
PeRF
: Preemption-enabled RDMA Framework

Sugi Lee1, Mingyu Choi1, Ikjun Yeom2, Younghoon Kim2

Acryl Inc1, Sungkyunkwan University2



• High throughput & ultra-low latency

via zero-copy operations

• Big-data analysis, machine learning, 

distributed storage, etc.

RDMA

01 Intro

2

➔ Thanks to the kernel-bypass feature

Kernel

App

B
Y

P
A

S
S

User

RNIC

Network
Stack

• Problems such as security, scalability, and performance isolation

At the same time...

➔Due to the lack of control in kernel space (kernel-bypass)



RNIC’s Scheduling Mechanism

3

QP-levelMsg-level

Setup ▪ 16-core Intel i7-11700K 3.6GHz ▪ 32GB RAM ▪ ConnectX-6 100 Gbps RoCE

• 2 apps sharing an RNIC

• One app sending small messages (16B)

• The other app sending large messages

as background traffic (64B~1GB)

➔ Performance remains stable once it reaches MTU

Evenly processing MTU-segmented packets from various QPs

02 Background



RNIC’s Scheduling Mechanism

• 5 apps sending batches of small messages

(16, 32, 64, 128 and 256B each) with single QP

• Adding an app sending larger messages

(1, 2, or 4KB) with single QP

02 Background

Round-Robin Scheduling with Multi-QPs

➔ Larger messages limits the msg rate of other apps (bandwidth bottleneck)

4

QP-levelMsg-level

Setup ▪ 16-core Intel i7-11700K 3.6GHz ▪ 32GB RAM ▪ ConnectX-6 100 Gbps RoCE



Application Type

Bandwidth-intensive Message-intensive Delay-sensitive

Message Size Large Small Small

Sparsity Low High Low

Single QP B_Appsingle M_Appsingle D_Appsingle

Multiple QPs B_Appmulti M_Appmulti D_Appmulti

02 Background

5

B_App 1MB

M_App 16B x 32

D_App 16B

In this paper,

Msg-level

QP-level



Message-level Anomaly

RNIC does not support Multi-Tenancy
6

02 Background

3.8x 6.1x

QP-level Anomaly

• B_App harms both M_App and D_App. • Multi-QP app harms single-QP app.



Prior Works for Performance Isolation
HW-based SW-based

Pros ✓ Strict performance isolation ✓ Flexible performance isolation

Cons - Unable to handle dynamic changes

- Reservation-based resource 
allocation (non-work-conserving)

- Unavoidable performance 
degradation

We propose, PeRF
A Preemption-enabled RDMA Framework

✓ software-based (flexible)

✓ bare-metal performance RDMA (work-conserving)

✓ no need for estimation of network resources

✓ transparent to applications

02 Background

7



Preemption

03 Key Idea

8

the ability of an operating system to temporarily interrupt a currently 

running task to run another task.

preemption : 

Preemption in RDMA?

“Interrupting a message and prioritizing another in RNIC“

by leveraging a managed QP and a combination of specialized WRs



Host Memory

App

Queue Pair

RNIC

03 Key Idea

Allow RNIC to fetch n WRs

Host Memory

WR
WR
WRWR

Wait for
Fetching

WR

ENABLE

Master QP

ENABLE_WR

Preemption Mechanism

Managed QP and ENABLE_WR

9

Managed QP

WR

WR

Fetch

Doorbell



Queue Pair

RNIC
Completion

Queue

App

CQ

03 Key Idea

CQE

RNIC processes WRs
(until encountering WAIT WR)

CQE

WAIT_WR

Preemption Mechanism

CQE and WAIT_WR

10

WR

WR

QP

WR
WAIT
WAIT

WR CQE

Poll



Sub-WR
0_WAIT
0_WAIT
Sub-WR

B_App QP

WR
WR
WR
WR

D(M)_App QP

Give transmission opportunities

Transmission Interrupt

Preemption Mechanism (Message-level)

11

03 Key Idea

QP-levelMsg-level

• Sub-WR : subdivided unit of a larger work request

• 0_WAIT : a WAIT_WR that immediately completes upon execution (wait_cqe_num=0)



[PAUSE] Deactivates a QP

Preemption Controller

0_WR

PCQ

QPs of Appmulti

QP #3

QP #4

[RESUME] 
1) RNIC encounters ENABLE

[RESUME] 
2) WR prefetching

0_WR

0_WR

[RESUME] 
4) WAIT is completed

& QP #2 is activated

Host Memory

[RESUME] 3) 0_WR is completed

QP #1

QP #2

CQE

PCC

PAUSE/RESUME Operations

Preemption Mechanism (QP-level)

12

03 Key Idea

QP-levelMsg-level

• 0_WR : a work request with 0 byte message

WR

WR

WAIT

WR

WR

WAIT

WR

WR

WAIT

WR

ENABLE
WAIT

WR

WAIT

WR

WR

WAIT

WR

WR

WAIT

WR

ENABLE

WR

WAIT



Large Message

Message-level Scheduling

0_WAIT0_WAIT0_WAIT 0_WAIT0_WAIT0_WAIT 0_WAIT0_WAIT0_WAIT

Sub-WR Sub-WR Sub-WR ...

Large Message Scheduling Engine (LMSE)

• D(M)_App is competing with B_App

• Split B_App’s message into smaller chunks (Sub-WRs)

• Post 0_WAIT WRs between message chunks

Grant more opportunities for small message flows
13

04 Design

QP-levelMsg-level



PAUSE

RESUME

PAUSE

PAUSE

QP-level Scheduling

04 Design

Restrict the number of activated QPs of multi-QP app
14

QP-levelMsg-level

Multi-QP Scheduling Engine (MQSE)

• When competing with a multi-QP App

• Control the number of active QPs with PAUSE/RESUME operations

QP

QP

QP

QP

Message Flow

PAUSE

RESUME

PAUSE

PAUSE

Multi-QP

App

PAUSE

RESUME

PAUSE

PAUSE

PAUSE

RESUME

PAUSE

PAUSE

PAUSE

RESUME

PAUSE

PAUSE

PAUSE

RESUME

PAUSE

PAUSE

PAUSE

RESUME

PAUSE

PAUSE

RESUME

PAUSE

PAUSE

PAUSE

RESUME

PAUSE

PAUSE

PAUSE

RESUME

PAUSE

PAUSE

PAUSE



PeRF Architecture

libibverbsControl plane Data plane

PeRF Master

Tenant
Monitor

Context
Manager

Worker
Scheduler

S
H
M

Application Classifier

PeRF Worker #1

Work-conserving Scheduler

ECE LMSE MQSE

PeRF Offloading Onloading

Message Size
Estimator

QPNum.
Estimator

Network Policy Manager
(Token Bucket, QP Limiting, …)

Isolation
Manager

libmlx5

MLNX Driver

QP Context
Manager

Fabric Isolation
(DCQCN, IBCC, …)

User-level

Kernel

RNIC

ibv_post_send ibv_create_qp

PeRF Worker #n

04 Design

15



Baseline Benchmark

05 Evaluation

PeRF performs nearly as HW-based solutions

B_Appsingle vs M_AppsingleB_Appsingle vs D_Appsingle

16

• Strict Policy (SP) : priority queue (set to prioritize D_App)

• Enhanced Transmission Selection (ETS) : weighted round-robin (B_App : M_App = 16 : 1)



Message-level Isolation

05 Evaluation

B_Appsingle vs M_Appsingle B_Appsingle vs D_Appsingle

17

QP-levelMsg-level

• Justitia : a token-based resource allocation solution

• JustitiaR : a relaxed version of Justitia (latency threshold = 15 us)



QP-level Isolation

05 Evaluation

PeRFJustitiaRDMA

18

QP-levelMsg-level



Real World Applications

05 Evaluation

19

Application Type Message Size Batch

Apache Crail B_App 1GB (1MB chunk) 1

HERD M_App
5% PUT 50B

95% GET 17B
32

rping D_App 16B 1
R
N
IC

client

Crail datanode

HERD server

rping server



Other Experiments

05 Evaluation 다른 실험들 많으니 우리 논문 확인해라

1. Other Commercial RNICs Test

2. Support for SEND and READ Operations

3. Scalability Test

4. Weighted Policy Test

5. Congested Networks Test

... and more!

20



PeRF

06 Conclusion

✓ Traditional RDMA solutions struggle with performance anomalies and inefficient 

resource utilization in multi-tenant environments.

✓ PeRF uses a novel RNIC preemption mechanism and work-conserving 

packet/QP scheduling to address these challenges.

✓ PeRF ensures software-based performance isolation without sacrificing the 

high performance of RDMA.

21



Thanks & Q/A

github: https://github.com/acryl-aaai/perf
contact: ① sglee0323@gmail.com

② mingyuchoi514@gmail.com


	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22

