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Dynamic Binary Translation

• x86
• ……

• ARM
• RISC-V
• ……

Dynamic Binary Translation



Dynamic Binary Translation

• DBT technology can emulate guest binary programs on the host 
by translating codes at runtime.
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Memory Model

• The memory model describes the behavior of concurrent 
primitives on shared memory.



Memory Model

• The memory model describes the behavior of concurrent 
primitives on shared memory.

Memory 
Access x86 ARMv8

Load → Load Ordered Out-of-order

Load → Store Ordered Out-of-order

Store → Load Out-of-order Out-of-order

Store → Store Ordered Out-of-order



Memory Consistency Issues in DBT

• Message passing test in x86

Initially X=0, Y=0

X = 1; a = Y;

Y = 1; b = X;

a = 1, b = 0 Forbidden 



Memory Consistency Issues in DBT

• Message passing test in x86

x86 to ARMv8 
Naive Translation Initially X=0, Y=0

X = 1; a = Y;

Y = 1; b = X;

a = 1, b = 0  Observable

• Message passing test in ARMv8

Initially X=0, Y=0

X = 1; a = Y;

Y = 1; b = X;

a = 1, b = 0 Forbidden 



Memory Consistency Issues in DBT

• Message passing test in x86
Insert Barriers to 
Ensure Memory 

Ordering

Initially X=0, Y=0

X = 1; a = Y;

fence st-st fence ld-ld

Y = 1; b = X;

a = 1, b = 0 Forbidden 

• Message passing test in ARMv8

Initially X=0, Y=0

X = 1; a = Y;

Y = 1; b = X;

a = 1, b = 0 Forbidden 



Memory Consistency Issues in DBT

• Message passing test in x86
Eliminate 

Redundant 
Barriers

• Message passing test in ARMv8

Initially X=0, Y=0

X = 1; a = Y;

Y = 1; b = X;

a = 1, b = 0 Forbidden 

Initially X=0, Y=0

X = 1; a = Y;

fence st-st fence ld-ld

Y = 1; b = X;

a = 1, b = 0 Forbidden 



Harmonizing Memory Consistency

• QEMU

x86 TCG IR ARMv8

Load → Fmr; ld → DMB ld; LDR

Store → Fmw; st → DMB full; STR

RMW → call → BLR; RMW; RET

MFENCE → Fsc → DMB full

Table: QEMU mapping schemes (x86 to ARMv8)
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Harmonizing Memory Consistency

• QEMU

x86 TCG IR ARMv8

Load → Fmr; ld → DMB ld; LDR

Store → Fmw; st → DMB full; STR

RMW → call → BLR; RMW; RET

MFENCE → Fsc → DMB full

Table: QEMU mapping schemes (x86 to ARMv8)



Harmonizing Memory Consistency

• QEMU

Initially X=0, Y=0

X = 1;

Y = 1;

a = Y; 

if(a == 1)

FAA(X,1)

a = 1, X = 1 Forbidden 

Fetch-And-Add litmus test

Initially X=0, Y=0

DMB full;

X = 1;

DMB full;

Y = 1;

DMB full;

a = Y; 

if(a == 1)

FAA(X,1)

x86 Pseudo-Assembly

a = 1, X = 1 Observable

ARMv8 Pseudo-Assembly

//LDAXR-STLXR
//LOCK XADD



Harmonizing Memory Consistency

• Risotto[ASPLOS’23] and Lasagne[PLDI’22] 

Correctly handle RMW instructions
Designed specifically for x86 to ARMv8

• ArMOR [ISCA’15] 

More efficient
Not designed for Cross-ISA DBT systems.



Overview of CrossMapping



Memory Model Normalizer

• Definition of specification table

Specification table of ARMv8 memory orderings

Specification table of DMB ld



Memory Model Normalizer

• Refinement

Specification table of DMB ld

Refine

Refined specification table for DMB ld



Memory Model Normalizer

• Comparison

Ins. 1 Ins. 2

Ins. 1  

Ins. 2  —

Ins. 1 Ins. 2

Ins. 1  

Ins. 2 — —

≥



Memory Model Normalizer

• Union

Ins. 1 Ins. 2

Ins. 1  

Ins. 2  —

Ins. 1 Ins. 2

Ins. 1  

Ins. 2 — —

∪ ＝

Ins. 1 Ins. 2

Ins. 1  

Ins. 2  —

• Subtraction

Ins. 1 Ins. 2

Ins. 1  

Ins. 2  —

Ins. 1 Ins. 2

Ins. 1  

Ins. 2 — —

— ＝

Ins. 1 Ins. 2

Ins. 1 — —

Ins. 2  —



Guest-to-IR Mapping via FSM

• An example of FSM

Start

Starting of a 
basic block

Guest Concurrent 
Primitives / 
IR Concurrent 
Primitives 

st/Fww; stAfter
store

After
load



Guest-to-IR Mapping via FSM

• FSM Generator

Fences

Single-instruction RMWs

End of the basic block

Other memory accesses
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Guest-to-IR Mapping via FSM

• FSM Generator

Fences

Single-instruction RMWs

End of the basic block

Other memory accesses



IR-to-Host Mapping

• Fences Comparator

For each IR fence, the comparator identifies the weakest host fence to 
satisfy all the enforced orderings of IR fence.



Case Study: x86 to ARMv8 Mapping

• FSM of mapping from x86 to TCG IR • TCG IR to ARMv8 fence mapping scheme



Evaluation
• Strong-on-Weak Architecture Emulation



Evaluation
• Weak-on-Strong Architecture Emulation



Thanks!
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