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Abstract

The dynamic workload and latency sensitivity of DNN infer-
ence drive a trend toward exploiting serverless computing for
scalable DNN inference serving. Usually, GPUs are spatially
partitioned to serve multiple co-located functions. However,
existing serverless inference systems isolate functions in sepa-
rate monolithic GPU runtimes (e.g., CUDA context), which is
too heavy for short-lived and fine-grained functions, leading
to a high startup latency, a large memory footprint, and expen-
sive inter-function communication. In this paper, we present
StreamBox, a new lightweight GPU sandbox for serverless
inference workflow. StreamBox unleashes the potential of
streams and efficiently realizes them for serverless inference
by implementing fine-grain and auto-scaling memory manage-
ment, allowing transparent and efficient intra-GPU communi-
cation across functions, and enabling PCIe bandwidth sharing
among concurrent streams. Our evaluations over real-world
workloads show that StreamBox reduces the GPU memory
footprint by up to 82% and improves throughput by 6.7X
compared to state-of-the-art serverless inference systems.

1 Introduction

Deep Neural Network (DNN) inference has been widely
adopted in today’s intelligent applications, such as au-
tonomous driving [2,17], virtual reality [32,43], image recog-
nition [16, 40]. Usually, inference services are implemented
as a workflow consisting of multiple DNN models. As shown
in Fig. 1, the traffic monitoring application [36] consists of an
object detection model and two recognition models for faces
and cars. The demand for parallel computing in DNN models
is continuously growing, and therefore inference computa-
tions are gradually moving to GPUs [7, 38, 46].

Serverless inference (i.e., deploying inference workflows
on serverless computing) is gaining increasing popularity for
proven high elasticity, cost efficiency (i.e., pay-as-you-go),
and transparent deployment [2, 37, 42]. In serverless infer-
ence, each DNN model is encapsulated as a "function", which
can automatically scale up or down according to the change
in number of requests. Each function (i.e., container) run-
ning on GPU requires a GPU runtime (e.g., CUDA context),
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Figure 1: The deployment of a Traffic serverless inference
workflow. Left: One GPU runtime per function (state-of-the-
art). Right: One GPU runtime per inference workflow. CTX
denotes CUDA context.

which encapsulates all hardware resources and libraries as-
sociated with the program. Since DNN inference does not
need the entire GPU, state-of-the-art serverless inference sys-
tems, such as INFless [42], Astraea [47], and LLAMA [36],
co-locate multiple functions on a single GPU (each function
is associated with a separate GPU runtime), due to the Nvidia
Multi-Process Service (MPS [27]) that facilitates spatial GPU
sharing among GPU runtimes (left graph in Fig. 1). Unfor-
tunately, running separate monolithic GPU runtimes is too
heavy for short-lived and fine-grained functions. Our analysis
(Section 3.1) reveals that isolating functions with monolithic
GPU runtimes has several deficiencies including an exces-
sive memory footprint (more than 90% data redundancy in
GPU memory), unacceptable cold start overhead (over 5s),
and redundant data transfers in communication.

This paper presents StreamBox, a new lightweight GPU
sandbox for serverless inference. The key idea is to enable
functions within an inference workflow (i.e., functions with
different DNN models or functions scaling out) to share a
GPU runtime instead of being isolated in redundant GPU
runtimes, as shown in Fig. 1 (right); and to realize that by
using GPU streams. GPU streams are commonly provided by
modern GPU libraries (e.g., CUDA [42] and ROCm [10]) to
enable concurrent kernel executions within a GPU runtime
and to share address space, similar to threads in a process.
They have been widely used to increase the parallelism of
kernels and improve GPU utilization [15, 22, 26].
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Leveraging GPU streams to achieve very low latency (10-
100ms [41]) and high concurrency for serverless inference
poses several challenges. C1: Efficient memory allocation and
sharing. When sharing a GPU memory address between func-
tions, coarse-grained memory allocation leads to significant
overhead (over 30ms) and idle memory. Furthermore, existing
memory management mechanisms (cudaMemPool and Py-
Torch) build a static memory pool without the philosophy of
auto-scaling, leading to increased user cost under serverless
pay-as-you-go billing models. C2: Inter-stream communi-
cation. The transparent function deployment in serverless
prevents the user program from choosing an appropriate com-
munication method according to the location of the func-
tion. Moreover, intra-GPU communication in a shared ad-
dress space still suffers from redundant data transfers. C3:
High-performance parallelism. Streams utilize the PCIe link
between GPU and CPU exclusively. The first arriving stream
monopolizes the bandwidth until all its data transfers are
completed. This hurts the parallelism of functions.

StreamBox addresses these challenges as follows. First,
we design an auto-scaling memory pool combined with fine-
grained memory management. We allocate and recycle mem-
ory at layer granularity to achieve high memory efficiency.
We also utilize offline profiling of DNN inference and build
memory usage models to make the memory pool resilient
to the exact memory usage of concurrent functions. Second,
we provide a unified communication framework that trans-
parently switches the communication methods between func-
tions according to the distribution of functions in the GPU
cluster. We store intermediate data in GPU memory to accel-
erate communication and also propose an elastic communi-
cation store to avoid memory competition between running
functions. Finally, we achieve fine-grained PCIe bandwidth
sharing among streams on top of the closed-source GPU
driver. We partition the data of different functions into right-
sized data blocks. We also design pinned memory buffer and
preemptive transfer; and re-build synchronization to achieve
high-performance transfers of these data blocks.

We implement StreamBox in OpenWhisk by extending
Apache TVM on Nvidia V100 GPU. We evaluate the effi-
ciency and effectiveness of StreamBox with diverse infer-
ence workflows and models using Azure cloud traces [37].
Compared to state-of-the-art, our experimental results show
that StreamBox reduces GPU memory footprint and startup
latency by up to 82% and 98% (startup latency less than
5ms), respectively, and improves the throughput by 6.7X. Fur-
thermore, compared to Stream-only that simply runs func-
tions with streams, StreamBox reduces memory footprint and
startup latency by up to 61% and 49%, respectively, and im-
proves throughput by 1.46X.

In summary, we make the following contributions.
• We provide an in-depth understanding of the deficiencies

of state-of-the-art serverless inference systems caused
by the monolithic GPU runtime.

Table 1: State-of-the-art GPU serverless inference systems
Systems GPU split Runtime Startup Footprint Commu

INFless [42] MPS Redundant 5-8s GBs Func-IPC
Llama [36] MPS Redundant 5-8s GBs Func-IPC
Astraea [47] MPS Redundant 5-8s GBs CUDA-IPC
StreamBox Stream Shared 5ms MBs Intra-GPU

• We unleash the potential of streams for new lightweight
GPU runtimes for serverless inference workflow through
the design of StreamBox. To the best of our knowledge,
this is the first study considering GPU streams for server-
less inference workflow.

• We present a series of optimizations in terms of I/O,
memory management, and communication, incorporat-
ing the characteristics of DNN inference (e.g., layered
structure) and the requirements of short-lived and auto-
scaling serverless functions.

• An easy-to-port implementation on Nvidia GPUs
and extensive experiments that clearly demonstrate
the advantage and efficacy of StreamBox over the
state-of-the-art. We have open-sourced StreamBox at:
https://github.com/CGCL-codes/streambox.git.

2 Background

2.1 DNN Inference Workflow

DNN models comprise multiple versatile layers (i.e., convolu-
tional, pooling, and fully connected layers) that are executed in
sequence. Each layer includes a set of complex computations
such as matrix multiplication, which makes DNN inference
better suited for hardware accelerators (i.e., GPUs) [7, 38, 41].
Inference services are usually structured as workflows includ-
ing multiple DNN models (Fig. 11). For instance, the traffic
workflow [38] starts with an object detection model, and sends
objects (i.e., sub-windows) about people or cars to face and
car recognition model for further identification, respectively.
The number of functions for recognition dynamically scales
with the number of objects detected by the upstream func-
tions. Note that as models of a single workflow are developed
and deployed under the same ML framework (e.g., PyTorch)
for consistent performance, their running environments are
usually identical.

2.2 Serverless Inference on GPU Servers

Serverless computing has received significant attention in
recent years. By breaking an application into small func-
tions that can be executed and scaled automatically, serverless
computing promises applications with high elasticity, cost
efficiency, and easy deployment [24, 30, 37]. Serverless com-
puting is especially appealing for DNN inferences because
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Figure 2: Left: Breakdown of the GPU memory footprint of
functions, where A, R, D, and S denote the models selected
from the inference workflows (Fig. 11): AlexNet, ResNet,
DenseNet, and SSD. Right: GPU utilization and memory
usage of different function concurrency.

requests of inference are bursty and dynamic [8,42,46]. Many
serverless inference systems have emerged (Table 1).
Monolithic GPU runtime. When deploying a serverless sys-
tem on a GPU, each function (i.e., container [13]) starts by
creating a GPU runtime (e.g., CUDA context), which encap-
sulates all the hardware resources and libraries related to the
program. Concurrent GPU runtimes co-located on a GPU are
scheduled in time-slice (i.e., temporal sharing) by default.

Recent studies suggest that DNN inference can better bene-
fit from spatial sharing on GPU to improve utilization [12,47],
because DNN inference typically does not need the entire
GPU, given the varied parallelism [15, 47] and the small
batch sizes [8, 46]. Nvidia GPUs utilize Multi-Process Ser-
vice (MPS) to enable concurrent execution of GPU runtimes
on GPUs. With MPS, users can specify the percentage of
compute resources (GPU%) available to each container over
its lifetime. Most serverless inference systems [5, 36, 42, 47]
adapt MPS to spatially partition the GPU among functions
(Table 1).

3 Motivation

In this part, we illustrate the limitations of the monolithic GPU
runtime, which is currently adopted in serverless inference
systems; and motivate the use of streams as new lightweight
GPU sandboxes. We then discuss the main challenges to
efficiently realize streams for serverless inference workflows.

3.1 Limitations of Monolithic GPU Runtime
To show the deficiencies of monolithic GPU runtimes, we use
INFless [42], a state-of-the-art serverless inference system
based on OpenFaas and Nvidia MPS. We consider popular
ML frameworks including PyTorch and TensorFlow; and the
latest inference engine TensorRT [28]. The models are taken
from Torch Hub [35], and run on Nvidia V100 GPUs.
Observation 1: High redundancy and excessive memory
footprint. Isolating functions with separate GPU runtimes
causes over 90% data redundancy in GPU memory.

Fig. 2 (left) shows the GPU memory footprint of functions
with different models and ML frameworks. We can see that the
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Tensorflow
Pytorch
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F

Figure 3: Left: Breakdown of function cold start latency.
Right: CDF for end-to-end latency in Traffic workflow with
warming up function. Ideal refers to sharing the GPU runtime.

overall memory footprint of an inference function (ResNet)
can be as high as 1.5GB, where the GPU runtime (i.e., context
and libraries from ML framework) occupies up to 95%. This
is much larger than the memory required for the inference
itself (i.e., DNN model and temporary results). Moreover,
in the inference workflow, GPU runtimes for functions with
different models are the same (in blue), resulting in extreme
data redundancy when multiple functions (with separate GPU
runtimes) share a GPU. This, in turn, results in low deploy-
ment density. For example, a V100 GPU (memory capacity
is 16GB) can accommodate at most 8 concurrent functions.
This not only leads to waste in the expensive GPU memory
but also causes low utilization of computing resources, with
more than 60% idle resources as shown in Fig. 2 (right).
Observation 2: Unacceptable cold start overhead. The cold
start latency of GPU runtime is over 5s, and commonly used
warm-up methods are ineffective on GPUs.

The cold start of an inference function can be divided into:
container startup, GPU runtime initialization (i.e., the initial-
ization of the context and ML framework), and the loading of
DNN model and input data (Fig. 3 (left)). The major latency
comes from the initialization of GPU runtime (up to 5s). This
is unacceptable for latency-sensitive DNN inference. Existing
studies focus on optimizing the model loading [5,23], and use
warm-up methods [12,14,42] (i.e., keeping functions alive for
a while after completion) to reduce cold starts. Unfortunately,
warm-up methods on GPUs are not practical. First, it is inef-
fective on GPUs since warming-up functions use a lot of GPU
memory (observation 1), especially when there are functions
with diverse models and various GPU% allocation. Second,
resource reallocation in MPS requires restarting GPU run-
times. This has been also observed in other studies [7, 10, 12].
As shown in Fig. 3 (right), the warm-up method on GPU still
suffers from noticeable cold start overhead.
Observation 3: Inefficient communication. Communication
between functions suffers from redundant data copys between
CPUs and GPUs due to the isolation between GPU runtimes.

Taking a traffic workflow as an example, when the batch
size is 16, function F1 (i.e., object detection) transfers 125MB
of data to function F2 (i.e., face recognition). Under the ex-
isting communication method (Fig. 4 (left)) in serverless in-
ference systems, function F1 first copies data from GPU to
CPU memory, then transfers the data to F2 through external
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storage, and F2 copies the data back to GPU. This results in a
long data transfer path. On the other hand, under the Nvidia
GPU CUDA-IPC communication method, which transfers a
data handle instead of raw data, F1 first gets a data handle
using cudaIpcGetMemHandle(), and passes the handle to
F2 using standard IPC mechanisms. Then F2 maps the data
into its own address space using cudaIpcOpenMemHandle().
However, operating the handle introduces additional overhead
and requires CPU-side assistance. Ideally, since F1 and F2
reside on the same GPU, F2 should be able to access the data
of F1 directly (Fig. 4 (right)). Hence, the ideal solution can
significantly reduce the communication latency.

3.2 Potential of Streams

As shown above, monolithic GPU runtimes are impractical
and inefficient for serverless inference workflow. This moti-
vates us to find a new lightweight GPU sandbox for functions.
We argue that functions of the same inference workflow do not
need strong isolation, especially identical functions that scale
up when the workload increases. Hence, using streams as
sandboxes for inference workflow is an ideal choice. Modern
GPU libraries (e.g., CUDA [42] and ROCm [10]) commonly
provide streams to execute kernels concurrently and share the
address space in a GPU runtime. On the other hand, streams
can partition the GPU through software-only methods, such
as Elastic Kernel [9,31,49] instead of hardware-support GPU
partitioning methods (MPS or MIG). These methods dynam-
ically map kernels to GPU compute units without runtime
restarts, simplifying resource allocation for functions.
Opportunity. Streams offer four benefits. (1) Fast startup and
small memory footprint: there is no need to initialize a GPU
runtime for each function, which avoids the startup latency
and eliminates data redundancy; (2) Fast resource reconfigu-
ration: spatially partitioning GPU resources across streams
can be realized through software-only solutions (Elastic Ker-
nels [31]). Consequently, users can reconfigure resources
without restarting the GPU runtime; (3) Effective resource
sharing: streams share one address space, thus we can easily
share memory among functions and thus improve GPU mem-
ory utilization; (4) Efficient communication: Sharing address
space among streams also facilitates zero-copy data passing
between functions in a GPU.
Earlier adoption of streams to share GPU resources. Pre-

10

103

6

0

Figure 4: Left: Existing communication methods in serverless
inference systems. Right: The latency of each communication
method.

viously, streams were mainly used at kernel-level to increase
the parallelism of kernels (i.e., deploying as many kernels
as possible in a single GPU). REEF uses streams to co-run
best-effort tasks with real-time tasks [15]. KRISP explores
kernel-wise resource allocation [10]. Other studies have in-
vestigated streams for DNN inferences. Remmer [26] uses
streams to parallelize operators without data dependencies
in DNN inference. Nvidia inference system Triton [29] and
Pipeswitch [5] utilize streams to overlap model loading and
kernel computation. Tacker [48] uses streams to exploit par-
allelism between Tensor Cores and CUDA Cores in Nvidia
GPUs. However, to the best of our knowledge, this is the first
study considering streams for serverless inference.

3.3 Challenges of Stream-based Sandbox

Despite potential performance and memory gains, using
streams for serverless functions faces several challenges.
C1. How to allocate memory for auto-scaling functions
efficiently? When sharing a GPU memory address between
functions, coarse-grained memory management results in la-
tency and unnecessary GPU memory reservation. On the one
hand, the total memory of DNN inference is allocated in ad-
vance by default. This coarse-grained memory allocation not
only leads to significant overhead (over 30ms) but also re-
serves a substantial amount of unnecessary memory. On the
other hand, existing memory management mechanisms (cud-
aMemPool and PyTorch) build a static memory pool to cache
freed memory. Without the philosophy of auto-scaling, this
can also lead to excessive memory usage and increase users’
costs under pay-as-you-go billing models.
C2. How to achieve efficient inter-function communi-

cation under the transparent deployment of serverless?
When functions are scheduled on the same GPU, zero-copy
data transfer can be achieved through shared GPU runtime.
However, the placement (distribution) of functions depends
on the workload and the scheduling, and leads to different
communication patterns between functions (i.e., intra-GPU,
inter-GPU, and inter-node communication). It is transparent to
users, making it difficult to set an appropriate communication
method (Fig. 7). Moreover, to enable intra-GPU communica-
tion through shared address space of streams, intermediate
data needs to reside in GPU memory and consumes memory.
Therefore, the intermediate data requires efficient manage-
ment to avoid memory competition with running functions.
C3. How to alleviate the problem of IO blocking to achieve
high-performance function parallelism? Streams use PCIe
bandwidth exclusively since there is only one IO engine per
GPU runtime in the GPU driver. So the first arriving stream
monopolizes the bandwidth until all data transfers are com-
pleted, and other streams’ executions are delayed due to this
serial data transfer (Fig. 10 (left)). Note that the serial transfer
between streams is acceptable for traditional monolithic tasks,
where parallel streams are used to accelerate the processing
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of the same data that are transferred at one time.

4 StreamBox Overview

The goal of StreamBox is to enable streams as efficient GPU
sandboxes for serverless inference workflow:

• Auto-scaling memory pool that provides fine-grained
GPU memory management and resilient scaling based
on the exact memory usage of auto-scaling functions.

• User-transparent communication framework that affords
unified communication APIs for developers to compose
function workflow and leverages an elastic communica-
tion store to achieve intra-GPU communication while
avoiding memory competition with running functions.

• Fine-grained PCIe bandwidth sharing that enables effi-
cient data transfer of concurrent functions.

Fig.5 shows the architecture of StreamBox. StreamBox
transforms the source code of DNN model according to the
Elastic Kernel [31] to enable GPU partition on each kernel
(Section 8). The transformed model code is stored in the
model pool for reuse. Arriving requests are then routed to a
GPU node where a function instance is launched to execute
the model code. StreamBox hooks GPU APIs (i.e., mem-
ory allocation, communication, I/O transfer, and kernel) from
functions, and forwards them to an API Proxy responsible for
each workflow. APIs of memory allocation are managed by
Auto-scaling Memory Pool (Section 5); APIs of communica-
tion (provided by us) are managed by Unified Communication
Framework (Section 6); APIs of I/O transfer are scheduled
by IO Daemon (Section 7); APIs of launching kernel are di-
rectly passed to the GPU driver. Note that we employ existing
workflow-aware function scheduling [25, 47] (i.e., placing
functions of a workflow on the same GPU node whenever
possible) to optimize inter-function communication.
StreamBox in shared environments. StreamBox is ideal for
functions from the same user and a trusted domain: It supports
that a workflow typically has mutual trust and thus functions
in a workflow do not require a strong isolation (this assump-
tion is consistent with other serverless systems [1, 19, 21]).
However, StreamBox can be used in multi-tenant scenarios.
Specifically, it allows to start multiple GPU runtimes (i.e.,

Mem pool

1 1 2 2 3 3

DNN layer

reclaim

temporary results

request

Kernel profiler

R

V

B

Mem usage predictor

OfflineOnline

r r r

alloc

scaling

DNN

function 1
f 2 … f n

exec

1
1

2 adr
2 adr

3
3

Figure 6: Fine-grained memory management in StreamBox

multiple API proxy processes for each workflow or user) for
isolating untrusted code or users if necessary. Note that a
single GPU is typically shared by up to 3 workflows due to
GPU capacity limitations. We also evaluate the performance
of StreamBox in multi-tenant scenarios (Section 9.4).

5 Auto-scaling Memory Pool

To reduce memory allocation overhead and unnecessary GPU
memory reservation, StreamBox builds an auto-scaling mem-
ory pool to improve memory efficiency, which enables fine-
grained sharing of GPU memory among functions through
layer-level memory allocation and recycling. In addition, to
avoid charging users for idle GPU memory (pay-as-you-go),
StreamBox utilizes offline profiling of DNN inference and
builds memory usage models to make the memory pool re-
silient to exact memory usage of functions. Existing memory
pool methods (e.g., cudaMemPool and PyTorch) can only
statically cache freed memory, and lack the philosophy of
auto-scaling.

5.1 Fine-grained Memory Management
Fig. 6 shows the memory management when running a DNN
inference under StreamBox. We leverage that the computation
of DNN models are performed sequentially (layer by layer)
and that DNNs adopt static pattern to enable on-demand mem-
ory allocation and recycling for layers.
Lazy allocation. StreamBox hooks the memory allocation
calls (i.e., cudaMemAlloc()) from each function, and regis-
ters the variable name in a mapping table. The mapping table
records (and keeps) the mapping between variables and phys-
ical addresses, where the address of a variable is kept empty
until it is accessed. For example, as shown in Fig. 6, as the
computation of layer 3 has not started yet, its addresses in
the mapping table are empty. When a variable is accessed for
the first time (e.g., the variable is a parameter in a kernel),
a physical address is allocated from the GPU memory pool.
Streambox does not introduce additional address mapping; it
gets valid addresses from a pre-allocated memory pool, and

USENIX Association 2024 USENIX Annual Technical Conference    63



allocates them only when variables are accessed. This lazy
allocation reduces memory occupation by idle variables.
Eager recycling. For efficient memory management, a layer
and its results can be freed when the computation of the next
one starts. However, unlike temporary data – that can be di-
rectly freed (with no harm) – functions can share a DNN
model (multiple requests for the same DNN model may ar-
rive), therefore direct memory recycling will result in frequent
model loading. In StreamBox, while temporary results are
recycled in time, we propose to cache layers in the memory
pool as long as they are accessed. Specifically, given that
DNNs exhibit static patterns, we propose to pre-run inference
task offline to obtain how many times each variable will be
accessed (expected frequency). We instrument the Mapping
table to record the access count (frequency) for each variable
during a sequence of kernel executions. Accordingly, when
the access count of a variable reaches the expected frequency,
the variable can be marked as reclaimable. A background
thread periodically queries the mapping table and returns re-
claimable addresses back to the memory pool. As a result,
eager recycling can reduce memory occupation by useless
variables.

5.2 Resilient Scaling

To make the memory pool resilient to the exact memory usage
of functions in the shared runtime, StreamBox employs elastic
scaling to the memory pool. This scaling is achieved through
the estimation of memory requirements based on workload
analysis and offline profiling.
Memory demand profiling. As described in Section 5.1,
DNN inference accesses a proportion of the data over time
and not all at once. Thus, considering the total accessed data
when scaling the memory pool will result in significant mem-
ory waste. Instead, we pre-run each model offline to record
its exact memory usage during the execution and use this data
to allocate the "exact" resources needed in later execution.
We measure and record the memory usage for each kernel
in each DNN model with different batch sizes. Note that the
memory demand is the actual memory required by the infer-
ence task after using the lazy allocation and eager recycling
optimizations.
Real-time memory pool scaling. On the one hand, DNNs
exhibit frequent changes in memory demands (see Fig. 15(b)),
thus frequent memory pool scaling may incur high overhead.
On the other hand, concurrent functions may compete for
GPU resources (e.g., memory bandwidth) and therefore their
execution times can vary [47], making offline memory de-
mand prediction inaccurate. Consequently, in StreamBox,
we periodically adjust the memory pool size at a fixed in-
terval (Algorithm 1). The time interval Tinterval is the over-
head of allocating and recycling 200MB of memory. That is
Tinterval = Talloc +Tf ree. We estimate the maximum memory
usage in future intervals based on offline profiling. Since the

Algorithm 1 Real-time memory pool scaling
Input: offline profiling of memory usage and runtime per kernel
Output: A new memory pool size Mresize
1: while there are f unctions running do
2: Mc,Mnext ,mnext ← 0;
3: for f unc← concurrent_ f unctions do
4: kc← concurrent_kernel( f unc);
5: mc← memory_usage(kc);
6: for kn← kernels_in_next_interval( f unc,Tinterval) do
7: mnext ←Max(mnext , memory_usage(k));
8: end for
9: Mc←Mc +mc, Mnext ←Mnext +mnext ;

10: end for
11: Mresize = Memory_pool_size()−Max(Mc,Mnext)
12: sleep(Tinterval/2);
13: end while

actual execution time of kernels will only be longer than the
time profiled offline, we can ensure that the memory pool
size meets the actual demands. We resize the memory pool
(line 11) based on the difference between the maximum mem-
ory usage in the next time interval and the current memory
pool size (negative value means scaling up). This periodic
approach not only senses the memory demands of functions
accurately, but also avoids frequent memory allocation and
recycling.

For memory allocation and recycling of the GPU
memory pool, we utilize asynchronous CUDA API (i.e.,
cuMemAllocAsync(), and cuMemFreeAsync()) to avoid af-
fecting streams. Additionally, we leverage existing CUDA
memory pool mechanisms [42] to mitigate issues such as
memory fragmentation.

6 User-transparent Communication Frame-
work

StreamBox provides a transparent communication interface
for developers to compose function workflow. The unified
communication framework adaptively switches the communi-
cation methods between functions according to the distribu-
tion of functions in the GPU cluster. Furthermore, StreamBox
employs an elastic communication store that can efficiently
utilize the idle GPU memory to store intermediate data.

6.1 Unified Communication Framework
There are three communication methods according to the
distribution of functions in GPU cluster: 1) Functions run-
ning in the same GPU can share addresses directly, enabling
the fastest intermediate data transfer. 2) Functions on differ-
ent GPUs can utilize the Point-to-Point (P2P) mechanism
through high-speed NVLink to transfer data. 3) For functions
on different nodes, Remote Procedure Call (RPC) is used.
Easy-to-use communication API. As shown in Fig. 7, we
provide communication APIs that conform to the external
storage paradigm [3] in serverless systems. Intermediate data
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are transferred using PUT and GET APIs. Developers need
to allocate a globally unique index to each intermediate data,
which is then passed to subsequent functions. The PUT API
records the index and the physical address of the data in a
mapping table for each node in the CPU memory. When a
function uses GET API to access data with an index, the
corresponding communication mechanism is chosen based
on the locations of functions. There are two types of mapping
tables: global and per-node. The search starts with the table
of the node where the function is located. If the key is not
hit, then it will search the global table, which will be updated
periodically (every second by default).
Optimizing intra-GPU communication. We focus on the
communication between functions within the same GPU. We
maintain a shared communication store in GPU to cache in-
termediate data. When a subsequent function on the same
GPU wants to access the data, it can get the physical address
directly from the communication store, without having to get
and open the data handler as in the CUDA IPC approach. Fur-
thermore, considering the elastic scaling of serverless work-
flows [42, 47], where multiple functions may simultaneously
request and access the communication store, we design a
producer-consumer tool to avoid competition and ensure cor-
rectness in accessing the communication store.

6.2 Elastic Communication Store

Storing data on the GPUs can speed up data transfers but
consumes GPU memory. In addition, when the idle GPU
memory is insufficient, intermediate data should be moved
out to avoid interfering with running functions. StreamBox
implements an elastic communication store to manage inter-
mediate data residing in GPUs. Specifically, to maximize the
capacity of communication store, we monitor the memory
pressure on GPU in real-time to fully utilize idle memory.
When the idle memory of the current GPU is insufficient, we
adaptively move data between GPUs to avoid expensive data
copies between GPU and CPU.
Memory pressure awareness. We scale the communication
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store based on the idle memory on each GPU. We utilize the
model described in Section 5.2 to predict the GPU memory
usage of running functions within a future time window (the
time window is set to 20ms, which is equivalent to the transfer
time of 200MB on PCIe). This allows us to host intermediate
data without affecting running functions. When the memory
pressure increases, the communication store triggers an early
move of intermediate data. Furthermore, we use only a part of
idle memory in each GPU as a communication store, so that
we can handle bursty requests. Note that due to our proposed
lazy allocation, the memory required by bursty requests is
greatly reduced.
Adaptive inter-GPU movement. When the idle GPU mem-
ory of the current GPU is insufficient, we first try to move
the intermediate data to neighboring GPUs (Fig. 8). Be-
cause GPUs are connected with high-speed interconnects
like NVLink [18] (up to 300GB/s), which is much faster than
the PCIe (12GB/s) link with the CPU. If all the GPUs in the
node are insufficient, then we move the data to CPU memory.
Inter-GPU data movement policies are critical to communi-
cation performance and system robustness. So we propose
the following rules. Rule 1: Proactively move the data being
accessed remotely. When a function uses GET API to access
data that is located on a remote GPU, we prioritize moving
the data to the GPU where the function is running. Rule 2:
Try to be even. Intermediate data are stored on the current
GPU by default. If a GPU memory is insufficient and data
needs to be moved to another GPU, we try to balance GPU
memory pressure and prioritize (select) GPUs with lower
memory pressure. Rule 3: Prioritize larger data. If the mem-
ory pressure on the current GPU increases, we should quickly
recycle enough memory for running functions. Therefore, we
prioritize moving large data out. We plan to integrate function
scheduling to further explore intermediate data management
in the future.

7 Fine-grained PCIe Bandwidth Sharing

To enable PCIe bandwidth sharing among concurrent streams,
StreamBox partitions the data of functions into smaller data
blocks and uses an I/O daemon to globally schedule the trans-
fer of these data blocks. To achieve efficient data transfers
in StreamBox, we have to face four challenges. (1) Limited
throughput. Transfers at data block granularity incur addi-
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tional system overhead and bandwidth waste; (2) High la-
tency. Transferring data between GPU and CPU relies on
pinned memory [33], which incurs significant allocation over-
head; (3) Long waiting time. How to allow newly arrived
requests to immediately claim their share of the PCIe band-
width; (4) Invalid synchronization. Since the original data has
been divided into data blocks and transferred by IO daemon,
the original synchronization in user program is invalid.

To address these challenges, we introduce a fine-grained IO
scheduling, as shown in Fig. 9. We hook I/O transfer calls (i.e.,
cudaMemcpyAsync()) from functions and store the metadata
(i.e., source address and destination address) in their function
queue. Next, the data is divided into fixed size blocks and
the metadata of these blocks are stored in a global device
queue, in a round-robin manner. Newly arrived requests join
the device queue through Preemption Module. Then, the IO
daemon fetches data blocks according to the device queue
and triggers the transfer of data blocks in turn.

7.1 Data Block
Reducing the size of the data blocks can facilitate fair sharing
of PCIe bandwidth, but it can adversely impact performance
and resource utilization. Using excessively small data blocks
can lead to (1) high overhead when invoking transfer calls
(i.e., when we divide the data into many blocks, the invocation
of transfer calls for each block incurs extra overhead), and (2)
waste of bandwidth. For example, in the case of V100, the
peak PCIe bandwidth between CPU and GPU is 12GB/s, but
the actual measured bandwidth is only 4GB/s when the data
block size is set to 16KB.
Right-size of data blocks. As shown in Fig. 10 (right), we
empirically find that only when the data block size exceeds
2MB, the transfer bandwidth approaches the peak bandwidth.
Hence, we choose 2MB as the data block size in StreamBox.
This is also the size commonly used for memory management
in systems [20]. Note that we do not only perform data parti-
tioning but also perform data fusion. For data that are smaller
than block size (many small layers in DNNs that are less than
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2MB), we combine multiple small layers into one data block.
Preemptive transfer using batches. To avoid the extra over-
head of invoking transfer calls, it is a common practice to
trigger all transfer calls at once. Since the CPU program can
invoke these calls asynchronously, the overhead of invoking
the transfer calls can be hidden within data transfers. How-
ever, this approach will block transfer calls of newly arrived
requests, as subsequent transfer calls can only begin to trans-
fer after all the previously invoked transfers are completed.
Therefore, we propose to invoke a batch of data block transfers
at once, allowing newly arrived functions to be considered
in the next batch of transfers. We set the batch size to six
2MB-data blocks in our experiments.
Shared pinned memory buffer. Streams transfer the data
blocks to GPU memory through the pinned memory on the
host. However, allocating pinned memory incurs significant
overhead (200ms for 200MB). Therefore, we let functions
share a buffer in the pinned memory, called transfer buffer.

7.2 Data Block Synchronization

Timely synchronization and quick launching of subsequent
kernels are crucial for the performance. However, when we
partition the data into blocks, the synchronizations in user
code become ineffective, requiring us to re-build synchroniza-
tion. For DNN inference with a fixed execution flow, data
dependencies (i.e., layers dependencies) during computation
(i.e., kernels) can be obtained through offline code analysis, as
shown by the triangular symbols in Fig. 9. Therefore, after par-
titioning the data into blocks, we record the synchronization
flags for each block. Only the last data block of each layer re-
quires synchronization. As a result, a data block might contain
multiple kernel synchronizations (i.e., multiple very small lay-
ers within a data block), or it might contain no kernel synchro-
nization at all (i.e., a data block is only part of a larger layer).
In more detail, after each data block transfer call is invoked,
based on the synchronization flags of the data block, a back-
ground thread records an event (i.e., cudaEventRecord())
and invokes the cudaStreamWaitEvent() call. Then kernel
scheduler continues to invoke subsequent kernels. Note that
the event synchronization is asynchronously invoked and has
almost no effect on data transfer and kernel invocation.
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8 Implementation

StreamBox is implemented by extending Apache TVM and
Nvidia CUDA with approximately 5,500 lines of C++ code.
Forwarding GPU APIs to streams. To enable functions run-
ning in containers to share one GPU runtime via streams, we
leverage the widely embraced API forwarding method [10,14]
to start an API Proxy for each workflow. It is responsible for
receiving GPU API calls (e.g., launching kernel) hooked from
all functions in the workflow. Then the API Proxy dispatches
them to streams. The API forwarding has negligible overhead
as shown in Section 9.3.

As for data (i.e., DNN model), we let functions and
API Proxy mount a shared space. In addition, there
are some CUDA APIs (e.g., cudaDeviceSynchronize())
that cause synchronization of all streams, so we need
to replace such APIs with stream-friendly versions (e.g.,
cudaStreamSynchronize()) to prevent interference among
streams.
Offline preparation. (1) Kernel compiler. The GPU partition-
ing for each kernel is implemented through a software-only
solution. We extend Apache TVM to build a source-to-source
compiler. It transforms all the kernels to PTB mode [31] and
adds a parameter for each kernel to limit the number of GPU
Computation Units (CUs) that can be used. The transformed
kernels are compiled into customized operators in PyTorch
through C++ extension [34]. (2) Profiler. We pre-run each
DNN model under various batch sizes and input sizes to build
memory usage models for our fine-grained memory manage-
ment. The overhead of these offline preparations is discussed
in Section 9.3.
GPU runtime management. In StreamBox, we employ the
standard serverless keep-alive approach [4, 42]. It keeps the
GPU runtime after a workflow request is completed and clears
it if the warm-up duration exceeds the time limit (10 minutes).
StreamBox supports warm-up of up to 3 GPU runtimes. Note
that each GPU can handle up to 3 concurrent inference work-
flows, as shown in our experiments.

9 Evaluation

Setup. The experiments are conducted on a GPU server that
consists of two Intel Xeon(R) Gold 5117 CPU (total 28 cores),
128GB of DRAM, and four Nvidia V100 GPUs (80 CUs
and 16GB of memory). The software environment includes
PyTorch-1.3.0, TensorFlow-2.12, and CUDA-10.1.
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Figure 11: Three inference workflows used in evaluation

DNN inference workflows. In this paper, we study three
representative DNN inference workflows (Fig. 11). The Im-
age Processing [47] workflow consists of face recognition
followed by image enhancement. The Traffic [38] workflow
uses an object detection model that can identify vehicles and
people. It then performs subsequent analysis on all relevant
images for vehicle and face identification, as well as license
plate extraction. The Social Media [11] workflow combines
computer vision models with language models to translate
and classify posts based on text and linked images.
Workloads. These inference workflows are invoked by dy-
namic invocations that are simulated based on the production
trace of Azure Function [4]. The trace contains 7-day request
statistics with daily and weekly patterns. There are three typ-
ical types of request arrival patterns in the production trace
including sporadic, periodic, and bursty.
Comparing targets. As shown in Table 2, we compare
StreamBox with INFless [42], Astraea [47], and Stream-only.
INFless is a state-of-the-art serverless inference system imple-
mented based on OpenFaaS and uses CUDA MPS to partition
GPU for functions. Astraea is a QoS-aware GPU management
system for microservices. It proposes an auto-scaling GPU
communication framework based on CUDA IPC. Stream-only
is a naive version of running functions on streams without
any optimizations. We enable warming up for these baselines,
because the significant latency of cold start could cause all
requests to time out. Furthermore, inspired by Tetris [23]
and PipeSwitch [5], for all systems, we use pipelined model
loading and enable model sharing between functions.

9.1 Overall Performance of StreamBox

As shown in Fig. 12–14, we first evaluate total GPU memory
footprint, throughput, and end-to-end latency of all systems
using real-world workload.
Less memory footprint: StreamBox reduces GPU memory
usage by up to 82%. Fig. 12 (left) shows the change in
GPU memory usage over time. We observe that StreamBox
significantly reduces GPU memory usage, especially when
the workload increases and multiple functions are running
concurrently. Furthermore, since warm-up method is enabled,
the functions (over 1.5GB) warmed up in INFless and Astraea
saturate GPU memory (16GB). Fig. 12 (right) depicts the
average memory usage (i.e., the overall memory usage divided
by the execution time). We can see that Streambox can reduce

Table 2: Comparing targets in evaluation
Systems INFless Astraea Stream-only StreamBox

GPU runtime sharing % % ! !
GPU partiton MPS MPS PTB PTB
Memory pool % % Static Auto-scaling

Elastic commu-store % % % !
communication Func-IPC CUDA-IPC CUDA-IPC Direct access

PCIe sharing MPS MPS % !
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Figure 12: Left: Memory usage (log-scale) under real-world
trace. Right: memory usage of different inference workflows
and ML frameworks.

memory usage by up to 79% to 82% on average compared
with INFless and Astraea, due to reduced redundant GPU
runtimes. Astraea’s memory footprint is larger than INFless
due to the intermediate data cached in GPU memory.

StreamBox reduces memory footprint by 71% compared
to Stream-only because of the fine-grained memory man-
agement. StreamBox allocates exactly the memory needed
during DNN inference computation through lazy allocation
and eager recycling. Although the memory usage varies under
different ML frameworks, StreamBox focuses on eliminating
redundant GPU runtimes rather than shrinking GPU runtime.
High throughput: StreamBox improves system through-
put by 5.3X-6.7X. Fig. 13(a) and (b) show the average RPS
achieved by Streambox and baselines across different ML
frameworks and inference workflows. In Fig. 13(c), we further
evaluate the throughput using the three types of production
workloads. We observe that StreamBox achieves the highest
system throughput, and improves the throughput by 6.7X and
5.3X on average compared with that of INFless and Astraea,
respectively. Compared with Stream-only, StreamBox can
improve the throughput by 1.46X.

As the warm-up method is ineffective on the GPU, existing
serverless inference systems are still affected by cold starts,
which causes a lot of request timeouts. This issue becomes
more serious under periodic and sporadic workloads that
incur more cold starts. PyTorch’s throughput is lower than
TensorFlow due to the larger cold start overhead and memory
consumption, which further limits the deployment density
(PyTorch’s maximum function concurrency is 8, leaving over
20% of GPU cores idle and limiting warming up. In contrast,
StreamBox supports 20 concurrent functions). StreamBox
outperforms Stream-only due to more efficient memory man-
agement and communication. Additionally, its lower latency
allows a larger batch size which further improves throughput.
Low latency: StreamBox can guarantee SLO and reduce
end-to-end latency. Taking Traffic as an example, Fig. 14(a)
and (b) plot the CDFs of the end-to-end latencies of Stream-
Box and baselines. We find that StreamBox achieves the low-
est latency and SLO (200ms) violation. The frequent cold
starts in existing serverless inference systems leads to a large
number of requests waiting in queue until violating SLO. Us-
ing PyTorch shows higher SLO violation due to heavier GPU
runtime, which limits the effectiveness of warming up method
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and concurrency of function. Furthermore, the left-most part
on each curve in Fig. 14(a) and (b) shows the end-to-end la-
tency when the function is warmed up in INFless and Astraea,
StreamBox still outperforms all baselines.

Fig. 14(c) shows the breakdown of end-to-end latency. We
can see that StreamBox reduces the end-to-end latency by up
to 98% compared to INFless and Astraea, reducing startup
latency from 5.8 s to 5 ms. Furthermore, apart from cold start
optimization, StreamBox still outperforms stream-only by up
to 49% on average, due to more efficient I/O (i.e., pipelined
model loading), memory allocation, and communication (we
will discuss these in Section 9.3). The latency of model load-
ing is amplified in Stream-only due to serial I/O, and INFless
has the highest communication latency, because it requires
multiple data copies between CPU memory and GPU.

9.2 Optimizations in StreamBox
In this section, we focus on the contribution of each optimiza-
tion to the performance of StreamBox, particularly compared
with Stream-only.
Auto-scaling memory pool. StreamBox compresses the foot-
print of memory pool with fine-grained Memory Management
(FM) and Resilient Scaling (RS). We perform an ablation
study of these optimizations. Stream-only uses static memory
pool (cudaMemoryPool). Fig. 15 (left) shows the memory us-
age and execution time, excluding the impact of GPU runtime.
We find that StreamBox reduces memory usage by up to 91%
compared to Stream-only due to the fine-grained memory
management. StreamBox reduces footprint by 67% compared
with stream+FM due to resilient memory pool. Furthermore,
StreamBox reduces the execution time by up to 34% com-
pared with Stream-only, because lazy allocation hides the
memory allocation overhead. There is no significant perfor-
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Figure 15: Left: comparison of GPU mem usage and execu-
tion time normalized based on StreamBox. Right: the mem
usage (log-scale) under real-world trace.
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mance difference between StreamBox and stream+FM, indi-
cating that StreamBox reduces the memory pool size without
affecting performance.

We further show the efficiency of our memory manage-
ment under real-world workloads. Fig. 15 (right) shows that
StreamBox can effectively reduce the memory usage com-
pared to all baselines, and StreamBox’s memory pool closely
matches the actual memory demand (blue line). Due to the
unpredictable bursty requests, sometimes the scaling of the
pool cannot catch up with the surge of memory demand. How-
ever, the bursty requests only have overheads at the first few
layers, and StreamBox’s memory pool scales rapidly at layer
granularity to accelerate subsequent layer allocation.
Efficient intra-GPU communication. Fig. 16 (left) shows
the average communication overhead of different serverless
inference systems. To increase the memory pressure, we fol-
low the implementation in REEF [15] and run a video pro-
cessing task to utilize the idle computation resource. We find
that StreamBox reduces the communication overhead by 94%
compared to INFless (Function-IPC), and by 73% compared
to Stream-only. Function-IPC stores intermediate data in CPU
memory. Stream-only lacks the management of communica-
tion buffer, leading to memory allocation overheads and data
transfer between CPU and GPU when GPU memory is in-
sufficient. StreamBox maximizes the communication buffer
capacity through memory pressure aware techniques and em-
ploys adaptive inter-GPU data movement.

We perform an ablation study of memory Pressure Aware-
ness (PA) and Adaptive Movement (AM). Fig. 16 (right)
shows that PA and AM reduce the communication overhead
by 55% and 72%, respectively. The reason is that PA and
AM reduce the overhead of scaling communication store and
prevent time-consuming data movement to CPU, respectively.
Fine-grained PCIe bandwidth sharing. To study the effi-
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kernel) of ResNet, (c) the overhead of offline preparation.

cacy of I/O scheduling in StreamBox, we focus on Traffic and
Social media because they involve concurrent model loading,
such as concurrent car (ResNet) and face (VGG) recogni-
tion in Traffic. Fig. 17 (left) reports the latency of pipelined
model loading for MPS (INFless), Stream-only, and Stream-
Box. Since we use the pipelined model loading method, model
loading overhead overlaps with the computation, resulting in
just a few milliseconds of latency. As expected, Stream-only
significantly amplifies latency by 3.2X on average compared
to INFless, because DNN models of concurrent functions can
only be transmitted sequentially. StreamBox reduces latency
by 91% compared to Stream-only because of efficient I/O
sharing between streams. StreamBox reduces latency by 80%
compared to MPS, because pinned memory buffer hides the
overhead of allocating pinned memory.

We perform an ablation study of data block rightsize (RZ),
pinned memory buffer (PB), and batch transfer (BT). Fig. 17
(right) shows that StreamBox without any optimizations is
even worse than Stream-only because of wasted bandwidth
caused by small data block size. Data block rightsize and
pinned memory buffer bring major performance improvement,
accounting for 85% of the total gain.

9.3 Overheads of StreamBox
Finally, we evaluate the overhead of API forwarding, elastic
kernel, and offline preparation, and show that neither of them
affects the performance of StreamBox in a significant way.
API forwarding. We need to hook GPU API calls from func-
tions and forward them to corresponding streams. Functions
and API Proxy reside on the same GPU node, thus they can
communicate directly through Unix domain sockets, and we
can warm up the sockets in advance. Fig. 18(a) shows that the
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overhead of API forwarding is only 1us-3us, and it remains
within the range of 3us-5us as the concurrency of functions
increases to 48 (the maximum concurrency on a single GPU
in CUDA MPS). Furthermore, most of the GPU APIs are
asynchronous, which means that the overhead of GPU API
hooking and forwarding can be hidden within the execution.
Elastic kernel. Elastic kernel, also known as Persistent
Thread Block (PTB) technology, is widely used in GPU parti-
tioning for serverful applications [9,31,49] (i.e., multi-tasking
on GPU server), kernel fusion [15, 48], and compilation op-
timization [26]. It has been proven to improve GPU utiliza-
tion without affecting performance (3% performance drop as
shown in Fig. 18(b)).
Offline preparation. StreamBox relies on the offline profil-
ing to get memory usage pattern under various batch sizes
and input sizes. Furthermore, the source code needs to be
transformed to PTB mode. As inference models are static
and repeatedly invoked, the offline preparation only incurs an
one-time cost and can be reused for later requests. Fig. 18(c)
shows that the average time for offline profiling and trans-
formation is 36s and 4s, respectively. Previous studies (e.g.,
Tetris [23] and REEF [15]) also mention that the overhead of
offline preparation does not affect the performance of infer-
ence system, and that their overhead can reach 12 mins.

9.4 StreamBox at Scale
Multi-tenant performance. We take Traffic workflow as an
example, and simulate 3 and 6 users using the workload from
the production traces [4]. We let these users share a single
GPU. Fig. 19(a) shows the average memory usage under dif-
ferent numbers of users. Although the memory usage under
streambox slightly increased, it is still the lowest. As shown
in Fig. 19(b) and (c), StreamBox experiences unavoidable
cold starts when there are too many users on a GPU. More-

Table 3: State-of-the-art serverless inference systems
Systems Hardware Runtime Scheduling Opimizations
Batch [2] CPU container VCPU batch size, cost
Tetris [23] CPU container VCPU model redundancy

FaaSwap [44] GPU Context Temporal context switch
INFless [42] GPU/CPU MPS Spatial batch size, warm-up
Llama [36] GPU MPS Spatial batch size, throughput
Astraea [47] GPU MPS Spatial batch size, GPU sharing
StreamBox GPU Stream Spatial light GPU sandbox

over, as the number of concurrent users exceeds the capacity
of a single GPU (up to 3 users in our experimental setup),
excessive requests are queued, resulting in SLO violations.
Nevertheless, StreamBox’s curve remains on the leftmost in
the graph. In summary, StreamBox’s effectiveness in reducing
GPU runtime redundancy diminishes in a multi-tenant envi-
ronment. However, it still mitigates data redundancy and cold
starts as functions within a workflow share the same runtime.
Cluster Performance. We enlarge the workload proportion-
ally based on the number of GPU nodes. Fig. 20 shows the av-
erage throughput per GPU. We find that Streambox’s through-
put keeps stable when increasing the number of nodes and is
still higher than that of INFless and Astraea.

10 Related Works

Serverless inference. Existing serverless inference systems
(Table 10) generally focus on GPU pooling [14], or opti-
mizing batch size and computation resource allocation to
improve throughput [2, 36, 42, 45, 47]. They typically ad-
dress the cold start of heavy GPU runtime through pre-
warming. StreamBox can be integrated into the above systems.
Tetris [23] reduces the CPU-side memory footprint through
eliminating DNN model redundancy and sharing container
runtime, while StreamBox optimizes GPU-side redundant run-
times. FaaSwap [44] achieves fast switching among functions
through model swapping and GPU remoting, while Stream-
Box focuses on spatial GPU sharing and supports concurrent
functions within one GPU runtime using streams.
Workflow-friendly isolation in serverless. It is a common
practice to weaken the CPU-side isolation between func-
tions in a workflow for better performance [1, 19, 21, 39].
Faaslane [21] and Nightcore [19] utilize threads to run func-
tions within a workflow, sharing the same address space for
efficient data sharing. However, they do not address the re-
dundancy in GPU runtimes.
Other GPU types and GPU virtualization. AMD GPUs
also support streams, and the mapping of kernels to com-
pute units can be achieved by AMD’s CU Masking API [10]
without the need for kernel recompilation. Secure isolation
required by different workflows or users is provided by GPU
virtualization (e.g., MIG), which is orthogonal to our work.
Streambox leverages the widely embraced API forwarding
method [10, 14] to facilitate GPU runtime sharing among
functions within a workflow.
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Fast task switch on GPU clusters. Many recent systems
achieve fast initialization of DNN workloads on GPU clusters.
REEF [15] enables fast preemption of real-time GPU task.
PipeSwitch [5] enables a fast context switch for real-time
inference by pipelined model loading. They focus on task
initialization (model loading), which can be integrated into
StreamBox, but they do not address GPU runtime cold start.
Memory management on GPU clusters. Some systems fo-
cus on memory management of DNN workload on GPU clus-
ters, such as DeepUM [20], HUVM [6], and DeepPlan [38].
Nvidia and AMD also introduce the Unified Virtual Mem-
ory (UVM). However, they achieve GPU memory oversub-
scription and are coarse-grained for serverless. StreamBox
provides fine-grained management for auto-scaling functions.

11 Conclusion

The monolithic GPU runtimes used in existing serverless in-
ference systems are too heavy for short-lived functions, lead-
ing to a high cold start latency, a large memory footprint, and
expensive communication. StreamBox uses streams to reduce
the redundant GPU runtimes and efficiently share memory
between functions. It introduces a series of stream enhance-
ments based on the characteristics of serverless functions to
achieve auto-scaling memory pooling, intra-GPU communi-
cation, and fine-grained PCIe sharing. Experimental results
demonstrate the efficacy of StreamBox.
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