
spcl.ethz.ch
@spcl_eth
@spcl

Mikhail Khalilov, Marcin Chrapek, Siyuan Shen, Alessandro Vezzu, Thomas Benz, Salvatore Di Girolamo, and Timo Schneider, ETH Zürich
Daniele De Sensi, ETH Zürich and Sapienza University of Rome
Luca Benini and Torsten Hoefler, ETH Zürich

OSMOSIS: Enabling Multi-Tenancy in Datacenter SmartNICs



@spcl_eth
@spcl

spcl.ethz.ch

2

Why SmartNICs?



@spcl_eth
@spcl

spcl.ethz.ch

3

Gap between CPU and NIC bandwidth

CPU bandwidth scales slower than the NIC bandwidth

ConnectX-2 (2009): 10Gbps/port ConnectX-7 (2023): 400 Gbps/port40x

RX path
CPU can’t process packets

at a line rate

TX path
CPU cannot saturate NIC

SmartNIC offloading approach: 
free CPU cycles by offloading “hot” parts of the host-side stack to the NIC data path 



@spcl_eth
@spcl

spcl.ethz.ch

4

Network synchronization [iPipe Sigcomm 19]

ML collectives [Flare SC 21]
Disaggregated storage 
[Gimbal Sigcomm 21]

Small RPCs [nanoPU OSDI 21]

On-path offloading use-cases



@spcl_eth
@spcl

spcl.ethz.ch

5

SmartNIC offloading

NIC
PHY

DMA
engine PUs

Host-side PCIe

Memory
Host 

Application



@spcl_eth
@spcl

spcl.ethz.ch

6

SmartNIC offloading

NIC
PHY

DMA
engine PUs

Host-side PCIe

Memory
Host 

Application



@spcl_eth
@spcl

spcl.ethz.ch

7

SmartNIC offloading

NIC
PHY

DMA
engine PUs

Host-side PCIe

Memory
Host 

Application

Pkt



@spcl_eth
@spcl

spcl.ethz.ch

8

SmartNIC offloading

NIC
PHY

DMA
engine PUs

Host-side PCIe

Memory
Host 

Application

Pkt



@spcl_eth
@spcl

spcl.ethz.ch

9

SmartNIC offloading

NIC
PHY

DMA
engine PUs

Host-side PCIe

Memory
Host 

Application
Pkt



@spcl_eth
@spcl

spcl.ethz.ch

10

SmartNIC offloading

NIC
PHY

DMA
engine PUs

Host-side PCIe

Memory
Host 

Application
PktAck



@spcl_eth
@spcl

spcl.ethz.ch

11

SmartNIC offloading

NIC
PHY

DMA
engine PUs

Host-side PCIe

Memory
Host 

Application
Pkt



@spcl_eth
@spcl

spcl.ethz.ch

12

State-of-the-art: on-path vs off-path offloading

On-path: Data Path Accelerator (DPA)
16 hyper-threaded RISC-V cores: 256 hardware threads

Ideal for low-IPC highly-parallel workloads
C API to interact with DMA/accelerators

Off-path: ARM SoC
16 superscalar OOO ARM cores

Tailored for single-thread-bound workloads
Linux RDMA/DOCA stacks

400Gbit/s
Ethernet/IB

PHY

ConnectX
DMA

engine
DPA ARM 

SoC

On-nic
PCIe

Switch

Host-side PCIe

On NIC
DDR

BlueField 3 SmartNIC

In our work we focus on the on-path offloading



@spcl_eth
@spcl

spcl.ethz.ch

13

Q: What will happen if we’ll share SmartNIC resources between tenants?
A: Let’s take an open-source SmartNIC and see!



@spcl_eth
@spcl

spcl.ethz.ch

§ Software/hardware stack based on energy-efficient RISC-V PUs
§ Support for general-purpose per-packet processing with C
§ Offloading is very similar to the NVIDIA BlueField Datapath Accelerator

14

Open-source PsPIN on-path SmartNIC

What are the implications of  resource sharing for DMA engine and PUs between tenants?
[Di Girolamo et. al., ISCA 48]



@spcl_eth
@spcl

spcl.ethz.ch

15

In-network compute (INC) management

Victim tenant needs 2x less PU cycles to process single packet

Conventional round robin scheduling for compute engines is unfair



@spcl_eth
@spcl

spcl.ethz.ch

16

IO management

Two tenants offload kernels to serve IO RPCs of different sizes

FIFO processing of DMA requests results in HoL-blocking



@spcl_eth
@spcl

spcl.ethz.ch

17

… but why not use standard OS schedulers?



@spcl_eth
@spcl

spcl.ethz.ch

18

Packet processing deadlines at 400 Gbit/s and 1 GHz

Software packet scheduling is not feasbile
<1 us to process packet



@spcl_eth
@spcl

spcl.ethz.ch

19

OSMOSIS



@spcl_eth
@spcl

spcl.ethz.ch

§ Hardware-based resource management designed for next-generation on-path SmartNICs
§ Dynamic and work-conserving IO/compute tenant resource management
§ Support for data-center SLOs and priority enforcement

20

OSMOSIS: Operating System Support for Streaming In-Network Processing



@spcl_eth
@spcl

spcl.ethz.ch

21

OSMOSIS overview



@spcl_eth
@spcl

spcl.ethz.ch

22

OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
Inspired by the BVT [SOSP-17] and Shinjuku [NSDI ‘19] schedulers
§ Track how many PUs/cycle the FMQs need
§ Choose the FMQ with the smallest number of used cycles
Use WRR-like weights to support priorities
§ Scale down number of used cycles according to priority

0 0

PUs/cycle
usage prio

0 0

* =

0

0

weighted
PUs/cycle

usage

0 0 0

W
LBVT scheduler

FMQ 1

FMQ 2

FMQ 3

Per-flow packet descriptors

PU 
1

PU 
2

PU 
63

PU 
64

On-path
compute engine

Initial system state:
All PUs are idle



@spcl_eth
@spcl

spcl.ethz.ch

23

OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
Inspired by the BVT [SOSP-17] and Shinjuku [NSDI ‘19] schedulers
§ Track how many PUs/cycle the FMQs need
§ Choose the FMQ with the smallest number of used cycles
Use WRR-like weights to support priorities
§ Scale down number of used cycles according to priority

16 1

PUs/cycle
usage prio

16 2

* =

16

8

weighted
PUs/cycle

usage

32 2 16

W
LBVT scheduler

FMQ 1

FMQ 2

FMQ 3

Per-flow packet descriptors

PU 
1

PU 
2

PU 
63

PU 
64

On-path
compute engine

System state at cycle N:
All PUs are busy



@spcl_eth
@spcl

spcl.ethz.ch

24

OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
Inspired by the BVT [SOSP-17] and Shinjuku [NSDI ‘19] schedulers
§ Track how many PUs/cycle the FMQs need
§ Choose the FMQ with the smallest number of used cycles
Use WRR-like weights to support priorities
§ Scale down number of used cycles according to priority

16 1

PUs/cycle
usage prio

16 2

* =

16

8

weighted
PUs/cycle

usage

32 2 16

W
LBVT scheduler

FMQ 1

FMQ 2

FMQ 3

Per-flow packet descriptors

PU 
1

PU 
2

PU 
63

PU 
64

On-path
compute engine

System state at cycle N + 1:
PU 2 finishes processing FMQ 1 packet



@spcl_eth
@spcl

spcl.ethz.ch

25

OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
Inspired by the BVT [SOSP-17] and Shinjuku [NSDI ‘19] schedulers
§ Track how many PUs/cycle the FMQs need
§ Choose the FMQ with the smallest number of used cycles
Use WRR-like weights to support priorities
§ Scale down number of used cycles according to priority

15 1

PUs/cycle
usage prio

16 2

* =

15

8

weighted
PUs/cycle

usage

32 2 16

W
LBVT scheduler

FMQ 1

FMQ 2

FMQ 3

Per-flow packet descriptors

PU 
1

PU 
2

PU 
63

PU 
64

On-path
compute engine

System state at cycle N + 2:
Feedback update to FMQ 1 PU usage



@spcl_eth
@spcl

spcl.ethz.ch

OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
Inspired by the BVT [SOSP-17] and Shinjuku [NSDI ‘19] schedulers
§ Track how many PUs/cycle the FMQs need
§ Choose the FMQ with the smallest number of used cycles
Use WRR-like weights to support priorities
§ Scale down number of used cycles according to priority

15 1

PUs/cycle
usage prio

16 2

* =
weighted
PUs/cycle

usage

8

15

32 2 16

FMQ 1

FMQ 2

FMQ 3

Per-flow packet descriptors

26

W
LBVT scheduler

PU 
1

PU 
2

PU 
63

PU 
64

On-path
compute engine

System state at cycle N + 3:
Find FMQ with minimal PU usage



@spcl_eth
@spcl

spcl.ethz.ch

OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
Inspired by the BVT [SOSP-17] and Shinjuku [NSDI ‘19] schedulers
§ Track how many PUs/cycle the FMQs need
§ Choose the FMQ with the smallest number of used cycles
Use WRR-like weights to support priorities
§ Scale down number of used cycles according to priority

15 1

PUs/cycle
usage prio

16 2

* =
weighted
PUs/cycle

usage

8

15

32 2 16

FMQ 1

FMQ 2

FMQ 3

Per-flow packet descriptors

27

W
LBVT scheduler

PU 
1

PU 
2

PU 
63

PU 
64

On-path
compute engine

System state at cycle N + 4:
Schedule packet from FMQ 2



@spcl_eth
@spcl

spcl.ethz.ch

OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
Inspired by the BVT [SOSP-17] and Shinjuku [NSDI ‘19] schedulers
§ Track how many PUs/cycle the FMQs need
§ Choose the FMQ with the smallest number of used cycles
Use WRR-like weights to support priorities
§ Scale down number of used cycles according to priority

15 1

PUs/cycle
usage prio

16 2

* =
weighted
PUs/cycle

usage

8

15

32 2 16

FMQ 1

FMQ 2

FMQ 3

Per-flow packet descriptors

28

W
LBVT scheduler

PU 
1

PU 
2

PU 
63

PU 
64

On-path
compute engine



@spcl_eth
@spcl

spcl.ethz.ch

29

OSMOSIS IO management

§ WRR scheduling
§ DMA request fragmentation

§ Software: split large requests into smaller ones
§ Hardware: keep per-AXI-stream state



@spcl_eth
@spcl

spcl.ethz.ch

30

Evaluation



@spcl_eth
@spcl

spcl.ethz.ch

Synthesis with Synopsys Design Compiler NXT
§ GlobalFoundries 22nm process

Cycle-accurate simulation with Verilator
§ 32 1 GHz RISC-V PUs
§ 400 Gbit/s ingress/egress link

Compared systems
§ Baseline vanilla PsPIN SmartNIC
§ OSMOSIS-enhanced PsPIN

31

Experimental testbed



@spcl_eth
@spcl

spcl.ethz.ch

32

Hardware footprint analysis



@spcl_eth
@spcl

spcl.ethz.ch

33

Resource isolation performance

IO read = DMA read + Egress send
IO write = DMA write

Victims issue up to 128 KB requests
Congestors issue up to 4 KB requests



@spcl_eth
@spcl

spcl.ethz.ch

34

Conclusions More of SPCL’s research:

… or spcl.ethz.ch

180+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.4K+ Followers

github.com/spcl 3.8K+ Stars

https://spclgitlab.ethz.ch/mkhalilov/pspin-osmosis 
mikhail.khalilov@inf.ethz.ch

spcl.inf.ethz.ch
https://spclgitlab.ethz.ch/mkhalilov/pspin-osmosis


@spcl_eth
@spcl

spcl.ethz.ch

35

Conclusions More of SPCL’s research:

… or spcl.ethz.ch

180+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.4K+ Followers

github.com/spcl 3.8K+ Stars

https://spclgitlab.ethz.ch/mkhalilov/pspin-osmosis 
mikhail.khalilov@inf.ethz.ch

Thank you!

spcl.inf.ethz.ch
https://spclgitlab.ethz.ch/mkhalilov/pspin-osmosis

