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Abstract
Reliability in cloud AI infrastructure is crucial for cloud

service providers, prompting the widespread use of hardware
redundancies. However, these redundancies can inadvertently
lead to hidden degradation, so called “gray failure”, for AI
workloads, significantly affecting end-to-end performance
and concealing performance issues, which complicates root
cause analysis for failures and regressions.

We introduce SuperBench, a proactive validation system
for AI infrastructure that mitigates hidden degradation caused
by hardware redundancies and enhances overall reliability. Su-
perBench features a comprehensive benchmark suite, capable
of evaluating individual hardware components and represent-
ing most real AI workloads. It comprises a Validator which
learns benchmark criteria to clearly pinpoint defective com-
ponents. Additionally, SuperBench incorporates a Selector to
balance validation time and issue-related penalties, enabling
optimal timing for validation execution with a tailored subset
of benchmarks. Through testbed evaluation and simulation,
we demonstrate that SuperBench can increase the mean time
between incidents by up to 22.61×. SuperBench has been suc-
cessfully deployed in Azure production, validating hundreds
of thousands of GPUs over the last two years.

1 Introduction

In the past decade, the surging demand for deep learning [44,
50–52] has spurred the development of exa-scale cloud AI in-
frastructure, which entails significantly high costs [33,39,65].
When incidents such as customer workload failures or per-
formance regressions arise within the infrastructure, they can
propagate throughout all nodes (i.e., servers) due to AI work-
loads’ gang-scheduled and synchronization characteristics,
leading to magnified penalties. For example, during a two-
month distributed training for the OPT model, Meta reported
over 105 training restarts resulting from failures on more than
100 VMs in the cloud [67], indicating 1.25 incidents per day

*Equal contribution.

and 61k GPU hours affected [66]. To minimize such costly
and disruptive incidents, maintaining system reliability is of
paramount importance for cloud service providers.

Hardware redundancies are designed into cloud AI infras-
tructure for reliability purposes, including redundant GPU
compute units [8, 37], GPU memory row remapping [48],
over-provisioned (under-subscribed) networking links [32],
etc. However, component-wise redundancies can surprisingly
introduce hidden degradation, so called “gray failure” [30]
or “fail-slow” [25] in traditional cloud, and make incident
patterns even more complex in AI era due to following unex-
pected reasons. (i) AI workloads usually run long for weeks
or months. The continuous and repetitive use of redundant
components will cause them become problematic gradually
with lower performance. For example, in Azure A100 cluster,
each InfiniBand top-of-rack (ToR) switch has multiple redun-
dant up links. When part of the redundant links are broken,
certain traffic patterns such as all-to-all collective communica-
tion can experience throughput regression due to congestion.
Such redundancy introduces gradual performance degrada-
tion rather than a binary either good or bad state for hardware
components. (ii) This gradual degradation may not affect cer-
tain AI workloads in the early stage. For instance, ResNet
model training can barely utilize all A100 GPU or networking
resources, therefore less sensitive to trigger issues. Since it is
difficult for cloud providers to unveil such partial redundancy
loss timely with monitoring on existing workloads only, stan-
dalone tests are required to stress the hardware to pinpoint
issues. (iii) Redundancies can also hide performance issues
to some extent. When broken redundancies cause AI work-
load regression, repairing only partial redundancies instead
of all can usually resolve the current incident and recover the
workload. For example, when multiple redundant links are
broken, operators may only need to replace one link to un-
block the workload in a limited time. However, this property
decreases reliability and increases the likelihood of future
incidents when any single link goes bad.

As a result, although cloud providers apply hardware pre-
qualification tests and timely troubleshooting for incidents,
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these methods are not aware of redundancies and cannot im-
prove reliability. First, qualification tests are performed by
hardware vendors before delivery but it cannot address re-
liability issues that arise in cloud environment and services.
Second, troubleshooting is highly workload-dependent and
can be time-consuming. It typically only repairs the partial
redundancies for recovery, rather than restoring the full re-
dundancies of the affected and non-dominant hardware com-
ponents. As a result, the overall reliability remains low. For
example, in Azure’s A100 clusters, the mean time between
incidents (MTBI) is 17.5 hours, and 38.1% of those incidents
take more than 1-day to recover. What’s worse, troubleshoot-
ing is only performed passively when incidents are raised
by customers, it cannot restore redundancies timely before
affecting workloads. However, such beforehand restoring is
possible because gradual performance degradation can be
detected by specific tests before incidents.

Considering the aforementioned problems, our key insight
is that component-wise redundancies can surprisingly compro-
mise the reliability of cloud AI infrastructure in unexpected
ways. These redundancies can lead to incremental perfor-
mance regressions, which should be identified and rectified
before affecting end-to-end workloads. Rather than relying
on reactive troubleshooting, which focuses on visibly defec-
tive components, we adopt a proactive approach to validate
cloud AI infrastructure components before incidents transpire.
This strategy aims to improve reliability at reasonable costs
by balancing the trade-off between validation expenses and
anticipated incident penalties.

To effectively minimize the MTBI, proactive validation
should satisfy the following requirements: (i) Comprehen-
sive: To detect incidents that are undetected by vendors in
new clusters and only surface in customer workloads, vali-
dation must be comprehensive and encompass a wide range
of AI workloads. (ii) Clear-cut: Given that hardware com-
ponents can exhibit gradual performance degradation and
measurements are prone to natural variance, it is essential to
establish a clear-cut boundary between defective and normal
performance. Repetitions of the same test should also yield
consistent results, rather than fluctuating between outcomes.
(iii) Cost-efficient: Proactive validation necessitates additional
measurements, which consume time. Therefore, it must be
cost-efficient, ensuring that validation expenses remain sig-
nificantly lower than the incident-associated penalties.

Nevertheless, addressing these requirements presents sig-
nificant challenges. Firstly, the sheer number of workloads
and exponential node combinations result in an immense
search space for all scenarios, making it impossible to en-
compass every aspect in the validation process. Secondly,
after performance being measured, there is no ground truth
available for defective components. Identifying which compo-
nents are defective is problematic, as hardware specifications
cannot reliably predict workload performance. Moreover, AI
hardware often exhibits substantial variations [61], further

complicating the differentiation process. Lastly, the valida-
tion time and MTBI can be interdependent, since fewer val-
idated components lead to shorter times between incidents.
Determining when to validate which components for optimal
cost-efficiency, while achieving the longest MTBI with least
measurement time, proves to be a challenging endeavor.

To address these challenges, we introduce a proactive val-
idation system, SuperBench, featuring three key modules:
(i) First, we analyze workload distributions in large-scale,
multi-tenant AI clusters to identify a small number of repre-
sentative workloads and parameters applicable to most cus-
tomers. Based on this, we develop a comprehensive bench-
mark set, including end-to-end benchmarks for representa-
tive workload patterns and micro-benchmarks for individual
hardware components. (ii) A Validator is designed to con-
duct a series of benchmarks on specified nodes. To clearly
distinguish between the benchmark results of defective and
functional components, the space of cumulative distribution,
rather than average metrics, is used for similarity clustering to
learn benchmark criteria offline. (iii) To balance the trade-off
between validation time and incident coverage, benchmarks
are selected based on real-time estimations of incident proba-
bility. A Selector is designed to predicts node incident through
a probability model and determine when to validate on which
subset of benchmarks. The selected benchmarks are executed
by the Validator, generating new benchmark and defect data
to periodically update criteria and probability model, allowing
the system to evolve in tandem with the latest node statuses.

SuperBench has been successfully deployed in one of the
largest real-world AI infrastructure, Azure, for more than 2
years, where it identifies 10.36% nodes as defects, contribut-
ing to enhanced reliability. All benchmarks in SuperBench
have been open-sourced on GitHub1 and widely used by AI
hardware vendors [1, 2] as a standard. Simulation results
demonstrate that proactive validation in SuperBench can in-
crease MTBI by 22.61× and 1.11× compared to the absence
of validation and full set validation without benchmark selec-
tion, while increasing user GPU hours by 4.81× and reducing
validation time cost by 92.07%, respectively.

Our contributions can be summarized as follows:
• We identify the existence of gray failure in the new era

of AI, which arises from AI hardware redundancies, and
propose a proactive validation approach to mitigate its
significant impact in cloud AI infrastructure.

• We observe and analyze a vast number of workload inci-
dents, including failures and regressions, within a produc-
tion cloud AI infrastructure, summarizing their sources and
root causes.

• We establish the design goals for a proactive validation
system and implement SuperBench to address these aims.

• We conduct extensive evaluations of SuperBench and de-

1https://github.com/microsoft/superbenchmark
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Figure 1: Percentage of infrastructure incidents’ sources.
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Figure 2: Incidents troubleshooting duration distribution.

ploy the system in a production cloud environment, demon-
strating its benefits and practicality in real-world.

2 Background and Motivation

2.1 Massive Incidents in AI Infrastructure

Incidents Summary In cloud AI infrastructure, we have
observed that a wide range of components experience failure
or performance regression. Figure 1 illustrates that more than
8 components in GPU node can occur performance issues
according to 1-month tickets in Azure. However, even when
only one component suffer issue, the real workloads will be
reflected and incident ticket will be raised by customers.

When an incident occurs in cloud AI infrastructure, it typi-
cally takes a significant amount of time for troubleshooting
in order to localize the defective nodes or links for mitigation.
Meanwhile, all nodes involved in the incidents are waiting
for troubleshooting, resulting in a considerable waste of GPU
hours. Figure 2 shows that 38.1% of incidents require more
than 1 day to resolve, and 10.3% incidents take more than 2
weeks. Thus it is crucial to identify defective nodes or links
timely ahead of incidents for resources saving.

Upon analyzing the related incidents, we discovered that
the main reasons for high incident rate stem from three as-
pects: rapid-evolving AI hardware, cloud environment, and
immature software. We will explain more in the following
paragraphs with real cases observed in Azure.

Rapid Hardware Evolution AI hardware defects may not
be fully identified by vendors’ qualification tests, as certain
issues only surface in real workloads. Data center GPUs, in
particular, are evolving rapidly, with new releases every one or
two years [8, 37]. Vendors typically only examine individual
hardware components at full utilization during qualification
tests, but some regressions occur exclusively under specific
workload patterns.

For example, we identified a regression that only occurs
in certain A100 VMs when computation and communication
are executed concurrently. Standalone computation bench-
marks (e.g., GPU GEMM tests [45]) or communication bench-
marks (e.g., NCCL AllReduce tests [47]) cannot expose this
issue, as defective GPUs exhibit the same performance as non-
defective ones. The problem arises only during simultaneous
computation and communication due to the overlapping traf-
fic pattern triggering interference in L2 cache within GPU
memory.

Cloud Environment Cloud infrastructure environments
can introduce additional incidents, as they differ from vendors’
qualification environments in terms of power, temperature,
and other factors. For example, data centers in tropical ar-
eas experience more incidents due to higher temperatures.
We observed a 35× increase in defective InfiniBand links
with > 10−12 bit error rate in data centers in tropical areas
compared to data centers in higher latitudes, leading to sig-
nificantly degraded performance for training and inference.
Another example is GPU throttling. Even within the same data
center, different racks or locations within the same rack can
exhibit varying temperatures. However, all GPUs are designed
with identical cooling and heatsinks by vendors, resulting in
GPUs located in warmer locations potentially experiencing
thermal throttling if they cannot receive more cool air.

Software Immaturity At the application level, AI software
stacks frequently iterate to co-evolve with hardware and adapt
to new architectures and features. For instance, CUDA [46]
and ROCm [7] release new versions every one or two months,
while new GPUs may only support newer software versions.
Ensuring a mature and reliable software stack under such
rapid evolution is difficult. Furthermore, most AI workloads
are not resilient to software or hardware failures. Because AI
training needs to synchronize tensors periodically with high
frequency, any single failure or regression can quickly propa-
gate to all involved nodes and cause workload incidents. For
example, a single node issue can cause an entire distributed
training job with 100+ nodes to hang, resulting in a costly
health check across all nodes by the on-call person [66].

2.2 Observations on Hardware Redundancies

Over-provisioned Networking Links In Azure A100 clus-
ters, there are over-provisioned InfiniBand networks with mul-
tiple redundant links between ToR switches and aggregation
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(a) Several ToR swithes have <
50% of the redundant links up.
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(b) All ToR switches have ≥ 50%
of the redundant links up.

Figure 3: Cumulative distribution of 2-node all-reduce band-
width from a 24-node testbed with different redundancy ratios.

Table 1: Row remapping impact on end-to-end workloads.

correctable errors in row remapping 1 ∼ 10 >10
row remapping node ratio of all nodes 3.19% 0.18%
regression node ratio of remapping nodes 5.6% 83.3%

switches. However, we find that to avoid performance regres-
sion due to congestion, more than half of the redundant links
must be functional. In other words, at most half of the redun-
dancies can be broken. Figure 3 depicts a real-world case
of workload regression when running on 24 nodes with 192
InfiniBand NICs in a fat-tree InfiniBand testbed. Each ToR
switch has 25% redundant uplinks. When some of the edge
switches have over half of the redundant links down, multiple
2-node pairs experience a significant downgrade in all-reduce
bus bandwidth performance when running traffic simultane-
ously. Only when operators repair the redundant links of all
involved ToR switches to at least 50% does the all-reduce
bandwidth for all 2-node pairs return to normal performance.

GPU Memory Row Remapping A100 GPUs are equipped
with redundant rows for every bank in HBM, introducing a
hardware mechanism called row-remapping to replace known
degraded memory cells with sparse ones in hardware and
prevent the use of degraded memory [48]. This remapping is
transparent to software, with no address space changes, and
the degraded memory is replaced in hardware. Table 1 shows
that when >10 correctable errors are remapped in redundant
rows, there is a 77.8% higher chance of experiencing regres-
sion in end-to-end workloads compared to 1∼ 10 errors.

Infrastructure-wise Reliability Component-wise redun-
dancy can somewhat conceal end-to-end performance issues,
but it would lead to more frequent incidents over time, dimin-
ishing the reliability of the entire infrastructure. As shown
in Figure 4, we count the duration between customer-reported
incidents for each node in one cluster, which has 20.7k jobs
per month, then calculate the mean duration between ith and
i+1th incidents across all nodes that have i+1 incidents oc-
curred. We find that the mean duration decreases from 719.4
hours to 151.7 hours compared between the 1st incident and
the 20th incident. Furthermore, we infer the time to failure for
jobs at different scales, supposing all nodes in the job have
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Figure 4: Left: mean time between ith incidents for nodes.
Right: time to failure for jobs if all nodes in the job have ith

incidents occurred.

the ith incident occurred and share the constant failure rate.

Why Troubleshooting Doesn’t Work It is hard for trou-
bleshooting to identify the root cause of each incident and
restore reliability. In a distributed AI system, there are many
components and tiers, some of which may not provide ap-
propriate error information when an incident occurs. For ex-
ample, some incidents suffered “uncorrectable NVLink error
detected during the execution” error reported by ML frame-
work, but the root cause turned out to be timeout in InfiniBand
network rather than broken NVLink. A process of elimination
is required to investigate each component and tier before dis-
covering the actual cause of failure or regression. Moreover,
such workload incidents can also be closely tied to customers’
applications and may not be directly related to infrastructure
issues. Additionally, due to asynchronous execution in GPUs
and adaptive routing in InfiniBand networks, incidents can be
non-deterministic and hard to reproduce.

Even when troubleshooting successfully locates and re-
solves a current failure or regression, it cannot identify all
potential issues. As AI infrastructure employs redundant re-
sources to maintain reliability, when a failure occurs, it may
indicate there are already multiple accumulated failures across
various components behind the visible failure, leading to a
decline in overall reliability capability. Unfortunately, trou-
bleshooting alone cannot fully address these types of issues.

2.3 Challenges of Validation
Proactive validation is a practical method to tackle trou-
bleshooting issue in AI infrastructure. Whether validation
is passed or not clearly determines whether it is the responsi-
bility of customer workloads or hardware from the perspective
of cloud providers, thereby preventing any need for customer-
specific troubleshooting, such as misconfiguration. However,
there are 3 key challenges as follows:

Diverse Workloads Numerous AI models run on cloud
AI infrastructure, and these AI workloads are highly diverse.
Figure 5 shows the percentage of different workloads after
analyzed over 56k+ GPU jobs in several internal clusters.
These workloads can be divided into three major categories,
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Uncategorized - 13.01%

Figure 5: GPU job percentage for diverse workloads.

including Transformers, CNN, and others. Within each cate-
gory there exist tens of different models and many of them,
e.g., 35.5% of all Transformers, are hard to be identified, in-
dicating the diversity in AI workloads. We also analyzed the
nodes with workload performance regression in this cluster in
a 3-month period. Although there were 4.7% affected nodes
in total, we found that 21.5% of them experienced a down-
grade for only one workload during troubleshooting after
running 6 common workloads on the same node. Therefore,
performance regression can occur only for specific workloads,
making it challenging for a validation system to ensure all
customer workloads can be run with expected performance.

Distributed workloads run on multiple nodes in different
scales. The node scales and orders exponentially expands the
validation scope. For instance, all-reduce communication is
commonly used during AI workloads and implemented using
ring or tree algorithms. There are n! ring permutations given
the same set of n nodes with different orders, and different
permutations utilize distinct link sets. This causes defective
links only impact certain node scale and order. It’s nearly
impossible to cover all workloads with all node scales and
orders in validation.

Lack of Ground-truth for Criteria Determining perfor-
mance criteria is challenging, as there is no ground truth to
differentiate the performance of defective components from
others. Workloads typically use performance metrics like
end-to-end latency or throughput. Because different workload
patterns have entirely different efficiencies, the end-to-end
performance cannot be directly mapped to hardware specifica-
tions (e.g., GPU FLOPS, memory bandwidth, NVLink speed).
Additionally, the software stack can significantly affect these
efficiencies. Therefore, it is difficult to determine whether the
measured performance is acceptable or not on a given node.

One possible approach is adopting outlier detection to filter
defects as outliers among a large number of performance data
points. However, such an approach is challenging to identify
defects effectively since the distribution is diverse for differ-
ent benchmarks. The boundary between outliers and normal
ones is unclear, and careful hyper-parameter tuning is required
for each benchmark on a case-by-case basis. As shown in Fig-
ure 6, the Local Outlier Factor (LOF) algorithm [14], which
relies on estimating data density, may mark points in expected
performance but with less density as outliers. The One-Class
SVM [58], which relies on distances to set boundaries, may
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Figure 6: Outlier detection methods for benchmark metrics.

also mark false positives when data is dense within an in-
terval. Thus, defining the performance criteria of defective
components clearly and reasonably remains challenging.

Furthermore, measurements always involve variation, in-
cluding multiple runs on the same hardware or a single run
on multiple hardware, which cannot be eliminated [42, 61].
The variation also depends on workload types. For example,
MLPerf roughly divides its benchmarks into stable vision
benchmarks and higher variance benchmarks, which have
±2.5% and ±5.0% variances [43], respectively. Due to this,
it becomes more challenging to define clear-cut criteria so that
the determination of defective components remains consistent
across different runs with variations.

Duration and Coverage Trade-off GPU hours in cloud
AI infrastructure are expensive. For instance, renting 1,024
A100 GPUs on Azure costs $3.06M per month [12] while
the same amount of TPU chips on GCP costs $2.41M per
month [17]. Fewer and shorter tests can significantly save
time and cost. However, the duration and coverage of vali-
dation can be interdependent, so less and shorter tests may
reduce validation coverage and increase the risk of regres-
sion on customer workloads. Moreover, it can be challenging
to maintain high reliability over time through cost-effective
validation, as hardware quality tends to decrease gradually.

3 System Design

3.1 Overview
SuperBench is proposed to tackle above challenges with the
following observations: (i) Despite the diversity of AI work-
loads, a majority can be represented by a few typical work-
loads, while component-wise tests can cover the rest. (ii) In-
stead of analyzing average metrics, all measured intermediate
data (or its distribution) from a single benchmark run can be
employed to establish a clear-cut boundary with maximum
margins between defects or normal ones. (iii) The incident
probability of a node increases gradually with use. Thus, a
few benchmarks may cover most potential issues if that node
passed a validation involving all benchmarks in the recent
past.

Principles The above observations guide the principles ap-
plied in the SuperBench system design:
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Figure 7: SuperBench system architecture and an example workflow.

• Data-driven approaches. Given the extensive data on de-
fective nodes and benchmark results in cloud AI infrastruc-
ture, we utilize data-driven approaches to fit an incident
probability model and formulate criteria statistically.

• Quick but frequent validations. Proactive validation should
not be an one-time effort. Each node should be validated
quickly but frequently in line with incident probability
estimations to guarantee enduring reliability.

Architecture As depicted in Figure 7, SuperBench system
comprises two primary components: a Selector and a Valida-
tor. The Selector determines when and which benchmark to
execute based on incoming events. It offline builds a probabil-
ity model to predict nodes incident probability based on their
real-time statuses, and selects a benchmark subset based on a
greedy algorithm for each validation event accordingly. The
Validator conducts the benchmark execution and filters defec-
tive nodes, based on execution results and offline calculated
benchmark criteria. The new node statuses and benchmark
results will be continuously collected by SuperBench to peri-
odically update the offline model and criteria.

Workflow The validation workflow is as follows. 1 Su-
perBench carries out two types of validation: event-triggered
and regular validation. The former is initiated by events from
orchestration system, such as the node additions, node allo-
cations for jobs. The latter is periodically checked by the
Selector to validate existing nodes with high risks. 2 For
each validation, Selector will first obtain statuses of related
nodes, like total up time, historical incident count, MTBI of

different incident types, etc., and predict incident probability
with an offline trained model. 3 If the incident probabil-
ity is too high for the usage, Selector will select a subset of
benchmarks considering the historical benchmark coverage
and validation time trade-off. 4 The subset decision will
be passed to Validator. 5 Validator will then execute the
selected subset of benchmarks on the corresponding nodes
and get the results for each benchmark. 6 The results will
be compared with Validator criteria, which is offline unsuper-
vised learned from historical benchmark results. The node
will be filtered as defective if any of its benchmark result
has lower similarity with criteria than a threshold. 7 Super-
Bench outputs the defective nodes for further handling. A
repair system can be employed to maintain a defective buffer
with nodes to be out for repair (OFR) and a hot buffer with
repaired healthy nodes. It can swap new defective nodes with
healthy ones from the hot buffer and pass to orchestration
system in the runtime.

Integration The proposed SuperBench validation system
can be integrated into existing clusters that employ an orches-
tration system [34, 63, 64], requiring the following interfaces
supported in the control plane:
• Validation Events: It requires specific events from the or-

chestration system to initiate validation, including (1) when
new nodes join the cluster or cluster-wide firmware/soft-
ware is upgraded, (2) when customer jobs are allocated
to specific nodes, and (3) when incidents are reported by
customers and particular nodes are cordoned/drained.
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• Validation Results: SuperBench identifies the defective
nodes from validation node set. The orchestration system
can choose to use the rest of healthy nodes or find replaced
nodes from a dedicated hot buffer.

• Monitored Data: The Selector probability model requires
status change data from all nodes when incidents occur.

3.2 Benchmark Set Design Choices

The whole validation process in SuperBench relies on a com-
prehensive benchmark set. The benchmark set should be able
to discover all known incidents and evolve when unseen inci-
dent occurs for the first time. In this section, we present how
it constructs a qualified set of validation benchmarks, encom-
passing both end-to-end benchmarks and micro-benchmarks.

End-to-end Benchmarks As the validation process aims to
ensure infrastructure reliability under certain customer work-
loads, we first choose benchmarking the most typical end-to-
end AI models to represent customer workloads and prevent
potential regressions preemptively. By examining the distri-
bution of workloads within an internal first-party AI train-
ing platform and categorizing models based on keywords in
commands and user logs, we can coorelate these workloads
with several foundational models, including different CNN
models [27, 29, 60] and Transformers like BERT [62] and
GPT [15] models. To optimize GPU resources and ensure
training convergence, customers must also carefully config-
ure model parameters (e.g., batch size, sequence length, etc.).
We analyze parameter distributions for different foundational
models and choose the most prevalent settings.

Given that workloads are continuously evolving, and cur-
rent typical end-to-end benchmarks may not accurately rep-
resent future workloads, we designed the benchmark set to
be extensible. If existing benchmarks fail to detect incidents
for a new workload, or private workloads run in specific clus-
ters, the corresponding model can be added as an end-to-end
benchmark and utilized for validation. This rarely happened
in our experience, except for few new dominate models.

Micro-benchmarks Rare workloads may exhibit distinct
patterns when accessing specific hardware components, and
the limited number of representative end-to-end benchmarks
may not be able to encompass these rare workload behaviors.
Therefore, in addition to end-to-end benchmarks for typical
workloads, we employ component-wise micro-benchmarks
to assess individual hardware components, including CPU,
memory, GPU compute units, GPU memory, NIC/HCA, disk,
and their interconnections such as PCIe, xGMI, NVLink, and
network links. We leverage third-party tools accredited by
hardware vendors for this purpose.

Furthermore, we derive pattern-wise micro-benchmarks
in between to emulate the most common workload patterns
or primitives involving several components. For example,

cuBLAS or cuDNN kernels with commonly used shapes, all-
reduce or all-to-all collective communication primitives with
commonly used message sizes, etc. These patterns and primi-
tives are profiled offline from typical workloads and enriched
with regression cases during the diagnostic experience.

3.3 Benchmark Selection
Given a node set N, the Selector will query real-time statuses
for these nodes and predict incident probability for each node
through an offline probability model. If their joint probability
p of occurring an incident is higher than a threshold p0, that
is, the mathematical expectation of time to incident is shorter
than the mathematical expectation of job duration, the Selector
will select a benchmark subset for validation through an online
selection algorithm. Otherwise the validation will be skipped
to save node hours.

Offline Probability Model Assuming that all nodes in a
large-scale cluster share the same incident probability distri-
bution, predicting the likelihood of each node experiencing
an incident during a customer workload run requires model-
ing the node incident distribution as a continuous function of
time:

P(Tincident ≤ t) =
∫ t

0
f (s)ds = F(t) (1)

where f (t) and F(t) denote the density function and cumu-
lative distribution function of the incident time. Traditional
survival analysis [36] suggests different statistical methods to
model such probability, e.g., exponential distribution which
assumes failure rate is constant over time, Weibull distribution
which constrains failure rate correlated to two parameters.

Since the failure rate of GPU nodes changes over time
due to the gradual degradation pattern, we need to model
it without any assumptions on failure rate distribution. The
Cox-Time model [38], which is an extension of the mostly
used Cox proportional hazards model [19] for time-to-event
prediction in survival analysis, allows for time-varying haz-
ard and removes the proportional assumption. We apply the
state-of-the-art Cox-Time model with neural network [38] for
this purpose, assume node failure rate is only related to time
and some covariates, and treat node statuses as covariates to
failure rate, including time since the last incident, historical
incident counts, mean time between incidents, etc., in differ-
ent incident categories. The Cox-Time model is trained with
historical node incident data and will estimate incident prob-
ability distribution, given node’s statuses and past incident
history.

Online Selection Algorithm We formulate the benchmark
selection problem as follows. Given a set of benchmarks
B = {B1, . . . ,Bn}, the running time of benchmark Bi as ti, and
a set of defective nodes {Mi} identified from the historical val-
idation result data. We assume that the full set of benchmarks
shall discover all incidents, a subset of benchmarks with cov-
erage C can identify the incident with probability p×C hence
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Algorithm 1 Benchmark Selection Algorithm

Input: node set N, benchmark set B, expected prob. p0
Output: benchmark subset SB⊆ B

1: function INCIDENTPROB(N, SB)
2: C = num of defects subset SB found / num of defects

full set B found (according to historical validation data)
3: p = 1−∏n∈N(1 − CoxTimet0(n))
4: return p× (1−C )

5: function BENCHMARKSELECTION(N, B)
6: SB←∅, p← INCIDENTPROB(N, SB)
7: while p > p0 and SB ̸= B do
8: curr← (B1, 0.0)
9: for Bi in B do

10: ∆p← p − INCIDENTPROB(N, SB∪{Bi})
11: if ∆p/ti > curr [1] then curr← (Bi, ∆p/ti)
12: SB∪ = {curr[0]}, p← INCIDENTPROB(N, SB)
13: return SB

decrease incident probability to p× (1−C ), where the cov-
erage is defined as percentage of defective nodes identified
by the benchmark subset in history. For example, suppose B
identified 10 defective nodes in the past, B1 identified 2 de-
fects {M1,M2} (C = 0.2) while B2 identified {M2,M3,M4}
(C = 0.3). The defect M2 can be identified by either B1 or
B2, so running the subset {B1,B2} can only identify 4 defects
with C = 0.4. The goal of benchmark selection is to find a
subset of benchmarks such that the new incident probability
p× (1−C )≤ p0 while minimizing the total benchmark time.

Since each defective node may be covered by one or more
benchmarks, this problem is NP-hard and can be considered
as a variation of the 0-1 knapsack problem where different
items overlap. We propose Algorithm 1 to greedily select
benchmarks with O(n2) time complexity, where n is the num-
ber of benchmarks in benchmark set B, instead of traversing
all possible combinations with O(2n) complexity, based on
the sub-optimal probability decrement per time unit guideline.

3.4 Benchmark Criteria

Given the node set and selected benchmark subset, the Valida-
tor will execute the benchmarks on corresponding nodes to
produce the benchmark results. For the first validation during
cluster build-out, the full set of benchmarks are run and offline
criteria is unsupervised learned for each benchmark upon its
results on all nodes. For the following selective validations,
the online defects filtering will compare the benchmark result
on each node to its criteria and determine the defective node
if any of its result violates the criteria. The Validator also
adaptively tunes benchmark parameters for repeatability.

Offline Criteria To clearly compare benchmark results
across different runs or nodes, we first define the similar-
ity of two measured benchmark samples. This includes sam-

Algorithm 2 Criteria Calculation Algorithm

Input: sample set S = {S1, . . . ,SN}, similarity threshold α

Output: criteria SC for the given benchmark
1: function GETCENTROID(S)
2: ▷ centroid can also be calculated by samples’ mean

in distribution space
3: median = argmaxn

i=1 ∑
n
j=1 similarity(Si,S j)

4: return Smedian

5: function CRITERIACALC(S,α)
6: De f ects←∅, SC← GETCENTROID(S)
7: while minSi∈S\De f ects similarity(SC,Si)≤ α do
8: De f ects←{Si | similarity(SC,Si)≤ α}
9: SC← GETCENTROID(S\De f ects)

10: return SC

ples from micro-benchmarks, which may only have a sin-
gle value as the result, or end-to-end benchmarks that track
AI workload runs and record a series of performance num-
bers from repeated steps over a certain period. Given two
time-series benchmark samples S1 = {s1,1, . . . ,s1,n} and S2 =
{s2,1, . . . ,s2,m}, to ensure there is no asymptotic or signifi-
cant regression at any time, we define the distance and simi-
larity between two benchmark samples in their distribution
space based on the empirical cumulative distribution function
(CDF):

d(S1,S2) =
∫

∞

0

|CDFS1(x)−CDFS2(x)|
max(CDFS1(x),CDFS2(x))

dx (2)

similarity(S1,S2) = 1−d(S1,S2) (3)

The distance d(S1,S2) represents the absolute integral area
between their CDF curves, normalized to the [0,1] range for
similarity comparison among different benchmarks.

Having a benchmark and its result samples S1, . . . ,SN from
different nodes, the criteria SC is then calculated to differ-
entiate defective result samples from normal ones. In order
to establish a clear-cut boundary, for any Si except defective
samples, SC should satisfy similarity(SC,Si)> α, where α is
an empirical value set by requirements. We therefore apply
a similarity-based clustering algorithm to iteratively exclude
defective samples and calculate the median sample for the
rest as SC, as shown in Algorithm 2.
Online Defects Filtering The Validator leverages bench-
mark similarity between the measured benchmark result and
its criteria to determine whether the node should be con-
sidered defective or not. Since validation only requires test-
ing whether the result on given node exhibits worse perfor-
mance (i.e., lower throughput or larger latency) than the nor-
mal performance to identify defects, we compare the one-
direction distance derived from Equation (2) between the
runtime observed result sample SObs and offline criteria SC
for throughput-like metrics (elsewise replace max with min):

d1−side(SObs,SC) =
∫

∞

0

max(0,CDFSObs(x)−CDFSC (x))
max(CDFSObs(x), CDFSC (x))

dx (4)
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Similarity is then calculated by 1−d1−side and the same em-
pirical threshold α is used to filter out under-performant nodes,
which will be processed by the repair system next.
Repeatability Due to the natural variations when running
the same workload across different runs or nodes, particularly
in AI software/hardware, it is essential to ensure that valida-
tion benchmarks are minimally affected by such variations so
that the measured samples can accurately represent the under-
lying distribution of both hardware performance and variation.
We define the repeatability metric as “the arithmetic mean
of pairwise similarities from N different nodes or runs” to
ascertain whether benchmark settings are acceptable within
the empirical similarity threshold α.

To effectively validate nodes, the repeatability metric must
be maximized. However, out-of-the-box benchmarks from
public tools or hardware vendors may exhibit large variations,
making them unsuitable for validation requirements. We uti-
lize existing benchmarks as a starting point and adhere to the
guidelines below to enhance their repeatability:
1. Decouple different hardware components to distinguish

various sources of variation. For example, binding pro-
cesses to local cores and memory to avoid random remote
memory access when validating GPU, loading training
data from memory to eliminate disk access variation, etc.

2. Adaptively search for benchmark parameters to reduce
benchmark duration for the given hardware/software com-
bination, validating nodes in the shortest possible time
while maintaining repeatability within the threshold.

3. After firmware/driver updates, re-tune and re-evaluate the
repeatability in case it deteriorates on newer versions.

4 Implementation

Benchmark Set Table 2 shows the full benchmark set cho-
sen for SuperBench. Each benchmark has pre-defined and
configurable parameters, such as GEMM shapes, message
sizes, model batch sizes, etc., as well as randomly generated
input data. During each validation, the Selector selects a sub-
set of benchmarks, and the Validator subsequently executes
those benchmarks in two phases in sequence: the single-node
phase and the multiple-node phase. In each phase, the se-
lected benchmarks are performed in a bottom-up manner.
Micro-benchmarks are conducted first to validate individual
components, followed by end-to-end benchmarks to simulate
customer workloads. Defective nodes are removed after each
phase to ensure they do not affect subsequent benchmarks.
Networking Validation For the distributed microbench-
mark which performs pairwise scans for RDMA verbs to
ensure the networking quality of InfiniBand or RoCEv2 dur-
ing large-scale AI training, we propose the following two
algorithms to reduce validation time:

Full Scan in O(n) The pairwise scans for all nodes is
to ensure that the networking bandwidth between any two

Table 2: Full benchmark set in SuperBench.

Micro benchmarks End-to-end
benchmarks

Single
Node
Phase

Computation
• GPU kernel launch
• GPU GEMM [5, 45]
• cuBLAS kernels
• cuDNN kernels
• GPU burn

Communication
• CPU latency [31]
• GPU H2D/D2H bandwidth
• GPU copy bandwidth
• NVLink all-reduce
• IB HCA loopback [56]
• IB single-node all-reduce

Comput./Comm. Overlap
• MatMul/all-reduce overlap
• Sharding MatMul

Disk IO
• FIO rand/seq read/write [10]

Multi-GPU training
• CNN models

– ResNet [27]
50/101/152

– DenseNet [29]
169/201

– VGG [60]
11/13/16/19

• RNN models
– LSTM

• Transformers
– BERT [62]

base/large
– GPT-2 [15] smal-

l/large
• Long-running stress

– GPT-2 large

Multiple
Node
Phase

Networking
• All pair RDMA verbs
• GPU collective

communication [6, 47]
– all-reduce
– all-gather
– all-to-all

Multi-node training
• CNN models
• RNN models
• Transformers
• Long-running stress

(same as above)

nodes are expected so that AI workloads with all-to-all traf-
fic (e.g., Mixture-of-Experts models) won’t have regression.
The key idea is to simultaneously run network tests for all
nodes, which can avoid traffic collision by leveraging the Clos
network [16] property. The problem can be formulated as fol-
lows. Given a network with N NICs, suppose N ∈ 2 N and
pairs are symmetric, schedule all possible N·(N−1)

2 NIC pairs
into N− 1 rounds. In each round, exactly N

2 pairs will run
pairwise benchmarks (e.g., GPU-direct RDMA write [56],
NCCL/RCCL [6,47] 2-node all-reduce) without NIC intersec-
tion. We address this problem by leveraging the circle method
in round-robin tournaments [35] as the scheduling algorithm.

Quick Scan in O(1) To eliminate the increasing time
required for large-scale networking validation, we further
propose topology-aware networking validation, which scans
network links within a fixed duration, irrespective of the net-
work scale or node number. We select node pairs such that the
distance (number of hops) between each pair is 2-hop (nodes
under the same ToR switch), 4-hop (nodes under the same
aggregation switch), 6-hop (nodes across the core switch),
and so on. For each hop number, we include all nodes with-
out node overlap, ensuring that every node is included once
and only once for the given hop. For a k-tier fat-tree network
topology, only k rounds are needed for any scale. In each
round, we run the selected networking benchmarks for each
hop number.
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Benchmark Parameter Searching For end-to-end bench-
marks, validation only needs to measure a number of iterations
after performance becomes stable, rather than running into
model convergence or completion. We offline search for such
optimal warmup and measurement steps to reduce the valida-
tion time. Since model structures and hyper-parameters like
batch size and sequence length have already been determined
based on representative workloads, the search focuses on the
number of warmup steps w and measurement steps n. It aims
to minimize the total step number, i.e., benchmark running
time, while maximizing the repeatability across nodes. This
process is performed offline.

We formulate the problem as follows: Assuming the bench-
mark runs K steps periodically and has a sequence of through-
put numbers t1, . . . , tK , the objective is to search for parame-
ters w,n ∈ [1,K] such that n is minimized and sub-sequence
tw, . . . , tn is self-similar within the similarity threshold α (same
as the threshold used in Section 3.4). First, we calculate the pe-
riod of the cycle p across all K steps using classical seasonal
decomposition by moving averages [59] and divide them into
K
p cycles. Next, we traverse from the beginning to calculate
the pairwise similarity of all cycles, stop when a certain num-
ber of continuous similar periods are found. w and n are set
to the beginning and end of those continuous periods. Finally,
(wi,ni) from different nodes are traversed to select the one
that maximizes the average of pairwise similarity across all
nodes.

5 Evaluation

5.1 Experiment Settings
SuperBench has been deployed in Azure production environ-
ments since Day-0 when new AI SKUs were introduced, so it
is hard to perform an apple-to-apple comparison between the
complete SuperBench system and the original system without
validation. Consequently, we divide our experiment settings
into two parts: First, we gather node incident statistics and
traces from on-premise clusters and use this data to simulate
node incidents with and without validation, assessing the ef-
ficacy of the offline-trained incident probability model and
the selection algorithm in the Selector. Second, we execute
the full set of benchmarks on production clusters and two
testbeds to collect benchmark results for criteria evaluation in
the Validator.

Node Incident Trace We collect a 4-month period node
incident events, including all node failures and customer tick-
ets, from different internal on-premise GPU clusters with 1k
nodes in total. These clusters share the same hardware as
cloud VMs but never run validation. Each incident event has
timestamps of when the event started and ended, incident rea-
sons, and involved hardware components. We use this trace
to fit the probability model with each node’s status during
simulation.

Node Allocation Request Trace The internal on-premise
GPU cluster deploys a container orchestration system where
users can submit GPU training jobs to run. We also collect
allocation requests within the same clusters, including the
requested node number, submission timestamp, and duration,
to simulate node allocation requests for benchmark selection.

Cluster Benchmark Dataset We construct a benchmark
dataset using the results obtained from the full set of bench-
marks during the production cluster build-out. This dataset
comprises 3k+ A100 VMs and 24 benchmarks with 2,441
metrics on each VM. We use this dataset to build criteria,
label defective nodes, and calculate the defect coverage of
each benchmark for the benchmark selection algorithm.

Testbed We utilize the following internal GPU testbeds:
• 144× MI250X VMs. Each VM has 8× AMD Instinct

MI250X 120 GB GPUs [4] and 96× 2nd-Gen AMD Epyc
cores. GPUs are inter-connected by xGMI links, while
VMs are connected by 8× 200 Gbps HDR InfiniBand.

• 64× H100 VMs. Each VM has 8× NVIDIA H100 80 GB
SXM GPUs [8] and 96× 4th-Gen Intel Xeon cores. GPUs
are inter-connected by NVLink and NVSwitch, while VMs
are connected by 8× 400 Gbps NDR InfiniBand.

Setup We deploy SuperBench to the testbeds and run all
benchmarks with the Validator. The environment for valida-
tion uses the exact same settings as production clusters, includ-
ing firmware versions, hypervisor settings, BIOS configura-
tions, etc. We fixed all software versions by using a dedicated
VHD image for VM and a Docker image for validation execu-
tion. The VHD image is based on Ubuntu 22.04 [11], while
the Docker image is based on NVIDIA NGC container image
20.12 [49]. Both images include the necessary GPU/OFED
drivers and related libraries. For the benchmark selection, we
leverage PyCox [38] to build and train the probability model.

5.2 Benchmark Selection Evaluation

Offline Probability Model We evaluate whether the Cox-
Time model in Section 3.3 can effectively use its fitted prob-
ability distribution to predict the time before next incident
(TBNI) given node statuses, including total up time, historic
incident counts and MTBI in different categories, etc. These
status numbers are concatenated into a feature vector as the
model’s input, while the expected TBNI is used as prediction
output. Failure to predict TBNI for the given nodes will result
in inappropriate benchmark selections hence higher MTBI.
We extract 46,808 node status samples and corresponding
TBNI from the node incident trace. 80% of the samples are
used for model training and 20% are used for evaluation.

We establish three baselines for comparison:
• Exponential Distribution S(t) = e−λt [13]. It assumes the

incident rate λ is constant across different node statuses.
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Table 3: Accuracy of different probability models.

Model Accuracy

Exponential Distribution 75.12%
Exponential Distribution per Incident Count 63.03%

Exponential Distribution per Hour 75.12%
Cox-Time Model 93.13%

• Exponential Distribution per Incident Count. It assumes
the incident rate is simply related to historical incident
count, as informed by Figure 4, and constructs exponential
distributions for node statues with the same incident count.

• Exponential Distribution per Hour. It assumes the incident
rate is related to current up time. The incident rate for each
hour H is calculated by dividing the number of samples
with at least an H-hour life by the total number of samples.
We compare the accuracy of different probability models.

For each sample, which contains one single incident, the pre-
diction accuracy is calculated by ∥[prediction]−[T BNI]∥

2400 , where
the prediction is capped at the trace length of 2,400 hours
(100 days) to make accuracy ≤ 100%. The model accuracy is
defined as the average of its accuracy on all test samples.

The results are shown in Table 3. The first and third models
yield the same accuracy since they both predict > 2,400 hours
TBNI for all samples. The Cox-Time model, which considers
multiple node statuse as covariates, achieves a high accu-
racy of 93.1%, significantly outperforming the other baseline
models. This result also highlights the important relationship
between node statuses and incident probability distribution.

Online Selection Simulation To understand whether the
benchmark selection can proactively identify defective nodes
and save node hours, we simulate customer jobs in a clus-
ter and evaluate whether the benchmark selection reduces
incidents and improves utilization. The simulation will mark
nodes with incidents under certain categories. Note that we
assume the full set of benchmarks can always discover all inci-
dents and whether the selected subset can proactively prevent
the incident is decided by coverage from historical validation
data. We simulate 720 hours (30 days) of cluster activities.
The detailed simulation process is described as follows:
1. Simulator sets up FIFO queues for both job and node, and

employ stressed replay based on the allocation request
trace to schedule jobs to the nodes in a best-effort manner.

2. For current allocated nodes, simulator will sample the next
incident time and an incident category for each node based
on the probability distribution trained on incident trace.

3. Selector selects a subset of benchmarks by Algorithm 1.

4. Simulator calculates the probability on whether the se-
lected subset can identify simulated incidents based on
benchmark coverage instead of running actual benchmarks.
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Figure 8: Simulated average node utilization with different
benchmark selection policies within 30 days.

Table 4: Simulated average node validation time and MTBI
with different benchmark selection policies in 30-day.

Policy Absence Full Set SuperBench Selector
Validation Time (h) 0 100.40 7.96

MTBI (h) 11.59 236.26 262.05

5. If the Selector filters defects before job running, related
defective nodes will be sent to repair, and the rest nodes
and the job will be pushed to the end of respective queues.

6. If the Selector fails to predict defects that cause incidents
during job running, a new benchmark selection will be
performed based on updated node statuses. The job will be
pushed to the queue rear and continue where it lefts off.

7. For the node repairing, the duration is 1.5 days (expectancy
of ticket time in Figure 2) for no validation case to trou-
bleshoot potential problematic nodes, and 1 hour for val-
idation case to replace defects with healthy ones in hot
buffer according to the empirical experience.
Apart from the Algorithm 1, we establish three baselines

for comparison: (1) absence of validation, no validation and
nodes are sent for repair upon each incident, (2) full set vali-
dation, where nodes run validation with the full set of bench-
marks upon each job allocation and each incident, and (3)
ideal baseline, where all nodes are healthy forever and no
incidents occur.

We evaluate the effectiveness of different policies, focus-
ing on three metrics: average node utilization, average node
validation time cost, and node MTBI of a cluster. For each
node, its utilization is calculated by dividing its up time by
total time, its validation time is the sum of the durations of all
validations, while its MTBI is calculated by dividing its up
time by the number of incidents that occurred within it.

The average node utilization results are presented in Fig-
ure 8. SuperBench Selector with benchmark selection algo-
rithm achieves a high cluster utilization of 90.70%, improving
the no validation baseline by 4.81× and the full set baseline by
1.09×. As depicted in Table 4, the Selector reduces 92.07%
validation time cost per node compared to the full set baseline,
which is irrelevant to simulation duration since validation is
performed regularly in production. In terms of MTBI, the

USENIX Association 2024 USENIX Annual Technical Conference    845



ResNet DenseNet VGG BERT GPT-2

0

2

4

6

8

10

5.35
4.68

3.53

5.8

7.91

2.59

1.35 1.03

6.28

8.37

5.64

4.59

3.55

6.1

65.71

End-to-end Models

M
a
rg
in

R
at
io

IQR K-means SuperBench Validator

Figure 9: Margin ratios of different criteria methods.

Selector achieves a high 262.05 hours, enhancing the no vali-
dation baseline by 22.61× and the full set baseline by 1.11×.
The Selector experiences an average of 4.79 incidents per
node, 0.16 higher than full set baseline. Despite more inci-
dents, it benefits from reduced down time due to selective
validation, resulting in longer up time and better MTBI.

5.3 Benchmark Criteria Evaluation

Criteria and Defects Filtering To evaluate benchmark cri-
teria, we collect a series of step throughput for all end-to-end
benchmarks on 144 MI250X VMs and generate the criteria us-
ing different methods to compare their effectiveness. Note that
there is no ground-truth on which nodes are defective. Any
nodes with failures or performance regressions are defined
as defects by definition. To compare whether the criteria can
maximize the margin between healthy and defective nodes,
we define the Margin Ratio metric as min i∈de f ective d(Si, SC)

max j∈healthy d(S j , SC)
.

Apart from the proposed method, we establish two base-
lines with typical outlier detection methods, including the
interquartile range (IQR) [20] and k-means [26]. For the pro-
posed method, we use criteria SC calculated by Algorithm 2
and choose α = 0.95 as the similarity threshold. For IQR,
we use average throughput of each sample to calculate the
lower quartile Q1 and upper quartile Q3 [20]. The SC for
IQR is then calculated as the median of samples higher than
Q1− 1.5 · (Q3−Q1). For k-means, we use the default Eu-
clidean distance as the benchmark samples distance in the
k-means clustering algorithm and set the cluster number k = 2.
SC is set to the average of all samples in the majority cluster.

As shown in Figure 9, out of a total of 5 models, IQR and
k-means both have 4 models worse than the proposed Al-
gorithm 2, which can achieve relatively better margin ratios
across different benchmarks compared with baseline methods.
For GPT-2, both baselines classify nodes with marginal per-
formance as defective, which subsequently decreases the nu-
merator in the margin ratio calculation, leading to an unclear
boundary. On the contrary, the proposed method identifies
them as healthy to maximize the margin between healthy and
defective nodes, resulting in significantly larger margin ratio.

Table 5: Repeatability after benchmark parameters tuned.

End-to-end Repeatability (FP32 / FP16) Time Saving
Models Fixed Parameters Tuned Parameters FP32 / FP16

ResNet 98.70% / 97.52% 98.70% / 97.55% 73.96% / 78.30%
DenseNet 99.13% / 98.82% 99.12% / 98.76% 73.96% / 73.96%

VGG 98.63% / 97.38% 98.62% / 97.51% 75.59% / 70.70%
LSTM 99.51% / 98.11% 99.52% / 98.11% 73.96% / 73.96%
BERT 99.62% / 99.44% 99.62% / 99.44% 73.96% / 77.21%
GPT-2 99.51% / 99.37% 99.48% / 99.36% 73.96% / 67.45%

Table 6: Effectiveness and repeatability in real deployment.

Benchmark Repeatability # Defects / # Total

IB HCA loopback 99.96% 6.04%
H2D/D2H bandwidth 99.68% 2.03%

BERT models 99.39% 1.59%
CPU latency 99.60% 1.33%

IB single-node all-reduce 99.90% 1.10%
ResNet models 99.21% 0.73%
GPT-2 models 99.19% 0.53%
LSTM models 98.66% 0.46%

DenseNet models 97.70% 0.40%
MatMul/all-reduce overlap 97.88% 0.33%

NVLink all-reduce 99.89% 0.30%
GPU GEMM 99.44% 0.23%

Repeatability We evaluate the effectiveness of the proposed
adaptive benchmark parameter searching by comparing its
repeatability to a baseline with sufficiently long and fixed step
parameters, i.e., 72 warmup and 3,072 measurement steps. We
execute end-to-end benchmarks on 64 H100 VMs and collect
the warmup and measurement step numbers for each run. The
repeatability metric is measured as the arithmetic mean of
similarity scores between each sample and criteria. As shown
in Table 5, repeatability regression of the proposed method
(tuned parameters) is less than 1% compared to the baseline
(fixed parameters), while saving 67.5%∼ 78.3% validation
time cost for all models.

5.4 Deployment in Cloud

We have deployed SuperBench in Azure production environ-
ment for two years, where it acts as a quality gate to identify
most defective nodes before delivering GPU clusters to public
cloud services. We collect the benchmark dataset during the
cluster build-out phase from 24k+ A100 GPUs (3k+ VMs)
in 90 days and demonstrate its practicality.

Benchmark Effectiveness We generate criteria for the
dataset and use it to filter out defective nodes with failure
or regression, and calculate the percentage of defects iden-
tified by each benchmark, including micro-benchmarks and
end-to-end benchmarks, as shown in Table 6. The defects
percentages are sorted in reverse order, and each defective
node may be filtered by one or several benchmarks. In total,
10.36% nodes are filtered as defects without duplication.
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Repeatability at Scale We also analyze the repeatability
of those effective micro-benchmarks and end-to-end bench-
marks among healthy nodes after filtering out defective ones.
Table 6 also shows the repeatability on around 3k nodes,
where most benchmarks have it greater than 99.0%, while all
effective benchmarks have greater than 97.5% repeatability.

6 Related Works

Gray Failure in Cloud There exist related works that ex-
plore the concept of gradual performance degradation under
different terms, as opposite to fail-stop failures. For example,
“fail-stutter” [9] model is proposed to address the issue of the
same components behaving differently. Do et al. [22] and
Gunawi et al. [24] evaluate and study the “limping” hardware
in cloud which exhibits significant degradation. Huang et
al. [30] discuss the “gray failure” problem in cloud systems
and its differential observability traits. Lou et al. [41] evaluate
the “partial failures” in software. Gunawi et al. [25] analyze a
variety of “fail-slow” hardware incidents within production
systems, providing valuable observations and suggestions.

In the new era of AI, computing resources become even
more powerful [3] and such gradual degradation patterns
cause more significant consequences due to gang-scheduled
and synchronized AI workloads. We study this degradation
pattern in the GPU-based cloud at scale and correlate it with
the redundancies in hardware. Instead of diagnosing issues as
they occur, we advocate for a proactive validation approach
that regularly validates all components to restore redundan-
cies, consequently mitigating the impacts of such degradation.

Elastic Training and Fault-tolerant AI In synchronized
AI workloads, one slow GPU can make all other GPUs wait
and stall the entire training process. Popular deep learning
frameworks support elastic distributed training to address this
issue, such as Torch Elastic [53] and Horovod Elastic [28],
which will scale down nodes when there are hardware fail-
ures and scale up after recovery. In addition to ML-agnostic
solutions, there are also algorithmic aware fault-tolerant tech-
niques [54, 55] for AI training to bypass faulty nodes.

However, these elastic and fault-tolerant techniques may
also introduce non-determinism for workloads and affect train-
ing convergence or accuracy [40], which is not transparent
to customers. In contrast, the validation system we proposed
aims to reduce the faulty hardware in infrastructure from the
cloud service provider’s perspective with no assumptions on
customer workloads.

Performance Benchmarking Performance benchmarking
is used to measure which computer system can complete
tasks more quickly across different types. For traditional CPU-
based systems, SPEC [21] and LINPACK [23] are widely-
used to rank supercomputers. For AI systems, particularly
GPU-based, benchmarking also shares the same goal of mea-
suring which AI system is faster. DeepBench [57] compares

typical operations in deep learning, while DAWNBench [18]
and MLPerf [43] consider end-to-end training or inference
performance and measure time to convergence as metrics.

All the above benchmarks for benchmarking target ranking
or competition for peak performance of different types of
systems. In contrast, the performance validation we proposed
in this work aims to identify defects across reproductions of
the same system, which has entirely different requirements.

7 Conclusion

Inherent redundancies in cloud AI infrastructure can give rise
to a unique degradation pattern for AI workloads, leading
to diminished reliability. In this paper, we delved into inci-
dents associated with this concealed degradation pattern and
addressed it through the design of a proactive validation sys-
tem, SuperBench. The system comprises a comprehensive
benchmark suite, a Selector designed to efficiently trade-off
validation time and coverage, and a Validator which executes
benchmarks and filters defects with clear-cut criteria. The
system also iterates and evolves with the rich data gathered by
itself. Our evaluation in testbed and simulation demonstrates
its ability to increase the MTBI by 22.61×. Moreover, Super-
Bench has showcased its practicality in a real-world cloud
deployment.
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