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Why SmartNICs?
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Gap between CPU and NIC bandwidth

CPU bandwidth scales slower than the NIC bandwidth

ConnectX-2 (2009): 10Gbps/port ConnectX-7 (2023): 400 Gbps/port40x

RX path
CPU can’t process packets

at a line rate

TX path
CPU cannot saturate NIC

SmartNIC offloading approach: 
free CPU cycles by offloading “hot” parts of the host-side stack to the NIC data path 
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Network synchronization [iPipe Sigcomm 19]

ML collectives [Flare SC 21]
Disaggregated storage 
[Gimbal Sigcomm 21]

Small RPCs [nanoPU OSDI 21]

On-path offloading use-cases
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SmartNIC offloading
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State-of-the-art: on-path vs off-path offloading

On-path: Data Path Accelerator (DPA)
16 hyper-threaded RISC-V cores: 256 hardware threads

Ideal for low-IPC highly-parallel workloads
C API to interact with DMA/accelerators

Off-path: ARM SoC
16 superscalar OOO ARM cores

Tailored for single-thread-bound workloads
Linux RDMA/DOCA stacks

400Gbit/s
Ethernet/IB

PHY

ConnectX
DMA

engine
DPA ARM 

SoC

On-nic
PCIe

Switch

Host-side PCIe

On NIC
DDR

BlueField 3 SmartNIC

In our work we focus on the on-path offloading
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Q: What will happen if we’ll share SmartNIC resources between tenants?
A: Let’s take an open-source SmartNIC and see!
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§ Software/hardware stack based on energy-efficient RISC-V PUs
§ Support for general-purpose per-packet processing with C
§ Offloading is very similar to the NVIDIA BlueField Datapath Accelerator
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Open-source PsPIN on-path SmartNIC

What are the implications of  resource sharing for DMA engine and PUs between tenants?
[Di Girolamo et. al., ISCA 48]
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In-network compute (INC) management

Victim tenant needs 2x less PU cycles to process single packet

Conventional round robin scheduling for compute engines is unfair
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IO management

Two tenants offload kernels to serve IO RPCs of different sizes

FIFO processing of DMA requests results in HoL-blocking
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… but why not use standard OS schedulers?
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Packet processing deadlines at 400 Gbit/s and 1 GHz

Software packet scheduling is not feasbile
<1 us to process packet
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OSMOSIS
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§ Hardware-based resource management designed for next-generation on-path SmartNICs
§ Dynamic and work-conserving IO/compute tenant resource management
§ Support for data-center SLOs and priority enforcement

20

OSMOSIS: Operating System Support for Streaming In-Network Processing
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OSMOSIS overview



@spcl_eth
@spcl

spcl.ethz.ch

22

OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
Inspired by the BVT [SOSP-17] and Shinjuku [NSDI ‘19] schedulers
§ Track how many PUs/cycle the FMQs need
§ Choose the FMQ with the smallest number of used cycles
Use WRR-like weights to support priorities
§ Scale down number of used cycles according to priority
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OSMOSIS compute management: WLBVT scheduler
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OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
Inspired by the BVT [SOSP-17] and Shinjuku [NSDI ‘19] schedulers
§ Track how many PUs/cycle the FMQs need
§ Choose the FMQ with the smallest number of used cycles
Use WRR-like weights to support priorities
§ Scale down number of used cycles according to priority
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OSMOSIS compute management: WLBVT scheduler
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OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
Inspired by the BVT [SOSP-17] and Shinjuku [NSDI ‘19] schedulers
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OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
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OSMOSIS compute management: WLBVT scheduler

Weight-limited Borrowed Virtual Time
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OSMOSIS IO management

§ WRR scheduling
§ DMA request fragmentation

§ Software: split large requests into smaller ones
§ Hardware: keep per-AXI-stream state
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Evaluation
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Synthesis with Synopsys Design Compiler NXT
§ GlobalFoundries 22nm process

Cycle-accurate simulation with Verilator
§ 32 1 GHz RISC-V PUs
§ 400 Gbit/s ingress/egress link

Compared systems
§ Baseline vanilla PsPIN SmartNIC
§ OSMOSIS-enhanced PsPIN

31

Experimental testbed
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Hardware footprint analysis
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Resource isolation performance

IO read = DMA read + Egress send
IO write = DMA write

Victims issue up to 128 KB requests
Congestors issue up to 4 KB requests
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Conclusions More of SPCL’s research:

… or spcl.ethz.ch

180+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.4K+ Followers

github.com/spcl 3.8K+ Stars

https://spclgitlab.ethz.ch/mkhalilov/pspin-osmosis 
mikhail.khalilov@inf.ethz.ch

spcl.inf.ethz.ch
https://spclgitlab.ethz.ch/mkhalilov/pspin-osmosis
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