
An Empirical Study of Rust-for-Linux: The Success,
Dissatisfaction, and Compromise

(*)Hongyu Li1, (*)Liwei Guo2, Yexuan Yang1, Shangguang Wang1, Mengwei Xu1

(*) = co-primary

1Beijing University of Posts and
Telecommunications

2University of Electronic Science
and Technology of China

Software based on Linux

Linux suffers from bugs

1

➢ Static analysis[1]

➢ Gcc –Wanalyze*
➢ Clang
➢ cppcheck
➢ Codechecker

➢ Runtime detection[2]

➢ Kernel Memory Sanitizer (KMSAN)
➢ Kernel Concurrency Sanitizer (KCSAN)
➢ Undefined Behavior Sanitizer (UBSAN)

➢ Kernel testing[2]

➢ KUnit/Kselftest/LTP/Kernel CI/Fuzz

Memory/Thread Bugs

Take that!

Linux Community

[1] https://events.linuxfoundation.org/wp-content/uploads/2021/01/Static-Analysis-JSMoeller-LF-Live-Mentor-Series.pdf
[2] https://www.kernel.org/doc/html/next/dev-tools/index.html

Bring it on!

Efforts to counter Memory/Thread bugs

2

https://events.linuxfoundation.org/wp-content/uploads/2021/01/Static-Analysis-JSMoeller-LF-Live-Mentor-Series.pdf
https://www.kernel.org/doc/html/next/dev-tools/index.html

3

Memory/Thread Bugs

[1] https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

I‘m still here!

But Memory/Thread bugs still exist[1]

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

4

Before meeting Rust:

“I have yet to see a language that comes even close to C.”

After meeting Rust:

“While I won’t make any promises, I’d like to see Rust merging into the
Linux kernel with the next release.”

Rust-for-Linux

I have Rust!

Rust can help

Rust-for-Linux (RFL) wants to write drivers with Rust

1. Rust’s safety rules cause limited expressiveness (Double linked list)
2. Code in the Unsafe block can break the safety rules

➢ Calling function from foreign function interface (FFI) needs unsafe blocks
3. It’s proven possible to wrap unsafe blocks under safe APIs

Background

5

6

Memory/Thread Bugs

While we know about Rust, RFL is rarely studied

Rust-for-Linux

RQ1: what is the status quo of RFL?
RQ2: does RFL live up to the hype?
RQ3: what are the lessons learned from RFL?

Motivation

Q1: RFL development status
Q2: How to construct safety abstraction
Q3: How to rustify device drivers

RQ1: what is the status quo of RFL?

7

1. Development progress

Insight 1: drivers, netdev, and file systems are the long tail of RFL code.

Q1: RFL development status (RQ1)

8

1. Development progress
2. Patch distribution

Insight 2: RFL infrastructure has matured, with safe
abstraction and drivers being the next focus.

Q1: RFL development status (RQ1)

9

1. Development progress
2. Patch distribution
3. The trend

Q1: RFL development status (RQ1)

Insight 3: RFL is bottlenecked by code review but not by code development.
10

1. Structs safety abstraction
➢ rust-bindgen: same layout in memory

Q2: How to construct safety abstraction (RQ1)

11

#[repr(C)]
#[derive(Copy, Clone)]
pub struct llist_head {

pub first: *mut llist_node,
}

impl Default for llist_head {
fn default() -> Self {

unsafe { ::core::mem::zeroed() }
}

}

struct llist_head {
struct llist_node *first;

};

12

struct fs_parameter {
const char *key; /* Parameter name */
enum fs_value_type type:8; /* The type of value here

*/
union {

char *string;
void *blob;
struct filename *name;
struct file *file;

};
};

1. Structs safety abstraction
➢ rust-bindgen: same layout in memory
➢ Bit field/union

Q2: How to construct safety abstraction (RQ1)

13

pub struct __BindgenBitfieldUnit<Storage, Align> {
storage: Storage,
align: [Align; 0],

}

impl<Storage, Align> __BindgenBitfieldUnit<Storage, Align> {
pub fn get(&self, bit_offset: usize, bit_width: u8) -> u64
pub fn set(&mut self, bit_offset: usize, bit_width: u8, val: u64)

}

1. Structs safety abstraction
➢ rust-bindgen: same layout in memory
➢ Bit field/union

Q2: How to construct safety abstraction (RQ1)

14

1. Structs safety abstraction
➢ rust-bindgen: same layout in memory
➢ Abstraction
➢ Deref is valid: *ptr -> foo<*mut ptr>

impl File {
/// Creates a reference to a [`File`] from a valid pointer.
/// # Safety
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of
/// the returned [`File`] instance.
pub(crate) unsafe fn from_ptr<'a>(ptr: *const bindings::file) -> &'a File {

// SAFETY: The safety requirements guarantee the validity of the dereference,
// while the `File` type being transparent makes the cast ok.
unsafe { &*ptr.cast() }

}
}

Q2: How to construct safety abstraction (RQ1)

1. Structs safety abstraction
2. Functions safety abstraction
➢ Functions as the members of the struct
➢ /// # Invariants
➢ /// # Safety
➢ // SAFETY:

15

impl File {
/// Returns the flags associated with the file.
///
/// The flags are a combination of the constants in [`flags`].
pub fn flags(&self) -> u32 {

// SAFETY: The file is valid because the shared reference guarantees a nonzero
refcount.

unsafe { core::ptr::addr_of!((*self.0.get()).f_flags).read() }
}}

Q2: How to construct safety abstraction (RQ1)

1. Structs safety abstraction
2. Functions safety abstraction
➢ Functions as the members of the struct
➢ Function pointers as trait

16

impl<T: Operations> OpsTable<T> {
const VTABLE: bindings::dev_pm_ops = bindings::dev_pm_ops {

suspend: Some(suspend_callback::<T>),
resume: Some(resume_callback::<T>),
freeze: Some(freeze_callback::<T>),
restore: Some(restore_callback::<T>),

};
……

}

Q2: How to construct safety abstraction (RQ1)

1. Workflow
➢ Device probe
➢ Driver logic
➢ Device cleanup

2. Rust/RFL abstraction
influences programing
inflexibility

Q3: How to rustify device drivers (RQ1)

17

1. Workflow
2. Rust/RFL abstraction influences programing flexibility
➢ Container_of

Q3: How to rustify device drivers (RQ1)

Insight 4: The major difficulty of writing safe drivers in Rust is to reconcile
the inflexibility of Rust versus kernel programming conventions. 18

Q1: Does Rust help Linux become safer?
Q2: Does Rust bring additional overhead?
Q3: How does Rust improve Linux development?

RQ2: does RFL live up to the hype?

19

Q1: Does Rust help Linux become safer? (RQ2)

1. There exist soundness bugs in the safety abstractions
➢ Wrapping unsafe APIs needs manually review
➢ Bugs may not disappear, just hide deeper[1]

[1] https://lwn.net/Articles/953116/ 20

https://lwn.net/Articles/953116/

1. There exist soundness bugs in the safety abstractions
2. The RFL drivers use unsafe blocks
➢ The driver itself still needs unsafe due to complex logic
➢ The safety abstraction is hard to maintain pure safe[1]

Insight 5: with RFL, Linux becomes more “securable” but still cannot be fully secure.

[1] https://github.com/Rust-for-Linux/linux/commit/90e53c5e70a69159ec255fec361f7dcf9cf36eae 21

Q1: Does Rust help Linux become safer? (RQ2)

https://github.com/Rust-for-Linux/linux/commit/90e53c5e70a69159ec255fec361f7dcf9cf36eae

1. Setup
➢ NVME and binder are considered the first batch of drivers to be

merged in the Linux mainline
➢ Others: File system/Network/Driver

Q2: Does Rust bring additional overhead? (RQ2)

22

1. Setup
2. Binary size overhead
➢ 1.2× for binder, 2.4× for gpio,

and 1.9× for sem (* means full
feature in Rust)

23

Q2: Does Rust bring additional overhead? (RQ2)

1. Setup
2. Binary size overhead
➢ 1.2× for binder, 2.4× for gpio,

and 1.9× for sem (* means full
feature in Rust)

➢ Rust brings overhead especially
in the debug segmentation:
3.9×–6.6× larger

24

Q2: Does Rust bring additional overhead? (RQ2)

1. Setup
2. Binary size overhead
3. Runtime overhead
➢ Latency
➢ Rust e1000 driver lacks features, e.g., prefetch

25

Q2: Does Rust bring additional overhead? (RQ2)

1. Setup
2. Binary size overhead
3. Runtime overhead
➢ Latency
➢ Throughput (poor)
➢ Rust has higher cache miss

rate due to smart pointer

Rust: 78,280,692 L1-icache-load-misses
2,240,713 dTLB-load-misses

C: 52,976,908 L1-icache-load-misses
1,312,452 dTLB-load-misses

26

Q2: Does Rust bring additional overhead? (RQ2)

1. Setup
2. Binary size overhead
3. Runtime overhead
➢ Latency
➢ Throughput (poor)
➢ Rust has higher cache miss

rate due to smart pointer
➢ Rust runtime checks/bit

field translation

27

Q2: Does Rust bring additional overhead? (RQ2)

1. Setup
2. Binary size overhead
3. Runtime overhead
➢ Latency
➢ Throughput (better)
➢ Rust use less cache lines

(pahole)
➢ Less code path

28

Q2: Does Rust bring additional overhead? (RQ2)

1. Improved code quality and readability
➢ RFL improves the Linux documentation coverage by rustdoc
➢ RFL has the built-in CI system which improves the code quality

29

Q2: Does Rust bring additional overhead? (RQ2)

1. Improved code quality and readability
2. More young blood to the Linux community
➢ RFL has the most novice developers
➢ We observe 5 out 6 RFL drivers are developed by the non-novice

30

Q2: Does Rust bring additional overhead? (RQ2)

RQ3: what are the lessons learned from RFL?

For the developers using and building RFL

1. use Rustbelt/miri to evaluate the correctness of safety abstraction
2. write your program with ownership in mind
3. accept unsafe if you have to

For the developers expanding RFL scope

1. choose the subsystem/drivers that are more fragile

31

Takeaways

1. Memory safety with the price

2. No sliver bullet and no guarantee

3. Nearly zero-cost

32

Liwei Guo Mengwei Xu

Shout out to the RROS team and my advisors!

RROS is a Rust dual kernel

33

Yangye XuanHongyu Li Shangguang wang

Thanks
Q&A

Source code: https://github.com/Richardhongyu/rfl_empirical_tools

RROS: https://github.com/BUPT-OS/RROS/

Email: lihongyu1999@bupt.edu.cn, lwg@uestc.edu.cn

https://github.com/Richardhongyu/rfl_empirical_tools
https://github.com/BUPT-OS/RROS/
mailto:lihongyu1999@bupt.edu.cn
mailto:lwg@uestc.edu.cn

