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Abstract
For an extended period, graphics processing units (GPUs)

have stood as the exclusive choice for training deep neu-

ral network (DNN) models. Over time, to serve the grow-

ing demands in a more targeted manner, various artificial

intelligence-specific hardware, referred to as AI accelerators,

have been vigorously developed, aiming to provide more effi-

cient DNN acceleration solutions. However, sufficient solu-

tions are also heterogeneous and thus introduce complexities

in accelerator selection. Given a DNN model and a training

objective, such as throughput or price-performance ratio, it

remains challenging to arrive at the optimal decision among

many options due to high reimplementation costs and unex-

pected performance.

To tackle this challenge, we propose Centimani, a perfor-

mance predictor that accurately and rapidly predicts DNN

training throughput on various AI accelerators, thereby fa-

cilitating the accelerator selection process. To achieve this

goal, we first analyze typical AI accelerators and draw ob-

servations that abstract AI accelerator designs and guide our

performance modeling approach. In particular, we construct a

memory estimation model and decoupled performance mod-

els to select the most appropriate batch size and predict the

execution time of DNN training. We validate our approach

by applying Centimani to six common DNN models on four

typical AI accelerators. Results show that Centimani predicts

the throughput with an average accuracy of 93.1% on single-

device training and 90.4% on multiple-device training, thus

the optimal accelerator corresponding to the user’s training

objective can be obtained.

1 Introduction

The availability of vast public datasets and the rapid advance-

ments of DNNs have led to significant growth in the preva-

lence of AI-driven applications and services, achieving re-

markable outcomes in many tasks [35, 38, 41, 67, 70, 89, 102,

116]. Meanwhile, the increasingly complex DNN models

entail significant overhead for model training [122]. Conse-

quently, in recent years, academia and industry have made

extensive efforts [30, 90, 91, 104] to offer a broad range of

new hardware to optimize DNN training workloads. These

new AI-specific hardware are known as AI accelerators.

From the trend perspective, AI accelerators have become

the mainstream way to sustainably push Moore’s Law in the

AI field [37, 94]. According to AI Index Report 2023 [2] and

Top AI Market Radar [14], the lion’s share of private invest-

ments in AI, approximately $6 billion or 58%, has been di-

rected towards the development of AI accelerators. In the HPC

domain, AI accelerators have been seamlessly integrated into

cutting-edge exascale supercomputers, including Aurora [4],

Frontier [8], and El Capitan [7]. This integration has signifi-

cantly contributed to providing sufficient DNN solutions.

From the application perspective, many DNN models [30,

30, 43, 87, 92, 98, 101, 103] have been reimplemented and

trained on AI accelerators with substantial performance

speedups. For example, the largest biological language models

(GenSLMs) [123] have been trained on a new AI accelera-

tor named Cerebras CS-2 system [57]. For GenSLM with 25

billion parameters, only 16 Cerebras CS-2 accelerators can

reach convergence in 21.7 hours, which is faster than 560

NVIDIA A100 GPUs [31]. This work has been awarded the

2022 Gordon Bell Special Prize [1].

However, sufficient DNN solutions are also heterogeneous.

While having various options provides users with flexibility,

it can also lead to the paradox of choice, which leaves practi-

tioners uncertain about which AI accelerator should be used

to train their models. What further complicates matters is that

no “one-size-fits-all” solution works best on all DNN models.

Choosing an appropriate AI accelerator involves weighing

its performance benefits against the migration cost from the

current platform (typically the GPU platform), which makes

users have to face a decision-making dilemma.

A natural way to make this decision is to reimplement

the models and then measure training performance directly

on each AI accelerator, as demonstrated in many existing

work [22, 84, 96, 99]. Another common wisdom is to consult

existing benchmarks published by vendors and match them

with a similar DNN model to obtain a “ballpark estimate” [44,

75,90,104]. However, these approaches have their limitations

as follows:

USENIX Association 2024 USENIX Annual Technical Conference    1203



Repetitive implementation and direct hardware access:

Take GenSLMs [123] as an example, this work requires ex-

tensive efforts from researchers to achieve remarkable per-

formance on accelerator selection, because GenSLMs have

also been reimplemented and trained on five other AI acceler-

ators, with the selection of the optimal one (such as Cerebras

CS-2) contingent on actual performance assessment. This dif-

ficulty is due to the unique programming models [40, 46, 82]

of AI accelerators and the dependent libraries required to

train this DNN model, resulting in a significant expenditure

of manpower and cost. Furthermore, measuring performance

requires direct access to all AI accelerators considered, which

may not always be feasible for all users.

Large deviations from benchmarks: Deriving the train-

ing throughput of a particular DNN model through official

benchmarks can be inaccurate, primarily because benchmarks

typically contain only a limited number of DNN models, such

as MLPerf [75] and DAWNBench [32]. Such benchmarks

are not effective, especially when the DNN model to be es-

timated differs significantly from the models in the bench-

marks. Additionally, different AI accelerators choose varying

hardware-related hyper-parameters [104], such as batch size,

for the same model to achieve higher parallelism and better

data locality, which can further affect throughput estimation.

Hardware utilization and scalability: Another ap-

proach [18, 114] to predict the training throughput of a model

is to utilize hardware utilization, such as applying GPU train-

ing utilization to other AI accelerators. However, this ap-

proach may lead to significant errors, because the hardware

utilization among accelerators is not a general indicator due

to distinct hardware design and software workflow. Moreover,

different AI accelerators are connected using unique networks,

which presents additional challenges for throughput predic-

tion in a distributed environment.

Based on the above considerations, in this work, we advo-

cate for a hybrid approach that combines experimental and
analytical methods to make direct performance predictions
and guide the appropriate selection of accelerators. We notice

that: (1) the hardware design [30, 69] and software execution

flow [26, 90] of AI accelerators are starkly noticeable due to

distinct performance considerations; and (2) DNN training

workloads [50,60] differ from conventional general programs

because they typically consist of routine training stages with

required hyper-parameters. Ideally, the throughput prediction

of the whole training process can be decomposed into the

execution time prediction of multiple training stages for bet-

ter prediction accuracy, and the execution time of each stage

can be predicted on unified accelerator abstractions for more

comprehensive coverage.

To enlighten our performance model, we first analyze typ-

ical AI accelerators and propose a multi-aspect abstraction

that hides the details of accelerator designs; Specifically, the

multi-aspect abstraction involves two abstractions from dif-

ferent perspectives to describe AI accelerators: (1) hardware

abstraction deals with various hardware resources and config-

urations while hiding the underlying hardware complexity to

improve generality to adapt more platforms; and (2) software
abstraction systematically encapsulates the management of

training data and operators. In addition, the hardware abstrac-

tion and software abstraction are connected by an execution
modeling, which builds a connection between multi-aspect

abstraction and DNN model training.

We leverage this setting to develop our performance model.

Our performance predictor involves two steps: (1) we first

estimate the memory consumption of the given DNN model

with varying batch sizes and select the optimal one on each AI

accelerator; then (2) we predict the execution time of multiple

training stages and eliminate overlapping portions among

these stages to obtain the final training time.

Specifically, in the first step, we select an appropriate hyper-

parameter such as batch size for model training based on the

proposed memory estimation model, which traverses the com-

putation graph of DNN models, estimates the memory con-

sumption of each training data, and maps each training data

to the actual memory hierarchy of each accelerator. The mem-

ory estimation model optimizes data placement by maximiz-

ing the allocation of on-chip memory, coordinating specific

software workflow strategies, and staying within hardware

limitations. Our goal in selecting the maximum batch size is

to improve training efficiency.

In the second step, we predict the execution time of multi-

ple stages in DNN training, which include data loading/pre-

processing, computation, and communication. We infer to the

data loading/pre-processing time from the existing platform

(usually GPU). For the computation stage, we traverse differ-

ent operators in the computation graph to estimate the total

computation time. These operators are categorized as either

common or uncommon operators, in which the execution time

of common operators is obtained by executing predefined

micro-benchmarks, while the execution time of uncommon

operators is estimated using a cache-aware roofline model.

For the communication stage, we analyze the amount of data

that needs to be exchanged and estimate its communication

time using communication primitives. Finally, we eliminate

the overlapping part among stages to obtain the final predic-

tion.

We implement our model into a Python library that we call

Centimani, and evaluate its prediction accuracy by comparing

predicted throughput with measured performance using six

DNN models on four AI accelerators. The average accuracy

of Centimani on single-device training and multiple-device

training is 93.1% and 90.4% respectively.

In summary, this work makes the following contributions:

• We introduce a new and general performance predictor for

DNN training on AI accelerators.

• Centimani introduces model topology and training stages

to enable accurate performance prediction on AI accelera-
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tors. Its applicability and effectiveness are evaluated using

six common DNN models, namely, (i) ResNet-50 v1.5, (ii)

U-Net, (iii) CANDLE UNO, (iv) BERT-large, (v) Brag-

gNN [89], and (vi) OpenAI GPT-2, on four AI accelerators

(SambaNova, Graphcore, Cerebras, and Habana).

• Centimani uses an automated workflow with high us-

ability. Two training metrics (e.g., throughput and price-

performance ratio) are presented to show how Centimani

can help users make informed decisions based on their

training objectives.

2 Background and Motivations

2.1 Background on DNN Training

A DNN model consists of numerous parameters and can be

trained on a single device or across multiple devices. Regard-

less of the hardware used, the process of DNN training can be

broken down into three main stages [28,48,53,115] : (1) data
loading/pre-processing, which refers to the action required to

move and manipulate data samples from a storage location to

the memory co-located with the compute units for training; (2)

computation, which encompasses forward and backward prop-

agation to process a batch of training data through the DNN

model and compute the loss function and gradients of each

learnable parameter; (3) communication, which aggregates

all gradients from all devices and synchronizes parameters

with a designated optimizer (e.g., SGD [25], Adam [88], etc.).

Through iterative refinement of model parameters using these

three stages, DNN training continues until the loss function

reaches its minimum or a predetermined target.

2.2 Why Select Optimal AI Accelerator?

AI accelerators exhibit varying performance even when exe-

cuting the same training task. To reveal this situation, we train

a common ResNet-50 v1.5 model [55] with the same floating-

point precision (half-precision) and dataset (ImageNet [36])

on five platforms, including a conventional NVIDIA A100

GPU platform [31] and four new AI accelerator platforms,

namely, SambaNova SN30 [82], Graphcore Bow-IPU [63],

Cerebras CS-2 [57], and Habana Gaudi2 [76].

Figure 1(a) demonstrates the training throughput and hard-

ware utilization of each accelerator, where hardware utiliza-

tion is determined by dividing the achieved computing power

by the respective peak performance. Among the five plat-

forms, they exhibit varying training throughputs. Notably,

Habana Gaudi2 achieves the highest throughput, surpassing

the lowest brought by NVIDIA A100 GPU by a factor of

2.17×. However, such performance differences cannot be

solely attributed to disparities in the theoretical peak perfor-

mance of AI accelerators. For example, Graphcore Bow-IPU
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Figure 1: Throughput, hardware utilization, and the optimal

batch size of training ResNet-50 on AI accelerators.

has a theoretical peak performance of 350 TFLOPS in the half-

precision format, which is 1.21× higher than that of NVIDIA

A100 GPU at 312 TFLOPS, yet Graphcore Bow-IPU achieves

a speedup of 1.46×, primarily due to its superior hardware

utilization of 22.36%, compared to NVIDIA A100 GPU’s

utilization of 17.21%. The results also show that hardware

utilization is not a cross-platform indicator for estimating the

actual training performance of AI accelerators.

Furthermore, even for the same task, AI accelerators also re-

quire different batch sizes to achieve optimal training through-

put. Figure 1(b) lists the recommended batch size for each AI

accelerator when training ResNet-50 v1.5 model with Ima-

geNet. Notably, the batch size for Graphcore Bow-IPU is 64×
larger than that for SambaNova SN30. The main reason for

this discrepancy is that using different batch sizes ensures that

the training data can be stored in on-chip memory as much as

possible without exceeding the accelerator’s memory capacity.

Therefore, selecting appropriate batch sizes is important for

performance prediction and is part of this work.

2.3 Why Not Measure Memory Consumption
on CPUs or GPUs?

If each AI accelerator requests a specific batch size, is it possi-

ble to directly measure the memory consumption of different

batch sizes on CPUs/GPUs and then choose a suitable one

by comparing the memory capacity of AI accelerators? The

answer is no. Firstly, GPUs often lack sufficient memory ca-

pacity to support runs with larger batch sizes. For example,

the commonly used NVIDIA A100 GPU has 40GB/80GB

memory, which is significantly less than the 256GB memory

on Graphcore BOW-IPU. Moreover, CPUs have adequate

memory capacity, but they cannot support certain floating

point formats, such as Bfloat16 and FP8. Hence, we will build

a memory estimation model to avoid this limitation.

2.4 Why Not Apply Heuristic Algorithms?
An alternative approach to predict the throughput of DNN

training is to employ heuristics [39, 51, 79, 108] based on

hardware and model characteristics. This approach involves

selecting relevant hardware and model features as input, mea-

suring actual performance as output, and statistically analyz-
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ing the potential connection between the two using a heuristic

algorithm. Then, the resulting model can be used to predict

training performance for new hardware and DNN models.

However, a key challenge of this approach is the need for

a certain amount of training data to build an accurate heuris-

tic model. Unfortunately, AI accelerator vendors often only

demonstrate a limited number of DNN models [64,81], which

is insufficient to train a robust model. Furthermore, the heuris-

tic algorithm tends to assume that the training data and testing

data have the same distribution. If a heuristic model is trained

on a specific set of AI accelerators, it may not be readily ap-

plicable to other AI accelerators with significant differences.

Therefore, experimental and analytical approaches are more

suitable for performance prediction on AI accelerators than

heuristic-based approaches.

3 AI Accelerator Analysis and Inspiration

3.1 Micro-architecture of AI Accelerators

AI accelerators are designed with a primary focus on per-

formance enhancements, such as achieving high parallelism,

fast memory transactions, and advanced scalability, et al. For

example, � SambaNova SN30 [82] revolutionizes training

performance by mitigating redundant data movement through

the implementation of a Reconfigurable Dataflow Unit (RDU)

architecture [83] with a dataflow-based execution model; �
Graphcore Bow-IPU [64] optimizes both computational and

data exchange aspects by providing more extensive compute

parallelism. This is implemented through a Bulk Synchronous

Parallel (BSP) model [47], coupled with high memory band-

width; � Cerebras CS-2 [57] propels DNN training through

the utilization of Colossal Tensor Cores (CTCs) [68], expan-

sive on-chip memory capacity, and robust core-core intercon-

nections, which are imposed and powered into a Wafer-Scale

Engine (WSE) processor [56]; � Habana Gaudi2 [76] priori-

tizes versatility and programmability by employing a hetero-

geneous architecture comprising a Tensor Processing Core

(TPC) cluster and Matrix Math Engine (MME) [17]. Each AI

accelerator follows distinct design principles and objectives,

delivering its unique set of advantages and strengths.

Table 1 lists the hardware specifications of these AI accel-

erators, comparing them with an NVIDIA A100 GPU as the

baseline. These accelerators exhibit striking disparities across

various dimensions, encompassing compute core counts, the-

oretical peak performance, memory configurations, and in-

terconnect networks. Remarkably, the number of computing

Table 1: Hardware specifications of evaluated AI accelerators
Feature Nvidia A100 SambaNova SN30 Graphcore Bow-IPU Cerebras CS-2 Habana Gaudi2

Compute Units
6912 CUDA cores

432 Tensor cores

640 PCUs

640 PMUs
1472 cores

850,000 Cores

for 8 worker

MME

24 TPCs

Peak Perf.

for AI Compute
312 TFLOPS ∼300 TFLOPS 350 TFLOPS 320 TFLOPS/worker ∼450 TFLOPS

On-Chip Memory
192 KB L1

40 MB L2
320 MB 900 MB 5 GB/worker 48 MB

Off-Chip Memory 40 GB HBM2 12 TB DDR4 256 GB DDR4 256 GB DDR4 96 GB HBM2E

Process 7nm 7nm 7nm 7nm 7nm

Interconnect NVLink RDU direct IPU Link SR4 link RoCE2

Header Control

Pattern Compute 
Unit (PCU)

SambaNova SN30

S

S

S

S

S

S

Tail Control

Compute

Data Alignment

Pattern Memory 
Unit (PMU)

Pipeline Control

Memory

IPU Exchange (Data Bus)

Memory

Customized Logic

Graphcore IPU

MIMD

Compute

Address 
Resolution

Compute Memory

Fabric Router
Buffers Routes

Cerebras CS-2 Habana Gaudi2

Shared Memory

Matrix Multiplication Engine (MME)

Compute Memory

Convolution
Engine

Tensor Processing Cores (TPC)
Multi
Arrays

Figure 2: Microarchitecture of SambaNova SN30, Graphcore

Bow-IPU, Cerebras CS-2, and Habana Gaudi2.

cores in these accelerators exhibits significant variability. For

example, Graphcore Bow-IPU boasts an impressive 1472

cores, whereas Habana Gaudi2 features just one MME and

24 TPCs. Furthermore, substantial distinctions emerge in on-

chip and off-chip memory capacities among AI accelerators.

For instance, the on-chip memory of each worker in Cerebras

CS-2 is 128 times larger than that of NVIDIA A100 GPU, un-

derscoring significant differences in their ability to efficiently

localize training data. Moreover, each AI accelerator employs

its unique communication network between devices, resulting

in distinct distributed performance.

Hardware Analysis of AI Accelerators: Figure 2 outlines

the microarchitecture of these accelerators, highlighting sig-

nificant differences in compute core (e.g., execution units

and network-on-chip) and memory hierarchy (e.g., on-chip

and off-chip memory) in System-on-Chip (SoC) design. Re-

garding compute core design, each accelerator employs its

own Instruction Set Architecture (ISA), pipeline, and branch

prediction. Significantly, the majority of architectural details
have not been publicly disclosed.

Additionally, all four AI accelerators adopt the commonly

used hierarchical memory subsystem, including on-chip and

off-chip memory. Concerning on-chip memory design, Sam-

baNova SN30, Graphcore Bow-IPU, and Cerebras CS-2 allo-

cate on-chip memory among compute cores, facilitating fast

and local memory access. In contrast, Habana Gaudi2 opts

for centralized on-chip memory, such as a shared SDRAM

pool, streamlining data transfer and communication among

compute cores.

Regarding internetwork design, SambaNova SN30 and

Cerebras CS-2 facilitate efficient adjacent communication

through on-chip switches and direct core-to-core connection.

Graphcore Bow-IPU employs a shared data bus, while Habana

Gaudi2 achieves core communication via shared memory.

Software Analysis of AI Accelerators: AI accelerators in-

corporate specific software execution flows tailored to their

hardware architecture. Similar to NVIDIA A100 GPU, Ha-

bana Gaudi2 follows a sequential execution in DNN train-

ing, where each operation must load the required training
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data from off-chip memory to on-chip memory before com-

mencing. In contrast, SambaNova SN30 minimizes off-chip

memory access by caching intermediate results within on-

chip memory. Graphcore Bow-IPU achieves data locality by

employing a memory management technique that allocates

training data across different memory hierarchies. Cerebras

CS-2 adopts a unique strategy by maintaining all the param-

eters within on-chip memory at all times to facilitate high

bandwidth access.

3.2 Observations and Modeling Trade-offs

Based on these analyses of typical AI accelerators, we have

three observations to guide the design of performance model:

Observation 1: These AI accelerators differ significantly

in hardware and software implementation, but have some com-

monalities in the memory subsystem and data management.

These distinguished hardware designs profoundly influ-

ence the substantial variations in the performance of these AI

accelerators. These unique software designs are intricately

linked to the underlying hardware configurations and play a

pivotal role in the effectiveness of these accelerators. When

attempting to adapt DNN training to a given accelerator, the

amalgamation of these specialized designs introduces a higher

level of performance uncertainty.

While AI accelerators come in various forms, they share

similarities in how they organize memory and manage train-

ing data. Specifically, aspects such as utilizing on-chip mem-

ory and off-chip memory in hierarchical memory subsystem,

along with data management methodologies, serve as unifying

elements across various AI accelerator designs.

Observation 2: Predicting the execution time of the entire

DNN training on AI accelerators is difficult, and hardware

simulators offer limited assistance in this regard.

DNN model training is a complex process that involves

multiple training stages, which involves a variety of DNN

operators and requires different functions from AI accelera-

tors. For example, the computation stage primarily involves

compute and memory access units, while the communication

stage is more related to network components. As a result, pre-

dicting the performance of the entire training process, which

comprises distinct stages and operators, can lead to significant

deviations.

Traditional hardware simulators, such as Gem5 [24] and

ZSim [93], are highly configurable to evaluate different archi-

tectures. Real workloads can be executed under full-system

mode to collect all details of the runs, including execution

time. However, hardware simulators encounter two challenges.

(1) The microarchitectures of these accelerators are not made

public entirely. (2) Even with open-source hardware, simula-

tors tend to significantly slow down programs [27], typically

by a factor of 20× to 40×, making it infeasible to simulate

the time-consuming DNN training tasks.

Observation 3: Choosing appropriate batch sizes must

consider hardware limits and software optimizations.

The hardware limits of each AI accelerator can constrain

the selection of batch size. For instance, SambaNova’s on-

chip memory is limited to 640 MB, which is designed to store

all training data and intermediate results during DNN training,

thus greatly limiting the maximum number of samples that

can be processed simultaneously.

Based on these observations, we can identify three trade-
offs that need to be considered in performance modeling. (1)

If the execution time of DNN operators can be accurately pre-

dicted and appropriately combined, the overall prediction will

be more accurate. (2) A uniform hardware abstraction that

executes various DNN operators should participate in perfor-

mance prediction, improving prediction accuracy, and reduc-

ing modeling complexity. (3) A uniform software abstraction,

which manages training data and affects the selection of batch

size under hardware limits, should be included.

4 Centimani: A Performance Predictor

4.1 Centimani Overview
Our performance predictor Centimani is inspired by three

key trade-offs. To accommodate various hardware designs

and software optimizations and improve the generality and

effectiveness of performance modeling, two abstractions are

presented: (1) hardware abstraction proposes a unified hard-

ware interface that hides fine-grained characterizations of

the underlying hardware design and reveals coarse-grained

performance behaviors of different resources provided by AI

accelerators; (2) software abstraction provides a unified mech-

anism that allows allocation, placement, and accessing of all

training data on the hierarchical memory subsystem to meet

various computation and transmission demands to enhance

the manageability of DNN training on AI accelerators.

In addition, the two abstractions are connected through the

execution modeling, which maps the DNN training process

with associated hyperparameters into an efficient execution

on specialized AI accelerators. This mapping is a critical step

in revealing the real performance behaviors of each AI accel-

erator. The modeling process is shown in Figure 3. Firstly, the

software abstraction provides control over hardware-related

hyperparameters such as batch size (see Section 4.2); sec-

ondly, the execution model takes DNN model and optimal

hyper-parameters to map three training stages into correspond-

ing training components, and then each training component

is further decomposed into a combination of various DNN

operators; thirdly, the execution time of all the operators is

predicted by decoupled performance models (see Section 4.3),

and the overlap of these stages is removed to arrive at a final

time prediction (see Section 4.3.4). To sum up, execution

modeling provides a bridge between the high-level model

description in deep learning frameworks and the low-level
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Figure 3: Hardware and software abstractions of AI accelera-

tors, and two corresponding performance modeling compo-

nents (colored in navy blue) in Centimani.

hardware-specific instructions.

In addition, the predicted execution time can be converted

into different performance metrics, such as throughput or

price-performance ratio, which can be used by end users (or

researchers) to make informed hardware selections.

4.2 Hyper-parameters Selection
Selecting appropriate hyper-parameters is a crucial decision

that can significantly impact training throughput, especially

when training a DNN model on new AI accelerators. Some

default but mismatched hardware-related hyper-parameters

can lead to inefficient hardware utilization [33, 74, 118],

limited/exceeded parallelism [65, 77, 80], and resource con-

tention [62]. We propose a novel memory estimation model

to resolve the hesitancy of choosing the most important hyper-

parameter - batch size. We first show our preliminary results

by comparing training throughputs across multiple batch sizes

and then describe the proposed model.

4.2.1 Large Difference across Multiple Batch Sizes

We implement two DNN models, e.g., ResNet-50 v1.5 [55]

and Bert-Base [38], on four AI accelerators to study the dif-

ference in training throughput of using multiple batch sizes.

The training throughput of these two models is collected re-

spectively.

Table 2 summarizes the speedups of using optimal batch

sizes compared to default batch sizes used on the GPU plat-

form (NVIDIA A100 40GB) for four AI accelerators. It is

obvious that it is unnecessary or even infeasible to tenaciously

use default batch sizes on all AI accelerators. For example,

training ResNet-50 on SambaNova SN30 or training Bert-

Base on SambaNova SN30 and Cerebras CS-2 with default

batch sizes will cause out-of-memory (OOM) errors. In addi-

tion, the default batch sizes cannot achieve the best training

throughput, where the training throughput with optimal batch

sizes of the two models can reach on average 4.68× and up to

9.31× higher training throughput than that with default batch

sizes. In other words, the result further proved that choosing

appropriate batch sizes is critical in using AI accelerators.

4.2.2 Memory Model

Based on Observation 1 in Section 3.2, all AI accelerators em-

ploy a hierarchical memory subsystem and manage training

data through their memory management mechanisms. The

observation inspires our memory model to identify data place-

ment across multilevel memory and differentiate behaviors in

their properties. Unlike conventional CPU/GPU systems that

put training data in the same memory hierarchy, e.g., plac-

ing all training data on DRAM or global memory for CPUs

and GPUs, our memory model considers the configuration

of multilevel memory and predicts the respective memory

consumption of each memory level by introducing data clas-
sification and memory estimation model for a given batch

size. From this, our memory model selects the optimal batch

size that maximizes memory efficiency and avoids exceeding

hardware limits using batch size selection.

Data Classification Data classification is designed on top of

mainstream training frameworks, such as PyTorch, Tensor-

Flow, and MXNet, which are supported by all AI accelerators

and organize the execution of DNN training through a struc-

tural representation, known as a computation graph.

In a computation graph, each node represents the invoca-

tion of a mathematical operator, such as matrix multiplication

or concatenation, which takes tensor variables (multidimen-

sional arrays) as input and output. Each mathematical opera-

tor incurs a certain memory overhead by math libraries (i.e.,

cuBLAS and cuDNN for NVIDIA GPUs). Each operator may

contain numerical learnable parameters/tensors (i.e., weights

and gradients). Additionally, execution dependencies are spec-

ified by edges that point from the output of one operator to the

input of another. When a batch size for a DNN model is cho-

sen, all tensor shapes involved in the computation graph are

fixed. This characteristic is exploited by our memory model.

To fully understand how memory is consumed during DNN

training, we classify the allocated data into five categories:

Table 2: Best batch sizes for AI accelerators and speedups

over default setting (256 for ResNet-50 and 3 for Bert-Base)

on A100 GPU.
AI

Accelerators
Models/
Dataset

Best
Batch Size

Speedup Over
Default Setting

SambaNova SN30 Model:

ResNet-50

Dataset:

ImageNet

32 Out-of-memory

Graphcore Bow-IPU 1024 4.17x

Cerebras CS-2 480 2.75x

Habana Gaudi2 512 1.94x

SambaNova SN30 Model:

Bert-Base

Dataset:

SQuAD

1 Out-of-memory

Graphcore Bow-IPU 16 9.31x

Cerebras CS-2 2 Out-of-memory

Habana Gaudi2 12 5.24x
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• Input/Output Tensors, which include input tensors and output

tensors (such as activations). Activations are further computed

to forward output and output gradients.

• W&B Tensors, which include weights and biases of opera-

tions. They are learnable parameters of training.

• Gradient Tensors, which include gradients, weight gradients,

and gradients for momentum. They are computed under back-

ward propagation for updating and calculating weights in the

next iteration.

• Algorithm-related Tensors, which include variables used for

specific algorithms such as mixed precision training [78] and

stabilized SGD [61].

• Ephemeral Tensors, which include temporary variables used

in operation implementation such as mathematical library and

communication reservation used for multi-device training.

Altogether, such categorization offers a structured classi-

fication for comprehending the multifaceted roles and con-

tributions of tensors in the memory consumption of DNN

training.

Memory Estimation Model To build the memory estimation

model, it is essential to consider both the memory consump-

tion of various training data and their mapping to hierarchical

memory system. The workflow of the memory estimation

model can be divided into two parts as follows.

The first part is to traverse the computation graph of DNN

model and predict the memory consumption of each training

data in a fine-grained manner. For example, given a model

with N layers, we traverse each model layer in turn and in-

fer the memory consumption of each operator in each model

layer. For each model layer (e.g., layer L), the size of the acti-

vations of the previous layers (layer L−1) and the weights

of the current layer (layer L) are estimated according to their

dimension and data types in the forward pass. In addition,

for the backward part, the size of the gradients of the next

layer (layer L+1), the weight gradients and the gradients of

the current layer (layer L) are inferred. Meanwhile, additional

memory consumption of all involved operators (such as com-

munication reservation and temporary variables) is also taken

into account. Based on our observation long-live temporary

tensors are rare, so we use the peak amount of all allocated

tensors to avoid out-of-memory issues.

The second part is to estimate the memory consumption of

each memory level. The process consists of two steps: step 1

classifies different training data into various categories using

data classification; step 2 maps various data categories to

the hierarchical memory where they are located according to

the data management policies of AI accelerators. It is worth

noting that the matching of different data categories and mul-

tilevel memory completely depends on the software execution

flow and memory management mechanism of AI accelerators

and therefore varies greatly, which can also be obtained from

their software design manual and SDK tools [6, 10, 11, 15].

Then, the total memory consumption of on-chip and off-chip

memory can be calculated.

DNN 
Models

Computation 
Graph

AI Accelerators

Graph Traversal Data Classification

Memory Estimation Model

Memory Model Batch Size 
Candidate Set

Optimal 
Batch Size

Extract

On-chip Memory Size
Off-chip Memory Size

Figure 4: Workflow of memory modeling and selection of

batch size.

In summary, the inputs of the memory estimation model

are the DNN model and the batch size to be evaluated, and

the output is the memory consumption of each memory level

on various AI accelerators.

Batch Size Selection Figure 4 depicts the workflow of batch

size selection in memory model. Given a DNN model, we ex-

tract its computation graph. When evaluating a batch size in a

candidate set, we traverse the computation graph, classify dif-

ferent training data, estimate the memory consumption of each

training data, and calculate the memory consumption of each

memory level using the memory estimation model. Finally,

we select the optimal batch size in all candidate sets, which

can maximize computational parallelism and stay within the

hardware limits of each kind of memory.

4.3 Decoupled Performance Models

To make accurate predictions for DNN training, Centimani

introduces the decoupled performance models, which include

three models and predict the execution time of multiple train-

ing phases separately, including data loading/pre-processing

stage, computation stage, and communication stage. In the

end, the overlap of these stages is removed to arrive at the

final prediction.

4.3.1 Data Loading/Pre-processing Model

Data loading/pre-processing stage of DNN training is respon-

sible for fetching training samples from secondary memory

storage and applying additional transformations, such as de-

coding, augmentation, and batching, to the input data. There

is a significant difference between GPU training and AI accel-

erator training in the pre-processing stage. For GPU training,

the pre-processing stage is usually performed on GPU using

NVIDIA Data Loading Library [13], while for AI accelera-

tors, the pre-processing stage tends to occur on the host/CPU

side [43] due to the lack of special hardware modules.

Therefore, we modify the pre-processing code of GPU

training so that it can be executed and measured on the

host/CPU side. We approximate the data loading time in

AI accelerator training by collecting the data loading time in

GPU training and measuring memory bandwidths between

host/CPU and GPU/AI accelerators. Additionally, we esti-

mate the pre-processing time in AI accelerator training by

collecting the pre-processing time in GPU training and com-

paring the peak performance of CPU between GPU and AI
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accelerator training. In summary, the data loading and pre-

processing time are estimated proportionally based on the

time of GPU training.

4.3.2 Computation Model

To predict the computation stage of DNN training on a given

AI accelerator, we first break down the time that is required

for an iteration into the time of individual operators, which

can be expressed as follows:

Tbatch =
L

∑
i=1

O(i)

∑
j=1

E(i, j) (1)

where L is the number of layers in a DNN model, O(i) is

the number of operators in layer i, and E(i, j) is the batched

execution time of j− th operator in layer i.
Therefore, the key to predicting training time lies in accu-

rately predicting the execution time of each operator. Previous

work [54, 71, 85] has attempted to predict the execution time

of an operator, like E(i, j) in Equation 1. Most work has been

based on the assumption that the execution time is linearly

related to the number of floating point operations required.

However, this assumption is not valid, especially when pre-

dicting the execution time of the same operator on different

accelerators. For instance, we observe that Graphcore Bow-

IPU exhibits 1.91× the performance of NVIDIA A100 GPU

on convolution operation-based ResNet50 v1.5 model, de-

spite having only a 10% difference in their floating-point

peak performance. As a result, traditional methods are prone

to significant prediction errors.

We present an alternative approach that combines experi-

mental and analytical methods to predict the execution time

of each operator. Specifically, we categorize operators into

two groups: common and uncommon operators, and predict

their execution time using corresponding methods. For com-

mon operators, which are those included in the pre-defined

micro-benchmark set, we directly measure execution time by

constructing synthetic input data with a specific shape from

the computation graph. For uncommon operators, which are

those not included in the micro-benchmark set or belonging

to customized operators, we estimate execution time by col-

lecting the number of floating-point operations and arithmetic

intensity (A.I.) of the operator in GPU training and applying

cache-aware roofline model [58]. The approach is as follows:

E(i, j)≈
{

Kernel(E(i, j), Input shape), if E(i, j) ∈ Microbenchmark Set
Roo f line(Collected_FLOPs,A.I.), otherwise

(2)

where Kernel is the operator to E(i, j), Collected_FLOPs is

the collected number of floating-point operations required to

process E(i, j), A.I. is the arithmetic intensity of E(i, j).
In addition, we also consider the overhead of kernel launch,

although for the accelerator all kernels are offloaded before

execution, so this overhead is negligible.

4.3.3 Communication Model

There are two main parallelism modes for distributed train-

ing [23]: model parallelism and data parallelism. The two

parallelism modes exhibit distinct patterns. For model paral-

lelism, each device requires results from other devices based

on model partitioning. In contrast, data parallelism involves

independent computation on each device, and therefore no

communication is required during the computation stage.

For model parallelism, we directly collect the communi-

cation traffic during the computation stage in multi-GPU

training and simulate it as the communication traffic in multi-

device training on AI accelerators. We also measure the com-

munication bandwidth among devices to calculate the data

transfer time during computation. The computation time can

be achieved as follows:

Tdevice(d) =
L(d+1)

∑
i=L(d)

O(i)

∑
j=1

E(i, j)+
Tra f f ic(d,d +1)

Bandwidth(d,d +1)
(3)

where layer L(d) to layer L(d +1) are part of the model as-

signed to device d by model partition graph, Tra f f ic(d,d+1)
is the collected communication traffic from device d to de-

vice d+1 in multi-GPU training, and Bandwidth(d,d+1) is

the measured bandwidth between device d and device d +1.

The final computation time is the longest path in the model

partitioning graph.

Once the computation stage is complete, the device must

communicate its local gradient to the global parameters.

This communication can be accomplished using either syn-
chronous [34] or asynchronous [117] learning algorithms. In

synchronous learning, every device must wait for all devices

to transmit all parameters before the next training iteration. In

asynchronous learning, each device is allowed to transmit its

gradients once they are calculated, enabling the global model

to be updated without waiting for other devices. Therefore, the

time required for the communication phase can be modeled

as follows:

Tcomm(d) =

{
Tdevice(d)+

Size(Gradients in Device d)
Bandwidth(Device d,Server) , if Async. learning

Tdevice(d)+All_Reduce(Gradients), if Sync. learning
(4)

where Bandwidth(Device d,Server) is the measured

bandwidth between device d and parameter server,

Size(Gradients in Device d) is the size of gradients on

device d, and All_Reduce(Gradients) is the time required to

execution the all-reduce operation.

Finally, we also include data compression techniques [21,

59] that are used to decrease communication traffic in the

communication model. Two primary compression methods

are quantization [42], which represents data using fewer bits,

and sparsification [121], which removes the number of zero

elements. Our model takes this communication optimization

into account, and the new communication traffic is determined

as Size′(Gradients) = Size(Compress(Gradients)).

1210    2024 USENIX Annual Technical Conference USENIX Association



4.3.4 Overlap Removal

Two overlaps are considered in the performance model.

Data Loading/Pre-processing and Computation Overlap:

The execution pipelines of GPU training and AI accelerator

training differ. For GPU training, data loading can be per-

formed simultaneously with pre-processing and other stages,

thereby hiding the overhead of data loading. Conversely, for

AI accelerator training, other stages execute simultaneously

with data loading and pre-processing stages.

Computation and Communication Overlap: For PS-based

distributed DNN training, the computation stage and com-

munication stage can be overlapped [105, 113]. The com-

putation/communication overlap mechanism uses the stale-

synchronous parallel synchronization model to overlap the

communication of previous iterations with the computation

of the current iteration, resulting in the final execution time

being the greater of the two stages.

5 Implementation Details

5.1 Memory Model
Formally, the computation graph of a DL model is represented

as a directed acyclic graph (DAG), where DAG = (
−→
V ,

−→
E ).−→

V = {u1, ...,un} is the vertex set and each vertex ui is an

operator.
−→
E = {(ui,u j), ...} is the set of directed edges. A

directed edge (ui,u j) delivers an output tensor of ui to u j as

input and specifies the dependency between two operators.

The DAG is usually a static computation graph or can be

converted from a dynamic computation graph.

Let S=< u1, ...,un > be a topological ordering of the opera-

tors in DAG that satisfies the condition {< ui,u j >/∈E | i> j}.

We refer to S as the operator schedule, which represents the

actual execution order of the operators. The schedule S can

be obtained in GPU training as a reference.

Given a batch size (BS) from the candidate set, our mem-

ory model traverses the computation graph DAG sequentially

according to the schedule S, estimating the memory consump-

tion of the input/output, weights, gradients, and intermediate

tensors used by the math library of each operator. These ten-

sors are then mapped to on-chip and off-chip memory, and

the total memory consumption of each type of memory is cal-

culated as Eston−chip(BS) and Esto f f−chip(BS), respectively.

Finally, we choose the largest batch size that satisfies the

hardware limits (Realon−chip and Realo f f−chip) by comparing

the estimated memory consumption with the following objec-

tive function (Wonchip is usually set to 10 in our modeling):

min
BS

Wonchip(Realon−chip −Eston−chip(BS))2 +(Realo f f−chip −Esto f f−chip(BS))2

s.t. Realon−chip > Eston−chip(BS)

Realo f f−chip > Esto f f−chip(BS)

BS ∈Candidate set f or batch size

(5)

In other words, we seek to find a batch size BS that mini-

mizes the objective function under hardware and candidate

constraints. This ensures that the chosen batch size is feasible

and that as much on-chip memory as possible can be utilized.

5.2 Micro-benchmarks, Roofline Models, and
Communication Primitives

Micro-benchmarks In this study, we define DL micro-

benchmarks as the fundamental building blocks of the com-

putation model 4.3.2. We focus on the most commonly used

kernels that underlie the majority of DL workloads, including

generic matrix multiplication (GEMM), convolution, ReLU,

LSTM, and transformer operators. These kernels are designed

to accept any input shapes and data types, including single-

precision, half-precision formats, and FP8, and are imple-

mented on each AI accelerator. Table 3 selectively presents

the performance of two kernels on four AI accelerators and

compares them with the NVIDIA A100 GPU. The GEMM

kernel involves half-precision multiplication of two square

matrices, each of these has a width of 1k. ReLU is applied

to 3-D tensors with a batch size of 128 and dimensions of

128×128 for the other two axes.

Roofline Models In addition, a cache-aware roofline model

for each AI accelerator is built by collecting peak performance

and memory bandwidth of on-chip and off-chip memory.

Figure 5 displays cache-aware roofline models constructed

for four AI accelerators. The x-axis represents the arithmetic

intensity of operations, and the y-axis represents the achiev-

able performance. The cache-aware roofline model allows

us to distinguish where data reside and predict performance

with different rooflines. Moreover, Figure 5 depicts three un-

common operators (Batch Normalization, Linear Transfor-

mation, and MaxPooling2D) that are not included in micro-

benchmarks. Each operator is tested in two precisions (single

precision and half precision). Thus, the predicted performance

of each operator is the intersection point of the vertical line

and the corresponding roofline.

Communication Primitives To investigate the communica-

tion cost, we collect the transmission bandwidth between de-

vices in each system. Additionally, Table 3 also demonstrates

a communication primitive (all-reduce) across all systems.

All-reduce exchanges 240MB of data on each device and

calculates its communication bandwidth.

Table 3: Performance results of two DNN operators and one

communication primitive.
AI Accelerators Kernel TFLOPS Kernel TFLOPS Kernel GB/s
NVIDIA A100

GEMM

291.83

ReLU

0.62

All-reduce

100.61

SambaNova SN30 272.37 7.43 64.17

Graphcore Bow-IPU 295.32 5.59 103.62

Cerebras CS-2 307.53 5.87 134.75

Habana Gaudi2 430.58 2.27 85.23
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Figure 5: Cache-aware roofline models built on four AI accelerators, and three uncommon operators using single- and half-

precision are depicted.

6 Evaluation

6.1 Setup

Platforms and Formats: We conduct experiments on four

AI accelerators. (1) SambaNova DataScale SN30-8R rack

system, which consists of two DataScale SN30-8 nodes in-

terconnected with an InfiniBand-based fabric. Each SN30-8

node includes eight SambaNova Cardinal SN30 Reconfig-

urable Dataflow Units (RDUs) and a host module with 1.5TB

of memory and 128 cores. (2) Graphcore Bow Pod16 sys-

tem is powered by four inter-connected Bow-2000s. Each

Bow-2000 features four Graphcore Bow-IPU (Intelligence

Processing Unit) processors. (3) Cerebras CS-2 cluster is

powered by a wafer-scale engine. Each wafer-scale engine

features eight worker nodes. (4) Habana Gaudi2 system con-

sists of 16 Gaudi2 accelerators. The Gaudi2 architecture is

heterogeneous, with two kinds of engines: Matrix Multipli-

cation Engines (MMEs) and a fully programmable Tensor

Processor Core (TPC) cluster.

Models and Dataset: We evaluate Centimani on six differ-

ent DNN models using a public dataset, with the specifics

of each model and dataset provided in Table 4. ResNet-

50 v1.5 model [55] is an escalated version of the original

ResNet-50 model. U-Net [97] is a convolutional neural net-

work used for biomedical image segmentation. CANDLE-

UNO [107] is a pharmacological model that aims to enable

precision medicine for cancer treatment. Bert-large [38] is

a transformer-based model that is pretrained on a large En-

glish language corpus dataset in a semi-supervised manner.

BraggNN [72] is a scientific model designed for High Energy

X-ray Diffraction Microscopy (HEDM) modeling. OpenAI

GPT-2 1.5B [86] is the 1.5B parameters version of GPT-2 and

a transformer-based language model created and released by

OpenAI.

Implementation and Baselines: This work is implemented

Table 4: Evaluated models and dataset
Model ResNet-50 v1.5 [55] U-Net [97] CANDLE-UNO [107]

Dataset ImageNet LGG Segmentation CCLE

Model Bert-large [38] BraggNN [72] OpenAI GPT-2 1.5B [86]

Dataset Wikipedia Frames-exp4train OpenWebText2

based on PyTorch 2.12.1. We implement a memory model

and decoupled performance models as extended modules in

PyTorch. Micro-benchmarks utilize a combination of PyTorch

implementations and vendor-provided benchmarks.

We compare Centimani with three solutions:

� Roofline model [106], which predicts the achievable per-

formance relative to hardware limits and application charac-

teristics.

� Hardware utilization-based prediction [18], which uses

hardware utilization of GPU training and the theoretical per-

formance of AI accelerators to predict execution time.

� Similarity-based benchmarking [75, 104], which identifies

the most similar model to the target model in the existing

benchmarks and uses its performance as the predicted perfor-

mance of the target model.

6.2 Prediction Accuracy
6.2.1 Single-device Training

Performance Prediction: Figure 6 presents the prediction ac-

curacy of Centimani for single-device training across four dif-

ferent accelerators. Each subfigure compares the predictions

of Centimani against three other solutions for all evaluated

DNN models.

Centimani achieves an average prediction accuracy of

93.1% (with a range of 98.4% to 82.6%) across all AI accel-

erators and DNN models, while the roofline model, hardware

utilization-based prediction, and similarity-based benchmark-

ing achieve an average prediction accuracy of 28.4%, 37.8%,

and 57.2%, respectively. We make the following observations:

(1) By leveraging model topology and training stages, Centi-

mani provides a more accurate performance prediction than

application-agnostic solutions such as the roofline model and

hardware utilization-based prediction. (2) Centimani outper-

forms similarity-based benchmarking on U-Net, CANDLE-

UNO, BraggNN, and OpenAI GPT-2 1.5B models, which

are not included in the benchmark set provided by vendors.

Similarity-based benchmarking leads to low prediction accu-

racy due to the significant differences between the models

evaluated and the benchmark set. (3) Centimani performs

much better than the prediction based on hardware utiliza-

tion in Graphcore Bow-IPU, because it has distinct hardware
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Figure 6: Prediction accuracy of Centimani for single-device training on six DNN models across four AI accelerators.

design and software optimization, resulting in completely dif-

ferent hardware utilization. (4) For models with large memory

footprints, such as CANDLE-UNO and BraggNN, Centimani

achieves better accuracy on SambaNova SN30 because the

memory model accurately predicts memory consumption and

selects the most appropriate batch size.

Accelerator Selection: The primary use case of Centimani

is to assist deep learning users in making informed decisions

when selecting AI accelerators. In the following two scenar-

ios, we demonstrate how Centimani leverages the predicted

performance, enabling users to make the correct selection

based on their specific training objectives.

One scenario that deep learning users may encounter is

deciding whether it is worthwhile to port their DNN models

to other AI accelerators or determining which AI accelerator

can provide the best training throughput. Figure 7(a) presents

Centimani’s throughput predictions for three DNN models:

ResNet-50 v1.5, Bert-large, and OpenAI GPT-2 1.5B, on four

AI accelerators, normalized to the measured throughput on

NVIDIA A100 GPU. Notably, both Graphcore Bow-IPU,

Cerebras CS-2, and Habana Gaudi2 always perform better

than NVIDIA A100 GPU with an average speedup of 1.54×,

1.41× and 1.73×, respectively. In contrast, SambaNova SN30

only provides a marginal throughput improvement with an

average speedup of 1.22×. Specifically, Habana Gaudi2 out-

performs the other accelerators on ResNet-50 v1.5 model

composed of dense matrix multiplication, while Graphcore

Bow-IPU achieves superior performance on Bert-large and

OpenAI GPT-2 1.5B models, which rely on transformer-based

computations.

Another scenario for deep learning users is determining

which accelerator offers the best price-performance ratio. This

ratio is defined as the throughput divided by the hourly cost of

renting the hardware. To calculate the price-to-performance

ratio, we collect the hourly rental costs of a single device for

each AI accelerator from their cloud platforms [3, 5,9,12, 16].

The hourly rental costs1 are 2.87/device/hr for NVIDIA A100

GPU, 1.74/device/hr for SambaNova SN30, 1.21/device/hr for

Graphcore Bow-IPU, 2.89/worker/hr for Cerebras CS-2, and

1.64/device/hr for Habana Gaudi2, respectively. Figure 7(b)

1Please note that, over time, the actual price may be different from the

price published on the websites.
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Figure 7: Throughput and price-performance ratio of training

three DNN models on different AI accelerators, normalized

to the measurement on NVIDIA A100 GPU.

displays Centimani’s predictions on the price-performance ra-

tio, all normalized to the price-performance ratio of NVIDIA

A100 GPU. In particular, Graphcore Bow-IPU offers a signif-

icant improvement in the price-performance ratio, owing to

its low rental cost and excellent training throughput.

6.2.2 Multiple-device Training

We also evaluated the scaling performance by predicting the

training throughput of the U-Net model on two, four, and

eight devices for each AI accelerator. To model the amount

of communication of each device, we use the communication

model in Centimani, and the communication time is simulated

using the communication primitive (all-reduce).

Figure 8 displays the results normalized to the throughput

of single-device training. As the number of devices increases,

all accelerators achieve higher training throughput. Cerebras

CS-2 system has slightly stronger scalability than other AI

accelerator systems, owing to its higher communication band-

width between devices. Overall, our model achieves an av-

erage prediction accuracy of 90.4% for training on multiple

devices.

Summary. Centimani provides highly accurate predictions

with an average error of 6.9% and 9.6% for single-training and

multiple-device training, respectively. It is noteworthy that

even in cases where there are prediction errors, Centimani still

correctly predicts the relative ordering of all AI accelerators

in terms of their throughput and price-performance ratio. This

capability empowers users to make informed decisions based
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Figure 8: Normalized speedups of training U-Net model on

two, four, and eight devices for three accelerators.

on their specific needs for cost, pure throughput, or scalability.

6.3 Breakdown of Performance Prediction

6.3.1 Memory Consumption Prediction

We investigate the impact of memory consumption prediction

and batch size selection on Centimani’s end-to-end predic-

tion. In our evaluation, Centimani selects the optimal batch

size based on memory consumption prediction and hardware

limits and then feeds it as input to the decoupled performance

models to predict training throughput. In contrast, the ground

truth batch sizes are manually selected by enumeration.

Table 5 provides a comparison of the batch sizes selected

by Centimani and those manually selected on four AI accel-

erators. Our results demonstrate that Centimani’s memory

consumption prediction can accurately determine the appro-

priate batch sizes for different models, achieving a matching

accuracy of 19
24 . Specifically, for models such as ResNet-50

v1.5 and BraggNN, where Centimani predicts smaller batch

sizes than those manually selected, the impact on training

throughput is minimal, with performance differences of no

more than 4.6%. This finding underscores the strength of

Centimani’s batch size selection: It can automatically predict

appropriate batch sizes for most cases and prevent Out-Of-

Memory (OOM) errors caused by overly large batch sizes.

Table 5: A comparison between predicted batch sizes and

manually selected batch sizes.
ResNet-50 v1.5 U-Net CANDLE UNO

Selected Predicted Selected Predicted Selected Predicted

SambaNova SN30 16 16 2 2 8 8

Graphcore Bow-IPU 1024 512 4 4 512 512

Cerebras CS-2 64 64 2 2 256 256

Habana Gaudi2 64 64 2 2 230 230

BERT-large BraggNN OpenAI GPT-2 1.5B

Selected Predicted Selected Predicted Selected Predicted

SambaNova SN30 256 256 1024 512 16 16

Graphcore Bow-IPU 16 16 2048 1024 32 32

Cerebras CS-2 16 16 1640 1560 16 16

Habana Gaudi2 16 16 1440 1240 2 2

6.3.2 Computation Prediction

One of the most important aspects in improving prediction

accuracy is to accurately predict the execution time of each

operator involved in DNN training. In our tests, for the com-

putation model 4.3.2, common operators, which accounted

for 58% of all operators, can be predicted by running micro-

benchmarks directly, while uncommon operators, which ac-

counted for 42% of all operators, use the predefined cache-

aware roofline models. In terms of contribution to the final

prediction result, common operators predict 44.6% of the to-

tal training time while uncommon operators predict 25.7%,

which also shows that these two types of predictions are in-

dispensable to the final result.

6.3.3 Communication Prediction

To evaluate the communication capabilities of various acceler-

ators, we conduct a communication primitive using all-reduce

operation to measure the communication bandwidth and time

incurred across multiple devices. Specifically, we collected a

typical communication pattern from U-Net model consisting

of 16,777,216 floating-point numbers in single precision and

ran the communication primitive on eight devices to obtain

the communication bandwidths. Our results show that the

average communication bandwidth of SambaNova SN30-8R

system, Graphcore Bow Pod16 system, Cerebras CS-2 sys-

tem, and Habana Gaudi2 system is 10.24 GB/s, 54.33 GB/s,

352.37 GB/s, and 62.14 GB/s, respectively.

6.4 Overhead of Performance Modeling

We study the overhead of Centimani. The major overhead

includes (1) measuring memory capacity, memory bandwidth,

transmission bandwidth between CPU and accelerators, and

communication bandwidth between multiple devices, (2) con-

structing microbenchmarks and roofline model for each accel-

erator, (3) collecting memory consumption for math library,

and (4) traversing computation graph to make memory con-

sumption and performance prediction. It should be noted that

the first three components of this overhead occur only once

for each accelerator, while the fourth component occurs once

for each DNN model. Therefore, the overhead of Centimani

is significantly lower than the overhead of porting the DNN

model to all accelerators.

7 Related Work

DNN Performance Models for Different Hardware. Pre-

vious research has investigated performance models for

DNN training on various hardware, including GPUs [66,

73, 95, 100, 109, 111, 112, 120], CPUs [19, 20, 110], and FP-

GAs [29, 49, 52, 118].
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Geoffrey et al. [45] proposed a runtime-based computa-

tional performance predictor named Habitat, which helps

users make informed and cost-efficient GPU selections for

DNN training. However, Habitat uses the performance of

one typical GPU to derive the performance of other GPUs,

this approach is not suitable for AI accelerators that are very

different from GPUs and each other.

To predict the execution time of DNN models, Ruohan et

al. [108] proposed a machine learning-based solution that cap-

tures low-level hardware-dependent information. However,

this approach relies on having sufficient training data, which

is not always available for AI accelerators. In contrast, Xiao-

fan et al. [119] presented an FPGA-based DNN accelerator

model that imitates micro-architecture and pipeline structure

to discover the drawbacks of existing designs. Nevertheless,

this fine-grained performance modeling lacks generality and

has substantial overhead.

DNN Benchmark. A significant body of prior work has fo-

cused on benchmarks for DNN training [44, 75, 104], provid-

ing valuable insights into DNN training performance. How-

ever, these studies mainly focus on comparing different algo-

rithms and hardware, rather than performance prediction. In

contrast, the microbenchmarks used by Centimani are primar-

ily designed to predict the execution time of each operation

in a DNN model. Besides, a cache-aware roofline model is

introduced to overcome the shortcomings of the microbench-

marks that cannot cover all operations. By doing so, Centi-

mani provides better performance prediction and assists users

in making informed hardware selections.

8 Conclusions

We introduce Centimani, a novel performance predictor that

assists deep learning researchers and practitioners in select-

ing an AI accelerator for training their DNN models. The

primary idea behind Centimani is to combine experimental

and analytical approaches to predict the execution time of

DNN training on each AI accelerator. We evaluate Centimani

with six typical DNN models on three AI accelerators and

find that it makes execution time predictions with an average

accuracy of 93.1% and 90.4% for single-device training and

multiple-device training, respectively. Finally, we demonstrate

two decision metrics (throughput and price-performance ra-

tio), and Centimani correctly guides which accelerator should

be chosen. After that, the introduction of new GPUs and AI

accelerators is our future plan.
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