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Abstract

Layer-7(L7) load balancing is a crucial capability for cloud
service providers to maintain stable and reliable services.
However, high flexibility of the L7 load balancers(L.Bs) and
increasing downlink relaying service result in a heavy work-
load, which significantly increases the cost of cloud service
providers and reduces end-to-end service quality. We pro-
poses QDSR, a new L7 load balancing scheme that uses QUIC
and Direct Server Return(DSR) technology. QDSR divides
the QUIC connection into independent streams and distributes
them to multiple real servers(RSs), enabling real servers to
send data directly to the client simultaneously. Due to the lack
of redundant relaying, QDSR enables high performance, low
latency, and nearly eliminates additional downlink relaying
overhead.

To evaluate the performance of QDSR, we implemented
all its components using Nginx and Apache Traffic Server,
deployed them in a real environment testbed, and conducted
large-scale simulation experiments using mahimahi. The ex-
perimental results show that QDSR can process an additional
4.8%-18.5% of client requests compared to traditional L7
proxy-based load balancing schemes. It can achieve a max-
imum throughput that is 12.2 times higher in high-load sce-
narios and significantly reduce end-to-end latency and first
packet latency.

1 Introduction

Load balancing plays an essential role in today’s Internet
[7,42]. Service providers deploy load balancers (LB) to im-
prove network performance and prevent interruptions caused
by single-node failures [12,27]. While load balancing can be
realized by different technologies such as Anycast and Do-
main Name System (DNS) [8], a widely used LB leverages
reverse proxy that works in the application layer(L7) [13]. L7
LB performs fine-grained control at the connection level or
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even at the request level, and the content-awareness enables
L7 LB to achieve advanced functions, such as incorporating
security protections and supporting sticky redirection [7]. As
such, L7 load balancing becomes irreplaceable as HTTP and
Transport Layer Security (TLS) have been widely adopted by
various applications.

It is important to improve the performance for end users,
e.g. latency, throughput, web page load time, etc. A huge effort
has been spent on developing protocols such as HTTP/2 [37],
HTTP/3 [5], and QUIC [20]. In particular, HTTP/2 abstracts
stream multiplexing, and HTTP/3 uses QUIC instead of TCP
to achieve better parallelism. Thus, a user can generate multi-
ple requests simultaneously to accelerate the web page load-
ing. Unfortunately, we find that for a connection that uses an
L7 LB and multiple real servers (RS), the LB load capacity
and parallelism always cannot be balanced.

A typical technique is the Proxy-based L7 LB. The L7
LB maintains the connection state with the client and splits
the connection into request granularity, then integrates the
required resources requested from different RSs and relays
them to the client, as shown in Figure 1(a). However, from
a functional perspective, it makes sense to filter and relay
uplink traffic through the L7 LB due to the large amount of
control information and potential attacks, but it is completely
unnecessary to relay downlink traffic through the L7 LB again.
The large amount of meaningless downlink relaying quickly
makes the L7 LB a performance bottleneck, which reduces
throughput and end-to-end latency. This problem is particu-
larly evident for requests such as video streaming and large
file downloads.

The typical solution to the above problem is the Direct
Server Return(DSR) technology [11, 30, 46], which allows
the RS to bypass the L7 LB and establish a data transmis-
sion channel directly with the client. The mature practice
of DSR technology in the current network is the DSR-TCP
schemes [6, 15], as shown in Figure 1(b). After receiving a
request from the client, the L7 LB packages the connection
context and hands it over to an RS, which can bypass the L7
LB and directly communicate with the client using the con-
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Figure 1: L7 load balancing schemes.

text information. However, DSR-TCP technology couples the
communication process between the client-LLB and LB-RS,
and there is no finer-grained context than the connection in
TCP(compared to the stream in QUIC), which means that
only one RS can send resources to the client at the same time
for a connection, making it almost impossible for the mul-
tiplexing of multiple HTTP requests in HTTP2 and HTTP3
to work effectively in one connection. We call this the serial
request dilemma of DSR-TCP. Furthermore, such DSR-TCP
schemes hand off the entire transport state from the L7 LB to
the RS, including TCP connection hand-off [9] and TLS state
hand-off [15], leaving the RS being directly exposed to the
WAN, which makes the RS vulnerable to attacks.

To solve the conflict between the load capacity and par-
allelism of L7 LB, we propose QDSR, a high-performance
and cost-effective L7 load balancing scheme with QUIC and
Direct Server Return. By combining QUIC and DSR technol-
ogy, QDSR’s finer-grained request processing method allows
the L7 LB to balance both load and parallelism simultane-
ously, as shown in Figure 1(c). However, The development of
QDSR involves addressing the following challenges:

Parallel transmission and security: Existing connection
hand-off can only achieve serial redirection, which also ex-
poses the RS directly to the WAN, severely limiting the re-
quest processing speed and introducing additional security
risks. QDSR use stream hand-off to substitute connection
hand-off, which enables parallel processing multiple request
streams belonging to the same connection. To avoid direct
attacks on the RS from the WAN, we design a heterogeneous
up/downlink structure. The uplink traffic of each stream is
processed by the L7 LB, while the downlink traffic is sent
directly from the RS to the client, making it impossible for
attacks from the WAN to directly reach the RS.

Maintaining connection consistency: We move data trans-
mission from the L7 LB to the RS, while reserving the L7
LB’s uplink control capability, which leads to the control-data
separation and poses a challenge on maintaining connection
consistency. To address the issue, QDSR establishes an auxil-
iary long connection between the L7 LB and each RS, through
which the L7 LB and RSes exchange control information in
a special form. QDSR ensures that the separated control and
data capabilities do not violate connection consistency and

transparent transmission is guaranteed for clients.

Packet number space isolation: Because an RS is not
aware of other RSes that share the same connection, packet
number conflicts between data packets from different RSes
may be incurred. Simply pre-allocating packet numbers may
lead to packet disorder and unnecessary retransmission due to
path heterogeneity. To address the issue, we propose stream
packet number space isolation, which is inspired by the packet
number space management of multipath QUIC [25]. Our ap-
proach allows each RS to independently allocate packet num-
bers and exchange allocation information with the L7 LB
through the auxiliary long connection.

The contributions of this paper is summarized as follows.

* We propose a new L7 load balancing solution, QDSR,
which combines the characteristics of DSR technology
and QUIC streams. QDSR achieves both enhanced par-
allelism and direct server return in the application layer,
greatly enlarges the capacity of L7 LB to process more
requests simultaneously, and improves user experience
by greater throughput and less end-to-end latency.

* We overcome a number of challenges to realize QDSR.
We implement DSR while protecting RSes against at-
tacks from WAN. We synchronize states between the
L7 LB and RSes for maintaining connection consistency
and guarantee transparent transmission for clients. We
also ensure that there are no packet number conflicts
between packets from different RSes.

* We implement QDSR with open source projects
commonly used in the industry. In particular,
the L7 LB is realized with Nginx [29] and the
RS is realized with Apache Traffic Server [2].
Our source code has been publicly released at:
https://github.com/zhqiangwang/QDSR.

We evaluated QDSR in both a real testbed and a large-
scale simulation environment. The results show that our
QDSR LB can process an additional 4.8%-18.5% of
client requests, achieve a throughput that is over 10x in
high-load scenarios, and significantly reduce end-to-end
latency and first packet latency.

This work does not raise any ethical issues.
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Table 1: Feature comparision between different load balancing schemes.

. Load balancing Load balancing Relaying Processing  Latency

LB Granularity identifier flexibility overhead overhead overhead
L4 w/ DSR Connection 5-tuple-based Low Uplink packets Low Low
Proxy-based L7  Parallel request  Content-based High Every packet High High
L7 w/DSR-TCP  Serial request Content-based High Uplink packets Low Low
L7 w/ QDSR Parallel request ~ Content-based High Uplink packets Low Low

—
>~

L7LB RS |
L4 LB : :

L7LB RS |
cluster

Figure 2: Typical traffic scheduling topology and load balanc-
ing chain.

2 Background and Motivation

2.1 Load Balancing Chain

The overall load balancing effect relies on the cooperation
of each layer of the load balancing chain. Figure 2 illustrates
the typical load balancing topology deployed by cloud ser-
vice providers. A cloud network usually consists of many
geographically distributed clusters with several or dozens of
servers, usually acting as Layer-4(L4) LBs, L7 LBs and RSs.
Some scenarios may integrate L7 load balancing instances
and real service instances on the same physical server, or even
in the same program [43]. This does not affect our analysis
because for access traffics that require sticky redirections, the
access requests distributed across different servers by L4 LB
must be aggregated on one server eventually, which uses logi-
cal content-based L7 relaying. In other scenarios [1,36], there
are some specialized clusters which only have LBs and all RSs
are accessed over the WAN. They acts as an access gateway
to perform load balancing strategies and attack prevention.
After determining which cluster acts as the access gateway
to serve the client by Anycast/DNS scheduling, the client
connects with one of the L7 LB assigned by the L4 LB and
sends requests to it. At the designated L7 LB, the requests
are assigned to different RSs according to the load balancing
strategy, such as (weighted) round-robin, random, minimum
load, and consistent hashing. In case that some requests are

not served by any RS in this cluster, such as cache misses
for static content, the L7 LB relays these requests to other
clusters, and then relays the responses back to the client.

2.2 Load Balancing characteristics

Anycast and DNS are responsible for large-scale traffic
scheduling. A schedule strategy usually involves trade-offs
between cluster utilization, access latency, bandwidth cost,
etc. Table | compares the characteristics of different load
balancing schemes.

The L4 LB is responsible for connection-granularity redi-
rection, with the load balancing identifier typically being a
5-tuple. To achieve content-based L4 redirection, some un-
published schemes propose that the L4 LB performs the TCP
handshake with the client and then provisionally caches and
peeks at the first few packets of the new TCP connection until
obtaining the HTTP header. After obtaining the URL of the
first request, the .4 LB selects an RS and replays the cached
packets to it. However, these schemes blur the line between
L4 LB and L7 LB and are difficult to apply to encryption
protocols such as HTTPS, HTTP/2, and HTTP/3.

Proxy-based L7 load balancing is the most flexible schedul-
ing scheme because the redirection connection and the client-
facing connection are completely decoupled at the cost of the
processing, relaying, and latency overheads.

DSR-TCP can be applied to encryption protocols based on
the entire connection hand-off. In practice, it is not possible
for multiple servers to send packets simultaneously over one
TCP connection. Therefore, DSR-TCP can only achieve serial
request-granularity redirection by multiple handing off the
whole connection state.

2.3 QUIC and HTTP/3

Like TCP, QUIC is a reliable transport protocol that requires
establishing a connection before sending messages, and ac-
knowledges received packets. A QUIC connection is identi-
fied by a set of connection IDs (CIDs) instead of the 5-tuple
(protocol, source IP, destination IP, source port, destination
port). To achieve good resilience and network adaptability, it
allows the client to change IP address and UDP port during
transmission, called QUIC connection migration. To avoid pri-
vacy leakage [20] and achieve load balancing [12], the CIDs
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are dynamic and QUIC provides NEW_CONNECTION_ID
and RETIRE_CONNECTION_ID frames to manage the life
cycle of CIDs.

In a QUIC connection, endpoints can independently create
lightweight, ordered byte-streams without mutual interfer-
ence, called stream multiplexing. A QUIC endpoint avoids
excessive data sending by combining two main mechanisms:
the flow control advertised by the receiver, and the congestion
control [19].

QUIC is a secure transport protocol with TLS/1.3 integra-
tion. Unlike TLS over TCP [39], there is no strict layering
in the integration [38]. QUIC uses the TLS handshake and
packet protection provided by TLS. TLS relies on the reliabil-
ity and ordered delivery of QUIC.

HTTP/3, the next major version of HTTP, has been offi-
cially published by IETF [5]. Since HTTP/2 has a major
problem with "head-of-line blocking", which is primarily
caused by TCP’s lack of concurrency, HTTP/3 boldly uses
QUIC [20] implemented in userspace as its transport layer,
instead of traditional TCP. In HTTP/3, the client must send
only one request on a QUIC stream, and the server must reply
on this stream. This means that independence and parallelism
of request granularity are equivalent.

2.4 Motivation and Challenges

The proxy-based 7-layer load balancing method achieves
fine-grained load balancing scheduling at the cost of a large
amount of redundant downlink forwarding, while traditional
DSR technology solves the problem of redundant forward-
ing but brings challenges in parallel processing and security.
Based on this, we overcome the challenges of security, trans-
parent transmission, maintaining connection consistency, and
handling packet space isolation in the design and implementa-
tion process by combining the finer-grained context of QUIC
and DSR technology, ultimately achieving the QDSR solu-
tion.

In the remaining sections of this paper, we will introduce
the design of QDSR($ 3), implementation($ 4), test bed testing
and large-scale simulation experiments($ 5). We then analyze
the robustness of QDSR($ 6) and discuss some limitations
and implementation issues($ 7). Finally, we provide related
work($ 8) and conclusions($ 9).

3 Design of QDSR

Based on the aforementioned problems and challenges, the
design principles of QDSR are as follows: 1) Real servers
should establish unidirectional data transmission tunnels di-
rectly with the client, eliminating the need for downlink traffic
to be relayed through the L7 LB. 2) Multiple RSs should be
able to respond to multiple requests from the client simultane-
ously while ensuring that the client remains unaware of any
changes in the server, just as the client always communicates

Client L7LB RS

<
Send request |

-
mmmRelay the request

Reply the
response

Send
ACK_MP frame|

Redirection

Send Repl‘y
ACK_MP frame continually

Periodically

Send Reply

ACK_MP frame continually

Transmission
.

(-

Figure 3: The sequence diagram of QDSR. The dash lines
represent control information and the solid lines data streams.

with the L7 LB. 3) Connection consistency should be en-
sured throughout the communication process, and the L7 LB
and RSs should flexibly exchange connection and flow states
to avoid communication abnormalities. 4) All uplink traffic
should be processed and relayed by the L7 LB first, ensuring
that the RSs are not exposed to the WAN and vulnerable to
malicious attacks.

Whenever the connection is alive, the L7 LB is the control
center which is responsible for the routine protocol interaction
such as connection handshake, TLS handshake, version nego-
tiation, address validation, and control streams, as specified by
RFC 9000 [20] and RFC 9114 [5]. RSs are only in charge of
the QUIC connection’s downlink response transmission and
associated transmission states including congestion control
state, probe MTU state, and so on.

QDSR has two phases, the redirection phase ($ 3.1) and
the transmission phase ($ 3.2), as illustrated in Figure 3.

3.1 Redirection Phase of QDSR

The overview of the redirection phase (also called stream
hand-off) is illustrated in Figure 4(a). The L7 LB will es-
tablish the QUIC connection, negotiate and determine the
cryptographic and transport parameters once the handshake
is confirmed. Then, it can initiate QDSR. To begin HTTP
transactions, the client initiates some bidirectional streams
at any moment and sends requests over their corresponding
streams.

When client-initiated bidirectional stream frames arrive
at the L7 LB, it classifies them by stream ID, and assembles
stream frames with the same ID into HTTP requests by stream
offset. After an HTTP request is entirely assembled, the L7
LB selects one RS to handle this request according to the load
balancing strategy.

Every time a request is received, the L7 LB serializes QUIC
connections and streams into special HTTP headers, and then
relays them to the RS via redirection connections or existing
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(a) QDSR redirection phase (also called stream hand-off). @ The client initi-
ates new streams and send requests. @ The L7 LB relays the request to the RS
with QUIC connection and stream information. @ The RS constructs auxiliary
QUIC connection and stream, then encapsulates and encrypts packets of the
response. @ The RS rewrites UDP port and IP address of packets, then sends
them to the client.

: :[l Client I :
(b) QDSR transmission phase. @ The client sends ACK_MP frames to the
L7 LB. @ The L7 LB classifies the ACK_MP frames by the destination CID
allocation record table. ® The L7 LB relays the ACK_MP information and
other control signal to each hand-off stream. @ The RS estimates RTT and
detects loss for congestion control. ® The RS continuously encapsulates and
encrypts packets of the response, then sends them to the client, regulated by
the congestion control and flow control.

Figure 4: Two phases of QDSR.

keep-alive redirection connections.

RS receives a request with a special HTTP header, decodes
the header to get connection states, and constructs an unidi-
rectional data transmission tunnel without handshakes or any
other interaction, which is a partial simulation of the QUIC
connection between L7 LB and the client. Then the RS sends
the response directly to the client by the data transmission
tunnel.

A QUIC connection in the L7 LB is shared by multiple RSs
at one time, and there is an unidirectional data transmission
tunnel in each of the multiple RSs. Each tunnel only simu-
lates one stream that maps a request, unless one RS needs to
handle multiple requests from the connection simultaneously.
Metaphorically speaking, the entire process can be likened to
the L7 LB delegating the task of sending streams to different
RSs while concurrently processing control information, hence
we called Stream hand-off.

To ensure connection consistency and transparent trans-
mission for the client, the information that the RS needs to
construct the unidirectional data transmission tunnel is de-
tailed as follows and also summarized in Table 2.

CID and packet number: Every packet in QUIC belongs
to a unique packet number space. There are three packet

Table 2: The main information required by the RS to encap-
sulate and encrypt the QUIC packets.

Field Description
CID Identifier of the connection
Stream ID Identifier of the hand-off stream

Packet number
TLS materials
S-tuple

Flow control

An available initial packet number
Used to encrypt packets

Used to spoof packets

The initial max stream offset window

number spaces defined by IETF standards [20, 38], namely
the initial packet number space, the handshake packet number
space, and the application data packet number space. Each
packet number space is associated with different contexts of
sending, acknowledging, encrypting, congestion control, and
loss recovery. To achieve path isolation, multipath extension
[25] specified that each CID is associated with a unique packet
number space for application data.

Due to QDSR allowing different RSs to deliver request
data to the client simultaneously, it inevitably brings about
challenges in maintaining connection consistency, particularly
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in how packet number spaces are managed. Inspired by the
multi-path extension of QUIC, which allocates, records, and
manages data packets from different CIDs but belonging to
the same connection based on different packet number spaces,
we assign different CIDs in the connection pool to differ-
ent RSs so that all RSs currently responding to requests can
use their respective CIDs for data transmission. In this way,
each real server can independently maintain the context of its
packet number space, such as loss detection, retransmission,
and congestion control. In short, each real server achieves
the purpose of simplifying state sharing among servers by
exclusively occupying a packet number space.

At the start of stream hand-off, the L7 LB allocates an un-
used destination CID with its smallest unused packet number
to the RS by writing them into the HTTP header. To avoid
excessive consumption of destination CIDs, the RS returns
the allocated destination CID and the maximum used packet
number to the L7 LB upon completion of the HTTP transac-
tion. The returned destination CID can then be re-allocated
to subsequent RSs, with the unused destination CID with the
smallest packet number being able to be serially reused by
multiple RSs. The L7 LB is responsible for maintaining the
destination CID allocation table throughout the entire stream
switching process.

The standard specified that destination CIDs are issued by
the receiver and may be retired by NEW_CONNECTION_ID
frame or RETIRE_CONNECTION_ID frame [20] sent by the
receiver. In QDSR, we are also compatible with this mech-
anism. When retiring the destination CID allocated to one
RS, the L7 LB relays the retiring signal to the RS with a new
unoccupied destination CID and the CID allocation record
table is updated and the RS immediately replaces the retired
CID with the new CID.

However, the above solution requires a certain level of ca-
pability from the client. For clients that support the multi-path
extension of QUIC, QDSR can be supported without modifi-
cation. For clients that without multi-path QUIC capability,
minimal modifications are required to fully support QDSR’s
functionality. To avoid client modifications and further com-
patibility with IETF QUIC, we have designed a backward
version of QDSR, the design and discussion of which can be
found in Appendix A.

Stream ID: Each stream is assigned a unique stream ID,
which the real server requires to encapsulate the response
stream frames.

TLS materials: With QDSR, all uplink packets go to the L7
LB for decryption, while the RSs handle encryption. We do
not modify the handshake of TLS and just share the negoti-
ated 1-RTT security parameters to each RS because all pack-
ets of HTTP responses are encrypted by 1-RTT key. Packet
number space isolation will not cause encryption isolation.
When stream hand-off, the security materials, including cur-
rent server write secret, cipher suite and header protection

key [38], are determined by the handshake and then relayed
to the RS to produce 1-RTT key.

In QUIC multipath [25], all application data packet number
space share the 1-RTT key with the original application data
packet number space. And the nonce for header protection is
calculated by combining Initialization Vector (IV) with the
packet number and the packet number space ID (PNSID) ,
which guarantees the uniqueness of the nonce to avoid attacks
that modify the destination CID, as analysed in $ 6.1. In
QDSR, we inherit this method and it will not introduce any
additional latency.

QDSR also supports 0-RTT because the 1-RTT key is avail-
able when the L7 LB initiates stream hand-off. After hand-
shake, the only opportunity to update encryption parameters
is Key Update defined in TLS 1.3 [39]. The signal of Key Up-
date is the toggle of Key Phase Bit in QUIC packet header [20].
When the signal arrives at the L7 LB, the L7 LB immediately
updates the 1-RTT key and then relays them to all RSs. Every
RS immediately updates the key and sends at least one packet
by the new key. To avoid confusion by multiple key updates,
the client must not initiate a subsequent Key Update until
every packet number space receives a current key encrypted
packet, like multipath extension [25].

5-tuple: The RSs require the use of the 5-tuple of the con-
nection between the L7 LB and the client to deliver request
data in the unidirectional data tunnel. Therefore, during the
stream hand-off process, the L7 LB relays the 5-tuple to the
RSs. In the event of connection migration, the 5-tuple will be
modified. Following the completion of new path validation
by the L7 load balancer, the modified 5-tuple will be relayed
to each RS to facilitate the sending of packets.

Flow control: In order to prevent the RSs from exceeding the
receive window, the L7 LB allocates and relays the receive
window to the RSs. More details regarding this process can
be found in $ 3.2.

For each RS, based on the information provided above,
the encapsulation and encryption procedures are summarized
in Figure 5. Firstly, the RS parses the request and prepares
the response. Secondly, it compresses the HTTP response
header using QPACK [22]. Next, the compressed headers and
available content are encapsulated into HTTP/3 header frames
and HTTP/3 data frames, respectively. Following the QUIC
protocol specifications mentioned earlier, the RS encapsulates
the HTTP/3 frames into QUIC stream frames. Then, it uses
the TLS key to encrypt the packets [38] as QUIC packets.
Finally, the RS sends the QUIC packets to the client using the
latest 5-tuple.

If the RS successfully sends the response, it replies with a
success signal to the LB, which then enters the transmission
phase. However, if the response is not sent successfully, the
RS replies to the LB with the response.
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Figure 5: The procedures of encapsulation and encryption in
the auxiliary connection instance executed by the RS.

3.2 Transmission Phase of QDSR

Once the client receives the packets sent by the RS, the redi-
rection phase is completed and the transmission phase begins.
The overview of the transmission phase is illustrated in Fig-
ure 4(b). The primary objectives of this phase are to maintain
transmission reliability, perform congestion control, and im-
plement flow control.

To acknowledge the received packets, the client sends
ACK_MP frames defined in QUIC multipath [25] to the L7
LB. When the L7 LB receives an ACK_MP frame, it looks
up the RS in the destination CID allocation table according
to the PNSID in the frame, then relays the decrypted frame to
the RS. Therefore, for each hand-off stream, the transmission
loop of packets sent by an RS consists of the L7 LB, the RS
and the client.

According to the method specified in RFC 9002 [19], the
RS generates RTT samples and detects lost packets by the
ACK_MP frame for its transmissions. Each RS and the L7
LB will perform its own congestion control algorithm inde-
pendently, so that the transmission processes will not interfere
with each other. By isolating packet number space, RSs are
able to distinguish out-of-order packet arrivals and determine
effective ACK delay through ACK_MP, which is critical to
determining RTT and detecting lost packets [19].

In the classic congestion control algorithm, the inputs are
loss signal and/or RTT, and the output is the current conges-
tion window or the pacing rate, which is used to limit the
sending rate of the unidirectional data tunnel between the RS
and the client.

Flow control includes data flow control and concurrency
control. The L7 LB is fully responsible for the concurrency
control as regular QUIC connection. Data flow control in-
volves simply relaying the window to the RSs for stream
receive window advertised by the MAX_STREAM_DATA
frame. But the MAX_DATA frame is a global window in the
connection. Due to the heterogeneity of the network, evenly

distributing the global windows to each RSs is not a good
method. We recommend using the stream window to limit the
size of occupied buffer and the global window is calculate by
the number of streams and the stream window.

4 Implementation

To better replicate the real production environment, we have
implemented QDSR on the open-source L7 LB Nginx and the
open-source storage real server Apache Traffic Server, which
are commonly used in the industry [4, 16,34].

4.1 LB: Nginx

Our implementation is based on the QUIC+HTTP/3 branch
of Nginx [29]. It consists of 2650 Lines-of-Code (LOC, C
code). As the L7 LB, Nginx reserves the possibility of using
the traditional proxy relaying for HTTP/3 transactions, and it
is up to the RS to decide whether to use QDSR.

The proxy module of Nginx communicates with the RS
using TCP and HTTP/1.1, as Nginx http proxy module only
supports TCP between the L7 LB and the RSs. In our imple-
mentation, the L7 LB and the RS reuse this TCP connection
for communication of stream hand-off after the request has
been sent, and it will be kept alive even if the transaction is
completed. Nginx attaches the information shown in Table
2 to HTTP headers when it relays the request to the RS. If
the backend caches the content, it notifies the L7 LB and
starts the process of the stream hand-off. The QUIC stack
implemented in Nginx routinely interacts with the client and
records the destination CID allocated to each RS. The hand-
off streams may coexist with the regular streams, that is, they
do not interfere with each other.

4.2 RS: Apache Traffic Server

We developed the prototype of the RS on Apache Traffic
Server (release 9.1.1) [2], which consists of 4128 LOC (C++
code). The stream hand-off stack runs as some threads, called
DSR threads, which are homogeneous. Each DSR thread is
bound to a dedicated CPU core. The NET threads process
HTTP transactions and interactions with the L7 LB by the
interface of the stream hand-off stack. The DSR threads poll
the processing hand-off stream and send packets with the
guidance of the congestion control algorithm.

To behave as the L7 LB without breaking the connection,
the RS uses the LB’s 5-tuple message to transmit QUIC pack-
ets. If the IP_HDRINCL socket option is enabled on the raw
socket by setsockopt(), the kernel does not generate an IP
header for the packets and the application must specify an IP
header, then the RSs writes client IP and LB IP to IP header.
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Figure 6: Testbed topology.

5 Evaluation

To comprehensively evaluate the capabilities of QDSR, we
conducted multiple experiments in both a real testbed and a
large-scale simulation environment. Our testbed consisted of
five real servers (3A, 1B, 1C) and a switch to connect them,
with the hardware configurations listed in Table 3. The large-
scale simulation environment was built using Mahimabhi, a
general-purpose network simulation emulator.

The topology of the testbed experiment is shown in figure
6. We used an A-type server as the L7 LB, two A-type servers
and one B-type server as the RS, and a C-type server as the
client. The reason for using an A-type server as the L7 LB is
that its hardware configuration is lower, making it easier to
become a performance bottleneck in subsequent experiments.

All servers used Ubuntu 18.04 as their operating system.
For the client, we modified Isquic [35] to add the necessary
packet number space isolation functionality. To avoid the
client becoming a bottleneck, we extended the client to be
multi-process, which means that during the experiment, the
client established multiple QUIC connections with the L7 LB,
and each connection contained multiple parallel streams. The
client continuously sent requests to the L7 LB to maintain the
desired level of concurrency.

Our baseline is the proxy-based L7 LB scheme, which is
currently widely used in our global DCs. We do not consider
DSR-TCP as a baseline for two reasons:1) DSR-TCP cannot
achieve parallel processing of requests, which puts it in an
unfair position compared to QDSR. 2) DSR-TCP will bring
serious security issues in real network, making it impossible
to use DSR-TCP in real network. We believe that using a
solution that cannot be deployed as a baseline is inappropriate
and may mislead future work.

5.1 Throughput

We first evaluated the throughput improvement brought by
QDSR to L7 LB compared to the proxy-based scheme. In
this experiment, the client continuously initiated bidirectional
streams to send requests to the L7 LB and made the L7 LB the

Table 3: Hardware configurations of machines.

Type CPU Memory Link
Intel Xeon Silver 4114
A 2.2GHz, 20 cores 16 GB 40 Gbps
Intel Xeon Silver 4216
B 2.1GHz, 64 cores 256 GB 100 Gbps
C Intel Xeon Silver 4208 128GB 100 Gbps

2.1GHz, 32 cores

—
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Figure 7: The bottleneck throughput of the proxy-based
scheme and QDSR under 8 QUIC connections and 8 stream
multiplexing in each connection.

performance bottleneck until CPU utilization reached 100%.
Specifically, we limited Nginx to run a single worker process
and provided sufficient resources for the RSs and the client.
Each RS was composed of multiple Apache Traffic Server
instances, and each instance ran multiple DSR threads on its
bound CPU core, with each hand-off stream assigned to a
DSR thread. To avoid the influence of IO overhead on the
experimental results, all content was cached in memory with
extremely low overhead. As described in $ 4.1, we established
sufficient active TCP connections between the L7 LB and the
RSs for exchanging control messages to avoid the overhead
of establishing TCP connections again.

The experimental results are shown in Figure 7. For both
schemes, the overall throughput increased with the size of
the requested objects, but the bottleneck for the L7 LB var-
ied for different object sizes. In both QDSR and the tradi-
tional proxy-based scheme, when the requested object size
was small, the bottleneck was processing requests, includ-
ing maintaining QUIC connections, receiving and decrypting
packets, and relaying them to the RSs. In this case, the cost dif-
ference between the relayed downlink traffic and the relayed
uplink traffic was not significant, as the fixed cost of each call
(context switch overhead) dominated [15]. Compared to the
proxy-based scheme, the cost of relaying ACK_MP frames
and relayed downlink traffic was almost equivalent.

As the size of requested objects increases, the throughput
of proxy-based LB quickly reaches a bottleneck. When the
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Figure 8: CPU utilization under different object size.

size of requested objects exceeds 16K, the number of requests
processed per second decreases, and the throughput hardly
increases. Therefore, the downlink traffic relaying becomes
the bottleneck. In contrast, QDSR LB shows an exponential
growth in throughput before the size of requested objects is
smaller than or equal to 64K, indicating that the number of
queries per second (QPS) remains almost unchanged, and
the overhead of relaying ACK_MP frames to RSs can be
negligible. When the size of objects is greater than or equal
to 128KB, the bottleneck throughput reaches the maximum
value. Compared with proxy-based scheme, QDSR signifi-
cantly improves the bottleneck request threshold of L7 LB
and has 12.2 times the maximum throughput.

To further analyze the reason for the throughput improve-
ment brought by QDSR, we used perf and Flame Graph [14]
to sample the CPU usage of L7 LB under different object
sizes. The experimental results are shown in Figure 8. Com-
pared with the traditional proxy-based approach, QDSR has
almost no overhead caused by TCP Recv. This is because
the downlink traffic is directly relayed to the client by RSs
without being relayed to L7 LB through TCP connections
first. The saved CPU resources are used to maintain and pro-
cess more requests and synchronize and exchange connection
states by TCP connections between L7 LB and RSs.

In addition, we also evaluated the benefits of QDSR from
the client’s perspective using requests processed per sec-
ond(RPPS). In this experiment, we maintained a certain de-
gree of parallelism flows at the client. For example, if the
degree of parallelism is 3, the client maintains only three re-
quest flows at the same time and hands them over to the L7
LB for processing. The experimental results are shown in
Figure 9 under different client parallelism and request sizes.
Compared with the proxy-based scheme, QDSR achieved an
additional request gain of 4.8%-18.5%. Compared with the
experiment in Figure 7, since L7 LB did not reach its perfor-
mance bottleneck, the benefits of QDSR mainly come from
the reduction of RTT caused by the downlink traffic not requir-
ing additional relaying, rather than the elongation of request
completion time caused by the performance bottleneck of L7
LB.

it Proxy-based scheme B8 QDSR

3000
2500
2 2000
A5 1500 .
1000

500

1 2 3 4

Parallelism (1K content size) Parallelism (32K content size)

Figure 9: RPPS with different parallelism.
5.2 Latency

Latency is an important factor affecting the quality of service
for latency-sensitive applications such as live streaming and
video calls. Figure 10 shows a comparison of end-to-end la-
tency between QDSR and the proxy-based approach under
different levels of background traffic. In this experiment, we
evaluated RTT, one-way delay(OWD) for uplink and down-
link traffic, and counted the number of context switches. In
terms of implementation details, to evaluate one-way delay,
we performed clock synchronization between the client and
RSs, and the measured RTT did not include the processing
delay at the application layer on the RSs. Both background
and measurement traffic requested 1KB objects.

As shown in Figure 10, the latency does not increase with
the increase of background traffic. When the LB is close
to idle, the measurement traffic triggers continuous context
switches and CPU migrations, which increase the latency.
As the background traffic increases, the number of context
switches and CPU migrations decreases sharply. Therefore,
even though the CPU load is higher at this time, the la-
tency does not increase significantly, but even decreases, caus-
ing non-smooth experimental behavior. For the proxy-based
scheme, the downlink one-way delay is greater than the uplink
one-way delay. QDSR and the proxy-based scheme do not
have a significant difference in uplink one-way delay. How-
ever, for downlink one-way delay, QDSR reduces it by about
50% compared with the proxy-based scheme, and the RTT
gain is mainly contributed by the downlink one-way delay.
This is because RSs directly send responses to clients with-
out involving the network stack (input and output) of L7 LB,
which reduces latency.

5.3 End-to-End Performance over WAN

To evaluate the performance of QDSR in WAN, we used
mahimabhi [26] to build three different topologies as shown in
Figure 11, which simulate the three possible relative positions
of L7 LB, RSs, and clients in the wide area network. We
evaluated the first packet delay of QDSR and the proxy-based
scheme in different topologies and the stability of QDSR in
different packet loss environments.

First packet delay determines the response speed of the
service, which is directly related to the quality of service and
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Figure 10: Latency comparison between QDSR and the proxy-based scheme.
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Figure 11: Three topologies for evaluating end-to-end perfor-
mance. The thin solid line is the uplink, the dotted line is the
redirect link and the thick solid line is the downlink.

revenue, especially for live streaming and video-on-demand
businesses. For the proxy-based scheme, the first packet de-
lay is determined by the client-LB RTT and the LB-RS RTT.
However, for QDSR, the first packet delay only includes the
uplink one-way delay of client-LB, the redirection delay, and
the downlink one-way delay of RS-client. When the router se-
lects the nearest network path, the latter is usually not greater
than the former. Figure 12 shows a comparison of the first
packet delay between the two approaches in three typical
network topologies. In topology A, the L7 LB is located be-
tween the client and RSs, and the RTT of RS-client is the sum
of the RTT of RS-LB and LB-client paths. In this scenario,
QDSR and the proxy-based approach obtained almost the
same first packet delay, because the redirection delay overhead
of QDSR almost offset the downlink relaying delay overhead
of the proxy-based scheme, resulting in similar performance.
However, in topologies B and C, L7 LB and RSs belong to
different clusters, which leads to significant differences in
delay between the RS-client path and the RS-LB-client path.
QDSR obtained significant benefits from the downlink traffic
relaying compared with the proxy-based scheme, significantly
reducing the first packet delay.

Finally, we evaluated whether the path heterogeneity of
QDSR would affect the overall download process in different
packet loss environments. We chose topology A above and
limited the link bandwidth to 12Mbps, used the CUBIC algo-
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Proxy-based
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Figure 12: Average first packet latency in three topologies.
OWD means one-way delay.

rithm for congestion control, set the queue type to droptail,
and set the queue depth to 480 packets. The experimental
results shown in Figure 13 indicate that QDSR’s actual band-
width fluctuates around the theoretical bandwidth of 12Mbps
in environments with packet loss rates of 0.01, 0.03, and 0.1.
Higher packet loss rates lead to actual download speeds de-
viating from the theoretical value. The overall experimental
effect is similar to the proxy-based scheme, and the path het-
erogeneity of QDSR does not affect the download process.

6 Robustness Analysis

6.1 Security

Spoofing IP: To establish a unidirectional data tunnel be-
tween the RS and the client, it is necessary to use the RS to
spoof the IP address of the L7 LB in order to complete the
data transmission process. Even if the L7 LB and RSs commu-
nicate over WAN, spoofing IP address is feasible. Anycast is a
typical technology that multiple servers in different locations
share the same IP address by BGP announcement. In QDSR,
the uplink packets rely on the relaying of the L7 LB, rather
than the network routing. Therefore, we do not need BGP an-
nouncement for the uplink packets, or even configure the same
IP address for the L7 LB and RSs. We just spoof and send
it out. From the scheduling perspective, the skew scheduling
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Figure 13: Download rates under different loss links.

of Anycast can be compensated by the precise scheduling
of QDSR. To avoid information leakage, the communication
between the L7 LB and the RSs must be encrypted and secure
in real production environment. In the absence of the TLS
secret, the attacker cannot exploit the spoof attack.

Multiple packet number spaces: A serious problem is how
to resist attacks that modify the destination CID of QUIC
packets to another valid destination CID of this connection,
which will confuse the client with the packet number space.
To solve this problem, the multipath draft [25] calculates the
nonce of header protection by initialization vector, packet
number, and PNSID ($ 3.1). If the destination CID is tam-
pered with another valid CID of this connection, the nonce
calculated by the client is not correct and the decryption will
fail. This tampered packet will then be dropped by the client.
RS Protection: QDSR does not make any changes to the
handshake, and all designs are made after the handshake is
confirmed. In QDSR, the sender of packets cannot be distin-
guished by the client or attackers. Since we did not disclose
the real IP address of the RSs and all uplink packets are re-
layed by the L7 LB, abnormal traffic and abnormal frames
cannot be relayed to the RSs, and the RSs are still protected
by the L7 LB. Therefore, we did not introduce any additional
security issues for uplink packets.

6.2 Fault Tolerant

Network failures are typical exceptions, including failures on
any link between the client, L7 LB, and RS, as well as crashes
of the L7 LB or RS. To detect the occurrence of failures, heart-
beats should be sent between them. If the L7 LB crashes or
the client disconnects, the connection should be immediately
terminated. However, if an RS crashes or disconnects from the
L7 LB, the entire connection will not be interrupted, and the
L7 LB will immediately send a RESET_STREAM frame to
the client. The excess window announced by the MAX_DATA
frame will be occupied by the RESET_STREAM frame. After
receiving the RESET_STREAM frame, the client will close
the stream. By recording a sufficiently large unused packet
number, the destination CID assigned to the RS can be re-
claimed, avoiding the use of redundant packet numbers. In

summary, resetting a hand-off stream will not interrupt the
connection or affect other streams.

Through stream isolation and packet number space isola-
tion, QDSR inherits the flexibility of QUIC. Although QDSR
is a many-to-one transmission model in physical terms, it is a
one-to-one transmission model logically. If any RS is discon-
nected from the client, there are two solutions: one is to reset
the hand-off stream, and the other is to use a proxy rollback
scheme. The prerequisite for rollback is that there is a tunnel
between the RS and the L7 LB, and the messages sent by the
RS are relayed to the client through the tunnel.

7 Discussion

7.1 Limitation

Since the Nginx HTTP proxy module only supports TCP
communication between the L7 LB and RSs, in our imple-
mentation, the LB and RSs communicate via TCP instead
of QUIC. As part of future work, we will design a QUIC
interface between LBs and RSs and integrate QDSR into an
open-source QUIC library. This will help decouple LBs and
RSs, further improving the deployability of QDSR.

Another issue of concern is the compatibility of QDSR with
different congestion control tendencies. Currently, QDSR
refers to well-known multipath transmission schemes [40,47]
and chooses to let each stream perform congestion control
independently, which poses a challenge to the fairness of
transmission. For scenarios that strictly require transmission
fairness, a backward version of QDSR can be referred to in
Appendix A. However, as we analyzed in the backward ver-
sion, it may cause transmission disorder. A potential perfect
solution is for the L7 LB to obtain real-time RTT informa-
tion from the RS and globally allocate packet numbers to all
streams in the order they arrive at the client based on the con-
gestion control algorithm. We also consider this feature as part
of future work and further evaluate the additional overhead
and potential benefits it brings.

7.2 Flexible Scalability

Our work extends QUIC from point-to-point communication
to many-to-one communication. It is not only compatible with
point-to-point communication without changing the client, but
more importantly, it obeys the server-client model with many-
to-one communication, which allows application program
architecture to become more flexible.

HTTP/2 provides the PUSH method, which allows the
server to push additional responses without requesting them
from the client, and HTTP/3 inherits this method. The PUSH
method is beyond the server-client model but it is effective to
reduce the latency for those very predictable scenarios. Some
works [33,41] achieve low latency by PUSH and they can
introduce QDSR to improve their works.

USENIX Association

2024 USENIX Annual Technical Conference 725



7.3 Implication on QUIC Standard

QUIC is an emerging transport protocol, and some related
proposals are being standardized. QDSR brings new trans-
mission scenarios to the design of the protocol and is closely
related to the multipath extension and connection migration
of QUIC. Combining multipath and QDSR can easily design
elegant server-side connection migration. Server-side con-
nection migration is based on path management and stream
hand-off, which can overcome the problem of packet relaying,
achieve direct communication after migration, and contributes
to overload prevention.

8 Related Work

Connection migration. The closest related work is Prism [15]
which achieves TCP connection hand-off (DSR) via a pro-
grammable switch. Due to the limitation of TCP, it does not
support multiple RSs sharing connections to send packets
simultaneously. Also, the programmable switche in Prism
raise the costs of equipment and deployment. Prism does not
perform well for small file scenarios because of the commu-
nication between the programmable switch and the LB. A
easier way is to replace the programmable switch with the LB
like QDSR, which reduces the aforementioned costs.

QUIC connection migration is a promising mechanism
defined by RFC 9000. However, currently, it only supports
client-side connection migration. [31] proposes server-side
connection migration, which can be used to achieve DSR.
Unfortunately, it can only achieve serial request-granularity
redirection and incur additional overheads for path validation.
In contrast to connection migration, stream hand-off is more
lightweight and flexible to the L7 load balancing.

L4 load balancing. L4 load balancing is a well-studied
topic [3,12,21,27]. In the cluster, the L4 LB is responsible for
the uniform distribution of the incoming connections to multi-
ple L7 LBs and maintaining per-connection consistency. CID
is the load balancing identifier in QUIC because of connection
migration [12].

To ensure performance, the L4 LB should not interact
with the client or maintain the connection state. Peeking at
the application layer data to achieve the request-granularity
redirection for the L4 LB is also unpractical because of the
TLS encryption. Therefore, it only achieves the connection-
granularity redirection and the request-granularity redirection
must be accomplished by L7 LBs. QDSR and L4 load bal-
ancer perform their duties in request-granularity redirection
and connection-granularity redirection, respectively.

L7 load balancing. Partition and replication are the com-
monly used methods that improve the availability and relieve
the load imbalance of the distributed storage servers. For the
popular contents, selective partition [45] and selective repli-
cation [23] cause some overheads but achieve considerable
benefits. With partition and erasure coding, C2DN [43] re-

duces the costs of Midgress during server unavailability and
relieves the write load imbalance of the SSDs. AccelTCP [28]
proposes a hardware-assisted TCP stack architecture to ac-
celerate proxy relaying, but it doesn’t reduce link bandwidth.
Yoda [13] operates as a packet-level translator and it can not
support parallel request-granularity redirection.

Effective network stacks and optimization methods. Ef-
fective network stacks and optimization methods are able to
greatly improve the performance of QDSR. 110 [17], a remote
storage stack based on TCP in the kernel, achieves high per-
formance through efficient batching resources and delayed
doorbell. The design of the delayed relaying was inspired by
the 110, which greatly reduces CPU overheads of the frontend
to achieve higher throughput (Section 5).

AF_XDP [10] provides zero-copy semantics between ker-
nel space and userspace, and is optimized for high perfor-
mance packet processing. The user-level packet I/O engines,
such as netmap [32] and DPDK [18], bypass the kernel and
avoid kernel overheads. It can speed up QDSR because QUIC
is based on UDP and is implemented in userspace. In [44],
Yang proposes a hardware/software co-design of QUIC, which
offloads part of the QUIC stack and TLS crypto operation
into NIC. This brings some heuristic implications to high-
performance QUIC stack implementations which will im-
prove the performance of the backends in QDSR.

9 Conclusion

This paper presents design, implementation, and evaluation
of QDSR, an effective L7 load balancing scheme by QUIC
and DSR. QDSR achieves high performance and compara-
ble flexibility with the conventional proxy-based scheme by
eliminating unnecessary relaying loads without additional la-
tency. By sharing the QUIC connection with multiple RSs,
the L7 LB allows responses to be sent directly to the clients.
In order to maintaining connection consistency and reduce
overhead, the L7 LB orchestrates QUIC connections between
multiple RSs. We believe that the implementation of QDSR
can significantly reduce the overhead of L7 LB for cloud ser-
vice providers and improve end-to-end service quality. It also
provides guiding inspiration for the construction of server
clusters and further work.
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A QDSR without packet number space isola-
tion

To achieve better compatibility with existing IETF QUIC stan-
dard and avoid modifying clients, we implemented a back-
ward compatible design with a single packet number space by
allocating enough packet numbers to each RS when relaying
the ACK of the handoff stream, as shown in Figure 14. This
design can also solve the problem of transmission fairness
caused by each RS independently performing congestion con-
trol.However, it brings unwanted out-of-order packet arrivals,
which violates the design philosophy of QUIC and may lead
to the following potential risks:

» The out-of-order packets confuse the client instead of
servers that the network becomes congested, which dra-
matically increases the frequency of ACKs sent by the
client [24].

* Out-of-order packets make it impossible to determine
the most recent packet in ACK frames, which invalidates
the delay_ack and makes RTT measurements inaccurate.

* The anti-replay window will increase tremendous re-
transmission, as illustrated in Figure 15. The RS1 and
RS2 are allocated a range of packet numbers respec-
tively and sends packets. Due to the heterogeneity of
RTTs between them and the client, some packets with
larger numbers may arrive earlier than those with smaller
numbers. To achieve anti-replay, when the client receives
an ACK frame (sent by servers) that acknowledges the
packet containing an ACK frame (sent by the client),
the vast majority of QUIC implementations will erase
those received histories that are below the largest packet
number recorded in the ACK frame (sent by the client).
After that, the client will reject the old packets, which
will induce dramatic retransmissions.

This effect shows in Figure 15 will be more serious when
the RTT gap between multiple senders is large, and it also
happen in multipath without packet number space isolation.

Packet number space isolation will not bring additional
latency to the client. In our implementation, each packet num-
ber space states maintained by the client only include received
packet history. The less packets are lost or out of order, the
lower the memory usage. Multipath and QDSR both have
heterogeneous links, which is why both have multiple packet
number space isolation.
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