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Federated SVD is an Essential Primitive
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w=VETZ+a) 27Uy SVD-based Genome-Wide

SVD works as the solver for LR.
million-scale samples

Association Studies (GWAS) require
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— GWAS results

Real-world applications require
combining different data sources!

Federated Singular Vector Decomposition (SVD) is an essential primitive
to support many real-world distributed application.
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[XA;XB;XC] = ]Rmx(nA+nB+nc)

Public Results Secret Results

Federated SVD factorizes matrix from multiple domains into public and secret parts.
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An illustration of federated SVD in GWAS.
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External Servers Downgrade the Privacy Protection

Most of the existing works rely on external servers.

Existing|| #of || Job of Data Threats of
) ] Job of Server(s) )

Studies || Servers || Contributors Privacy Leakage
[7] Two X' =PXQ SVD on X/ Raw Data
9] | Four || XXT,XTX | SVDonXXT, XTX|| Raw Data

Secret Shari
[10] || Three eetet Staritig SVD on X, + X, Raw Data
X=X,+Xp
25] One Project X Orthogonal H. Projections of
H=XG |(e.g., Gram-Schmidt Raw Data
341 | One ProjectTXTX Orthogonal Y. Projections of
Y =X"XZ |(e.g., Gram-Schmidt Raw Data

The servers obtain excessive access to the private data
and thus significantly decreases the privacy protection.

Intuitive ideas of enhancing privacy
protection at the server side cannot work

» Pick a subset of the users as “servers”. The
privacy issues remain in unselected users.

» Deploy TEE at the servers. The issue of
distrust, particularly in the server-aided
approach, poses a significant challenge.

» Leveraging HE at the servers. HE brings
severe computational overhead (will
discuss more).



Efficient Decentralization is Challenging

Existing works have explored using Homomorphic Encryption to remove the
servers but suffer from significant efficiency issues.

Computational Challenge

I Centralized

~ 10*
idon B
[

10 ~ -
1K*100 1K*300

Server-aided M HE-based

1IK*1K 1K*2K

1K*500
Data Size

HE-based solution is 4~5 orders of magnitudes slower.

LI Ll Ll
X = PiX I P1XQy S
|| |
p,P,xq, _H P,P1XQQ, &
— —

Sequential computation makes stacking more hardware

less effective. Designing new hardware is also challenging
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Communication Challenge

Communication Size

After Encryption

Data Size
Before Encryption

m=1K

"= SOM 372GB 11.6TB

The overhead of communication size is significant and
becomes more severe after encryption.

Data Size # of Peers Communication Rounds
. . 4m(k-1)
m = 10K k=10 2.5 Hours when RTT=50ms

Popular centralized SVD methods have significant

overhead of communication rounds.
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Efficient Decentralization is Challenging

Existing works have explored using Homomorphic Encryption to remove the
servers but suffer from significant efficiency issues.

Comput enge
———— Can we design a federated SVD system that —
2 10 enhances privacy protection by removing the external servers pnon >z
-;é 10" i while achieving high efficiency? After Encryption
10~ «-j—-—f 11.6TB
TK#100- 1K™ Our answer is Excalibur.
Core ideas: e is significant and

HE-based solution is pneryption.

1) Computation-efficient matrix protection

L . .. . . .
j=_ ey 2) Communication-efficient decentralized SVD workflow
nunication Rounds
| -
p,p,xq, _IEI} 4m(k-1)
— | == ours when RTT=50ms

. . . Popular centralized SVD methods have significant
Sequential computation makes stacking more hardware .
. o . . overhead of communication rounds.
less effective. Designing new hardware is also challenging. ,
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Threat Model and Security Goals

Threat Model: We assume all peers are semi-honest.

L Strictly follow pre-defined protocol =)

X But try to discover privacy during execution

Security Definition: The system is secure if all )
intermediate results could be derived from final results.
(Having the same distribution in mathematical language)

_—

II ll Same definition to secure multi-
[FEE
~— -

[FEF
l:.l [FE=EF\  party computation (SMC)
[FEF
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Discussion
(1) What if they do not follow the protocol?

Check whether UUT = I, V,V] =1,X; = UXV]

(2) How to protect the final results?

Leveraging differential privacy.



Multiplicative Matrix Sharing (MMS)

We protect the matrix with random non-singular matrices

B, 0 0
X' =AXB = A[X4, ... X, ]| 0 = 0
0 0 B,
For peer-i
A, A X:B;| |[s}]| onemMms
Xi=|:|x;B;=| ' '

st

Recovering X; needs all the matrix shares

Ay Ay X;B;

si k
X, =A"X;B7' = |A7Y, ... AR ) B;!= ZA]-—ls{Bgl
S- j=1
(Aj_1 is the columns of A1) l
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Peerl| |Peer2 Peeri Peerk e \\‘ .._:

Private matrices held by k peers Q I—

Create multiplicative matrix shares (MMS)

Peer-1 e‘ Peer-k
Peer-2 ve Peer-i

SO Gl | S| Ol Ol Ol

Decentralized SVD on data shares (peers hold shares from others)

Theorem 1. Denote O, as the compact group of n X n orthog-
onal matrices under Haar measure, if we choose dense matrix
A € Oy, and uniformly generate B; € Q,,., Excalibur produces
federated SVD results with no accuracy loss and can satisfy
the security defined in Definition | while the adversary can
compromise up to k — 1 peers (|C| =k—1).
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Accelerating the Multiplicative Operations

Complexity of generating and applying random orthogonal matrices is O(mzn) or 0(n?m).

How to efficiently support large-scale data?

(1) Reduce algorithm complexity (2) Solve the 1/0 bottleneck (3) Local pre-processing
- ——— Synthetic Data (m=1K) Synthetic Data (n=1K) for matrix B
— — | — L] u N S 2938 =0=Naive L1 Caches (32KB*8)
= = ] “\‘ | | | I: 1071 o* ’ Ho.urs Pair-wise 27
== o = == = R X; =R[Q/
— — — “\ — — / — E g 1077 ]2(')[1151’8 _O-With Y
; 5 :
= ~H \H=H" B H |RT,....Ry| = US[Vg,, .., VR ]
Pair-wise Multiplication (§ = 3)  Computation path of one row 100K 2M 4M_ 6M  8M  10M -5'K 20K 35K 50K 65K
Data Size (n) Data Size (m) 2 2 3
0(m?n;) -> 0(mn;logm) 0(nim) -> 0(m*n; + m?)

Process by columns instead of by rows.
Formulate each column into rectangular
matrix if it exceed L1 cache.

Transfer A to a group of 2 X 2 rotations on
random selected rows.

Local pre-process to reduce
complexity when m < n.

With all the above optimizations, the MMS can efficiently support billion-scale data.
11
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Introduction

Excalibur’s Matrix Protection (computation-efficient protection)

Excalibur’s Decentralized SVD Workflow (communication-efficient workflow)
* Analyzing the Design Space

* Overlapping the Pipelines

Implementation and Evaluation

Conclusion and Future Work
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Design Space of Decentralized SVD

Multiplicative Matrix Sharing Short-Wide Matrix
Decentralized X € R™" m < n; k peers
m>n m<n SVD Path CommAmount CommTimes
| ‘ (Bandwidth) (Latency)
Tall_Skinny Matrix Jacobi iteration 351 (m? —m) m(m—1)(k—1)
X € RMxn Short-Wide (1 iteration) = 0(m?) = O(km?)
I Matrix Two-side (k—1)(3m?+ 3m) dm(k—1)
% Bidiagonal + bSVD = O(km?) = O(km)
Federated QR X € R™™ One-side EX(? —m) | (om—6)(k—1)
| | Bidiagonal + bSVD = O(m?) = O(km)
Two-side One-side Jacobi » Jacobi iteration has significantly higher
Bidiagonalization Bidiagonalization  Iteration communication rounds.
: . : » Two-side bidiagonalization is the popular method
Bidiagonal SIVD (bSVD) used in NumPy and LAPACK, but its communication
size is large.

I
.. . . T
Finish With X = UZV » The one-side bidiagonalization has the minimum

communication complexity.

Design space of decentralized SVD

13
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Overlapping the Pipelines
Algorithm 1: Excalibur’s decentralized SVD work- . . .
flow. (The three looped ring all-reduce are highlighted Th e t h ree a I I' rEd uce commun |cat ions in
and we will reduce them to only one through overlap-
ping the pipelines (§5.2).) the for loops become the bottleneck.
Input: Matrix X = [X{,X;, ..., Xk held by k }()eers, where
out tXI? IEM[::T ”‘17 TS n, )\(;TT (If&mx';{;gd fZ)’(:) i =n. k k Bidiagonalize i Compute a, B
utput: U, 2, [Vi, Va0 Vi) (e 0 2 1 (2 _ i . i—1\T 2
1 Function DecsvD (X): o = 2 ||XJH2 = Z HXJ T Bz—l Vj ) H2 Her 1.7 N e
/1 All peers run this function in parallel jzl jZl Iter 2 . Fommemmmoo=s EEH] [XiX[i+1:, 0] i
2 | U<« 1I,ce MyPeerID > e.g..c = 1 for peer-1 e Ha [[BI rmmmrmeeeeeeeed
3 fori=1,2, .., m-2do . . . . Iterm—2 ) TTTTUTTTTC Bidiagonalize Compute a, 8
4 h < RingAllReduce(Xc[i] * Xe[i+1:]T) Overlapplng the communications Is ."E']'"“"“': E§ ........................... Iter 0 Iter 1 )3 Iter 0
WAX X100 : :
/I Apply reflector to X and U . et e ¥ 8 . Ifer 2 8 Iter 1
|| Xeli#14  house(h) @ Xcli+ 11 challenging due to data dependency. D gy O M2 G e
6 Uli+1:] + house(h) @ Ufi+1] N Iterm—2 OB Iterm-—3
7 end E] ............. Iter 2 W Iterm -2
/I o contains the diagonal elements. ) [: 1
/1 B contains the subdiagonal elements. o I I\2 i\2ni . Nl Iter m—
s | e {0} e {0y o = \/91 2(92) + (92) 65, Pi-1 =065 Am—1 m Ring All-Reduce
o | all] & \/RingAlReduce(||X.[1]|}3) 3m — 3 Ring All-Reduce

0 | VI = Xe[1)/all]
11 fori=2 3, .., mdo

We find the underlying shared

Figure 7: Overlapping the pipeline reduces the number of
ring all-reduce communication from 3m — 3 to m, i.e., approx-

12 B[i — 1] = RingAllReduce(Xc[i] * Ve[i—1]) 1 1 )
I R components of these communications. | i educed by 66%.
14 il ¢ |/ RingAl1Reduce(|[X. [i[}3 .
. (1)
is VIi] = Xc[i]/ i 3 ffl)l‘t =12, .., m-2do Reducmg 66%
16 end 2 . PEPTE o o
o | UnE VT bsvD(ep) — e —————— communication cost.
// Combine results together .
18 U« UxUy, 11 fori: = 2, 3, weny M do

v | VI vVl
20 return U, Z, [V] V], .. V]

21 End Function

Merge for loops via pipeline parallel.

14
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Implementation and Testbed

We implement a fully functional prototype using
C/C++. The system runs in double precision, i.e.,

Brid :
Peer 1 ree Peer k 64 bits.
Network
» We use BLAS and LAPACKE from Intel MKL as
the major library.
» For operations not included in existing library,
Peer 2 — e — Peer i we implement from scratch and use OMP and
AVX2 for parallelism.
Containers Containers

» To support large-scale data that cannot fit into
memory, we create memory-mapped files and

Each container is assigned with 4 Cores and 64GB RAM offload the data to NVMe SSD.

Default network setting: 1Gbps bandwidth and 50ms RTT

16
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Evaluation

Datasets
We have used four datasets in the evaluation: MNIST, Wine, ML100K, and synthetic data.

Baselines

1) FedSVD: state-of-the-art (SOTA) server-aided federated SVD.

2) SF-PCA: SOTA multi-key HE-based solution.

3) FATE and SecureML: widely used federated linear regression (LR) systems.
Tasks

SVD task and its three applications:
Principal components analysis (PCA), latent semantic analysis (LSA), and LR.

Accuracy Evaluation

Method Wine MNIST MLI100K Synthetic
FedSVD | 1.44x 10713 [2.66 x 10710256 x 10712 | 5.67 x 10715
Excalibur | 3.56 x 10714 | 2.15x 10713 [ 3.76 x 10715 | 2.96 x 10~17

Table 3: Reconstruction error of SVD on three real-world
datasets and synthetic data.



Evaluation

Efficiency on SVD Task

Synthetic Data (SVD) Synthetic Data (SVD)

~ 6_
10° {=O=FedSVD (TS&SW) 1633 2 10_ 1 =O= FedSVD (TS&SW)
s | =0=Excalibur (TS) hours| = 19, ]=C— Excalibur (TS)
= 10" {====Excalibur (S O £ 107 === Excalibur (SW)
>t 4 O = 10 1
g 10 1 O - 2 0%
=3 = 5.18 hours Z 10
10”1 2.71 hours E
10° 1 S 1% J amst—o—o——
1B 10B 20B 30B 40B 50B 1B 10B 20B 30B 40B 50B

Data Scale Data Scale

(a) End-to-end time comparison on (b) Communication cost on SVD task
SVD task under 1~50 billion data. under 1~50 billion data.

Synthetic Data (SVD) Synthetic Data (SVD)
10° {=O= FedSVD (TS&SW) 10* {=O—FedSVD (TS&SW)

4 | == Excalibur (TS) ={F= Excalibur (TS)

~ 10" === Excalibur (SW) - === Excalibur (SW)

k-1 T 03

% 103_ E 10° 1 O_O_O_O_O_o—o—O-O‘O
= =
|l

10Gb/s  1Gb/s 100Mb/s 10Mb/s
Bandwidth

10 20 30 40 50 60 70 80 90 100
RTT(ms)

(¢c) Impact of network bandwidth on (d) Impact of network latency on

SVD efficiency using 1 billion data. SVD efficiency using 1 billion data.
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Transfer data to server @ Server SVD @ Retrieve &
under protection recover results
FedSVD 1 [ 2 ] 3 116.33 hours

Excalibur 1 | 2 [ 3 15.18 hours

(D Create MMS (@) Decentralized SVD (3)Recover results

Compared to the SOTA server-aided system, Excalibur not

only removes the external servers but also achieves better
efficiency.

» Excaliburis 3.1 X ~6.0 X faster than FedSVD.

> Excalibur reduces more than 68.4% amount of
communication.

18



\ij IngLab
. HKUST
Evaluation

Efficiency on SVD Applications

6 Synthetic Data (LR, n=1K) 5 Synthetic Data (LR, n=1K)
10 43.18 Hours 13.47 g 104 o= FedSVD
< . ; . | m e Excalibur
: 10°4 8 2.92 Hours Hours E 10
Solution Data ¢PU Time Single Core 2 JESFI i £ 10° -
Cores Throughput 2 10" e
45.6M = H;)urs g 101
SF—PCA[17] (76OX6OK) 72 2.22 HOUI’S 0.28 M/H 103 % m=Omm SecureVM L === FodSVD E 10 1
] ={=FATE === Excalibur S
Excalibur 10000M 24 |0.063 Hours | 6595.55 M/H IM 10M 20M 30M 40M 50M 1075 10M 20M 30M 40M 50M
(IK X IOM) Data Size (m) Data Size (m)
Comparing Excalibur with SF-PCA on PCA application, ?&T%ﬁzizngifiﬁilfﬁiiedSVD’ ggl)lrigéngé ggf]%lgﬁ R of Excal-
while computing the top-5 principal components ’ _ _ _
(bandwidth=1Gb/s, RTT=20ms, six peers). Comparing Excalibur with FedSVD, FATE, and SecureML

on LR application.

» Compared to the SOTA HE-based system that attempted to remove the servers, Excalibur is far
more efficient and has > 23000 X larger throughput.

» Comparing to two widely used federated LR systems: FATE and SecureML, Excalibur is 100x and
1000x faster, respectively.



Evaluation

Scalability on SVD and LSA

Tall-skinny Synthetic Data (SVD) 10 Tall-skinny Synthetic Data (SVD)

=== FedSVD =O==FedSVD
={J= Excalibur

3000 -

=== Excalibur

2000

Time(s)

1000 4

Communication(GB)
n

(=]
L

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
# of Peers # of Peers

(a) End-to-end time consumption (b) Comm cost (each peer) when
when increasing the # of peers. increasing the # of peers.

Tall-skinny Synthetic Data (LSA) 10 Tall-skinny Synthetic Data (LSA)

30001=°= FedSVD =O= FedSVD
== Excalibur =={J== Excalibur

2000
1000 4
0 4

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
# of Peers # of Peers

Time(s)

Communication(GB)
(=) N

(¢) End-to-end time consumption (d) Comm cost (each peer) when
when increasing the # of peers. increasing the # of peers.

We evaluate Excalibur’s scalability when increasing the number
of peers, assuming all peers hold the same amount of data and
test the efficiency when more peers join the federation.
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Effectiveness of the Optimizations

Synthetic Data (SVD)
6000 - Computation Communication 100.0%

7
7
v

End-to-end Time (s)

AN

2000

\
%,

Measuring the effectiveness of system optimizations in
Excalibur, while NoOpt means no optimization, Opt1 is
optimizing the multiplicative operations in MMS, and Opt2
is overlapping pipelines to reduce communication rounds.
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Conclusion and Future Work

—

ih, V\l I_ "y All peers do AO |

. | <> P =
Xo| | X2 || X || X |-+ s S )|
000 0= T
Peerl| |Peer2 Peeri Peerk e \\\\*O .
Private matrices held by k peers -

Create multiplicative matrix shares (MMS)

[ [ T . I [ [ [ . [
Olil© -0 |-Olw| Oliln| OOl O
Peer-1 Peer-k
Peer-2 Peer-i
o | | - | . — l 3 l
6] Gl O] OV} Ols] Ol

| Decentralized SVD on data shares (peers hold shares from others)
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Conclusion

In this paper, we propose Excalibur, an efficient
decentralized federated SVD that not only eliminates the
privacy concerns caused by external servers but also can
efficiently decompose large-scale matrices.

Future Work

» How to update the results when more peers are joining in the
computation?

» How to utilize the matrix protection in this paper in other
scenarios? For example, the secure model inference.



ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

yusenix yuUsenix FuUsenix
ASSOCIATION ASSOCIATION ASSOCIATION

AVAILABLE REPRODUCED

Thanks

Artifact available at: https://github.com/Di-Chai/Excalibur
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