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Abstract

The rapid growth of video services has led to the signifi-
cant requirement for efficient content delivery. Traditional ap-
proaches mainly rely on Content Delivery Networks (CDNs),
which unfortunately incur significant bandwidth cost for video
providers. To resolve this problem, the cost-efficient edge
resources have emerged as a new solution to replace CDNSs.
However, their heterogeneous hardware and poor performance
still present challenges in their effective utilization. In this
paper, we present how ByteDance explores the use of these
cost-efficient but less performant resources. Specifically, we
first present an extensive overview of PCDN, ByteDance’s
alternative delivery network for CDNs. Second, as PCDN en-
counters significant resource imbalances after years of deploy-
ment, we further introduce PCDN™, the enhanced iteration
of PCDN. Specifically, by integrating a well-designed cen-
tralized/decentralized framework, we evolve previous “static”
and “uncontrolled” PCDN into a “dynamic” and “controlled”
system. The extensive A/B test and real-world deployment
have demonstrated that PCDN™ 1) effectively alleviates over-
loading issues, 2) significantly improves the utilization of
low-cost resources, 3) provides higher service speed.

1 Introduction

With the rapid development of video generation soft-
ware/hardware and networking infrastructure, recent years
have witnessed the booming growth of video-based services.
As reported by The 2022 Global Internet Phenomena Re-
port [35], video traffic has taken over 65.93% of all Inter-
net traffic in the first half of 2022, showing a 24% increase
compared to the same period in 2021. Traditionally, to main-
tain user engagement, the video platforms will utilize Con-
tent Delivery Networks (CDNs) to help distribute video con-
tent [1,29, 44]. While this de-facto industry standard solu-
tion provides a lot of benefits (i.e., stable bandwidth, reliable

*This work was finished before Rui-Xiao Zhang joined UIUC
"Haiping Wang (wanghaiping.paloma@bytedance.com) and Jiangchuan
Liu (jcliu@stu.ca) are corresponding authors.

Shu Shi
ByteDance

Xiaofei Pang
ByteDance

Yajie Peng
ByteDance

Jiangchuan Liu®

Simon Fraser University

service, unrestricted scalability, etc.), it also comes with a
high price tag. The cost of building and maintaining data
centers/clusters for content delivery has gradually become
a hard-to-afford burden for large video streaming providers,
especially those who provide free streaming services to users.
E.g.,, a publicly listed leading short video streaming platform
in China revealed in their financial report that the cost of
bandwidth and servers accounts for up to 10% of their total
revenue, which is much larger than all other costs except the
revenue share [15].

As the largest VoD (video on-demand) content provider
in China, ByteDance operates Douyin [17] that attracts over
750 million daily active users [18]. Given the massive viewer
number and continuously increasing video quality, it is imper-
ative to effectively reduce bandwidth cost to control expenses.
Starting in 2020, ByteDance began exploring the use of edge
nodes as a partial replacement for CDNs. These nodes mainly
consist of idle computing resources on the Internet (e.g., smart
home devices and outdated servers), and they are collected by
third-party companies and sold in bundles to us at a heavily
discounted price compared to CDNs. While these resources
offer sufficient storage and network connectivity, they do not
guarantee computation capability, system reliability, or ser-
vice availability. Therefore, the technical challenge for us is
how to make use of these cost-efficient but less-performant
resources.

We tackle this challenge by building up a customized deliv-
ery system called PCDN. PCDN is composed of a server side
and a client side. The server side manages the edge resources
and is responsible for answering the user’s data requests and
returning available edge nodes; while the client side manages
the data downloading process after receiving the server-side
response. Specifically, PCDN leverages a multi-source par-
allel downloading (MPD) mechanism [16]: i.e., the user will
simultaneously download data from multiple edge nodes. By
pairing each user with multiple sources, the MPD is able to
compensate for the unreliability and low performance of any
single node. Through the above designs, PCDN has been con-
tinuously running and hosting large quantity of Douyin traffic,
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and achieves substantial cost savings.

However, with more viewers being served and more hetero-
geneous edge nodes included, we find our PCDN system is
facing a significant resource unbalance problem: i.e., plenty
of edge resources are overloaded, while a significant number
of resources are still underutilized. This resource utilization
problem has greatly deteriorated the efficiency of the system:
on the one hand, we see that the overloaded servers will suffer
performance degradation, thereby negatively impacting user
engagement; on the other hand, we also find that the low-price
resources are more likely to be under-utilized, which leaves
large room for cost reduction. After large-scale measurement,
we have identified the fundamental limitations of the afore-
mentioned issues, which are 1) static allocation on the server
side and 2) uncontrolled downloading process on the client
side. The server-side resource allocation relies on fixed rules
(i.e., preferring same-region and high-price nodes), leading
to the frequent selection of specific nodes and their subse-
quent overloading. Meanwhile, the client-side downloading
process operates in a "free-competition" manner, resulting in
random resource consumption and further separating PCDN
from on-demand resource allocation.

To tackle the above problems, we have been diligently
working on optimizing the existing PCDN system for the past
two years. Specifically, we propose PCDN™, the next itera-
tion of PCDN. The core idea is to evolve PCDN from being
"static" on the server side and "uncontrolled" on the client
side to a "dynamic" and "controlled" system. Specifically,
PCDN™ is featured with the following designs.

First, to address the issues caused by the static PCDN server
side, we propose to enhance it with a dynamic centralized
logic. Specifically, this centralized logic facilitates two prop-
erties: on the one hand, by well leveraging the information
from both users and resources, it can dynamically adapt the
resource allocation strategy, and optimizes the overall sys-
tem from a global view; on the other hand, by modeling the
decision-making process as an optimization problem, it also
provides control knobs to operators to flexibly balance cost
and quality.

Second, to address the issues of the uncontrolled client
side, we propose to augment it with a controlled decentral-
ized logic. This is accomplished through a well-designed
joint bandwidth allocation algorithm. Specifically, by inter-
acting with the transport layer and actively optimizing the
node resources based on network conditions, it enables on-
demand resource utilization without negatively impacting per-
formance. The coordination between the centralized logic and
decentralized logic finally facilitates effective management
of edge resources, leading to improved overall performance.
In summary, our contributions are as follows:

* We first present a comprehensive overview of the edge
resources in ByteDance, and present their critical fea-
tures. After that, we provide a detailed introduction to

PCDN, Bytedance’s edge-based delivery network.

* We find that PCDN system is faced with the problem of
unbalanced resource utilization, which is caused by static
decision-making on the server side, and the uncontrolled
data downloading on the client side.

» We propose PCDN™, the next iteration of PCDN to ad-
dress the aforementioned issues. Specifically, by integrat-
ing a dynamic centralized logic into the PCDN server
side and a controlled decentralized logic into the PCDN
client side, we achieve flexible and improved resource
management.

» We evaluate PCDN™ through large-scale A/B tests and
real-world deployment. Through extensive experiment,
we demonstrate that PCDN™ 1) effectively addresses
overloading issues; 2) significantly improves the utiliza-
tion of low-cost resources; and 3) obtains higher speed.
The fast improvement of shared traffic after fully deploy-
ment also demonstrate the effectiveness of PCDN™

All user-related data is anonymous. This work does not
raise any ethical issues.

2 Background

Traditional video services are supported by CDNs. The CDN
is a large-scale distribution system composed of a large stor-
age server (also known as the origin server) and hundreds of
server clusters deployed closer to viewers [8,31]. In general,
all videos are stored in the origin server, while only popular
videos are replicated and deployed across the clusters. When
a viewer requests a video, it initiates a DNS resolution process
to determine the optimal cluster. The DNS resolver responds
with the IP address of the closest cluster. The cluster either
directly serves the requested video from its cache or fetches
it from the origin server if not available. The content is then
delivered to the viewer using HTTP, allowing for adaptive
streaming based on the viewer’s network conditions [26,40].
Through DNS resolution and widespread clusters, CDNs effi-
ciently serve viewers by minimizing latency and improving
delivery performance. However, the cost of employing CDN5s
services has constituted a significant portion of the overall
operation cost. At the same time, with the increase in the user
number and the development of video resolution, this cost will
consistently increase in the future. As a result, reducing CDNs
cost has become a strong incentive for content providers.
Compared to traditional CDN clusters, edge resources are
much more cost-efficient as they are generally less perfor-
mant (such as household routers, or small servers). E.g.,, users
may receive free setup boxes and agree to lease them for
third-party use when they are not actively using them; or
the servers in datacenters, although limited to office hours,
perfectly serve the evening rush hour for video streaming
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Figure 1: Compare node resources’ RTT Figure 2: The distribution of bandwidth Figure 3: The service speed and accessibil-

with CDNs.

services. For ByteDance, these resources are collected by
third-party companies (denoted as edge resource providers),
and leased to ByteDance at a certain price. In contrast to
CDN-based services, which mostly manage the overall video
distribution process and provide software as a service (i.e.,
the distribution process is transparent to us), edge resource
providers only provide physical servers that must be managed
by ourselves. Also, the payment is made only for the incurred
bandwidth costs.

2.1 Resource Overview

We provide three critical features of the node resources in our
system. First, the edge resources in our system are crowd-
sourcing: i.e., 1) the node number in the PCDN system is
incredibly large, and 2) these nodes are geographically dis-
tributed across a wide range of locations. As of early 2023,
the PCDN system has nearly a million nodes, which are ex-
tensively located in over 200 cities across China (in contrast,
CDN clusters are usually deployed at the province level). This
property is highly promising because it inherently brings the
resources closer to users, thereby providing a faster response.
For better demonstration, we compare the RTT of edge re-
sources and CDNs, and present the results in the form of CDF
(cumulative distribution function) in Figure 1. We can see
that over 63% edge nodes are equipped with competitive (or
better) RTT with CDNs.

Second, there exists significant heterogeneity among their
hardware. For demonstration, we measure the maximal band-
width of all edge nodes (this value is provided by resource
providers), and present the results in Figure 2. We can see that
for the large edge nodes, their bandwidth constraint can reach
up to 1000 Mbps, while for the small ones, the value comes
to less than 500 Mbps. At the same time, we also observe that
most of the edge nodes are small (i.e., 82% are less than 500
Mbps). Therefore, compared to CDNs with large clusters, the
heterogeneity of edge nodes and the presence of numerous
small nodes make resource management even more complex.

Third, the edge resources usually suffer from poor perfor-
mance. For illustration, we investigate their service speeds

constraints for the node resources.

ity for the node resources.

and present the results in Figure 3 (the top sub-figure). we can
see that most of the edge nodes exhibit low-speed capabilities.
E.g.,, over 80% of the nodes have speeds less than 4.8 Mbps;
while only less than 1% nodes have speeds exceeding 8 Mbps
(as a comparison, the average speed for CDNs in our system
is larger than 24 Mbps). Therefore, it is difficult to satisfy the
speed requirement in most cases by solely relying on a single
edge node.

In addition, the accessibility of edge resources is also not
satisfactory. Different from CDN clusters equipped with pub-
lic IP addresses, the edge nodes are probably behind NAT
(Network Address Translation), and different NAT types di-
rectly affect the success rate of P2P (peer-to-peer) connection
even using P2P STUN (Peer-to-Peer Session Traversal Utili-
ties for NAT) techniques [32]. Figure 3 presents the distribu-
tion of edge resources for different NAT types and their con-
nection failure rates (the bottom sub-figure). We can see that
there exist a lot of non-public IP nodes (i.e., NATO, NAT2, and
NAT3), accounting for approximately 23%, and these nodes
have significantly higher failure rates than NAT1 nodes (for
NATO to NAT?3, the fail rates are 61%, 7%, 57%, and 84%).

To leverage the edge resources’ potential and overcome
their disadvantages, ByteDance has developed a customized
edge-based delivery system called PCDN.

2.2 PCDN in ByteDance
2.2.1 PCDN, CDN and Video Player

We start with describing the relationship between PCDN,
CDN and video player in our system. As illustrated in Fig-
ure 4, videos are segmented into several chunks, and the down-
loaded chunks are stored in the data buffer managed by the
video player. CDN and PCDN all act as the data module (i.e.,
@ in Figure 4). At any time, the video player assigns chunk-
level tasks to CDN/PCDN (i.e., @ in Figure 4). The specific
assignment, however, is determined by the player based on the
current task status: e.g., CDN is usually utilized for download-
ing first chunk (denoted as preload in Figure 4), and serving
as the backup in cases of urgent data requests (e.g., the PCDN
system faces performance issues, or there is inefficient data in
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Figure 4: The relationship of CDN, PCDN and video player.

player’s buffer). Meanwhile, CDN is also utilized to deploy
video files to edge nodes (e.g., replace unpopular videos with
popular ones), and we will not describe here as the details are
beyond this paper’s scope.

The above processes ensure that the traffic offloading does
not affect user QoE (quality of experience). Moreover, as the
service speed of PCDN increases, a larger portion of the traffic
can be offloaded, thereby yielding substantial cost savings. In
the following part, we will give more details of PCDN.

2.2.2 PCDN Server Side

The core idea of PCDN is to serve viewers with multiple nodes
to compensate for the performance loss of the single node.
PCDN is composed of both server side and client side. The
server side has two functionalities: the tracker service, and
the log service. The tracker service records the index between
video content and edge nodes. The log service consistently
collects some statistical information for each download task,
including user information (e.g., filename) and node informa-
tion (e.g., workload level and geographic location). We have
also presented the workflow of PCDN in Figure 5.

At any time when the video player initiates a downloading
task (@ in Figure 5), the tracker service will be firstly invoked,
and then determines L nodes to be returned back to the client
(® in Figure 5). L is the maximal node number that the user
can connect. In detail, the tracker selects nodes based on two
criteria: first, it gives priority to returning nodes located in
the same region as the user. Second, among nodes within the
same region, it then prioritizes “high-quality” nodes, which
are labeled by the resource providers. These nodes offer larger
bandwidth, but also come at a higher cost. In Figure 6, we
also present the download speed of different priced resources
(i.e., high-price, middle-price, and low-price), and we can see
that high-price resources indeed achieve better performance.

After receiving the response indicating which edge nodes
are available, the client side will establish connections to all
the nodes. It is notable that although the client will connect
all the returned L nodes simultaneously, only the first K out
of L nodes that respond will be utilized to download data. K
is a carefully selected parameter. Determining an appropriate
K is non-trivial: as too large K can lead to competition in
downloads among nodes, while a too small K may not fully

Server-side
' [(Tracker Service)( Log Service ﬂ

(2]
Request  Return Log
@ data Nodes Data

SRS S, :
EUsers[3 B@%@ 8 |

ae 8 as
1 S OO C0) |
A d]J | N PathC <}\\T'@ Edge !

Resources’l

__________

i I
Download !
9 data

_________

Figure 5: The system and workflows of ByteDance’s PCDN.
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Figure 6: The download speed of different priced resources.

exploit the advantages of multiple nodes. We select K through
multiple A/B tests. In case of failure in K nodes, replacement
involves randomly selecting a node from the remaining L — K
nodes.

2.2.3 PCDN Client Side

The PCDN client side is responsible for the management of
the data downloading process (® in Figure 5). It is integrated
into the user’s app and collaborates with CDNs to provide
data for the video player (see Figure 4). The PCDN client
side leverages a UDP-based multi-source parallel download-
ing (MPD) mechanism (i.e., simultaneously download from
multiple edge nodes). The core idea behind this design is
straightforward: on the one hand, multiple edge nodes can
well compensate for the slow speed of any individual edge
node; on the other hand, connecting to multiple nodes con-
currently greatly improves the success rate of connections by
leveraging the node redundancy.

Figure 7 presents the details of PCDN client side. The
transport protocol follows a receiver-driven approach for data
downloading, where the client side sends request packets to
the edge nodes, and the nodes respond with the required data
packets. This approach allows the client side to elastically
determine how to request data from multiple nodes and en-
sures high flexibility. As illustrated in Figure 7, when the
client side receives the data-downloading task, all the data-
request packets will be first stored in a packet queue, and then
allocated among multiple connections through a packet sched-
uler. In our real-world production, the scheduler employs a
“best-effort” approach, i.e., iterating through all paths, and as
long as a path has free congestion windows, the data requests
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will be immediately sent through that connection. Moreover,
the transport protocol also follows a decoupled multi-path
congestion control method [9, 10], wherein each connection
independently maintains its congestion window based on its
network information. Designing a good congestion control
algorithm is a significant challenge in our unique MPD sce-
nario [16], but it is beyond the scope of this paper and is only
simply mentioned here.

It is notable that our system differs significantly from tradi-
tional P2P-based file-sharing systems (e.g., BitTorrent [43]):
as prevalent P2P systems are fully distributed and do not
guarantee service performance; in contrast, PCDN requires
proactive management of node resources to ensure service
quality while simultaneously meeting the demands of a grow-
ing user base.

For better illustration in the following text, we use task
to denote the entire video downloading process, while use
connection to denote the node-level downloading process.
Therefore, each task can have multiple connections.

3 Improvement is Still Needed

3.1 Problem

With more users included in PCDN, the system also con-
sistently augments more node resources. However, we find
that to ensure the service quality remains uncompromised,
the increment of resources should be much larger than the
increment of users. E.g.,, from Nov. 2021 to Jan. 2022, the
workload in PCDN has increased by about 15%, but the node
number has increased by over 25% (we do not report detailed
numbers due to commercial concerns). Therefore, this mis-

match between the growth rates of resources and users has
led to a gradual reduction in the marginal cost-effectiveness
of PCDN.

To solve this problem, we have conducted a series of ac-
tions. E.g., when deploying new edge nodes, we consider
the variations in user distribution across different geograph-
ical locations and ISPs. Taking geographical location as an
example, Figure 8 presents the geographical distribution of
resources and users across 34 provinces. We observe a consis-
tent distribution between them. For instance, among the top
three provinces, two appear in both the node count and user
count rankings. Similarly, within the top ten, eight provinces
overlap between the two rankings. However, through all these
attempts, the problem of decreasing cost-effectiveness still
exists.

After conducting a thorough analysis of the online data,
we have identified that the primary cause for the decline of
cost-effectiveness is the unbalanced resource utilization
problem. Figure 9 illustrates the bandwidth utilization of
all nodes. It can be seen that over 22% of nodes are already
overloaded (i.e., their bandwidth utilization exceeds 100%),
while a significant number of nodes are still underutilized
(e.g., about 30% of nodes having a bandwidth utilization of
less than 40%). Actually, this unbalanced resource utilization
can introduce two critical problems. First, overloading can
deteriorate service performance. Figure 10 shows an example
(see the top sub-figure), in which we select a certain node
and present how its service speed varies with workload. We
can see significant performance degradation when the node
is overloaded (i.e., the workload exceeds a certain threshold,
as circled in Figure 10). Second, the under-utilized nodes
actually result in the wastage of resources. Specifically, we
find that the low-price resources are more likely to be under-
utilized. For illustration, we present the bandwidth utilization
of different priced resources in Figure 10 (see the bottom sub-
figure). We can see that the utilization for low-price resources
is 53%, while for middle-price and high-price, the utilization
comes to 81% and 72% respectively. To this end, we can
conclude that the overall PCDN system is still far from its
satisfactory utilization, and the improvement is still needed.

3.2 Limitations

To alleviate the above problems, we need to first investi-
gate the underlying limitations that contribute to the above
problems. Specifically, we conduct large-scale measurement
and highlight the following two main limitations in our first-
version PCDN system.

> Limitation 1: Server-side decisions are static and lack
of global view. PCDN server side selects nodes based on fixed
rules: i.e., 1) prefer same-location and 2) high-price nodes.
However, making decisions through these static settings has
two main problems. First, it tends to return a small number of
resources, which makes them more likely to be overloaded.
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For illustration, we sort all nodes in descending order based
on their return frequency, and present the results in Figure 11
(see the top sub-figure). We can see that the frequency is
highly skewed: the top 10% nodes have been returned in 32%
requests, while the bottom 40% of nodes only cover 10% re-
quests. Second, fixed rules also restrict PCDN from capturing
the characteristics of users/resources for global-view resource
allocation. Actually, service speed can be influenced by a lot
of factors, and merely using geographical location and price
is inadequate. E.g.,, in addition to region and price, we further
consider another feature: the resource provider, and present
its influence in the bottom sub-figure of Figure 11 (denoted
as Provider A and Provider B). We observe that even with the
same geographical/high-price resources, the download speeds
of these two providers are significantly different. Furthermore,
their difference is inconsistent across regions. E.g.,, provider
A is better than B in region A (denoted as R4 ), but worse in
region B (i.e., Rp). Actually, through better describing the per-
formance when aligning different-featured users/resources,
we can further optimize the system (take Figure 11 as an
example, we can prefer provider A when serving users in Ry4,
while provider B for users in Rp.).

> Limitation 2: Client-side downloading is uncontrolled
and lacks coordination with the server side. PCDN client
side downloads data in a free-competition manner: i.e., 1)
it initiates data downloading as long as a connection is es-
tablished, and 2) sends data request whenever there is a free
congestion window. However, in an MPD scenario, such an
approach may introduce randomness in resource consump-
tion. For demonstration, we repeatedly download the same
video file from three identical nodes, and we then analyze

Ra Rs Re Ro Re Rr

Bw Utilization (%)

Figure 11: Server-side static decisions

the speed contribution for each of them (it is notable that to
make the results more convincing, we select three large nodes
that have bandwidth larger than 1000 Mbps). The results are
presented in Figure 12. We can see that the speed contribu-
tion of each node varies significantly in each download. Take
Node A as an example, the highest speed contribution is over
24 Mbps (i.e., in the 23rd download), but the lowest speed
contribution is even less than 0.4 Mbps (i.e., in the 1st and
2nd download). This lack of control on the client side leads
to two key issues. First, the client side will not respond to
node status (e.g., actively reduce data requests when the node
is overloaded). Second, it also prevents the client side from
achieving on-demand resource allocation, therefore cannot
coordinate with the centralized logic.

4 PCDNT Overview

Based on the above analysis, we are determined to evolve the
previous PCDN to its next iteration, which is represented as
PCDN™. The basic idea of PCDN™ is to enhance the previous
static & uncontrolled system into a dynamic & controlled one.
Specifically, we augment the PCDN server side with a central-
ized logic, which dynamically adapts the resource allocation
strategy through global-view information; while we also de-
ploy a controlled decentralized logic in the PCDN client side
to achieve on-demand resource allocation. Figure 13 presents
the system overview.

4.1 Centralized Logic

Centralized logic is designed with a Profiling Module and
an Allocation Stage, which serves the following purposes:
1) outputs better resource allocation decisions; 2) provides
the control knobs to the operators to balance quality and cost.

4.1.1 User & Edge Profiling

The profiling module is used to evaluate the download speed
when assigning different featured viewers and edge nodes.
Specifically, it will classify viewers and nodes into several
groups based on some pre-selected features. The features are
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selected based on two criteria: 1) the users/resources within
the same group should be “similar” (i.e., the variation of their
speeds is small); 2) the feature dimension cannot be too large.
The first criterion mainly considers from the algorithmic per-
spective: if there is a significant speed disparity within the
same group, the resources will be mistakenly allocated. The
second criterion mainly considers from the systematic per-
spective: on the one hand, a large feature dimension will result
in a large group number, leading to a significant increase in
computational complexity; on the other hand, to ensure fast
connection establishment between nodes and viewers, we
have to transmit all necessary information in a single MTU
packet. Therefore, considering that some meta-data infor-
mation already occupies a significant portion of the limited
resources in the packet payload, the feature dimension should
be carefully controlled.

After extensive feature engineering, we finally select the
following features to classify viewers and nodes, which are
ISP, location, NAT type, connection type (i.e., WI-FI/Cellular),
bitrate, resource provider, and resource price. After dividing
the viewers and resources through the above features, the
profiling module will consistently collect data from users
and nodes, and use the average speed over the past several
timesteps as the prediction value. It is notable that although
the selected features are fixed and we only use moving average
as the prediction, we still need to periodically update the
module’s outputs. This is because the speed can show some
temporal dynamics. Figure 14 shows an example: we can see
that between [200, 400] min, the speed gap of Group B to
Group C is fairly small; while when it comes to 1200 min,
the gap has been significantly enlarged.

4.1.2 Dynamic Resource Allocation

Based on the outputs of the profiling module, we then step into
the allocation module, which outputs the resource allocation
decisions. Specifically, we model the resource management
process as an optimization problem, which minimizes cost
while satisfying performance requirements.

Assume that the users and nodes are divided into M and E
groups through our profiling module. R,, denotes the number
for m-th group of viewers. C, and B, are the price and total
bandwidth for e-th node group, respectively. s, . represents
the average connection speed when m-th group of viewers are
served by e-th group of nodes (i.e., the output of the profiling
module). K is the node number used in MPD. Therefore,
we need to determine the ratio x,, . of viewers in m served
by node group e. To this end, the optimization problem can
formulated as follows.

M
C, Z Ry * Xpe % Sme ¥ K €))]

e=1 m=1

E
min

ste Xpe>0 (m=1,--- Me=1,2,3,--- E). (2a)
E
Y xme=1 (m=1,--- M). (2b)
e=1
M
Y Xme*K*Ryxsme<Be (e=1,---,E). (20)
m=1
E
me,e*K*Sm,eZSm,target (mzly“’aM)- (2d)
e=1

The objective function is written as Eq.(1), which means
that we aim to find an allocation policy for each group of
viewers, through which the cost can be minimized; Eq.(2a-2b)
ensure that all viewers should be served; Eq.(2c) indicates that
the bandwidth usage should not exceed resource constraint.
S target in Bq.(2d) is a hyper-parameter, which is the mini-
mum speed for m-th group of users (it is mainly related to
the bitrate feature). Therefore, Eq.(2d) indicates that the task
speed (represented as the sum of K node speed) should satisfy
the performance requirement. We accept that using the sum
of connection speed as the task speed may be imprecise, but
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it is sufficient from the perspective of global-view resource
allocation. It is notable that through Eq.(2c) and Eq.(2d), we
can control the trade-off between cost and performance. E.g.,,
if we prefer cost reduction, we can increase the quantity of
low-price resources and decrease the quantity of high-price
resources.

To solve this problem, the viewer number R,,, the band-
width B,, and also the average speed s,, . should be prepared
in advance. s, . is obtained through the profiling module. R,
is computed based on the average viewer count of each group
in previous time steps, which is similar to the calculation of
Sm.e- Bandwidth B, is collected through the periodic reporting
from server-side log service (see Figure 5). The optimiza-
tion problem itself is a linear programming problem, which
has been well-studied and can be solved by many methods,
such as interior-point [33] and simplex [30]. The computa-
tional complexity of these methods depends on the dimension
of the decision variables (i.e., E*M) [7]. After solving the
aforementioned optimization problem, the server side will
sort all the nodes according to x,, ., and return both x,, . and
the top-ranked nodes to the client side. The centralized logic
outputs dynamic resource allocation, and we then need the
decentralized logic to coordinate with the centralized logic.

4.2 Decentralized Logic

The decentralized logic aims to facilitate a controlled data
downloading process on the PCDN client side, therefore
it should support the following two functionalities, i.e., 1)
achieve on-demand resource utilization (i.e., X, ), and 2)
satisfy the speed requirement (i.e., Sy targer in Eq.(2d)). We
design a multi-source joint bandwidth allocation algorithm
to achieve these. The “multi-source joint” means PCDN™
employs the information of all connected edge nodes; while
“bandwidth allocation” means that PCDN™ will make band-
width allocation to satisfy centralized requirements. Details
are as follows:

On-demand Allocation: In a typical MPD scenario, multi-
ple connections share the last mile of the network. Therefore,
the available bandwidth provided to the user is the sum of the
download bandwidth of multiple connections. In order to con-
trol the download bandwidth of each connection, we introduce
a maximum window mechanism to give an upper limit on the
connection’s in-flight packets. Specifically, each connection
estimates the congestion window based on its own congestion
control algorithm, but the window cannot exceed the assigned
maximum window value. If the bandwidth share of a certain
connection exceeds the target, we should lower its maximum
window to reduce the number of packets sent; conversely, the
maximum window can be increased to increase the number of
packets sent. By setting a proper maximum window for each
connection, we can adjust bandwidth contribution as needed.
It is notable that this mechanism is decoupled from the un-
derlying congestion control algorithm, as it only periodically

controls the upper bound of the congestion window.

Next, we describe how to calculate the maximum win-
dow for connection k (denoted as CWND}'®*). Suppose the
user is featured with m. First, the algorithm monitors the
aggregated bandwidth of multiple connections (denoted as
BW = ):leBWk) and the contribution of each connection
(ie., )%’,‘M = BW;/BW). After that, it calculates the achieved
contribution of each resource group by aggregating the con-
tribution of connections belonging to the same group (i.e.,
Fme = YK . ,,if k in group e). Then for each resource
group e, we will compare the achieved contribution £, . and
the target contribution x,, ., and compute a scale factor o,
shared by all nodes in group e. That is if £, , > X, . (this
indicates that this group of resources is too much used by this
user), the scale factor o, will be set with a small value (usu-
ally o, < 1); while if £,, . > X, ¢, O Will be set with a large
value. After that, the shared bandwidth of node k in the next

round will be updated as BW; = BW x ):Ka"a . Finally, the
k=1 "k

maximum window of connection k can be calculated using a
simple window-based model, i.e., CWND™ = BW; x RTT;,
where RT Ty is the average RTT.

Satisfy Speed Requirement: To achieve the second func-
tionality, our design is to enable dynamic resource optimiza-
tion. The core idea is: in our MPD scenarios, the bottleneck
can occur either on the user side or on the resource side. As a
result, to ensure that our allocation algorithm does not dete-
riorate the task speed, we need to prevent the resource side
from becoming a bottleneck. For illustration, we present the
idea in Figure 15 (the solid blue box indicates the requirement
from users, and the dash yellow box indicates the available
resource in edge nodes), in which we care about two cases:

¢ Case #1 (the left sub-figure): the bottleneck is located
on the user side. In this case, allocating the resource will
not introduce any speed degradation: any group of node
resources can solely cover the user-side requirement,
therefore, no matter how the data requests of this user
are allocated, the speed will not decrease.

Case #2 (the right sub-figure): the bottleneck is located
on the resource side (i.g., Resource A). In this case, if
too many data requests are allocated to Resource A, the
task speed will suffer degradation. Meanwhile, if we can
replace it with a more performant one (i.e., Resource A’),
we then transfer case #2 to case #1, which enables us to
allocate resources freely without compromising speed.

In practice, we distinguish the above cases by monitoring the
task speed: i.e., if there is a significant decrease in speed when
attempting to increase the share of certain resource group, it
corresponds to Case#2; otherwise, it is Case#1.

We implement the above designs into the transport protocol.
As illustrated in Figure 16, decentralized logic mainly con-
sists of three parts, i.e., Monitoring Module, Control Module,
and Optimizing Module. The monitoring module manages
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Figure 17: The case study of how decentralized logic works.

all connected nodes, and collects the network information
of each connection. The control module refers to our alloca-
tion design, which uses the collected information to calculate
CWND;™. The optimizing module refers to our resource op-
timization design, which checks whether there is a bottleneck
on the resource side. Notably, it performs two primary func-
tionalities. First, it evaluates the performance of each node
based on transport layer information. Secondly, it also verifies
whether the resources are equipped with enough feature types
(denoted as Diversity Check in Figure 16). Any newly added
nodes must be registered into the monitoring module.

We demonstrate the entire download process of a file and
showcase how the decentralized logic works. For clarity, we
only select four nodes, and we randomly divide them into two
groups, denoted as Group A and Group B. Specifically, we
consider an extreme case to demonstrate the effectiveness: we
hope that group A can contribute 90% of the task speed (i.e.,
x4 = 0.9 while xp = 0.1). We present both session speeds
(see the stacked plot) and Group A’s contribution (see the
red line) in Figure 17. We can see that at the first 100 ms, the
contribution is fairly small (about 25%); while as the down-
loading process goes on, the contribution starts to quickly
increase, and finally stabilizes at the target contribution (i.e.,
90%). Moreover, we also see that the contribution is stable
even when the task speed fluctuates.

Another straightforward idea for on-demand allocation,
which is using the packet scheduler in Figure 7. However,
this method may potentially limit the full utilization of certain
connections (i.e., the connection has free congestion windows,
but no data is allocated to it). In contrast, by periodically
setting the upper limit of the congestion window, and avoiding
directly changing the congestion control algorithm or packet
scheduler, our method is more protocol-friendly and ensures
the full utilization of each connection.

Optimizing Module

Add Handler
For New Node
Evaluation
Check

Increase
Bandwidth
Share

Contribution
Achieved
Contribution

Decrease
Bandwidth
Share

Monitoring

Module Control Module

Figure 16: The decentralized logic overview of PCDN™.

5 Evaluation

In this section, we evaluate the performance of PCDN*
through Bytedance’s real production. We have rewritten the
PCDN server side and client side to support PCDN™. The
server-side logic runs in minute-level, while client-side logic
runs per task. Specifically, we first evaluate the decentralized
logic; then we evaluate full PCDN*!. It is notable that we do
not compare the performance with CDNs or other systems,
because our downloading process automatically switches to
CDNs if PCDN cannot satisfy performance criteria (see §2.2).

5.1 Decentralized Logic Evaluation

We first demonstrate the effectiveness of decentralized logic
by answering three questions: 1) Can the resources be con-
trolled as expected? 2) Will the control logic have a negative
impact on task speed? 3) Is the optimizing module necessary?
The experiment is conducted through ByteDance’s internally
developed A/B test platform which has isolated nodes and
simulated traffics. The experiment runs for a week, during
which we collect data from millions of tasks.
Controllability: To better illustrate our results, we initially
quantify the control error (denoted as d,) by calculating the
Euclidean distance between target resource allocation ratio
(denoted as x,, ) and the achieved ratio (denoted as £, ), and
the lower d, indicates a higher controllability. Moreover, to
make the results across different target ratios comparable,
we normalize the results by using the maximum distance

dmax, 1.e., d. = Hx’”j#"”z (notably, different x,, ., may have
different dp,ax, and it can be easily calculated by iterating
through the vertices of the hyperplane defined by Zle Xme =
1). Figure 18 presents the results (it is notable that although
we only show the results on a daily basis, we consistently
change the x;, . in our one-week experiment). We can obtain
the following observations. First, we find that PCDN is unable
to achieve resource controllability: we can see that its control
error ranges widely from O to 1, and more than half of the
tasks experience a control error larger than 0.47. This result is
expected, since PCDN downloads data in a free-competition
manner and lacks resource control. In contrast, PCDN™ well
controls the node resources: hroughout the entire one-week

'We do not conduct separate tests for centralized logic, as it only works
in conjunction with decentralized logic
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experiment, PCDN™ consistently exhibits very low control
errors (50th percentile consistently below 0.04).

The Influence on Performance: We then investigate how
PCDN™’s decentralized logic influences task speed. The re-
sults are presented in Figure 19. We find that compared with
PCDN, PCDN™ will not have a notable negative impact.
E.g.,, we can see that during one-week experiment, PCDNT
achieves an average speed improvement ranging from 1.2%
to 2.7% compared to PCDN (the 50th percentile speed has
a similar observation). These results align with our expecta-
tions: the optimizing module in decentralized logic enables
us to shift the bottleneck from the possible node-side to the
user-side, allowing us to safely allocate resources. At the
same time, we also notice that PCDN performs better than
PCDN™’s in maximum speed (see the top error bar shown in
each boxplot). This is because PCDN downloads data in the
free-competition way. This is also acceptable as the average
& 50-percentile speed is more meaningful at systematic level.

The Necessity of the Optimizing Module: We further con-
duct an ablation study to demonstrate the effectiveness of the
optimizing module in PCDN™’s decentralized logic. Specifi-
cally, we compare the performance of PCDN™ with/without
optimizing module (denoted as PCDN™ w.o. Opt). We first
focus on the service performance, and we compare the speed
distribution in Figure 20 (see the top sub-figure). We can see
that without optimizing module, the speed will suffer signif-
icant degradation (the average speed degrades about 6.1%).
This is because the bottleneck may be located on the server
side in certain cases, in which the servers cannot provide
required performance (see Figure 15). Moreover, we also fo-
cus on controllability, and present the results in the bottom
sub-figure of Figure 20. We find that compared with PCDN™,
the control error of PCDN™ w.0. Opt is also degraded (the
average control error increases about 7.4%). This is because
the optimizing module also provides diversity checks to guar-
antee that there are enough node groups to use.

5.2 PCDNT Evaluation

The A/B tests of PCDN™ are based on all PCDN nodes, and

module

cover 20% of Douyin users. Our specific goal is to optimize
the utilization of low-price edge resources with PCDN™ for
further cost reduction. We evaluate PCDN™ through the per-
spective of resource utilization, cost savings, and also service
performance.

Resource Imbalance: We first investigate the bandwidth
utilization. In Figure 21, we compare the distribution of band-
width utilization in the form of CDF. We can obtain the fol-
lowing observation. First, the overloading problem has been
significantly improved. E.g.,, we can see that for PCDN there
are over 20% nodes are overloaded, while for PCDN™T, almost
all nodes are below the bandwidth constraint. Second, the is-
sue of under-utilization is also well alleviated (as pointed out
in the black dashed circle). Taking 40% as the threshold, we
see that only 20% nodes in PCDN™ are under-utilized, while
the value is 30% for PCDN.

Cost Savings: We then analyze the utilized bandwidth of
the low-price nodes. The results are presented in Figure 22
(we also present the relative improvement). We can find that
compared with PCDN, the workload for the low-priced nodes
has been significantly improved. E.g.,, we see that throughout
the one-week experiment, the workload improvement ranges
from 31.0% to 95.8%. It’s notable that we cannot disclose the
actual cost savings due to the commercial confidentiality of
the relative pricing of different resources. However, to better
illustrate the cost-saving benefits of PCDN+, we present the
changing proportion of low-cost resources within the entire
system over the past three months. The results are depicted
in Figure 22 (refer to the bottom sub-figure). We can see
that low-price resources have consistently increased and have
already accounted for over 50%. Therefore, even with a con-
servative assumption of a 20% discount on these resources,
the corresponding estimated cost savings compared to PCDN
range from 8% to 10%.

Service Performance: Considering that the cost savings
are obtained through more utilization of low-price resources,
which are usually equipped with unsatisfactory speed (see
Figure 6), we further evaluate the service performance of
PCDN™. Specifically, we consider the task speed, and the
results are presented in Figure 23. We can see that PCDN™
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also achieves higher speed and outperforms PCDN. E.g.,, we
see that on Monday, PCDN™’s task speed is 17.04 Mbps,
about 5.4% higher than PCDN.

5.3 Benefit Deep Dive

We first demonstrate the effectiveness of PCDN™’s central-
ized logic through the metric called high-quality return. This
metric is defined from the perspective of the server side, and
mainly depends on three connection-level criteria: speed,
packet loss, and RTT (recall that connection speed is differ-
ent from task speed ). If and only if all three metrics satisfy
some pre-defined criteria, can this node be regarded as a high-
quality return node. Since the thresholds for different video
types are different and may vary at each day, here we only
report the improvement. The results are presented in Fig-
ure 24. We can see that PCDN™ significantly improves the
performance, and the improvement of the week is consistently
higher than 20% (the highest improvement is 26.2%). This
is expected as the centralized logic has the global view of
the resources, and better characterizes the performance when
aligning different users and nodes.

We then focus on abnormal connections, which refer to the
scenario when a user fails to download data from the node.
This scenario commonly arises from inherent deficiencies
within the node itself, such as excessive overloading, result-
ing in connection disruptions. Therefore, it can also reflect
the effectiveness of the centralized logic. The abnormal state
is recorded at the connection level and is reported once the
task is completed. To this end, we calculate the abnormal
rate (i.e., the proportion of abnormal connections relative to
the total connections), and present the results in Figure 25.

N w
=1 =1

Traffic Share (%)
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Figure 27: The traffic share of PCDN™.

We can see that the abnormal rates are significantly reduced:
throughout the week, the reduction ranges from 6.9% to 7.6%.
This is mainly because PCDN™ facilitates a dynamic & con-
trolled framework which enables it to better manage resources,
especially avoid returning low-quality nodes. Finally, we in-
vestigate the loss rate. The results are presented in Figure 26.
We can see that the PCDN™ also achieves better performance:
the loss rate reduction ranges from 12.0% to 13.3%.

After extensive A/B test, PCDN has been evolved to
PCDN™ and fully deployed since 2023, In Figure 27, we
also present the workload that has been shared by our system
since April 2020. It can be observed that until 2023, our sys-
tem accounted for approximately 20% of the overall traffic,
but with a relatively slow growth rate. With the deployment
of PCDN™ in 2023, the traffic of our system has rapidly in-
creased and as of June 2023, it has already taken over 35% of
the total traffic. We also evaluate PCDN™ by comparing with
CDN for some QoE metrics: the stall ratio and stall frequency
have decreased 0.86% and 3.45%, respectively.

6 Related Work

Video Delivery Optimization: Some work optimizes from
the perspective of content providers and focuses on the request
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scheduling. E.g., [3,20,25,46] propose to use some prediction
models to predict the quality of experience (QoS), and select
the best CDN providers. [21] utilizes some learning-based
methods to make end-to-end server selection. This kind of
work usually focuses on the last mile, and treats CDN as the
black-box. At the same time, there is also work focusing on
intermediate link optimization, like network relay and routing
problems. E.g., VDN [28] and Livenet [23] present some cen-
tralized control for the live streaming routing optimization;
VIA [19] cares about the VoIP calls and presents some dy-
namic relay selection algorithms. Some other work [38,47]
also optimize for cloud service providers. Our work shares
some similarities with them at a high level, such as the central-
ized control plan and global-view decision-making. However,
the centralized decisions in our case require decentralized
logic to assist in their execution. Moreover, compared to CDN,
our utilization of crowdsourcing resources and the adoption
of MPD also introduce unique challenges and considerations.

P2P System: PCDN is closely related to the P2P tech-
nique. Traditional P2P network (such as BitTorrent [6,43],
PeerTube [14], and IPFS [42]) is fully decentralized, and
users can join or leave whenever they want. However, this full
decentralization also prevents it from directly utilizing in com-
mercial video delivery, such as participant availability [41],
and data security [36]. To tackle this problem, the combi-
nation of CDNs and P2P networks (also denoted as hybrid
CDN-P2P) has emerged as a fascinating framework. There
have been a lot of work addressing various aspects, including
the large-scale measurement studies [11,27], the impact of
heterogeneous bandwidth constraints [45], resource alloca-
tion optimization, and also caching strategies [34]. Compared
with existing work, since the edge resources in our system
are collected and provided by specialized companies, they are
more stable (i.e., we do not need to consider the impact of
abrupt joining or leaving), and there is no need to worry about
security risks.

Resource Allocation: Our work also relates to resource
allocation field. Traditionally, the resource allocation aims
to maximize systematic utilization, such as achieving effi-
cient operation cost [5,22], and specifying different service
priorities [12,13]. E.g.,, Some of them optimize intra-WAN
scheduling and aim to maximize bandwidth utilization or pre-
vent bottleneck congestion [24]. Some work aims to quantify
the value of certain flows and reduce the cost of WAN egress
based on Shapley Values [39], Big-M method [38] or relaxed
convex optimization [37]. They are similar to PCDN™, as they
all model the scheduling problem as an optimization process.
However, PCDN™ still needs a well-designed decentralized
logic to coordinate with the centralized logic.

7 Lessons Learned and Discussion

From our experience of developing and optimizing PCDN
system, we have obtained the following lessons. First, we

find that using cheaper edge devices to replace CDN for con-
tent delivery is promising: on the one hand, although PCDN
was initially designed only as a cost-saving supplement of
CDNs, after all the work we have put in the system, we be-
lieve it has the full potential to actually replace CDN as a
more cost-effective solution for future VoD streaming ser-
vices; on the other hand, connecting to and downloading from
multiple nodes enables the optimization at video chunk level,
providing a much finer granularity than CDNs which typi-
cally schedule at task level. At the same time, we also believe
that the optimal solution still requires optimization in several
aspects as follows:

Better Prediction Model: There are several open questions
we wish to highlight to further improve the PCDN sys-
tem. First, the feature selection during the profiling stage
of centralized logic is static and heuristic, and the predicted
speed/viewer number are all based on the statistics of previous
timesteps. However, recent advances in data-driven prediction
models are promising [2,4] and worth future investigation.

Transport Protocol: PCDN leverages a receiver-driven multi-
source transmission protocol, which presents an intriguing
area for further investigation. Our observation reveals that
congestion can arise due to competition when multiple con-
nections share the last mile. Hence, it becomes imperative to
explore more efficient congestion control algorithms tailored
for MPD scenarios. Moreover, PCDN nodes are susceptible to
disconnections and quality instability, often resulting in head-
of-line blocking. Currently, we are exploring more efficient
data scheduling and recovery algorithms.

Cooperation with CDNs: Currently, PCDN and CDNs are
regarded as separate systems, with CDNs functioning as a
backup for PCDN. However, this approach lacks support for
more precise resource control and management, such as si-
multaneously downloading from both PCDN and CDNs. In
our future work, we aim to consolidate the management of
CDNs and PCDN nodes to enable the development of a more
robust, efficient, and heterogeneous content delivery network.

8 Conclusion

In this paper, we have reported PCDN, ByteDance’s alter-
native delivery system for CDNs. PCDN is designed with
a server side and a client side, and through a customized
multi-source parallel downloading mechanism. Moreover, to
further address its resource inefficiency problem, we have
also presented PCDN™. In particular, through enhancing the
PCDN server side with a centralized logic, and augmenting
the PCDN client side with a decentralized logic, PCDN™ has
achieved both dynamic adaptability and controllability. We
have also demonstrated the effectiveness of PCDN™ through
extensive A/B tests and discussed some open questions in our
system. PCDN™ now has served over 35% VoD traffic for
ByteDance.
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