NS
W BLOCHSEC

SlimArchive: A Lightweight Architecture

for Ethereum Archive Nodes
Hang Feng!, Yufeng Hu!, Yinghan Kou!, Runhuai Li?,
Jianfeng Zhu?, Lei Wu!, and Yajin Zhou!

1 Zhejiang University
’BlockSec

Blockchain Optimization

Performance & Scalability

Consensus Protocol 1 minute 12 seconds <1 second
Faster
Consensus ' '

Parallel Pipelined Smart Contract
Execution Blockchain JIT

' This work

State Model Data Compression

Sharding / Replica Osffation

Ethereum Storage Layer

€ Ethereum: transaction driven state machine
€ Account-based state model
€ Identified by address (pub-key)
€ Account may have storage, referenced by its storage root

€ States are encoded as Merkle Patricia Tries (MPTs), a.k.a. world state trees

Interpreter Account-based MPT
g $ Model
M Volatile Persistent Address
< Stack [Balance | Encode as
o e e ’
Context [Storage Root]

L R B 2

Ethereum Merkle Patricia Trie—16-radix Merkle tree

Merkle tree: a vector commitment protocol
Data are stored in leaf nodes

Hash pointers link parent and children
bi=h(a;llay) bso=h(asll a;) Commitment=h(bs Il by)
Efficient data authentication, to verify as:

€ Prover provides: by, a5, a,

€ Verifier validates: Commitment = h(b, || h(a; || a,))

[Commitment]

Ethereum World State Tree

€ Ethereum MPT
€ 16-radix account & storage tries

€ State trees are updated per block

Block Header] ,—-- ->[State Root] Account m----
: Address[0] [Balance] : Key[0]
i (] / [Nonee Jf
. | I . 1
. Address[1:40] [CodeHash] ! Key[1:64]
...... | Storage Root H - * -
Account Trie Storage Trie

€ State validation during synchronizing the latest blocks
€ Data authentication
€ Used by light nodes (ONLY have state roots) when querying states
from untrusted remote nodes

Light/Full Node

€ Light node: does not maintain any states

& Full node: maintains ONLY the latest world state
» Historical states are pruned

Block b-1 Block b

Transaction Transaction JJ

[State Root]

__

Archive Node

€ Maintains ALL historical states
» The MPT at each block is saved

€ Requires more disk resource

Block b-1 Block b

Transaction Transaction JJ

State Root State Root [State Root]

P TR iyt

The Importance of Archive Node

Q: Why do we use archive nodes?
A. For testing and analyzing smart contracts and transactions

& Abilities of archive node
v’ Access to historical states

v" Profiling historical transactions

® Data/control flow analysis of a transaction execution

v Simulating transactions at a historical time point

The Importance of Archive Node

Q: Why do we use archive nodes?
A. For testing and analyzing smart contracts and transactions

€ Usage for academia

> Detecting attack transactions and smart contract vulnerabilities
» Demystifying defi mev activities in flashbots bundle, CCS 23
» Your exploit is mine: Instantly synthesizing counterattack smart contract, USENIX Security 23
» Smart contract fuzz testing
» Detecting state inconsistency bugs in dapps via on-chain transaction replay and fuzzing, ISSTA 23
> Quantitative/arbitrage strategies back-testing
» Cyclic arbitrage in decentralized exchanges, WWW 22
» A large scale study of the ethereum arbitrage ecosystem, USENIX Security 23
> Blockchain temporal research
» Temporal analysis of the entire ethereum blockchain network, WWW 21

> And more ...

The Importance of Archive Node

Q: Why do we use archive nodes?
A. For testing and analyzing smart contracts and transactions

€ Usage in industry
» DeFi’s developments make transaction’s complexity increasing
» Today, users need to dive into their transactions to better understand the logic
» Many infrastructure service providers release products for debugging and analyzing

historical transactions

» BlockSec, Tenderly ...

€ Performance and scalability

» Storage exploding

» Full node size: ~ 1.1 TB

» Archive node size: ~ 18.0 TB
»> Low access throughput

» State access consumes the majority of the transaction execution time

Root Cause 1

@ Inefficient MPT
@ Excessive intermediate data
N

293.8M
> 40.6 GB

217.9M
149 GB ~

The state trie at block height 18M
Storage utilization: 36.7%

Root Cause 1

@ Inefficient MPT

€ Read/write amplification
® Time complexity: O(log n)
® Average depth: 8.6
® FEach state access 1s amplified to an

average of 8.6 database operations

Depth

6.5

5.5

2 4 6 8 10 12 14 16 18
Block Height (Million)
The average depth of state tries at different block heights

Solution 1

€ Replace the MPT
€ The usage of MPT in Ethereum
& State validation & data authentication

& For state validation:

Historical states become immutable after synchronization

¥

Validation of historical states is not required

Solution 1

€ Replace the MPT
€ Is data authentication for historical states necessary?

€ In most real-world scenarios: No!

1. Merkle proofs are rarely used in current ecosystem

2. Blockchain nodes are considered trusted by users in most scenarios

€ Furthermore
€ Archive nodes are primarily used for testing and analytical purposes
€ Performance is more critical

€ Data authentication carries a high price (No matter how you optimize the DA)

Solution 1

€ Replace the MPT

Data authentication of historical states is not
required in most real-world usage scenarios

\ 4

MPT structure is not necessary

¥

Employ a compacted and flattened data model to
minimize intermediate data and simplify state access

Trade off between DA and performance/cost-effectiveness
A solution tailored for most real-world scenarios

Root Cause 2

€ Coarse-grained state granularity

& Block-level world state

® The granularity of historical states is a block

€ Intra-block (transaction-level) state fetching

® Requires re-executing all txs before the target transaction

Archive L:State N'il Trace tx i
|

Node in block N

User
= J » Client

——» EVM Tracing
TXS0 ~1i result

The execution from tx 0 to i—1 is pre-processing
Only the execution of transaction i is effective

Root Cause 2

€ Coarse-grained state granularity

€ Transaction execution efficiency

ef fective_execution

ef ficiency_ratio =

pre_processing + ef fective_execution

® Pre-processing cost exceeds 1s

® Efficiency ratio is near zero

Pre-proc. time (ms)

[E—
()
()
(@)

| 100
| S
| 80 =
I 9
: 60
: %
| 40 2
| .g
\ Pre-proc. time 20 =
_____ - -~ Efficiency ratio a8
0 50 100 15 200"

Transaction index

Solution 2

€ Refining the granularity

€ Decoupled state transition granularity

€ Consensus layer: block

€ Execution layer: transaction

Block-level

@ > O historical states
Consensus Layer — é}

: Block n
Execution Layer — j
|

. Transaction-level
historical states

A 4 \ 4

Solution 2

&€ Transaction-level historical states

The granularity of state transition at the low-
level execution layer is a transaction

|

Refine the granularity of historical states to a transaction to
eliminate the overhead caused by the pre-processing

SlimArchive Design

v' Lightweight
v" Flexible
v" High-performance

» Flattened state model that simplifies state access
» Compacted data storage that reduces intermediate data
» Fine-grained state granularity that eliminates computation overhead

Flattening the minimum state changes of
each transaction required for the world state

SlimArchive Overview

€ Recorder
€ An instrumented EVM Blockchain p
. N lock /Tx-level
€ Collects state changes of each transaction V\ blocks f Recorder —' State /
__Changes/
‘ Encoder — S State- 7 l
€ Encodes state changes as state-temporal 7 Temporal ;+—— Encoder
Database ! Archive /
archive, a flattened representattonof — 1 T
transaction-level historical states | State ' JSON-RPC |
Generator . API
€ State Generator - .y [
€ Recovers historical states . .
Tx inputs Execution results

€ Provides query interfaces for EVM and users

SlimArchive workflow

Recorder

€ Transaction-level state change collection

€ What to collect
€ Temporal data, and post account/storage states
€ Ignore authentication data and runtime data

€ Where to collect

€ Normal/virtual transaction e .

Deposit :Account.' !

5 Ether 1 (Alice, {Balance: 15 ; Nonce:2; ...})

€ How to collect . —_—> \ (WETH, {Balance: 105;)
I

. (WETH, totalSupply, 105) |

® R/W set tracking Alice > WETH ey | (WETH, balanceOffAlice], 5) |

> 2 De—duplication Example: state changes of a WETH deposit transaction

Encoder

€ State-temporal archive
» Each state changed is encoded as a k-v pair, with three parts:

StateKey |lemporalKeyl— StateValue

» State Key: which state is changed
StateKey = Append(StateFlag, StatelD)
» Temporal Key: when the state change occurred
TemporalKey = Append(BlockNumber, Transactionindex)
» State Value: what the state is after the transaction

& Flattened historical states
» Key aligned

» Partially chronological order: each entity’s state changes are placed chronologically

Encoder

€ State-temporal archive

Key
State Type State Key Temporal Key Value
Account Account Flag Address RLP(SlimAccount)
Deleted Deleted Flag Block Number Tx Index Empty String
Storage Storage Flag Address Slot Key Slot Value
Code Code Flag Code Hash N/A Contract Bytecode
f
o, | Balance |
'O' SlimAccount € [Nonce |
= \ | CodeHash |

State Generator

€ Fetching historical states

Querying the state at a specific time point

¥

Seeking the last state change before that time

¥

Lower Bound: StateKey
Upper Bound: Append(StateKey, lemporalKey)
Seek the last change with key in [lower, upper)

Evaluation

& Baselines:
€ Geth
€ Erigon

€ Workloads:

€ Real-world Ethereum transactions and states

Evaluation

€ Synchronization
€ Time spent on generating historical states

Blocks Agg. Persisting Total

Geth 0-14M N/A 961.9 961.9
Erigon 0-18M 157 299 45.6
SLIMARCHIVE 0-1SM 11.0 3.7 14.7

€ Disk usage for historical states of 18M blocks

Geth Erigon SLIMARCHIVE
Storage (GB) 14,041.5 791.5 267.6

Evaluation

& State access

~
W

Throughput (QPS)
»
()]

[U—
(V)]

S
o

x10°

{ I Geth 7,072.6

oy
o

et
o

6,976.3

e Erigon
BN SlimArchive

4,626.

Account Storage
State Type

(a) Access throughput.

g
o

Memory Usage (GB)

S
o

S
o

x10°

| W= Erigon

O
IN

[U—
o0

[U—
N

BN Geth

B SlimArchive 253.0
217.1

Account Storage
State Type

(b) Memory overhead.

Disk Read (GB)

[u—
()

S
o0

S
o

N
~

S
)

S
o

x10°

BN Geth
{1 B Erigon

660.2

Account

B SlimArchive

1,008.3

Storage
State Type

(c) Disk overhead.

Evaluation

&€ Transaction execution

Overall speedup
Speedup over Mean Median
Geth 1112.5 672.2
Erigon 109.4 60.9

The positive correlation between

transaction index and execution speedup

Nt
b

N
~

Compared with Geth
o =

S
o

x10° x10°

1 —e— Compared with Geth

—#— Compared with Erigon

NS
Compared with Erigon

N

[E—

0 100 200 300
Transaction index

-

Summary & Takeaways

€ The limitations of current Ethereum archive nodes
@ Inefficient MPT
€ Coarse-grained state granularity

€ Our solution
€ Replace MPT with a compacted and flattened data model
€ Refine the granularity with transaction level

& Evaluation

€ Saves disk by 98.1%
€ Improves access throughput by 19.0x
€ Speeds up transaction execution by 1112.5x

Thank You!

Any questions? Contact me:
Hang Feng

Zhejiang University
Email: h feng(@zju.edu.cn

