
CrossMapping:
Harmonizing Memory Consistency
in Cross-ISA Binary Translation

Chen Gao, Xiangwei Meng, Wei Li, Jinhui Lai,
Yiran Zhang, and Fengyuan Ren

Dynamic Binary Translation

• x86
• ……

• ARM
• RISC-V
• ……

Dynamic Binary Translation

Dynamic Binary Translation

• DBT technology can emulate guest binary programs on the host
by translating codes at runtime.

Guest
Binary Code

Dynamic Binary Translation

Execute Host
Binary Code

Intermediate
Representation

Guest-IR Translation &
Optimization

IR-Host Translation &
Cache

Basic Block
Cache

Memory Model

• The memory model describes the behavior of concurrent
primitives on shared memory.

Memory Model

• The memory model describes the behavior of concurrent
primitives on shared memory.

Memory
Access x86 ARMv8

Load → Load Ordered Out-of-order

Load → Store Ordered Out-of-order

Store → Load Out-of-order Out-of-order

Store → Store Ordered Out-of-order

Memory Consistency Issues in DBT

• Message passing test in x86

Initially X=0, Y=0

X = 1; a = Y;

Y = 1; b = X;

a = 1, b = 0 Forbidden

Memory Consistency Issues in DBT

• Message passing test in x86

x86 to ARMv8
Naive Translation Initially X=0, Y=0

X = 1; a = Y;

Y = 1; b = X;

a = 1, b = 0 Observable

• Message passing test in ARMv8

Initially X=0, Y=0

X = 1; a = Y;

Y = 1; b = X;

a = 1, b = 0 Forbidden

Memory Consistency Issues in DBT

• Message passing test in x86
Insert Barriers to
Ensure Memory

Ordering

Initially X=0, Y=0

X = 1; a = Y;

fence st-st fence ld-ld

Y = 1; b = X;

a = 1, b = 0 Forbidden

• Message passing test in ARMv8

Initially X=0, Y=0

X = 1; a = Y;

Y = 1; b = X;

a = 1, b = 0 Forbidden

Memory Consistency Issues in DBT

• Message passing test in x86
Eliminate

Redundant
Barriers

• Message passing test in ARMv8

Initially X=0, Y=0

X = 1; a = Y;

Y = 1; b = X;

a = 1, b = 0 Forbidden

Initially X=0, Y=0

X = 1; a = Y;

fence st-st fence ld-ld

Y = 1; b = X;

a = 1, b = 0 Forbidden

Harmonizing Memory Consistency

• QEMU

x86 TCG IR ARMv8

Load → Fmr; ld → DMB ld; LDR

Store → Fmw; st → DMB full; STR

RMW → call → BLR; RMW; RET

MFENCE → Fsc → DMB full

Table: QEMU mapping schemes (x86 to ARMv8)

Harmonizing Memory Consistency

• QEMU

x86 TCG IR ARMv8

Load → Fmr; ld → DMB ld; LDR

Store → Fmw; st → DMB full; STR

RMW → call → BLR; RMW; RET

MFENCE → Fsc → DMB full

Table: QEMU mapping schemes (x86 to ARMv8)

Harmonizing Memory Consistency

• QEMU

x86 TCG IR ARMv8

Load → Fmr; ld → DMB ld; LDR

Store → Fmw; st → DMB full; STR

RMW → call → BLR; RMW; RET

MFENCE → Fsc → DMB full

Table: QEMU mapping schemes (x86 to ARMv8)

Harmonizing Memory Consistency

• QEMU

Initially X=0, Y=0

X = 1;

Y = 1;

a = Y;

if(a == 1)

FAA(X,1)

a = 1, X = 1 Forbidden

Fetch-And-Add litmus test

Initially X=0, Y=0

DMB full;

X = 1;

DMB full;

Y = 1;

DMB full;

a = Y;

if(a == 1)

FAA(X,1)

x86 Pseudo-Assembly

a = 1, X = 1 Observable

ARMv8 Pseudo-Assembly

//LDAXR-STLXR
//LOCK XADD

Harmonizing Memory Consistency

• Risotto[ASPLOS’23] and Lasagne[PLDI’22]

Correctly handle RMW instructions
Designed specifically for x86 to ARMv8

• ArMOR [ISCA’15]

More efficient
Not designed for Cross-ISA DBT systems.

Overview of CrossMapping

Memory Model Normalizer

• Definition of specification table

Specification table of ARMv8 memory orderings

Specification table of DMB ld

Memory Model Normalizer

• Refinement

Specification table of DMB ld

Refine

Refined specification table for DMB ld

Memory Model Normalizer

• Comparison

Ins. 1 Ins. 2

Ins. 1  

Ins. 2  —

Ins. 1 Ins. 2

Ins. 1  

Ins. 2 — —

≥

Memory Model Normalizer

• Union

Ins. 1 Ins. 2

Ins. 1  

Ins. 2  —

Ins. 1 Ins. 2

Ins. 1  

Ins. 2 — —

∪ ＝

Ins. 1 Ins. 2

Ins. 1  

Ins. 2  —

• Subtraction

Ins. 1 Ins. 2

Ins. 1  

Ins. 2  —

Ins. 1 Ins. 2

Ins. 1  

Ins. 2 — —

— ＝

Ins. 1 Ins. 2

Ins. 1 — —

Ins. 2  —

Guest-to-IR Mapping via FSM

• An example of FSM

Start

Starting of a
basic block

Guest Concurrent
Primitives /
IR Concurrent
Primitives

st/Fww; stAfter
store

After
load

Guest-to-IR Mapping via FSM

• FSM Generator

Fences

Single-instruction RMWs

End of the basic block

Other memory accesses

Guest-to-IR Mapping via FSM

• FSM Generator

Fences

Single-instruction RMWs

End of the basic block

Other memory accesses

Guest-to-IR Mapping via FSM

• FSM Generator

Fences

Single-instruction RMWs

End of the basic block

Other memory accesses

Guest-to-IR Mapping via FSM

• FSM Generator

Fences

Single-instruction RMWs

End of the basic block

Other memory accesses

IR-to-Host Mapping

• Fences Comparator

For each IR fence, the comparator identifies the weakest host fence to
satisfy all the enforced orderings of IR fence.

Case Study: x86 to ARMv8 Mapping

• FSM of mapping from x86 to TCG IR • TCG IR to ARMv8 fence mapping scheme

Evaluation
• Strong-on-Weak Architecture Emulation

Evaluation
• Weak-on-Strong Architecture Emulation

Thanks!

	CrossMapping: �Harmonizing Memory Consistency �in Cross-ISA Binary Translation
	Dynamic Binary Translation
	Dynamic Binary Translation
	Memory Model
	Memory Model
	Memory Consistency Issues in DBT
	Memory Consistency Issues in DBT
	Memory Consistency Issues in DBT
	Memory Consistency Issues in DBT
	Harmonizing Memory Consistency
	Harmonizing Memory Consistency
	Harmonizing Memory Consistency
	Harmonizing Memory Consistency
	Harmonizing Memory Consistency
	Overview of CrossMapping
	Memory Model Normalizer
	Memory Model Normalizer
	Memory Model Normalizer
	Memory Model Normalizer
	Guest-to-IR Mapping via FSM
	Guest-to-IR Mapping via FSM
	Guest-to-IR Mapping via FSM
	Guest-to-IR Mapping via FSM
	Guest-to-IR Mapping via FSM
	IR-to-Host Mapping
	Case Study: x86 to ARMv8 Mapping
	Evaluation
	Evaluation
	Thanks!

