Stream-based page reclaiming

[ Takeaway: Changing the dirty states at the stream granularity J

Writeback in existing methods

Foreground buffered writes

Writeback in StreamCache

Foreground buffered writes
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Background writeback

» Both buffered writes and background writeback needs

an exlusive lock for each page manipulation

Background writeback

» Page-level read-write contention and
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Technique 3: Two-layer memory management

O Two-layer memory management

® Pre-allocating zero-order pages into system-level per-core free-page lists
® Per-file cache for CPU-cache-friendly page allocation

per-file cache O per-file cache 1 per-file cache M-1

@ batch movement

i Memory pool

{m} im:

region O region 1 region N-1

16



Technique 3: Two-layer memory management

[ Takeaway: Designing sharded and file-local free-page lists }

Page allocation in kernel page cache Page allocation in StreamCache
Clear on allocation Direct allocation
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Removing page clearing from the critical path17

File-local lists for better CPU cache locality

 Page splitting overhead
* Lock contention on a single free-page list
 Page clearing overhead on allocation
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Experiment settings

[0 TestBed

® Ubuntu 18.04 (kernel version 5.4)
® 32-core AMD Rome EPYC 7542 CPU, 128GB DRAM
® RAID-0 of 8 Intel Optane 905p SSDs )

Experiment outline
0 Baseline (a” integrated N XFS) « StreamCache’s performance under real-

world workloads?

® Linux kernel page cache
» StreamCache’s performance under

® FastMap-cache different workload parameters?

0 Workloads . Effects of individual techniques in
® Synthetic workloads (FIO) StreamCache?
* More in our paper ...
® Real-world workloads (PF3DIO) \ J




Performance of real-world workload

O Scientfic computing I/O benchmark (PF3DIO kernel)

® \Writing checkpoint files in six different patterns
® StreamCache outperforms existing methods by 26%-62%

® Larger problem size triggers background writeback, and the benefit of
StreamCache is more obvious
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Performance of workloads with different parameters

O Synthetic workloads generated by FIO benchmark

® File scanning workloads can benefit from StreamCache despite the I/O
size, file size and parallelism
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Effects of individual techniques

O Adding main techiniques incrementally under PF3DIO kernel of
large problem size

® Memory pool brings a 1.3% improvement
® Stream tracking and stream-based writeback brings a 21.3% improvement
® Per-file cache brings a 27.5% improvement
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Conclusion

0 Problem

® XArray lock contention and slow page allocation hinder the performance of
file scanning with buffered 1/O on fast storage devices

O Key idea

® Separating dirty states from the page cache index and keeping them in the
dedicated stream-level index

® Designing sharded and file-local free-page lists for fast page allocation

O Techniques Th an k yO y! |

® Lightweight stream tracking
® Stream-based page reclaiming

® Two-layer memory management 24



