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File scanning in data-intensive applications

 File scanning
 Most file pages are only accessed once during one I/O stage
 Low ratio of reused data

 Common in data-intensive applications
 Scientific computing and AI training 
 Initial data loading, checkpoint and restart, and result visulization

3[1] E3SM. https://e3sm.org/research/cryosphere-ocean/v1-cryosphere-ocean/.
[2] S. H. Langer, A. Bhatele and C. H. Still. PF3D Simulations of Laser-Plasma Interactions in National Ignition Facility Experiments. 2014.

Climate simulation[1] Laser-plasma interaction[2] Large language model

ChatGPT ChatGLM

Gemini Meta Llama

Examples of common data-intensive applications



File scanning with the kernel buffered I/O

 Buffered I/O is commonly used for file scanning
 Cutting-edge HPC clusters deploy NVMe SSD-based burst buffer (BB)
 The BB file system HadaFS[1] uses buffered I/O on the burst buffer nodes

 Advantage of buffered I/O
 Transparent buffering, data aggregation, I/O alignment and prefetching 

with the kernel page cache

4
[1] https://www.usenix.org/conference/fast23/presentation/he.

Global file system

Compute node

Burst buffer node

NVMe SSD

Ext4 and page cache

Compute node

Burst buffer node

NVMe SSD

Compute node

Burst buffer node

NVMe SSD



Buffered read  Buffered write
0

2

4

6

8

10

B
an

dw
id

th
 (G

B
/s

)

I/O mode

 1 SSD  2 SSDs
 4 SSDs  8 SSDs

Performance issues on next-generation storage
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Buffered read: 35% improvement at most

Buffered write: no obvious improvement

Direct read/write: better scalability

 Issue 1: Poor scalability with the device bandwidth
 Aggregating 8 PCIe 3.0 SSDs to simulate a next-generation storage
 Sequential read/write workloads with FIO (10GB file size, 4MB I/O size)
 Direct I/O scales better than buffered I/O under a large I/O size

The kernel page cache doesn’t fit for fast storage 
devices under file scanning
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Performance issues on next-generation storage

 Issue 2: High interference from background writeback
 Sequential write workload with FIO (30GB file size)
 Performance is stable at the beginning
 The proportion of software overhead increases when writing back to fast 

storage, severely degrading the buffered write performance

6

0 3 6 9 12 15
0

3

6

9

Ba
nd

w
id

th
 (G

B/
s)

Time (s)

 Application I/O  Background writeback

0 3 6 9 12 15
0

3

6

9

Ba
nd

w
id

th
 (G

B/
s)

Time (s)

 Application I/O  Background writeback

Without writeback: relative stable performance

During writeback: about 32% degradation

Background writeback on fast storage severely 
degrades buffered write performance



CPU time breakdown with profiling

 Profiling sequential read, sequential write and sequential write with 
active writeback using perf tool
 Page allocation occupies major CPU cycles in all workloads
 Coupled page index and dirty states causes lock contention during writeback
 Data copy takes non-negligible parts of CPU time
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StreamCache overview
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Cached pages in stream3
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Technique 1: Lightweight stream tracking

 Stream tracking and stream tracking tree (STT)
 Stream refers to a range of logically continuous cached pages 
 STT is the per-file tree that indexes streams with their start page indexes

• Better capturing the I/O patterns than the system-level tracking
• Keeping the STT intact when a stream is extended

 New streams from buffered I/O requests are merged with existing ones to keep 
them non-intersected
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Technique 1: Lightweight stream tracking

 Stream tracking optimization with stream pointer
 A per-file pointer that points to the stream of the last I/O
 Tracking each buffered I/O request firstly inspects the cached stream
 Inspecting the “upper_limit” field for any potential intersection
 Accelerating stream tracking when workload is sequential
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Technique 1: Lightweight stream tracking

12• Maintaining at the page granularity
• Requiring an exlusive lock for each page dirtying
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Takeaway: Decoupled dirty states at the stream granularity



Technique 2: Stream-based page reclaiming

 Stream-based page reclaiming based on STT
 Connecting streams with double-linked lists for writeback and eviction
 Keeping a pool of reclaiming threads for page writeback and eviction at 

the stream granularity
 The per-file writeback counters to denote the completion of writeback in 

face of the commands like “fsync”
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Technique 2: Stream-based page reclaiming

 Locating dirty pages in stream-based writeback
 Extracting the indexes of a range of dirty pages from the STT
 Referring to the dirty pages in the XArray without an exclusive lock
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Technique 2: Stream-based page reclaiming

15• Both buffered writes and background writeback needs 
an exlusive lock for each page manipulation

Writeback in existing methods

• Page-level read-write contention and stream-
level write-write contention
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Takeaway: Changing the dirty states at the stream granularity



Technique 3: Two-layer memory management

 Two-layer memory management
 Pre-allocating zero-order pages into system-level per-core free-page lists
 Per-file cache for CPU-cache-friendly page allocation
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Technique 3: Two-layer memory management
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Takeaway: Designing sharded and file-local free-page lists

• Page splitting overhead
• Lock contention on a single free-page list
• Page clearing overhead on allocation

Page allocation in kernel page cache Page allocation in StreamCache

• No page splitting overhead
• Minor lock contention with multiple free-page lists
• Removing page clearing from the critical path
• File-local lists for better CPU cache locality
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Experiment settings

 TestBed
 Ubuntu 18.04 (kernel version 5.4)
 32-core AMD Rome EPYC 7542 CPU, 128GB DRAM
 RAID-0 of 8 Intel Optane 905p SSDs

 Baseline (all integrated in XFS)
 Linux kernel page cache
 FastMap-cache

 Workloads
 Synthetic workloads (FIO)
 Real-world workloads (PF3DIO)
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Experiment outline



Performance of real-world workload

 Scientfic computing I/O benchmark (PF3DIO kernel)
 Writing checkpoint files in six different patterns
 StreamCache outperforms existing methods by 26%-62%
 Larger problem size triggers background writeback, and the benefit of 

StreamCache is more obvious
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Performance of workloads with different parameters

 Synthetic workloads generated by FIO benchmark
 File scanning workloads can benefit from StreamCache despite the I/O 

size, file size and parallelism
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Effects of individual techniques

 Adding main techiniques incrementally under PF3DIO kernel of 
large problem size
 Memory pool brings a 1.3% improvement
 Stream tracking and stream-based writeback brings a 21.3% improvement
 Per-file cache brings a 27.5% improvement
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Conclusion

 Problem
 XArray lock contention and slow page allocation hinder the performance of 

file scanning with buffered I/O on fast storage devices

 Key idea
 Separating dirty states from the page cache index and keeping them in the 

dedicated stream-level index
 Designing sharded and file-local free-page lists for fast page allocation

 Techniques
 Lightweight stream tracking
 Stream-based page reclaiming
 Two-layer memory management 24
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