
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

ScalaAFA: Constructing User-Space All-Flash
Array Engine with Holistic Designs

Shushu Yi, Peking University and Zhongguancun Laboratory;
Xiurui Pan, Peking University; Qiao Li, Xiamen University; Qiang Li, Alibaba;

Chenxi Wang, University of Chinese Academy of Sciences; Bo Mao, Xiamen University;
Myoungsoo Jung, KAIST and Panmnesia; Jie Zhang, Peking University and

Zhongguancun Laboratory
https://www.usenix.org/conference/atc24/presentation/yi-shushu

ScalaAFA: Constructing User-Space All-Flash Array Engine with Holistic Designs

Shushu Yi1,2, Xiurui Pan1, Qiao Li3, Qiang Li4
Chenxi Wang5, Bo Mao3, Myoungsoo Jung6,7, Jie Zhang1,2

National Key Laboratory for Multimedia Information Processing,
School of Computer Science, Peking University1, Zhongguancun Laboratory, Beijing, China2

Xiamen University3, Alibaba4, University of Chinese Academy of Sciences5, KAIST6, Panmnesia7

https://www.chaselab.wiki

Abstract
All-flash array (AFA) is a popular approach to aggregate

the capacity of multiple solid-state drives (SSDs) while guar-
anteeing fault tolerance. Unfortunately, existing AFA engines
inflict substantial software overheads on the I/O path, such as
the user-kernel context switches and AFA internal tasks (e.g.,
parity preparation), thereby failing to adopt next-generation
high-performance SSDs.

Tackling this challenge, we propose ScalaAFA, a unique
holistic design of AFA engine that can extend the throughput
of next-generation SSD arrays in scale with low CPU costs.
We incorporate ScalaAFA into user space to avoid user-kernel
context switches while harnessing SSD built-in resources for
handling AFA internal tasks. Specifically, in adherence to the
lock-free principle of existing user-space storage framework,
ScalaAFA substitutes the traditional locks with an efficient
message-passing-based permission management scheme to
facilitate inter-thread synchronization. Considering the CPU
burden imposed by background I/O and parity computation,
ScalaAFA proposes to offload these tasks to SSDs. To mitigate
host-SSD communication overheads in offloading, ScalaAFA
takes a novel data placement policy that enables transparent
data gathering and in-situ parity computation. ScalaAFA also
addresses two AFA intrinsic issues, metadata persistence and
write amplification, by thoroughly exploiting SSD architec-
tural innovations. Comprehensive evaluation results indicate
that ScalaAFA can achieve 2.5⇥ write throughput and reduce
average write latency by a significant 52.7%, compared to the
state-of-the-art AFA engines.

1 Introduction

The last decade has witnessed all-flash arrays (AFA) [36,
41, 48, 59, 63, 71] increasingly adopted as buffer layers in
high-performance computing systems and datacenters [18,49].
These systems have proven critical in speeding up numerous
I/O-intensive scenarios, including big data analysis, scientific
computing, and machine learning [1, 17, 39, 57, 62, 66]. In

comparison to traditional storage media like hard disks, AFAs
capitalize on the advantages of solid-state drives (SSDs) such
as enhanced throughput, latency, and power efficiency. AFAs
bundle multiple SSDs into an array to improve storage ca-
pacity at scale, thereby providing a large and uniform storage
space. Additionally, AFAs tackle flash errors by integrating
data redundancy mechanisms.

Considerable efforts have been expended in academia and
industry to make AFAs more practical [4, 26, 36, 65, 68]. For
instance, Linux software RAID, known as mdraid [4], has
been developed to exploit multi-core processors for concur-
rent parity preparation. Building on mdraid, two-phase write
schemes [26, 36, 65, 68] have revolutionized the write path.
These systems use replication (e.g., RAID 10) as a stepping
stone to striping (e.g., RAID 5 or 6) for fast I/O processing
and update data out-of-place to accelerate small writes.

However, with the continual advancement in SSD technol-
ogy, current AFA implementations risk becoming a bottleneck
for future storage systems that will leverage next-generation
SSDs. For instance, Samsung PM1743 PCIe 5.0 SSDs can de-
liver up to 13 GB/s I/O bandwidth [10], a stark contrast to the
majority of AFA engines [4,36] that were originally designed
for slower storage interfaces (i.e., SATA) and top out at a max-
imum throughput of 500 MB/s. To elucidate the performance
issue in AFA, we conduct an experiment with a state-of-the-
art two-phase write AFA engine, FusionRAID [36] (cf. § 3.1
for details). During replication, FusionRAID only achieved
4.8 GB/s write throughput, a mere 36.9% of the ideal perfor-
mance. This is attributed to the storage software stack (e.g.,
user-kernel context switches and tedious block layers) con-
suming 54.4% of the CPU cycles, whilst the CPU stall time
for SSD I/O only accounts for 20.8%.

SPDK [70], one of the most popular user-space storage
frameworks, presents an encouraging approach to lighten the
storage software stack. However, directly incorporating ex-
isting AFA solutions into SPDK poses significant challenges.
First, existing AFA solutions rely on locks to facilitate con-
current multi-thread access [4, 71], whereas SPDK operates
based on a lock-free principle. Furthermore, SPDK cannot

USENIX Association 2024 USENIX Annual Technical Conference 141

mitigate the intrinsic shortcomings of existing AFA schemes
(e.g., two-phase write). For instance, the “conversion” pro-
cess from replication to striping involves reading replicated
data from SSDs, computing parities, and storing them back
in a space-efficient layout, leading to intensive background
I/O and computation, which ultimately results in notable per-
formance degradation in I/O-intensive scenarios (evidenced
by an 88.5% throughput reduction as shown in Figure 3b).
In addition, out-of-place updates necessitate extra mapping
tables to track data locations. The persistence of this metadata
is CPU-intensive. Lastly, the write amplification triggered by
replication can significantly shorten the lifetime of SSDs.

In response to these challenges, we introduce ScalaAFA1,
an innovative user-space AFA engine designed to maximize
the performance of future SSD arrays while maintaining
low CPU overhead. In accordance with SPDK’s lock-free
principle, ScalaAFA substitutes the traditional locks with an
SPDK-compatible message-passing-based permission man-
agement scheme for concurrent multi-thread accesses. It also
minimizes the synchronization overhead with a lightweight
storage space abstraction and batch processing method. Rec-
ognizing the CPU load imposed by conversion, we propose an
inventive data placement policy that curtails background I/O
and offloads parity computation to the embedded resources
of the SSDs transparently. In the face of frequently updated
mapping tables, ScalaAFA leverages a hardware-based crash
consistency mechanism, significantly reducing software over-
head. Finally, to temper the damage of write amplification
on SSD lifetime, ScalaAFA suggests harnessing the SSD-
internal high-endurance write buffer to accommodate redun-
dant writes. Evaluation results demonstrate that ScalaAFA sur-
passes leading AFA engines, delivering 2.5⇥ write throughput
and reducing average write latency by 52.7%.

Our core contributions can be summarized as follows:
• Constructing a lock-free AFA engine in user space: An in-
depth analysis of the existing AFA engines reveals that the
primary hurdles for integrating AFA engines into user space
stem from the complex lock mechanisms for concurrent multi-
thread accesses. To overcome this impediment, we propose
to manage write permission with a lightweight storage space
abstraction and efficiently grant/retrieve these permissions
in batches with a message-passing scheme. This solution
conforms to the lock-free principle of user space designs and
facilitates thread-level parallelism at a low cost. Consequently,
it increases the write throughput by 58.4% while decreasing
the average latency by 45.2%. To the best of our knowledge,
this is the first study that successfully incorporates an AFA
engine into user space.
• Offloading conversion to SSDs: In two-phase write AFAs,
data chunks belonging to the same stripe are dispersed across
different SSDs after replication. Offloading conversion to
SSDs is non-trivial, as it requires the host to transfer data

1ScalaAFA is accessible at https://github.com/ChaseLab-PKU/ScalaAFA.

Processor InterconnectPC
Ie
/N

VM
e

DMA
Engine

XOR
Engine

SSD Controller Flash Backbone

Fl
as

h
PH

Y Ch
an

ne
l

DieDie DieDie

ARM
Processor

SLC
Block
MLC
Block

Da
ta

 A
re

a
O

O
B

Pa
ge

Pa
ck

ag
e

Pa
ck

ag
e

NVMe
Ctrl.

DRAMDDR
Ctrl.

Ch
an

ne
l

DieDie DieDie

DieDie DieDie

DieDie DieDie

Plane
0

Plane
1

LPN

PPN

Flash Translation Layer (FTL)

Garbage
Collection

Flash Firmware

Figure 1: Details of SSD internal.

chunks to the target SSD manually, which imposes extra I/O
and huge CPU burdens. We propose an innovative data place-
ment policy that can transparently gather data chunks into
the target SSDs. Specifically, when the AFA engine generates
redundant writes for fault tolerance, we redirect the redundant
replicas of the same stripe to the SSD where the parity will be
stored. By leveraging the SSD built-in XOR engine to calcu-
late the parity codes from the local replicas, we eliminate the
need of host involvement (i.e., computation and data transfer).
This design further improves the write throughput by 36.9%
and reduces average latency by 36.1%.
• Optimizing two-phase write with holistic designs: Prior
work has revealed that two-phase write AFA can outperform
traditional AFA (e.g., RAID 5) especially when serving small
write requests. Nevertheless, how to conceal the inherent
drawbacks of two-phase write (i.e., metadata persistence and
write amplification) is still unsolved. Notably, we propose
to tackle these challenges by thoroughly exploiting SSD ar-
chitectural innovations. We suggest a hardware-based crash
consistency mechanism that employs the out-of-band areas of
SSDs to persist the metadata with minor overhead. Moreover,
we take a comprehensive design that accommodates transient
data within the SSD-internal durable buffers and avoids flush-
ing them to vulnerable flash cells. This design succeeds in
reducing the impact of write amplification by 38.6%.

2 Background

2.1 SSD Internal
Baseline architecture. Figure 1 depicts a common archi-
tecture of modern SSDs [3, 73]. The SSD is comprised of
multiple embedded processors (e.g., ARM), a DDR DRAM
controller, and specialized processing elements, such as DMA
and XOR engines [15, 16, 67]. The XOR engine bolsters the
device’s reliability by calculating parity codes for data stored
in the SSD. These processors are linked to a flash backbone

142 2024 USENIX Annual Technical Conference USENIX Association

through the flash physical layer (PHY). The flash backbone
consists of 4 to 16 channels, each connecting to several flash
packages. Each flash package encloses multiple flash dies,
each comprised of 2 to 4 flash planes. A single plane can
be divided into thousands of flash blocks. The flash blocks
can be categorized as single-level-cell (SLC) and multiple-
level-cell (MLC) based on the number of data bits stored in a
flash cell [11, 28]. The SLC blocks offer shorter I/O latency,
extended endurance, and reduced capacity, while the MLC
blocks provide larger capacity but exhibit longer I/O latency
and reduced endurance. To optimize SSD lifetime, capacity,
and performance, SSD manufacturers use SLC blocks as the
write buffer to accommodate small writes and employ MLC
blocks as storage backend [32,34]. A flash block contains hun-
dreds of flash pages, each divided into data and out-of-band
(OOB) areas. The data area stores data whilst the OOB area
stores metadata, such as error correction codes (ECC) [33].
Note that the size of OOB area in NAND flash is typically
greater than what metadata requires (e.g., tens of bytes re-
served per flash page [16, 29]).
Flash firmware. NAND flash only supports out-of-place up-
dates due to its physical attributes [54]. To shield users from
flash intrinsic, the flash firmware internally constructs an indi-
rection layer, known as flash translation layer (FTL) [20, 58],
to remap incoming write requests to new flash pages and in-
validate the stale flash pages (cf. Figure 1). FTL maintains the
mapping information between the request logical address (i.e.,
logical page number, LPN) and the flash physical address (i.e.,
physical page number, PPN) in the SSD-internal DRAM. The
flash firmware also persists this mapping information in the
OOB area, enabling it to be recovered after system corruption
or reboot. Flash page invalidation due to write requests can
significantly diminish the available SSD capacity for users.
To tackle this problem, the firmware performs garbage col-
lection (GC) to reclaim invalid pages. Specifically, it selects
a victim block and moves all valid pages in it to an erased
block. Subsequently, the victim block is erased and reused.

2.2 All-Flash Array
All-flash array (AFA) is a storage organization that groups
multiple SSDs as a single logical unit to aggregate their capac-
ity and throughput while providing fault tolerance. Existing
AFA designs can be classified into two types, stripe write and
two-phase write, based on how data is written to SSDs.
Stripe write AFA. Stripe write AFA orchestrates data as
stripes. Each stripe consists of k data chunks and m parity
chunks with a fixed size (e.g., 64 KB). The parity chunks
are calculated with a specific error-correction code (ECC)
algorithm (e.g., Reed-Solomon codes [64]). The k+m chunks
are distributed and stored in k+m SSDs (we call this striping
layout). If a few data chunks are lost due to SSD failures, the
same number of parity chunks can be used to recover the lost
data chunks. Therefore, a k+m AFA can tolerate up to m

(b) Two-phase write AFA.

SSD 0

Replication Read

33

Write Data

Write Read

(a) Stripe write AFA.

11
Data 0 Data 1 Parity 0

Parity

Data 2

Stripes

SSD 1 SSD 2 SSD 3 SSD 0 SSD 1 SSD 2 SSD 3

Co
m

pu
teCompute

Write Data

11 22

22

33

Fl
as

h
Ar

ra
y

H
os

t

44
W

rit
e

Figure 2: Write paths of all-flash arrays (k=3 and m=1).

SSD corruptions. Figure 2a shows how a stripe write AFA
serves write requests. When a write request arrives, it first
slices the request into multiple data chunks. If the number of
data chunks is less than k, the write request is called partial
write. Partial write, unfortunately, is unfriendly to stripe write
AFA. The AFA engine must fetch the missing data chunks
belonging to the same stripe from SSDs (1). Then, the host
CPU calculates the parity chunks for this stripe (2). Finally,
both the data and parity chunks will be written to the storage
devices (3). This procedure is called read-construct-write.
Partial writes introduce extra data reads and intensive parity
updates, which significantly delay the I/O completion time.

Two-phase write AFA. To tackle the challenge imposed by
partial writes, prior work proposes two-phase write AFA (or
log-structured write AFA) [26, 36, 65, 68], which employs
replication as the prelude of striping to absorb small write
requests. Two-phase write AFA [36] exhibits superiority over
stripe write AFA [4] in terms of both throughput and latency
(e.g., 51.2% throughput improvement and 33.9 % average la-
tency reduction for 64 KB sequential write, cf. § 6.2), two of
the most crucial metrics when employing AFAs as the buffer
layers in datacenters [17, 39, 57, 62]. Figure 2b shows the
procedure of two-phase writes. Specifically, two-phase write
AFA writes data chunks in two phases: replication phase and
conversion phase. In the replication phase, the data chunks
are replicated into m+1 copies and distributed across m+1
SSDs (1), which provides the same fault tolerance as stripe
write AFA with k+m SSDs. When the size of replicated data
exceeds a given watermark (e.g., 5% of the AFA capacity),
user I/O requests are delayed and the conversion phase starts.
In particular, the host reads all data chunks of the same stripe
from SSDs (2) and computes the parity chunks (3). After-
ward, these data and parity chunks are written back to SSDs
and stored in the space-efficient striping layout (4). Finally,
the space previously used to store replicated data chunks will
be recycled. Note that all the updates in two-phase write AFA
are out-of-place. Therefore, when updating data chunks, two-
phase write AFA only needs to replicate the updated data to
new spaces and invalidate the stale data, which avoids the
tedious read-construct-write procedure of stripe write.

USENIX Association 2024 USENIX Annual Technical Conference 143

(a) Analysis of FSR-Rep. (b) Performance of FusionRAID. (c) Overhead analysis.

SPDK

Bdev AbstractionBdev Abstraction
NVMe DriverNVMe Driver

Polling
Kernel

Bdev
Driver

Async. I/O
NVMe-oFNVMe-oF

NVMe SSD

Thread 0 Thread n

(d) Architecture of SPDK.

Figure 3: Deep analysis of two-phase write AFA and key insights.

3 Preliminary Study

3.1 Challenges

While two-phase write has demonstrated its superiority over
stripe write in terms of both throughput and latency, we ob-
serve that the designs of existing two-phase write AFA en-
gines are still the bottleneck when adopting high-performance
SSDs. To illustrate this, we reproduce FusionRAID [36], one
of the state-of-the-art two-phase write AFA engines, and set
up an experiment with 4+1 (k+m) Samsung 980 Pro SSDs [2]
to analyze its write performance. We use fio [13] and perf [23]
to evaluate the I/O performance and capture CPU cycles of
the key functions in the storage stack, respectively.
Challenge in replication phase. Figure 3a shows the 64 KB
sequential write throughput and CPU overhead breakdown
with different numbers of I/O threads in the replication phase
of FusionRAID (FSR-Rep). We categorize the overhead into
five parts: preAFA is the time of submitting I/O requests from
user space to FSR-Rep through context switches and block
layers, while AFA represents the time consumed by FSR-Rep;
postAFA is the time of sending I/O requests to SSDs through
the NVMe driver; I/O is the time of serving I/O requests in
SSDs; Lastly, Other summarizes other software overheads
(e.g., CPU spins for synchronization among the I/O threads
and kernel worker threads [63, 71]).

FSR-Rep achieves 4.8 GB/s and 7.2 GB/s write throughput
with 1 and 2 threads, which are only 36.9% and 55.4% of
the ideal case (i.e., (k+m)/(m+1)⇤S, where S is the peak
throughput of a single SSD, that is, 5.2 GB/s for Samsung 980
Pro). This is because the frequent user-kernel context switches
and the tedious storage stack (i.e., preAFA and postAFA) con-
sume tremendous CPU ticks. For example, with one thread,
I/O only accounts for 20.8%, while preAFA and postAFA
consume 54.4%. One way to improve the throughput is em-
ploying more CPU resources. For example, FSR-Rep achieves
12.2 GB/s with 8 threads. More than 8 threads instead de-
grades the throughput because inter-thread synchronization
(i.e., Other) dominates the CPU overhead [63, 71]. However,
allocating 8 threads per 4+1 AFA is still infeasible for most
existing storage servers, which equip hundreds of SSDs but

limited CPU resources. For instance, PowerStore 500T [9]
holds up to 97 SSDs while only equipping two 24-core CPUs.
To summarize, the software overhead imposed by the tedious
storage stack has become a hindrance to achieving high per-
formance with limited CPU resources (Challenge 1).
Challenge in conversion phase. The performance becomes
worse when the conversion phase starts (FSR-Conv). We con-
tinuously send 64 KB sequential write requests to Fusion-
RAID with one I/O thread. Figure 3b shows the write through-
put and average latency over time. When the conversion phase
starts, write throughput drops from about 4.8 GB/s to 550
MB/s, and the latency increases from 0.4 ms to 5.9 ms. We
break down the CPU overhead of FSR-Conv into three parts,
which are shown in Figure 3c. Conv is the time consumed
by the conversion in the background. UserI/O is the time of
serving I/O requests sent by the user (i.e., replication of 64
KB sequential write). Lastly, Other includes other software
overheads in FSR-Conv (e.g., CPU spins for synchronization
among the I/O thread and kernel worker threads). Conv ac-
counts for 65.7% while UserI/O only consumes 23.9% of
the CPU resources. We further categorize Conv into Conv-Rd,
Conv-Cpt, and Conv-Wr, which represent the overheads of
the aforementioned read, compute, and write operations (i.e.,
2 , 3 , 4 in Figure 2b), respectively. As shown in Figure 3c,
the read and write (i.e., Conv-Rd and Conv-Wr) overheads
dominate the conversion phase, while Conv-Cpt only ac-
counts for 8.3%. To sum up, in the conversion phase, the
background tasks (i.e., I/O and computation) significantly
degrade the performance of user I/O (Challenge 2).
Intrinsic issues of two-phase write. Apart from the afore-
mentioned performance penalties, two-phase write AFA en-
gines impose two more challenges.

First, two-phase write introduces extra metadata, which in-
creases crash consistency cost (Challenge 3). Specifically, to
support out-of-place updates, the AFA engine maintains extra
mapping tables in host memory to record where data is actu-
ally stored. As these mapping tables are updated frequently,
persisting them imposes a huge burden on the host (e.g., by
writing an undo or redo log [27] before every update).

Second, two-phase write causes significant write amplifica-
tion (Challenge 4). Assume that 1⇥ data needs writing to a

144 2024 USENIX Annual Technical Conference USENIX Association

4+1 two-phase write AFA. In the replication phase, the AFA
engine duplicates the data by 2⇥ to provide guaranteed fault
tolerance. In the conversion phase, it reads 1⇥ data out for
parity computation and writes 1⇥ data and 0.5⇥ parity back
to SSDs. The total write amplification is 3.5⇥. These extra
writes significantly shorten the lifetime of SSDs.

3.2 Key Insights
User-space storage stack. The user-space storage framework,
such as Storage Performance Development Kit (SPDK) [70],
is a promising solution to address Challenge 1, that is, the
software overheads in the storage stack. Figure 3d shows the
architecture of SPDK. SPDK employs a block device abstrac-
tion called Bdev to perform the same functions as the block
device layer in the kernel. SPDK also implements a user-
space, asynchronous, polling-based NVMe driver. Therefore,
users can directly access NVMe SSDs in user space with-
out trapping into the intricate kernel. These designs achieve
a significant acceleration of the storage stack. However, it
is non-trivial to directly integrate the existing AFA designs
into SPDK. This is because traditional AFA engines rely on
multiple complicated locks to facilitate thread-level paral-
lelism [4, 63, 71], which violates the lock-free principle of
SPDK. Our key insight is that the SPDK-compatible message-
passing mechanism can be the alternative to locks for sup-
porting concurrent multi-thread access.
SSD-internal hardware resources. It is non-trivial to solve
Challenges 2⇠4 with purely software solutions. For exam-
ple, the read, compute, and write operations in the conversion
phase heavily rely on the host CPU. Even if we can optimize
parity computation with sophisticated algorithms, the major
overheads (i.e., Conv-Rd and Conv-Wr in Figure 3c) remain
unavoidable. In addition, solely software solutions are help-
less for mitigating the impact of write amplification (on SSD
endurance) due to the SSDs’ agnostic about the character-
istics of data (e.g., when it will be invalidated). Fortunately,
holistic designs can be a promising solution to address these
issues. Our key insight is that the available resources in SSDs
can overcome the software constraints in the existing AFA
engines, making them fit for next-generation storage.

4 ScalaAFA Overview

Inspired by the above analysis and key insights, we propose
ScalaAFA, a high-performance AFA engine built from holistic
designs, which overcomes all the aforementioned challenges
by embracing user-space storage stack and exploiting SSD-
internal hardware resources. Figure 4 illustrates the archi-
tecture of ScalaAFA. Note that, ScalaAFA focuses on improv-
ing the write performance of AFA engines and follows the
conventional designs of read path [36]. Prior work [63, 71]
has proved the scalability and high performance of read oper-
ations in available AFA solutions.

Space Manager

Mapping
Tables

ScalaAFA
Bdev

Granted Heroes

I/O Req.

Free HH ListFree HH List
Free VH ListsFree VH Lists

Consisted Hero Groups

Grt.
Ret.

Full HG ListsFull HG Lists

Placement Policy

All-Flash Array
SSD 0 SSD 1 SSD k+m-1

SLC Evictor
Conversion

S
L
C

M
L
C

Conv.
Command

I/O Req. &
Metadata

ScalaAFA Firmware

Stripe
Switcher

AFA
GC

Slice

cThread 0 Thread nData
Control /
Metadata

FTL
GCMapping

Figure 4: Architecture of ScalaAFA.

For Challenge 1, we adopt SPDK [70] to take advan-
tage of its high-performance NVMe driver and lightweight
storage stack. Considering the lock-free principle of SPDK,
ScalaAFA replaces the conventional lock mechanism with an
SPDK-compatible message-passing scheme to avoid write
collision among threads. Specifically, ScalaAFA first abstracts
storage space with a novel data structure named hero 2. Af-
terward, ScalaAFA employs a space manager to manage the
write permissions of all the storage spaces (i.e., heroes). These
permissions are granted to threads via message passing in
batches. Threads can only serve write requests with the heroes
where permissions are already granted.

For Challenge 2, a promising solution to relieve the CPU
burden is to offload the parity computation to the stor-
age, similar to the prior in-storage processing approaches
[37, 43, 53, 56]. Note that parity computation only consumes
minor CPU resources (cf. Conv-Cpt in Figure 3c). Such com-
putation can be easily taken with available on-device hard-
ware (e.g., the SSD-embedded XOR engines), which is origi-
nally designed to enable SSD-internal parity computation. For
instance, our prototype takes only 20 µs and 16 mW dynamic
power to calculate a 64 KB parity chunk from 6 data chunks
(cf. § 6.1 for details). However, this method cannot address
the background read and write issues in the conversion phase,
which have become the major bottleneck in two-phase write
AFA (cf. Conv-Rd and Conv-Wr in Figure 3c). This is because
two-phase write AFA scatters data chunks across different
SSDs in the replication phase. The conversion phase requires
the host CPU to copy all the corresponding data chunks to
the target SSD before offloading parity computation to that
SSD. Tackling this issue, we propose a novel placement pol-
icy, which can transparently gather data chunks of the same
stripe to the SSD where parity chunks will be stored. After-

2Hero is the name of the I-shape piece in Tetris.

USENIX Association 2024 USENIX Annual Technical Conference 145

ward, in the conversion phase, ScalaAFA only needs to send
a command through the stripe switcher to the SSD. Once re-
ceiving these commands, the conversion module in each SSD
is in charge of computing parity chunks on device (without
collecting data from other SSDs) and storing the parity locally
(without writing to other SSDs).

For Challenge 3, one feasible solution is to persist the map-
ping tables in host-side battery-backed DRAM [36]. However,
it increases monetary costs and cannot provide enough fault
tolerance (i.e., data cannot be located if the DRAM fails). It is
also impractical to store them in SSD internal battery-backed
DRAM as its limited capacity only keeps up to tens of MB
of data persistent [14]. To address this, we propose to persist
these mapping tables in the OOB area of SSDs. In particular,
considering OOB is scattered across different physical pages
of SSDs (cf. Figure 1), ScalaAFA first reconstructs the map-
ping tables into a segmentable data structure. It then slices
and piggybacks the mappings to SSDs via write requests. Fi-
nally, ScalaAFA persists the sliced mappings in OOB when
data is written to the data area. Note that writing data and its
metadata in the data and OOB areas can be done by a single
flash program operation, the cost of which is negligible.

For Challenge 4, while our novel placement policy has
eliminated extra I/O in the conversion phase, the replication
phase still causes m+1 times write amplification. We allevi-
ate its damage to SSD endurance by fully utilizing the durable
SLC buffer in SSDs. Specifically, ScalaAFA avoids writing
redundant replicas from SLC buffer back to the vulnerable
MLC blocks. This is because these replicas will be invali-
dated in the conversion phase soon (cf. § 2.2). To this end,
ScalaAFA deploys SLC evictor, which gives a low priority to
these replicated data when selecting victims to be evicted.

5 Design Details of ScalaAFA

5.1 Storage Space Abstraction
Figure 5 shows the storage space abstraction of ScalaAFA.
From the user’s perspective, ScalaAFA functions as a standard
block device, which exposes a continuous space, referred to
as user address space, and enables random writes as well
as in-situ updates. The user-written data will be sequentially
logged into an intermediary space, named AFA address space.
Contiguous k chunks (also named k slots) in AFA address
space are orchestrated as a stripe. Each stripe documents the
storage locations of the k data chunks and their corresponding
m parity chunks in the SSDs (i.e., in which SSD and the
SSD logical address in that SSD). ScalaAFA partitions the
storage space of SSDs into two virtual areas: normal area and
transient area. The former is used to store long-term data (e.g.,
data chunks after conversion) while the latter accommodates
transient data (e.g., replicated data chunks). Note that the
size of the transient area is variable and determined by the
total capacity of the SLC buffers (cf. § 2.1) within SSDs.

SSD 0 SSD 1 SSD 2

Transient Area

Normal Area

0x0
0x1

VH #1-0
VH #1-0

VH #2-0
VH #2-0

HH #1 HH #1 HH #1

VH #1-1
VH #1-1

VH #2-1
VH #2-1

0x2

HH #0 HH #0 HH #0

User Addr.

AFA Addr. Stripe

Horizontal
Hero

Vertical Hero

Hero Group #0:
HH #0 & VH #2-0

Figure 5: Space abstraction of ScalaAFA (k=2 and m=1).

ScalaAFA organizes the two areas as sets of horizontal hero
(HH) and vertical hero (VH), respectively. In the normal area,
k+m chunks with the same SSD logical address from k+m
SSDs are grouped as an HH (e.g., HH #0 in Figure 5), while
contiguous k chunks in the same SSD make up a VH in the
transient area (e.g., VH #2-0 in SSD 2). Further, ScalaAFA
composes one HH and m VHs from m different SSDs as a
hero group (HG), such as the HG #0 that consists of HH #0
and VH #2-0 (we will describe the rationale of HG in § 5.3).
With the abstraction of HG, ScalaAFA can track the storage
locations of data and parities by associating stripes with HGs.

5.2 Enable Lock-free Multi-Thread Access
ScalaAFA supports multiple I/O threads to access it concur-
rently. Similar to conventional block devices, ScalaAFA does
not provide sequential consistency [12]. Thus, there is no
need to prevent I/O threads from accessing the same user
address simultaneously. However, to prohibit these threads
from mapping different user addresses to the same AFA ad-
dress or mapping different AFA addresses to the same SSD
storage location (i.e., HG), ScalaAFA has to manage the write
permission of AFA address space and SSD storage space.
ScalaAFA achieves this with a user-space-friendly (i.e., lock-
free) message-passing scheme.

Considering the communication overhead, we first sim-
plify address mappings to reduce the need for communicating.
Specifically, we fix the mappings between stripes and HHs.
One stripe is bound with one HH that has the same offset. For
example, the first stripe in the AFA address space is bound
with the first HH in the normal area (i.e., HH #0 in Figure 5).
Therefore, we only need to assure that different user addresses
will not be mapped to the same HH and VHs (i.e., the same
HG) without considering the intermediary AFA address. To
this end, the space manager is responsible for granting and
retrieving the write permissions of heroes. Figure 6 gives an
example of our solution.
Grant. Initially, all write permissions of heroes belong to the
space manager (i.e., Free HH List and Free VH Lists). When
an SPDK I/O thread is set, it asks the space manager for VHs
and HHs. Then, the space manager grants heroes in batches

146 2024 USENIX Annual Technical Conference USENIX Association

Space Manager
Free HH List

···
Free HH List

···
Free VH ListsFree VH Lists

SSD 0SSD 0 ···
SSD 1SSD 1 ···
SSD 2SSD 2

VH #0-0VH #0-0

HH #0HH #0 #1#1

AA

Hero
Assembling

VH #1-0VH #1-0

HH #0HH #0

VH #2-0VH #2-0

HH #0HH #0

···VH #1-0VH #1-0

BB

CC Write Data

Grant

#2#2 ···VH #2-0VH #2-0

#1#1 ···

DD
Thread

Destruction

HH #1HH #1

···VH #1-0VH #1-0
······VH #2-0VH #2-0

Thread 0

HH #0HH #0

···VH #1-0VH #1-0 VH #2-0VH #2-0

#1#1 ···

Granted Heroes

Full HG ListsFull HG Lists

 Filled Up EE

HGFF
Co

nv
er

sio
n

HG

Figure 6: An example of write permission management.

(e.g., 1024⇤m VHs from m SSDs and 1024 HHs at once, A).
Afterward, if an I/O thread wants to write data chunks to a
certain user address, it first assembles granted HH and VHs
as an HG (B). Then, the data will be written to the HG (C),
and the user address will be mapped to the corresponding
stripe that is bound with the HH. If heroes are run out, the I/O
thread will ask the space manager for more grants.
Retrieve. The space manager can retrieve heroes in four ways:
(1) When an I/O thread is being destructed, it returns unused
heroes to the space manager (D); (2) When an HG is filled
up by an I/O thread, it will be inserted into a list (i.e., Full HG
Lists) associated with this thread (E). When the CPU is idle
or heroes are running out (i.e., the conversion phase starts), the
space manager scans the list of each I/O thread and conducts
conversion for HGs in the list. Note that, after conversion
phase, data and parity chunks are stored in the more space-
efficient striping layout (cf. § 2.2). Therefore, the saved space
(heroes) can be recycled (F); (3) If no more heroes can be
granted, the space manager broadcasts a message to recall
unused heroes from all I/O threads. The more often a thread
requests heroes over a period of time, the fewer heroes will be
recalled from that thread; (4) Out-of-place write invalidates
stale data and diminishes available storage space. The space
manager executes AFA-level GC [36] to recycle these spaces
and reuse heroes.

5.3 Evolve the Write Path
Replication phase with placement policy. With the afore-
mentioned space abstraction, we can place data chunks in
heroes to transparently gather them in the SSDs where conver-
sion will be executed. Figure 7 illustrates this process. In the
replication phase, if one data chunk is written to the stripe, it
will be replicated m+1 times. One of them (named primary
copy) will be stored in HH while the other m copies (named
backup copies) are written to m VHs. Taking Figure 7 as an
example, the user sends a write request to 0x0 and the data
chunk is logged in the first slot of the stripe, which is mapped
with HG #0. Therefore, in the replication phase, the primary
copy is written to the first slot of HH #0 (1a), and the backup
copy is placed in the first slot of VH #2-0 (1b). Repeating
this process, data chunks belonging to the same stripe will be

User Addr.

AFA Addr.

SSD Logical
Addr.

Stripe

HH #0 HH #0

VH #2-0
VH #2-0
HH #0

SSD 0 SSD 1 SSD 2

Data Compute Parity in SSD

0x0

1a1a 22

33

44 Hero Group #0:
{HH #0 & VH #2-0}

To SSD 2:
 Src: @VH #2-0
 Dst: @HH #0
 ChunkSize,
 Num, Ptype
 From Host Co

nv
er

si
on

 C
m

d.

1b1b

Figure 7: Procedure of conversion offloading (k=2 and m=1).

transparently gathered in VHs (e.g., the chunks in VH #2-0).
Conversion phase with offloading. Afterward, when the host
is idle or VHs are running out, ScalaAFA starts conversion
phase and offloads the conversion tasks to SSDs where the
VHs locate (e.g., SSD 2). To make the SSDs aware of this,
ScalaAFA extends the NVMe command set with a conversion
command. We include the following information in the new
command. Src: offset of the VH in SSD; Dst: the logical ad-
dress where parity chunk will be stored; ChunkSize: the size of
chunks; Num: the number of data chunks in one stripe (i.e., k);
Ptype: the type of parity chunk that will be computed. Ptype
is used to determine the parity computing method. For exam-
ple, in Reed-Solomon codes, Ptype is the row number of the
encoding vector in Vandermonde matrix [64]. Once receiving
the command, the SSD executes conversion locally. Specifi-
cally, the SSD controller reads Num chunks with ChunkSize
from Src (2) to its internal DRAM. It then computes the
parity chunk according to Ptype (3) and writes the parity
chunk to Dst (4). Finally, the SSD cleans the data in VH
(e.g., VH #2-0) by marking the flash pages as invalid. Note
that, after 4 , the HH (e.g., HH #0) has stored data and parity
chunks in striping layout. Thus, ScalaAFA avoids extra writes
for scattering chunks (cf. § 2.2). By doing these, ScalaAFA
successfully reduces the host-SSD I/O in conversion phase
thereby mitigating the performance degradation in this phase.

5.4 Persist the Metadata
Mapping table. As shown in Figure 8, ScalaAFA maintains
two mapping tables in host memory: AFA Mapping Table
(AMT) and Hero Group Mapping Table (HGMT). AMT maps
user addresses to AFA addresses, which records a 32-bit AFA
chunk number for each chunk in user address space. HGMT
translates AFA addresses (i.e., stripes) to SSD storage lo-
cations (i.e., HGs). Since stripes and HHs are one-to-one
mapped (cf. § 5.2), ScalaAFA only needs to record the map-
ping information between stripes and VHs. To this end, each
row in HGMT represents a stripe and maintains a pointer to a
VH list that records the m VHs of this HG. Each item in the
VH list contains two components: an 8-bit SSD ID to record
which SSD the VH locates in and a 32-bit VH number, which

USENIX Association 2024 USENIX Annual Technical Conference 147

AFA Mapping Table (AMT)

User Chunk No. AFA Chunk No.
0x0 0x0
0x1 0x1

User Chunk No. AFA Chunk No.
0x0 0x0
0x1 0x1
0x2 NULL

Stripe No.
0x0
0x1

<SSD ID, VH No.>
<2, 0x0>

<0, 0x0>
Hero Group

Mapping Table (HGMT)

User Chunk No. SSD LPNSlotUser Chunk No. SSD LPNSlot
0x0
0x1
0x3

0
1
0

0x20
0x20
0x40

User Chunk No. SSD LPNSlot
0x0
0x1
0x3

0
1
0

0x20
0x20
0x40

Persistent Mapping Table
(PMT)

Persisted
SSD 0
SSD 1
SSD 2

0x3 0x2

Figure 8: Mapping tables in ScalaAFA.

is the offset of the VH in that SSD. If a stripe is in striping
layout (i.e., after conversion), its VHs have been recycled (cf.
§ 5.3) and the VH list is NULL. Note that, in ScalaAFA, the
chunk size is 64 KB by default. Therefore, to create a 6+3
AFA with 2TB SSDs, ScalaAFA needs only about 928 MB
(0.005%) memory to maintain AMT and HGMT.
Persisting the mapping table. As two-phase write AFA has
to update its mapping tables frequently, persisting such meta-
data, in turn, introduces huge software overheads (e.g., by
persisting an undo/redo log [27] before every update). One
possible solution to tackling this challenge is to maintain the
metadata in SSD-internal OOB. However, OOB is scattered
across different physical pages and the size of OOB in each
flash page is tens of bytes (cf. § 2.1). It is difficult to store the
entire AMT and HGMT in one OOB.

To better utilize the constrained OOB, we first convert AMT
and HGMT to a segmentable mapping table, called persistent
mapping table (PMT). As shown in Figure 8, each entry in
PMT corresponds to a chunk in the user address space (i.e.,
user chunk number). It contains an 8-bit slot number and a
32-bit SSD LPN. The former represents the slot in the stripe
where the chunk is placed. The latter records the SSD logical
address of the chunk’s primary copy (i.e., the copy placed
in HH, cf. § 5.3). For example, user chunk 0x0 is placed
in slot 0 of the first stripe in AFA address space, and its
primary copy is stored in 0x20 of SSD 0 (cf. Figures 7 and
8). Since logical pages are one-to-one mapped to physical
pages in SSD, we slice PMT based on SSD LPN and store
it in the corresponding OOB. Specifically, we piggyback the
user chunk number and slot number in write requests and send
them to SSDs with a 32-bit timestamp. When writing data to
flash physical pages, the SSD controller persists the metadata
to OOB via the same program operations (i.e., without extra
write). To guarantee fault tolerance of PMT, we also com-
pute parity codes for metadata. Specifically, in the conversion
phase, the conversion module reads both data and metadata
from the same physical page with a single read operation. It
then computes parity codes for them simultaneously. Finally,
the parity codes of data and metadata will be written back
together and stored in the same page (cf. § 5.3). Note that our
solution only utilizes 72 bits spare space of OOB (cf. § 2.1)
per chunk to persist our customized metadata, which does not
affect other OOB-based functions (e.g., ECC).

Recovery of mapping table. Take Figure 8 as an example to
depict how we recover AMT and HGMT. For simplicity, we
assume the chunk size, flash page size, and transient area size
of each SSD are 64, 4, and 128 KB. First, we scan OOB to
recover PMT. However, this process can be time-consuming
as it needs to scan all flash pages. We accelerate this process
by adopting periodical checkpoints [72] and only scanning
the un-checkpointed metadata. From PMT, we know that the
primary copy of user chunk 0 is stored at 0x20 of SSD 0,
which is the first chunk of the normal area (i.e., HH #0 in Fig-
ure 7). Therefore, user chunk 0 is stored in the first stripe
of AFA address space. Considering the slot number of user
chunk 0 is 0, the chunk is stored in the first chunk of AFA
address space, i.e., its AFA chunk number is 0. Repeating this,
we can restore AMT. As user chunks 0 and 1 are stored in
SSD 0 and 1, respectively, we know that their parity chunk is
stored in SSD 2 (i.e., SSD ID). We then read the OOB from
0x20 of SSD 2 and verify if it is the parity. If so, this stripe is
in the striping layout and the corresponding item in HGMT is
NULL. Otherwise, we need to scan the transient area of SSD
2 and match the OOB with user chunks 0 and 1 to locate
their VH (i.e., VH number). Thereby, we recover the HGMT.

5.5 Reduce the Impact of Write Amplification

While our conversion offloading has eliminated extra I/Os
in conversion phase (cf. § 5.3), the replication phase still
causes m+ 1 times write amplification, which significantly
shortens the SSD lifetime. Our key insight is that backup
copies (i.e., data in VHs) in two-phase write are transient and
will be invalidated soon in the conversion phase. Thus, there
is no need to flush them from the durable SLC buffer to the
vulnerable MLC blocks. Unfortunately, SSDs are unaware
of which data are transient. Tackling this issue, we propose
a holistic design. Specifically, when writing backup copies
to SSDs, ScalaAFA marks them as transient data by flagging
one bit in the write requests. Once receiving these requests,
SSD records the transient tags. Afterward, when the SLC
buffer is full, the SLC evictor selectively evicts SLC blocks
by considering the transient tags. To be specific, the SLC
evictor will evict the SLC block with the highest evicting
score, which can be calculated with the following formula:

score = f actor ⇤num_invalid �num_transient

num_invalid and num_transient are the numbers of invalid
and transient pages in this block, while f actor is a constant.
We set it as 1 empirically in this paper. If one block has
more invalid pages, we evict it in higher priority, because it
generates fewer writes in this eviction. On the other hand, if
one block contains more transient pages, we evict it in lower
priority. Since these pages will be invalidated soon, there is
no need to flush them to MLC blocks immediately.

148 2024 USENIX Annual Technical Conference USENIX Association

5.6 Implementation
ScalaAFA employs a daemon thread to play the role of
space manager. When an AFA is created, we initialize
the daemon thread and bind it to a fixed CPU core via
spdk_env_thread_launch_pinned(). All of our modifications
to NVMe protocols are based on NVMe Base Specification
2.0c [5] and NVMe Command Set Specification 1.0c [6]. The
conversion command is implemented as an NVMe IO com-
mand. The transient tag uses one reserved bit in NVMe write
command. We piggyback the user chunk number, lot num-
ber, and timestamp to SSDs and program them in OOB with
the support of NVMe Protection Information feature [6]. We
develop ScalaAFA in SPDK v22.05 [8] with 6K LOC. The
modification to SSD firmware is implemented in a popular
SSD emulator [47] with 1K LOC.

6 Evaluation

6.1 Experimental Setup
Methodology. We use Femu [47], a QEMU-based SSD emu-
lator, to evaluate our holistic designs. We set up the QEMU
virtual machine to run on Linux v5.11.0 with 32 CPU threads,
32 GB DRAM, and up to 8 NVMe SSDs. We configure the
emulated SSDs as high-performance storage devices with
7500 MB/s and 4890 MB/s peak read and write bandwidths,
respectively. We set the size of the SLC buffer to 4 GB. These
configurations match with commercial high-end SSD prod-
ucts [2]. In addition, our simulator employs an XOR engine
in the SSD controller, which is the same as the state-of-the-art
SSD devices [15, 16, 67]. We get configurations of the XOR
engine from Xilinx xc7a200t FPGA with 200 MHz clock. It
takes 20 µs and 16 mW dynamic power to calculate a 64 KB
parity chunk from 6 data chunks. The conversion of a stripe
in SSD costs 103 µs in total. The key configurations in our
experiments are listed in Table 1.
AFA platforms. We compare ScalaAFA with five other popu-
lar AFA engines. (1) mdraid [4]: the default stripe write AFA
engine implemented in Linux kernel; (2) ScalaRAID [71]:
a state-of-the-art stripe write AFA engine, which mitigates
the software overheads of mdraid with fine-grained locks and
improves its performance to some extent; (3) stRAID [63]:
another stripe write AFA engine, which alleviates the software
overheads in mdraid with a run-to-complete I/O processing
scheme; (4) RAID5F [7]: an incomplete stripe write AFA
engine in SPDK, which has no crash consistency and can

only serve RAID 5 full-stripe I/O (i.e., the I/O size is equal
to the stripe size). We consider the performance of RAID5F
is close to the ideal case of software-only stripe write AFA
designs; (5) FusionRAID [36]: a state-of-the-art two-phase
write AFA engine; (6) ScalaAFA: the user-space AFA engine
that includes all the designs proposed in this paper. We set
the chunk size in all the AFA platforms as 64 KB.

Host System Femu Software

CPU
Intel Xeon 5320 Virtual

machine
32 CPU threads Linux

kernel v5.11.01⇥26 Core / 2.2 GHz 32 GB DRAM
with hyper-threading

Flash
8 Channel / 12 Die /
1 Plane / 352 Block /

512 Page / 4 KB

fio v3.30
Mem. 8⇥64 GB / DDR4 perf v5.11

SSD Samsung 980 Pro mdadm v4.1
R/W: 7000/5200 MB/s Bw. R/W: 7500/4890 MB/s SPDK v20.05

Table 1: System configurations.

Trace Wr. cnt.
(Kops)

Rd. cnt.
(Kops)

Avg. wr. len.
(KB)

Avg. rd. len.
(KB)

Data wr.
(GB)

Data rd.
(GB)

proxy0 12135.4 383.5 4.6 8.3 53.8 3.1
prn 7753.0 9066.3 10.4 22.5 76.8 194.5
src2 2201.1 1171.3 23.2 54.8 48.8 61.2
CFS 1173.0 3304.1 12.6 8.7 14.1 27.3
DAP 475.3 610.4 97.2 62.1 44.1 36.2

webmail 6381.9 1413.8 4.0 4.0 24.3 5.4

Table 2: Characteristics of real workloads.

Workloads. We evaluate ScalaAFA with various benchmark
suites and applications. Specifically, we measure the perfor-
mance of different AFA engines by employing fio v3.30 [13]
to execute microbenchmarks. By default, we use a single I/O
thread to generate asynchronous I/O requests. We also con-
sider the multi-thread scenarios in scalability testing (cf. §
6.2). To reflect the impacts of block devices on system perfor-
mance, we evaluate ScalaAFA with block I/O traces [45]. We
select six representative workloads from both industries (Mi-
crosoft MSRC [38] and MSPC [55]) and academia (FIU [61])
including both write-dominated (e.g., proxy0) and read-write
mixed (e.g., DAP) traces with varied I/O sizes. Table 2 sum-
marizes the key characteristics of the selected workloads. We
also conduct a comparison on RocksDB [24], a popular KV
store, with db_bench [25], which demonstrates the end-to-
end performance improvement brought by our designs.

6.2 Overall Performance
Throughput. We compare the write throughput of different
AFA engines, which is shown in Figure 9. We set the I/O
depth to 32. ScalaRAID slightly outperforms mdraid. This
is because ScalaRAID aims at mitigating the overheads of
lock mechanism. However, such overheads are not severe
when employing only one I/O thread (cf. § 3.1). stRAID
also achieves 17.9% higher full-stripe write throughput than
mdraid, on average, thanks to its run-to-complete I/O process-
ing scheme. As shown in Figure 9c, mdraid, ScalaRAID and
stRAID all have poor performance in 64 KB random write
accesses because stripe write AFA are unfriendly to partial
write. Since mdraid and ScalaRAID opportunistically aggre-
gate multiple contiguous write requests as a full-stripe write
by employing a DRAM cache [4, 63], they achieve higher
performance for 64 KB sequential write than stRAID (cf. Fig-
ure 9d). FusionRAID outperforms stRAID by 3.6⇥ in 64 KB
random write, on average. This is because it absorbs partial
write requests with replication. Also, it updates data chunks in
an out-of-place way, which avoids the tedious read-construct-

USENIX Association 2024 USENIX Annual Technical Conference 149

(a) Full-stripe random write. (b) Full-stripe sequential write. (c) 64 KB random write. (d) 64 KB sequential write.

Figure 9: Comparison of write throughput on microbenchmarks.

(a) 4 KB sequential. (b) 4 KB random. (c) 64 KB sequential. (d) 64 KB random. (e) Full-stripe sequential. (f) Full-stripe random.

Figure 10: Comparison of write latency CDF on microbenchmarks.

write procedure. ScalaAFA outperforms FusionRAID in all
types of I/O access patterns. For example, in 64 KB sequen-
tial write, ScalaAFA further improves the write throughput
by 1.6⇥, 2.4⇥, 2.4⇥, and 2.5⇥ in 2+1, 4+1, 6+1, and 6+2
AFAs, respectively. This is because the key techniques in
ScalaAFA, such as the user-space design and conversion of-
floading, significantly reduce the CPU burdens. RAID5F out-
performs ScalaAFA by 12.4% in 2+1 AFA, but has worse
performance (17.4% and 13.1%) in 4+1 and 6+1 AFAs. This
is because conversion overhead is minor in 2+1 AFA whereas
becoming severe as the number of SSDs increases. With our
hardware/software co-designs, ScalaAFA not only offloads
parity computation to SSDs but also eliminates the penalty of
data preparation (cf. §5.3).
Latency. Figure 10 shows the cumulative distribution func-
tion (CDF) of all the tested AFA engines in terms of latency.
We omit stRAID in this comparison for the implementation
bugs in its open-sourced codes. We select 4+1 AFAs in this
test. We set the I/O depth to 1 for 4 KB write while it is 32
for both 64 KB and full-stripe write. There is no visible dif-
ference between ScalaRAID and mdraid in the 4 KB write
scenario. However, ScalaRAID reduces the average and 99th

percentile latency by 22.9% and 15.0% for full-stripe random
write, where the lock overhead is not negligible. FusionRAID
outperforms mdraid in terms of both average and tail laten-
cies. For example, it reduces the average and 99th percentile
latency to 66.1% and 48.2%, respectively, for 64 KB sequen-
tial write. ScalaAFA shows significantly better CDF profiles
in all scenarios. Compared with FusionRAID, ScalaAFA fur-
ther reduces the average and 99th percentile latency by 52.7%
and 41.9% for full-stripe write, respectively. This is because
ScalaAFA not only benefits from the high-performance user-
space storage stack but also mitigates performance degra-
dation caused by conversion with SSD architectural innova-
tions. Although RAID5F is considered an ideal software-only

(a) 4+1 AFA. (b) 6+1 AFA.

Figure 11: Comparison of scalability.

AFA solution, ScalaAFA even achieves 4.8% shorter 99th per-
centile tail latency than RAID5F thanks to our exploration of
hardware resources (e.g., conversion offloading).
Scalability. We further measure the scalability of different
AFA engines by varying the number of I/O threads from 1
to 12, which is shown in Figure 11. For mdraid, ScalaRAID,
and stRAID, we employ the same number of worker threads
as I/O threads (as suggested by prior work [63, 71]). We also
plot the ideal throughput of two-phase write AFA engines
(i.e., (k+m)/(m+1)⇤S, where S is the peak bandwidth of a
single SSD). mdraid gains limited benefits from extra threads.
It achieves peak performance when employing 8 I/O threads.
This is because lock overhead caused by multi-thread ac-
cess dominates the time cost of the storage stack [71]. Ben-
efited from the lower software overhead (i.e., fine-grained
locks [71] and run-to-complete I/O processing scheme [63]),
ScalaRAID and stRAID are more scalable than mdraid. They
achieve 11.0 GB/s and 11.3 GB/s, respectively, in 4+1 AFA
with the cost of 12 I/O threads. In comparison, ScalaAFA
can achieve 11.4 GB/s with only one I/O thread, which is
almost the same as the ideal case for 4+1 AFA. The minor
performance difference between ScalaAFA and the ideal case
comes from the background tasks within SSDs (e.g., con-
version). For 6+1 AFA, FusionRAID achieves only 6.4 GB/s
with one I/O thread, 37.5% of the ideal performance. This

150 2024 USENIX Annual Technical Conference USENIX Association

(a) proxy0. (b) prn. (c) src2. (d) CFS. (e) DAP. (f) webmail.

Figure 12: Comparison of write throughput on real workloads.

(a) proxy0. (b) prn. (c) src2. (d) CFS. (e) DAP. (f) webmail.

Figure 13: Comparison of write latency CDF on real workloads.

is because FusionRAID suffers from the huge CPU burden
caused by the tedious storage stack (cf. § 3.1). ScalaAFA
improves the throughput to 12.0 GB/s and 15.7 GB/s when
employing 1 and 2 I/O threads, respectively. This is because
ScalaAFA imposes minor overhead on the host CPU, thereby
allowing I/O threads to fully exploit the bandwidth of SSDs.

6.3 Analysis of Real Workloads

Throughput. Figure 12 illustrates the throughput of differ-
ent AFA engines in different real workloads. We set the I/O
depth to 32 in this test. Compared with mdraid, FusionRAID
achieves 34.1% higher throughput in all workloads, on av-
erage. Based on FusionRAID, ScalaAFA further improves
the average throughput by 2.9⇥, 2.2⇥, and 1.2⇥ in work-
loads prn, src2, and DAP, respectively. Moreover, it shortens
the completion time of all workloads to 30.0%, on average,
compared with FusionRAID. Workload DAP has the largest
average write request size, in which ScalaAFA achieves the
highest average throughput (i.e., 4.8 GB/s) among all work-
loads. All AFA solutions exhibit the lowest throughput in
webmail. This is because webmail has the smallest write
request size, which cannot fully utilize the SSD-internal par-
allelism. However, the bandwidth of ScalaAFA still exceeds
that of FusionRAID by 2.8⇥.
Latency. Figure 13 shows the latency CDFs in different real
workloads. Compared with mdraid, FusionRAID reduces the
average and 99th percentile latency by 13.8% and 59.7%,
respectively. In all workloads, ScalaAFA achieves the best
CDF profiles. For example, ScalaAFA reduces the average
latency to 24.2% and 26.9% in proxy0 and prn, compared to
FusionRAID. ScalaAFA reduces the 99th percentile latency of
FusionRAID by 59.1%, 65.1%, and 72.5% in the src2, CFS,
and webmail, respectively. This is because ScalaAFA not
only offloads conversion to SSDs that eliminates background

I/O but also benefits from the lock-free user-space designs.

6.4 End-to-end Evaluation
To demonstrate the superiority of ScalaAFA on applications,
we conduct an end-to-end evaluation on RocksDB [24], a
popular KV store. We run RocksDB on Ext4 and BlobFS [60]
file systems for kernel-space (i.e., mdraid and FusionRAID)
and user-space (i.e., ScalaAFA) AFA engines, respectively.
We use five representative benchmarks from db_bench in-
cluding both write-dominated (e.g., fillrandom) and read-
write-mixed (e.g., fillseekseq) workloads. We set the key
and value sizes as 16 B and 1 KB, respectively. Figure 14
illustrates the throughput comparison of different AFA en-
gines. Thanks to the utilization of SSD-internal resources
and the high-performance storage software stack, ScalaAFA
achieves the highest throughput in all workloads. Specifi-
cally, ScalaAFA outperforms mdraid by 41.4% in all tests, on
average. Compared with FusionRAID, ScalaAFA improves
the average throughput by 31.9%, 41.1%, and 23.8% in
fillrandom, fillseq, and overwrite, respectively. The im-
provement decreases to 8.1% in fillseekseq. This is be-
cause, in this workload, lots of I/O requests are absorbed by
the DRAM cache [19] of RocksDB without entering AFAs.

6.5 Benefits of Individual Techniques
In this section, we evaluate the benefits brought by each key
design in ScalaAFA. We implement two new AFA engines,
which incorporate only parts of ScalaAFA techniques. (1)
Scala-CO: based on ScalaAFA, we execute the conversion
in the host. Specifically, in the conversion phase, the dae-
mon thread reads the data chunks from the SSDs, computes
the parity chunks, and finally writes them back to SSDs; (2)
Scala-WR: based on ScalaAFA, we do not set the replicated

USENIX Association 2024 USENIX Annual Technical Conference 151

Figure 14: Comparison in RocksDB. Figure 15: Sources of performance improvement. Figure 16: Write count reduction.

chunks as low priority. We use 4+1 AFA in this evaluation.

Sources of performance improvement. We compare the
write throughput and latency of different AFA engines in
different I/O patterns, which is shown in Figure 15.

• Benefit of lock-free user-space design: Compared with
FusionRAID, Scala-CO reduces the average latency by
45.2% and improves the write throughput by 58.4%, for
all scenarios on average. Note that, FusionRAID [36] rec-
ommends persisting metadata with host-side battery-backed
DRAM, which is impractical for productions considering its
monetary cost and insufficient fault tolerance. In our repro-
duced version, FusionRAID employs the same metadata per-
sistence scheme as ScalaAFA. Therefore, the performance dif-
ferences between FusionRAID and Scala-CO mainly come
from our lock-free user-space design (i.e., message-passing-
based permission management for multi-thread access).

• Benefit of conversion offloading: In comparison to
Scala-CO, ScalaAFA reduces the average latency by 36.1%.
In terms of write throughput, ScalaAFA improves the per-
formance by 39.6%, 36.1%, 37.9%, and 34.0% for 64 KB
sequential and random write, full-stripe sequential and ran-
dom write, respectively. This is because the conversion takes
up 77.6% of the CPU ticks of the daemon thread, which
significantly disrupts the space manager running on the dae-
mon thread thereby blocking user I/Os. In contrast, ScalaAFA
achieves higher throughput in all testing scenarios thanks to
the conversion offloading design.

Write amplification reduction on MLC blocks. To evaluate
how much our design can mitigate the impact of write amplifi-
cation, we set the size of the SLC buffer to 4 GB and count the
number of writes on MLC blocks. The results are shown in
Figure 16. Compared to Scala-WR, which performs the same
as existing two-phase write engines [26, 36, 65], ScalaAFA
can decrease write count in all workloads. For example, it
alleviates the write amplification by 38.6%, 12.2%, 37.7%,
and 28.4% in proxy0, prn, src2, and webmail, respectively.
This is because, with our holistic write amplification reduc-
tion scheme, ScalaAFA evicts the replicated data to MLC
blocks in a low priority as these data will be invalidated right
after the conversion phase. Therefore, ScalaAFA reduces the
amount of data written to the vulnerable MLC blocks.

7 Related Work and Discussion

Overheads of AFA engines. Multiple studies [31, 35, 36, 50,
51, 63, 71] have been proposed to mitigate the software over-
heads of AFA engines. ScalaRAID [71] and stRAID [63]
partially mitigate the overhead of multi-thread access with
fine-grained lock schemes and distributed data structures. Fu-
sionRAID [36] reduces the overhead of partial write with
two-phase write scheme. However, the overheads of parity
computation and background I/O (e.g., conversion) still ex-
ist in the prior work and impose a huge burden on the host
CPU, especially in I/O-intensive scenarios. In contrast, the
holistic designs in ScalaAFA not only alleviate the lock over-
heads but also eliminate the conversion penalty. Moreover,
our hardware-based metadata persistence scheme can further
accelerate AFA. EAR [50] tries to reduce the data reads/writes
in conversion phase with a sophisticated flow graph matching
algorithm. However, EAR still computes parities out of place
and requires extra communications among storage nodes for
forwarding computing results (i.e., map-reduce). Consider-
ing the lack of proactive communication capability between
SSDs, it is hard to adopt EAR for AFA scenario. In compari-
son, ScalaAFA can generate parities locally, which completely
eliminates the communications among SSDs. Besides, Much
prior work [16, 21, 30, 40–42, 46, 48, 51, 69] has extensively
studied the performance degradation caused by SSD GC in
AFA. In contrast, ScalaAFA focuses on optimizing the general
write scenario and is orthogonal to these approaches.
In-storage processing. As high-performance SSDs usually
equip abundant computing resources (e.g., ARM processors
and XOR engine), much prior work [22, 37, 43, 44, 52, 53, 56]
proposes to offload tasks to SSDs. HolisticGNN [43] offloads
GNN operators to SSDs. Cognitive SSD [53] accelerates
deep learning with on-device resources. Willow [56] extends
the same idea to a general-purpose framework, which allows
applications to offload data-intensive operands to the underly-
ing SSDs. ScalaAFA extends this idea by taking the system
overheads of the AFA scenario into consideration.
Comparison summary. Taking the discussion of related work
into consideration, we summarize the key differences between
prior work and our proposed ScalaAFA in Table 3.
Trade-off in ScalaAFA. Compared to traditional software-
only designs, the main obstacle of implementing ScalaAFA is
the modification of SSD firmware. Limited by SSD vendors, it
is difficult to achieve this in off-the-shelf SSDs. However, we

152 2024 USENIX Annual Technical Conference USENIX Association

Challenge Challenge 1 Challenge 2 Challenge 3 Challenge 4

Overhead User-kernel
ctx. switch

Lock-based
thread sync. Conversion Metadata

persist.
Write

amplification
mdraid

ScalaRAID X
stRAID X

EAR X
ScalaAFA X X X X X
X = Solved; X= Mitigated; = Ignored.

Table 3: Overall comparison across different AFA solutions.

believe in its prospects, given the significant benefits brought
by our holistic designs (cf. § 6) and the emergence of in-
storage processing.

8 Conclusion

Existing AFA engines fail to adopt next-generation high-
performance SSDs because of the huge software overhead
caused by the storage stack and AFA internal tasks. Tackling
this issue, we propose a new user-space AFA engine with
holistic designs, called ScalaAFA, which is tightly integrated
into SPDK while harnessing SSD built-in resources to de-
liver scalable performance at low CPU costs. To be specific,
ScalaAFA employs a message-passing-based permission man-
agement mechanism for concurrent access thereby conform-
ing to the lock-free principle of SPDK. ScalaAFA offloads
the conversion tasks to SSDs, which reduces the CPU bur-
den. Lastly, ScalaAFA addresses the metadata persistence and
write amplification issues by exploiting SSD architectural in-
novations. Evaluation results reveal that ScalaAFA improves
the write throughput to 2.5⇥ and reduces the average latency
by 52.7% compared to the state-of-the-art AFA solutions.

Acknowledgement

We thank the anonymous reviewers for their constructive feed-
back. This work is mainly supported by the National Key Re-
search and Development Program of China under Grant No.
2023YFB4502702, the National Natural Science Foundation
of China under Grant No. 62332021, the Fundamental Re-
search Funds for the Central Universities, Peking University,
and the State Key Lab of Processors, Institute of Comput-
ing Technology, CAS under Grant No. CLQ202309. Dr. Li
is supported in part by the National Natural Science Foun-
dation of China under Grant No. 62202396. Dr. Wang is
supported in part by the Innovation Funding of ICT, CAS
under Grant E261110. Dr. Mao is supported in part by the
National Natural Science Foundation of China under Grant
No. U22A2027 and No. 61972325. Dr. Jung is supported in
part by NRF2021R1A2C4001773, IITP 2021-0-00524, IITP
2022-0-00117, IITP RS-2023-00221040, G01230749, SRFC-
IT2302-05, Samsung HiPER (G01220296), and KAIST IDEC.
The corresponding author is Jie Zhang.

References

[1] Netapp inc. data ontap 8. http://www.netapp.com/
us/products/platform-os/data-ontap-8/, 2010.

[2] Samsung 980pro nvme ssd. https://
www.samsung.com/us/computing/memory-storage/
solid-state-drives/980-pro-pcie-4-0-nvme-
ssd-1tb-mz-v8p1t0b-am/, 2020.

[3] Marvel bravera sc5 ssd controllers. https:
//www.marvell.com/products/ssd-controllers/
mv-ss1331-1333.html, 2022.

[4] mdraid layer. https://github.com/torvalds/
linux/tree/master/drivers/md, 2022.

[5] Nvm express base specification 2.0c. https:
//nvmexpress.org/wp-content/uploads/NVM-
Express-Base-Specification-2.0c-2022.10.04-
Ratified.pdf, 2022.

[6] Nvm express nvm command set specification 1.0c.
https://nvmexpress.org/wp-content/uploads/
NVM-Express-NVM-Command-Set-Specification-
1.0c-2022.10.03-Ratified.pdf, 2022.

[7] Raid5f. https://github.com/spdk/spdk/tree/
master/module/bdev/raid/raid5f.c, 2022.

[8] Spdk v22.05. https://github.com/spdk/spdk/
tree/v22.05.x, 2022.

[9] Dell dell powerstore 500t storage array.
https://www.delltechnologies.com/asset/
en-ca/products/storage/technical-support/
dell-powerstore-gen2-spec-sheet.pdf, 2023.

[10] Samsung pm1743. https://
semiconductor.samsung.com/ssd/enterprise-
ssd/pm1743/, 2023.

[11] Ahmed Izzat Alsalibi, Sparsh Mittal, Mohammed Azmi
Al-Betar, and Putra Bin Sumari. A survey of techniques
for architecting slc/mlc/tlc hybrid flash memory–based
ssds. Concurrency and Computation: Practice and Ex-
perience, 30(13):e4420, 2018.

[12] Hagit Attiya and Jennifer L Welch. Sequential con-
sistency versus linearizability. ACM Transactions on
Computer Systems (TOCS), 12(2):91–122, 1994.

[13] Jens Axboe. Flexible i/o tester. https://github.com/
axboe/fio, 2019.

[14] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young
Hwang, Sangyeun Cho, Dong-Gi Lee, and Jaeheon
Jeong. 2b-ssd: the case for dual, byte-and block-
addressable solid-state drives. In 2018 ACM/IEEE 45th

USENIX Association 2024 USENIX Annual Technical Conference 153

http://www.netapp.com/us/products/platform-os/d%20ata-ontap-8/
http://www.netapp.com/us/products/platform-os/d%20ata-ontap-8/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-mz-v8p1t0b-am/
https://www.marvell.com/products/ssd-controllers/mv-ss1331-1333.html
https://www.marvell.com/products/ssd-controllers/mv-ss1331-1333.html
https://www.marvell.com/products/ssd-controllers/mv-ss1331-1333.html
https://github.com/torvalds/linux/tree/master/drivers/md
https://github.com/torvalds/linux/tree/master/drivers/md
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-1.0c-2022.10.03-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-1.0c-2022.10.03-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-1.0c-2022.10.03-Ratified.pdf
https://github.com/spdk/spdk/tree/master/module/bdev/raid/raid5f.c
https://github.com/spdk/spdk/tree/master/module/bdev/raid/raid5f.c
https://github.com/spdk/spdk/tree/v22.05.x
https://github.com/spdk/spdk/tree/v22.05.x
https://www.delltechnologies.com/asset/en-ca/products/storage/technical-support/dell-powerstore-gen2-spec-sheet.pdf
https://www.delltechnologies.com/asset/en-ca/products/storage/technical-support/dell-powerstore-gen2-spec-sheet.pdf
https://www.delltechnologies.com/asset/en-ca/products/storage/technical-support/dell-powerstore-gen2-spec-sheet.pdf
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1743/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1743/
https://semiconductor.samsung.com/ssd/enterprise-ssd/pm1743/
https://gith%20ub.com/axboe/fio
https://gith%20ub.com/axboe/fio

Annual International Symposium on Computer Architec-
ture (ISCA), pages 425–438, 2018.

[15] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R Ganger,
and George Amvrosiadis. Zns: Avoiding the block inter-
face tax for flash-based ssds. In 2021 USENIX Annual
Technical Conference (ATC), pages 689–703, 2021.

[16] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
Lightnvm: The linux open-channelssd subsystem. In
15th USENIX Conference on File and Storage Technolo-
gies (FAST), pages 359–374, 2017.

[17] John Canny, Huasha Zhao, Bobby Jaros, Ye Chen, and
Jiangchang Mao. Machine learning at the limit. In 2015
IEEE International Conference on Big Data (Big Data),
pages 233–242, 2015.

[18] Zhichao Cao. High-Performance and Cost-Effective
Storage Systems for Supporting Big Data Applications.
PhD thesis, University of Minnesota, 2020.

[19] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
rocksdbkey-value workloads at facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST), pages 209–223, 2020.

[20] Feng Chen, Tian Luo, and Xiaodong Zhang. Caftl: A
content-aware flash translation layer enhancing the lifes-
pan of flash memory based solid state drives. In 9th
USENIX Conference on File and Storage Technologies
(FAST), 2011.

[21] Tzi-cker Chiueh, Weafon Tsao, Hou-Chiang Sun, Ting-
Fang Chien, An-Nan Chang, and Cheng-Ding Chen.
Software orchestrated flash array. In Proceedings of
International Conference on Systems and Storage, pages
1–11, 2014.

[22] Hyeokjun Choe, Seil Lee, Hyunha Nam, Seongsik Park,
Seijoon Kim, Eui-Young Chung, and Sungroh Yoon.
Near-data processing for differentiable machine learning
models. arXiv preprint arXiv:1610.02273, 2016.

[23] Arnaldo Carvalho De Melo. The new linux’perf’tools.
In Slides from Linux Kongress, volume 18, pages 1–42,
2010.

[24] Facebook. Rocksdb. http://rocksdb.org/, 2015.

[25] Facebook. Performance benchmarks. https:
//github.com/facebook/rocksdb/wiki/
Benchmarking-tools, 2021.

[26] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gib-
son. Diskreduce: Raid for data-intensive scalable com-
puting. In Proceedings of the 4th annual workshop on
petascale data storage, pages 6–10, 2009.

[27] Jim Gray, Paul McJones, Mike Blasgen, Bruce Lindsay,
Raymond Lorie, Tom Price, Franco Putzolu, and Irving
Traiger. The recovery manager of the system r database
manager. ACM Computing Surveys (CSUR), 13(2):223–
242, 1981.

[28] Laura M Grupp, John D Davis, and Steven Swanson.
The bleak future of nand flash memory. In FAST, vol-
ume 7, pages 10–2, 2012.

[29] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and
Anand Sivasubramaniam. Leveraging value locality
in optimizing nand flash-based ssds. In 9th USENIX
Conference on File and Storage Technologies (FAST),
2011.

[30] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A Chien, and
Haryadi S Gunawi. The tail at store: A revelation from
millions of hours of disk and ssd deployments. In 14th
USENIX Conference on File and Storage Technologies
(FAST), pages 263–276, 2016.

[31] Brian Hickmann and Kynan Shook. Zfs and raid-z: The
über-fs? University of Wisconsin–Madison, 2007.

[32] Seongcheol Hong and Dongkun Shin. Nand flash-based
disk cache using slc/mlc combined flash memory. In
2010 International Workshop on Storage Network Ar-
chitecture and Parallel I/Os, pages 21–30, 2010.

[33] Ping Huang, Pradeep Subedi, Xubin He, Shuang He,
and Ke Zhou. Flexecc: Partially relaxing ecc of mlcssd
for better cache performance. In 2014 USENIX Annual
Technical Conference (ATC), pages 489–500, 2014.

[34] Soojun Im and Dongkun Shin. Comboftl: Improv-
ing performance and lifespan of mlc flash memory us-
ing slc flash buffer. Journal of Systems Architecture,
56(12):641–653, 2010.

[35] Nikolaus Jeremic, Gero Mühl, Anselm Busse, and Jan
Richling. The pitfalls of deploying solid-state drive
raids. In Proceedings of the 4th Annual International
Conference on Systems and Storage, pages 1–13, 2011.

[36] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xi-
aosong Ma, Junyu Wei, Zhiyue Li, and Weimin Zheng.
Fusionraid: Achieving consistent low latency for com-
modity ssd arrays. In 19th USENIX Conference on File
and Storage Technologies (FAST), pages 355–370, 2021.

[37] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and
Chanik Park. Enabling cost-effective data processing
with smart ssd. In 2013 IEEE 29th symposium on mass
storage systems and technologies (MSST), pages 1–12,
2013.

154 2024 USENIX Annual Technical Conference USENIX Association

http://rocksdb.org/
https://github.com/facebook/rocksd%20b/wiki/Benchmarking-%20tools
https://github.com/facebook/rocksd%20b/wiki/Benchmarking-%20tools
https://github.com/facebook/rocksd%20b/wiki/Benchmarking-%20tools

[38] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang,
and Vishal Sharda. Characterization of storage workload
traces from production windows servers. In 2008 IEEE
International Symposium on Workload Characterization,
pages 119–128, 2008.

[39] Aleksandr Khasymski, M Mustafa Rafique, Ali R Butt,
Sudharshan S Vazhkudai, and Dimitrios S Nikolopoulos.
On the use of gpus in realizing cost-effective distributed
raid. In 2012 IEEE 20th International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pages 469–478, 2012.

[40] Byungseok Kim, Jaeho Kim, and Sam H Noh. Manag-
ing array of ssds when the storage device is no longer
the performance bottleneck. In Proceedings of the 9th
USENIX Conference on Hot Topics in Storage and File
Systems, pages 20–20, 2017.

[41] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin
Lee, Changwoo Min, and Sam H Noh. Alleviating
garbage collection interference through spatial separa-
tion in all flash arrays. In 2019 USENIX Annual Techni-
cal Conference (ATC), pages 799–812, 2019.

[42] Youngjae Kim, Sarp Oral, Galen M Shipman, Junghee
Lee, David A Dillow, and Feiyi Wang. Harmonia: A
globally coordinated garbage collector for arrays of
solid-state drives. In 2011 IEEE 27th Symposium on
Mass Storage Systems and Technologies (MSST), pages
1–12, 2011.

[43] Miryeong Kwon, Donghyun Gouk, Sangwon Lee, and
Myoungsoo Jung. Hardware/softwareco-programmable
framework for computational ssds to accelerate deep
learning service on large-scale graphs. In 20th USENIX
Conference on File and Storage Technologies (FAST),
pages 147–164, 2022.

[44] Miryeong Kwon, Donghyun Gouk, Sangwon Lee, and
Myoungsoo Jung. Hardware/softwareco-programmable
framework for computational ssds to accelerate deep
learning service on large-scale graphs. In 20th USENIX
Conference on File and Storage Technologies (FAST),
pages 147–164, 2022.

[45] Miryeong Kwon, Jie Zhang, Gyuyoung Park, Wonil
Choi, David Donofrio, John Shalf, Mahmut Kandemir,
and Myoungsoo Jung. Tracetracker: Hardware/software
co-evaluation for large-scale i/o workload reconstruc-
tion. In 2017 IEEE International Symposium on Work-
load Characterization (IISWC), pages 87–96, 2017.

[46] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Ji-
hong Kim, et al. Application-managed flash. In 14th
USENIX Conference on File and Storage Technologies
(FAST), pages 339–353, 2016.

[47] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Matias Bjørling, and Haryadi S
Gunawi. The case of femu: Cheap, accurate, scalable
and extensible flash emulator. In 16th USENIX Confer-
ence on File and Storage Technologies (FAST), pages
83–90, 2018.

[48] Huaicheng Li, Martin L Putra, Ronald Shi, Xing Lin,
Gregory R Ganger, and Haryadi S Gunawi. loda: A
host/device co-design for strong predictability contract
on modern flash storage. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples, pages 263–279, 2021.

[49] Qiang Li, Qiao Xiang, Yuxin Wang, Haohao Song, Ridi
Wen, Wenhui Yao, Yuanyuan Dong, Shuqi Zhao, Shuo
Huang, Zhaosheng Zhu, et al. More than capacity:
Performance-oriented evolution of pangu in alibaba. In
21st USENIX Conference on File and Storage Technolo-
gies (FAST), pages 331–346, 2023.

[50] Runhui Li, Yuchong Hu, and Patrick PC Lee. Enabling
efficient and reliable transition from replication to era-
sure coding for clustered file systems. In 2015 45th
Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pages 148–159, 2015.

[51] Yongkun Li, Helen HW Chan, Patrick PC Lee, and Yin-
long Xu. Elastic parity logging for ssd raid arrays. In
2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages
49–60, 2016.

[52] Shengwen Liang, Ying Wang, Cheng Liu, Huawei Li,
and Xiaowei Li. Ins-dla: An in-ssd deep learning accel-
erator for near-data processing. In 2019 29th Interna-
tional Conference on Field Programmable Logic and
Applications (FPL), pages 173–179, 2019.

[53] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive ssd: A deep
learning engine for in-storage data retrieval. In 2019
USENIX Annual Technical Conference (ATC), pages
395–410, 2019.

[54] Rino Micheloni, Luca Crippa, and Alessia Marelli. In-
side NAND flash memories. Springer Science & Busi-
ness Media, 2010.

[55] Dushyanth Narayanan, Austin Donnelly, and Antony
Rowstron. MSR Cambridge traces (SNIA IOTTA trace
set 388). In Geoff Kuenning, editor, SNIA IOTTA Trace
Repository. Storage Networking Industry Association,
2007.

[56] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,

USENIX Association 2024 USENIX Annual Technical Conference 155

Yang Liu, and Steven Swanson. Willow: A user-
programmablessd. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 67–80, 2014.

[57] Xuanhua Shi, Ming Li, Wei Liu, Hai Jin, Chen Yu, and
Yong Chen. Ssdup: a traffic-aware ssd burst buffer for
hpc systems. In Proceedings of the international confer-
ence on supercomputing, pages 1–10, 2017.

[58] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao,
Xiong-Fei Cai, Seungryoul Maeng, and Feng-Hsiung
Hsu. Ftl design exploration in reconfigurable high-
performance ssd for server applications. In Proceedings
of the 23rd international conference on Supercomputing,
pages 338–349, 2009.

[59] Junyi Shu, Ruidong Zhu, Yun Ma, Gang Huang, Hong
Mei, Xuanzhe Liu, and Xin Jin. Disaggregated raid
storage in modern datacenters. In Proceedings of the
28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 3, pages 147–163, 2023.

[60] SPDK. Blobstore filesystem. https://spdk.io/doc/
blobfs.html.

[61] Akshat Verma, Ricardo Koller, Luis Useche, and Raju
Rangaswami. FIU traces (SNIA IOTTA trace set 390).
In Geoff Kuenning, editor, SNIA IOTTA Trace Reposi-
tory. Storage Networking Industry Association, 2009.

[62] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and
John CS Lui. Graphwalker: An i/o-efficient and
resource-friendly graph analytic system for fast and scal-
able random walks. In Proceedings of the 2020 USENIX
Conference on Usenix Annual Technical Conference,
pages 559–571, 2020.

[63] Shucheng Wang, Qiang Cao, Ziyi Lu, Hong Jiang, Jie
Yao, and Yuanyuan Dong. Straid: Stripe-threaded ar-
chitecture for parity-based raids with ultra-fast ssds.
In 2022 USENIX Annual Technical Conference (ATC),
pages 915–932, 2022.

[64] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon
codes and their applications. John Wiley & Sons, 1999.

[65] John Wilkes, Richard Golding, Carl Staelin, and Tim Sul-
livan. The hp autoraid hierarchical storage system. ACM
Transactions on Computer Systems (TOCS), 14(1):108–
136, 1996.

[66] Greg Wong. Ssd market overview. In Inside Solid State
Drives (SSDs), pages 1–17. Springer, 2013.

[67] Suzhen Wu, Haijun Li, Bo Mao, Xiaoxi Chen, and Kuan-
Ching Li. Overcome the gc-induced performance vari-
ability in ssd-based raids with request redirection. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 38(5):822–833, 2018.

[68] Suzhen Wu, Bo Mao, Xiaolan Chen, and Hong Jiang.
Ldm: Log disk mirroring with improved performance
and reliability for ssd-based disk arrays. ACM Transac-
tions on Storage (TOS), 12(4):1–21, 2016.

[69] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A Chien,
and Haryadi S Gunawi. Tiny-tail flash: Near-perfect
elimination of garbage collection tail latencies in nand
ssds. ACM Transactions on Storage (TOS), 13(3):1–26,
2017.

[70] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. Spdk:
A development kit to build high performance storage
applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161, 2017.

[71] Shushu Yi, Yanning Yang, Yunxiao Tang, Zixuan Zhou,
Junzhe Li, Chen Yue, Myoungsoo Jung, and Jie Zhang.
Scalaraid: optimizing linux software raid system for
next-generation storage. In Proceedings of the 14th
ACM Workshop on Hot Topics in Storage and File Sys-
tems, pages 119–125, 2022.

[72] Chi Zhang, Yi Wang, Tianzheng Wang, Renhai Chen,
Duo Liu, and Zili Shao. Deterministic crash recovery
for nand flash based storage systems. In Proceedings of
the 51st Annual Design Automation Conference, pages
1–6, 2014.

[73] Jie Zhang, Miryeong Kwon, Michael Swift, and My-
oungsoo Jung. Scalable parallel flash firmware for many-
core architectures. In 18th USENIX Conference on File
and Storage Technologies (FAST), pages 121–136, 2020.

156 2024 USENIX Annual Technical Conference USENIX Association

https://spdk.io/doc/blobfs.html
https://spdk.io/doc/blobfs.html

	Introduction
	Background
	SSD Internal
	All-Flash Array

	Preliminary Study
	Challenges
	Key Insights

	ScalaAFA Overview
	Design Details of ScalaAFA
	Storage Space Abstraction
	Enable Lock-free Multi-Thread Access
	Evolve the Write Path
	Persist the Metadata
	Reduce the Impact of Write Amplification
	Implementation

	Evaluation
	Experimental Setup
	Overall Performance
	Analysis of Real Workloads
	End-to-end Evaluation
	Benefits of Individual Techniques

	Related Work and Discussion
	Conclusion

