
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

OPER: Optimality-Guided Embedding Table
Parallelization for Large-scale Recommendation Model

Zheng Wang, University of California, San Diego; Yuke Wang, Boyuan Feng,
and Guyue Huang, University of California, Santa Barbara; Dheevatsa Mudigere

and Bharath Muthiah, Meta; Ang Li, Pacific Northwest National Laboratory;
Yufei Ding, University of California, San Diego

https://www.usenix.org/conference/atc24/presentation/wang

OPER: Optimality-Guided Embedding Table Parallelization
for Large-scale Recommendation Model

Zheng Wang1, Yuke Wang2, Boyuan Feng2, Guyue Huang2, Dheevatsa Mudigere3,
Bharath Muthiah3, Ang Li4, Yufei Ding1

1University of California, San Diego 2University of California, Santa Barbara
3Meta 4Pacific Northwest National Laboratory

Abstract
The deployment of Deep Learning Recommendation Models
(DLRMs) involves the parallelization of extra-large embed-
ding tables (EMTs) on multiple GPUs. Existing works over-
look the input-dependent behavior of EMTs and parallelize
them in a coarse-grained manner, resulting in unbalanced
workload distribution and inter-GPU communication.

To this end, we propose OPER, an algorithm-system co-
design with OPtimality-guided Embedding table paralleliza-
tion for large-scale Recommendation model training and in-
ference. The core idea of OPER is to explore the connec-
tion between DLRM inputs and the efficiency of distributed
EMTs, aiming to provide a near-optimal parallelization strat-
egy for EMTs. Specifically, we conduct an in-depth analysis
of various types of EMTs parallelism and propose a heuristic
search algorithm to efficiently approximate an empirically
near-optimal EMT parallelization. Furthermore, we imple-
ment a distributed shared memory-based system, which sup-
ports the lightweight but complex computation and communi-
cation pattern of fine-grained EMT parallelization, effectively
converting theoretical improvements into real speedups. Ex-
tensive evaluation shows that OPER achieves 2.3× and 4.0×
speedup on average in training and inference, respectively,
over state-of-the-art DLRM frameworks.

1 Introduction

Deep learning recommendation models (DLRMs) play a cen-
tral role in many industry-scale deep learning applications,
such as content recommendation [11, 24], personalized adver-
tisement [10, 18], and rankings [12, 36]. Driven by the sharp
increase in user demand, DLRMs have witnessed exponential
growth in the number of parameters [7, 25]. Moreover, more
than 50% of AI training cycles and about 79% of AI inference
cycles in a production-scale data center at Meta are devoted
to recommendation models [5, 15].

The key to the stunning algorithmic performance of DL-
RMs lies in the embedding learning mechanism, which maps

sparse categorical input into dense features. The embedding
tables (EMTs) of DLRMs are memory-intensive, demand-
ing both high memory capacity and high memory bandwidth.
In production-level DLRMs, EMTs may encompass billions
of parameters [7], resulting in significant memory consump-
tion [23, 49]. Additionally, the embedding lookup involves
a large amount of random memory access, demanding high
memory bandwidth [25]. This drives the need for scaling out
the training of EMTs on multi-GPU/multi-node platforms
that can scale both the memory capacity and the aggregated
bandwidth at the same time.

A common practice (e.g., TorchRec [4], HugeCTR [41],
and NEO [25]) is to distribute EMTs across multiple GPUs
and nodes through a combination of data parallelism (where
smaller EMTs are duplicated on all GPUs) and model paral-
lelism (where larger EMTs are equally sharded into smaller
partitions and scattered across multiple GPUs). Such paral-
lelization strategies treat all embeddings of an EMT equally
for seeking memory balance while overlooking the access
frequency variation among embeddings. Therefore, they suf-
fer from inferior runtime performance due to largely un-
balanced computation/communication across GPUs [46, 47].
This drives the need for finding the ideal parallelism for EMTs
in DLRMs that comprehensively balances memory consump-
tion, computation, and communication across GPUs.

Despite the recent effort of exploring the optimal paral-
lelism has achieved great success in the context of distributed
DNN training [38, 39, 51], these practices could hardly be
transferred and applied to EMTs in DLRMs, due to two major
reasons. First, the access pattern of EMTs is highly sparse
and irregular. A large EMT may have millions of embedding
rows, while only thousands of embeddings will be accessed
by the input samples in one training iteration. Additionally,
the distribution of the accessed embeddings is irregularly
scattered among GPUs. This makes it difficult to achieve a
balanced EMT partitioning for parallelism. In contrast, for
dense DNN operators (e.g., convolutions), computation inten-
sity is consistent for all parameters. Second, the computation
and communication of EMTs are input-dependent. Different

USENIX Association 2024 USENIX Annual Technical Conference 667

input batches may access different embedding rows leading
to largely varied amounts of computation and communica-
tion workload for the distributed EMTs. In contrast, the com-
putation flow of dense DNN models is abstracted as static
computation graphs regardless of their inputs.

To address these challenges, this paper presents both theo-
retical and practical solutions to gain a firm understanding of
the optimal parallelism approach in a typical input-dependent,
multi-GPU deep learning workload like the DLRMs. The pri-
mary focus of our theoretical investigation is on two research
problems. The first research problem focuses on identifying
the input information that influences the optimal paralleliza-
tion decision to minimize the computation and communica-
tion of EMTs for multi-GPU DLRM. Our goal is to ascertain
whether employing a fine granularity of EMTs, i.e., process-
ing each row of an EMT separately, is indispensable, or if a
coarser granularity, treating the entire table as a whole, is al-
ready sufficient for optimal placement. Once we establish the
preferred granularity, the second research problem involves
examining the overhead associated with effectively processing
the extensive input information to generate the best optimal
parallelism solutions. Given the large number of embedding
rows and the numerous potential placements of all embed-
dings across multiple GPUs, how to efficiently search for the
optimal parallelization plan becomes a significant challenge.

From the practical side, it is essential to recognize that the
theoretically optimal solution may not necessarily translate to
the best performance in practice. Real-world implementations
may face various system-level and hardware implications.
Factors such as inter-GPU topology, interconnection band-
width, and communication protocol can significantly impact
the performance and effectiveness of the proposed theoret-
ical solutions. For example, existing distributed EMT train-
ing systems typically rely on the collective communication
APIs (e.g., AlltoAll()) provided by NCCL [27] which can
only express certain type of communication pattern. How-
ever, in pursuit of optimal EMT parallelization, EMTs are
shared, scattered, and duplicated across different GPUs at an
extremely fine granularity. This results in complex inter-GPU
communication pattern for both embedding lookup and gradi-
ent synchronization, which is not efficiently supported by the
coarse-grained collective communication available in current
systems. This need for system-level optimization to facilitate
the novel EMTs parallelization strategy.

To this end, we propose OPER, an OPtimality-guided
Embedding table parallelization scheme and end-to-end sys-
tem implementation for large-scale Recommendation model
training and inference. At the theoretical level, we address
the question of what the optimal parallelization strategy is for
large EMTs in DLRMs and propose an efficient algorithm for
finding an empirically near-optimal parallelization strategy.
To efficiently evaluate the cost of different EMT paralleliza-
tion strategies, we exploit the per-embedding access frequency
from the input dataset to estimate the memory consumption,

embedding lookup workload, and embedding communication
amount on GPUs for a given parallelization. To effectively ap-
proximate optimal EMT parallelization, we adaptively group
the embeddings into EMT partitions with balanced size and
access frequency to shrink the huge search space of EMT par-
allelization. Additionally, we design a heuristic hierarchical
search algorithm that decomposes the original optimization
problem into two separate problems for optimizing model-
and data-parallelism and then solve them separately.

At the system implementation level, we explore system sup-
port to translate the theoretical saving to real performance
speedup. The near-optimal fine-grained EMT parallelization
found by our algorithm requires new system support to handle
a large number of lightweight EMT computation and commu-
nication workloads. First, to facilitate flexible, fine-grained
EMT parallelization, OPER maps all embeddings into a dis-
tributed shared memory (NVSHMEM [29]), allowing for a
unified implementation of distributed embeddings. Second,
to mitigate the overhead of remote embedding fetching and
sparse gradient synchronization, OPER introduces a series of
system-level optimizations that not only enable the overlap-
ping of embedding communication and computation, but also
support efficient sparse gradient AllReduce.

Overall, we make the following contributions in this paper:
• We conduct a thorough investigation of how paralleliza-

tion affects the efficiency of distributed EMTs and pro-
vide a formal definition of the optimal EMT paralleliza-
tion for DLRM training and inference (§3).

• We propose an optimality-guided heuristic algorithm to
efficiently search for near-optimal EMT parallelization
that comprehensively balances the memory, computation,
and embedding communication across GPUs (§4).

• We implement a unified EMT abstraction built on a dis-
tributed shared memory architecture to better support the
computation and communication pattern of fine-grained
EMT parallelization (§5).

• Comprehensive experiments show that OPER outper-
forms state-of-the-art DLRM frameworks in both train-
ing and inference across various datasets.

2 Background and Motivation

In this section, we will provide the background of DLRM and
the mainstream parallelization strategy for EMTs. We will
then discuss the distinct characteristics of DLRM EMTs and
the multi-GPU communication support for distributed EMTs.

2.1 DLRM and EMT Parallelization
DLRMs take user and item data as input and output a pre-
diction of the user’s likelihood of clicking on a specific item,
called click-through rate (CTR). Figure 1 shows an overview

668 2024 USENIX Annual Technical Conference USENIX Association

Figure 1: Overview of multi-GPU DLRM training. The MLP
layers (bottom MLP and top MLP) are trained with data par-
allelism, while the EMTs are trained with model parallelism.

of DLRM training on a multi-GPU platform [26,34,41,46,47].
DLRMs are typically composed of two main modules: MLP
layers (bottom MLP and top MLP) and EMTs that are re-
sponsible for processing dense inputs and sparse inputs, re-
spectively. As shown in Figure 1, the compute-intensive MLP
layers are replicated on all GPUs for data parallelism. For
the memory-intensive EMTs, state-of-the-art works [4, 25]
combine multiple types of parallelism to jointly optimize the
performance of EMT operators. Several different parallelism
approaches (e.g., table-wise, row-wise) have been proposed
in previous works [25, 26]. These approaches can be broadly
classified into two main categories:

Model Parallelism: The EMTs are typically divided into
multiple subsets and then distributed across multiple GPUs.
There are different ways to divide the EMTs, which can lead to
different sub-types of model parallelism. For example, table-
wise parallelism [26] treats the EMT holistically, allocating
an equal number of EMTs to each GPU, while row-wise par-
allelism [25] equally partitions large EMTs into small EMT
shards and scatters different shards to different GPUs. In ad-
dition to employing different types of model parallelism, an-
other dimension for optimization is how specific parallelism
is applied. For example, an EMT can be partitioned into dif-
ferent numbers of EMT shards when performing row-wise
parallelism. These two optimization dimensions lead to a very
large design space, making it challenging to determine the
optimal model parallelism strategy for EMTs.

Data Parallelism: In data parallelism, the EMTs are du-
plicated to several or all GPUs [25]. This can mitigate the all-
to-all communication for fetching embeddings in the forward
pass, but it also introduces additional gradient synchroniza-
tion (AllReduce [27]) overhead in the backward pass. Thus,
to improve overall performance through data parallelism, the
choice of embeddings for data parallelism must be carefully
considered. However, how to select the right embeddings for
data parallelism is still an open problem that has not been
fully addressed in previous research.

2.2 Multi-GPU Communication Support
Collective Communication: The parallelization of EMTs
requires inter-GPU communication to fetch embeddings from
remote GPUs and synchronize the gradients. Existing DLRM
frameworks [4, 25, 41] leverage the collective communica-
tion APIs (e.g., AlltoAll, ReduceScatter, AllReduce) pro-
vided by NCCL [27] to implement the communication of
distributed EMTs. Although the collective communication
APIs of NCCL are well-optimized for throughput, they ex-
hibit some limitations when applied to EMT parallelization
tasks. Different EMT parallelism leads to different communi-
cation patterns, each typically requiring a unique embedding
lookup kernel and its own corresponding collective commu-
nication call (e.g., row-wise parallel needs ReduceScatter(),
table-wise parallel needs AlltoAll()) [25]. This necessitates
multiple launches of both kernels and communication calls,
leading to significant kernel launching and communication
initialization overhead when more complex parallelization
strategies are applied.

Distributed Shared Memory: Another more promising
approach to support the communication of distributed EMTs
is to use a distributed shared memory architecture [8, 31].
Many libraries provide interfaces for this shared memory ab-
straction, like OpenSHMEM [8] and NVSHMEM [29]. It
offers a global memory address space used by all GPUs and
features one-sided communication primitives that can be ini-
tialized inside GPU kernel functions [9, 40]. These one-sided
P2P communication primitives are particularly well-suited
for the intensive, lightweight inter-GPU communication intro-
duced by fine-grained EMT parallelization. Therefore, OPER
uses NVSHMEM as its primary communication backend.

3 Theoretical Modeling for Parallelization

This section provides theoretical modeling for EMT paral-
lelization problem and gives a formal definition of the opti-
mal EMT parallelization by addressing the following research
questions: (1) How does EMT parallelization influence the
lookup workload distribution and communication (§3.1)? (2)
How can we formulate EMT parallelization and model its
impact on efficiency (§3.2)? (3) What is the complexity and
scope of the EMT parallelization problem (§3.3)?

3.1 Impact of Parallelization on Efficiency
To demonstrate how EMT parallelization influences the
lookup workload distribution and inter-GPU communication
amount, we give several examples in Figure 2. Assuming we
have three EMTs (labeled with different colors) that need
to be placed on two GPUs, each with limited memory for
7 embeddings. In distributed training, the dataset is usually
randomly divided and assigned to different devices. So in this
example, we assume that the input batches on both GPUs have

USENIX Association 2024 USENIX Annual Technical Conference 669

15

GPU-0

(a) Table-wise Parallelism.

E[3]1

E[2]2

E[1]3

E[0]8

E[4]1

GPU-1

E[1]2

E[0]11

E[3]1

E[2]1

E[1]3

E[0]11

E[2]1

30

Lookup: 15×2 = 30

27

GPU-0

(b) Row-wise Parallelism.

E[0]8

GPU-1

E[1]2

E[0]11

E[3]1

E[2]1

E[1]3

E[0]11

E[2]1

18

E[3]1

E[2]2

E[1]3

E[4]1

23

GPU-0

(c) Fine-grained Model Parallelism.

E[3]1

E[0]8

GPU-1

E[1]2

E[0]11

E[3]1

E[2]1 E[1]3

E[0]11

E[2]1

22
E[2]2

E[1]3

E[4]1

12

GPU-0 GPU-1

11

Lookup Workload Gap: 60 – 30 = 30

D
at

a
P

ar
al

le
lis

m

Lookup: 30×2 = 60

Communication Gap: 30 – 15 = 15

Lookup: 27×2 = 54

Lookup Workload Gap: 54 – 36 = 18

Lookup: 18×2 = 36

Communication Gap: 27 – 18 = 9

Lookup: 23×2 = 46

Lookup Workload Gap: 46 – 44 = 2

Lookup: 22×2 = 44

Communication Gap: 23 – 22 = 1

Lookup: 34×2-22=46

Much lower communication amount

Lookup: 33×2-22=44

(d) Fine-grained Hybrid Parallelism.

E[1]3

E[0]11

E[1]3 E[1]3

E[1]3 E[1]3

E[3]1

E[0]8

E[1]2

E[0]11

E[3]1

E[2]1 E[1]3

E[0]11

E[2]1

E[2]2

E[1]3

E[4]1

E[0]11

E[0]11

M
od

el

P
ar

al
le

lis
m

Figure 2: An example illustrating the complexity of the EMT
placement problem. We compare four different parallelization
strategies. Different color means different EMTs. The number
next to the embedding indicates the average access count. The
number on the arrows measures the communication amount.

the same number of access to embeddings, and the average
access count of each embedding is given in the first column of
the EMTs. Then, the amount of embedding communication
equals the sum of the access count and the lookup workload
could be computed by doubling the total access count since
each GPU also needs to lookup embedding for another GPU.

As shown in Figure 2 (a)(b), table-wise parallelization [26]
and row-wise parallelization both exhibit significant asym-
metrical communication and a large gap in lookup workload.
The main reason is that table-wise and row-wise paralleliza-
tion are both too coarse-grained to handle the highly skewed
embedding access frequency. To overcome this issue, we
leverage a more fine-grained parallelization. As shown in Fig-
ure 2 (c), we partition the EMTs at the embedding level. Such
fine-grained parallelization achieves both lookup and commu-
nication balance. In Figure 2 (d), we utilize the extra memory
space on GPUs by duplicating the frequently accessed embed-
dings through data parallelism, which significantly reduces
the amount of embedding communication required. This sim-
ple example demonstrates that the parallelization of EMTs
greatly influences the efficiency of distributed EMTs. It also
conveys that both fine-grained and hybrid parallelism are nec-
essary for optimal EMT parallelization.

3.2 Formulating the Parallelization Problem

To find the optimal parallelization, this section provides con-
crete theoretical modeling that describes the relationship

between EMT parallelization and memory consummation,
lookup workload, and inter-GPU communication.

Given a set of embeddings E = {e1,e2, · · · ,eN}, and a
multi-GPU platform that consists of M GPUs, there are two
things that should be determined by an EMT parallelization:
1) where to store a specific embedding; 2) where to get an em-
bedding when this embedding is not in the local GPU memory
(an embedding may be stored on several GPUs). To describe
the EMT parallelization, for each embedding ek, we use a
M×M binary matrix Pk to not only represent the placement
of ek but also indicate the embedding fetch path of ek. Specif-
ically, Pk[i][j] = 1 indicates that GPU-i will fetch embedding
ek from GPU- j during training and inference. Additionally,
we use a matrix L, which is also M ×M, to record the per-
embedding lookup and communication cost. This cost can
be obtained by conducting offline profiling on the hardware.
Specifically, L[i][j] represents the average cost of GPU-i fetch-
ing one embedding from GPU- j. When i = j, it measures the
average cost of looking up the one embedding that is locally
owned. For an arbitrary EMT parallelization P = {P1,P2, · · · ,
PN}, the memory consumption, embedding lookup workload,
and inter-GPU communication on GPUs can be computed as:

Memory Consumption: If ∑
M−1
i=0 Pk[i][j]> 0, it means that

GPU- j owns a copy of embedding ek. Such that, the memory
consumption of embeddings on GPU- j could be obtained by:

M j =
N

∑
k=1

(Sk ·H(
M−1

∑
i=0

Pk[i][j])) (1)

in which Sk is the footprint of embedding ek and H() is the
Heaviside step function whose output is 1 if the input is larger
than 0, otherwise the output would be 0.

Embedding Lookup Workload: Pk[i][j]> 0 means GPU-i
need to fetch embedding ek from GPU- j. In other word, the
lookup of embedding ek for GPU-i takes place on GPU- j.
Such that we can obtain the overall embedding lookup latency
on an arbitrary GPU- j by:

E j =
N

∑
k=1

(Sk ·Ak ·
M−1

∑
i=0

Pk[i][j]) ·L[j][j] (2)

where Ak is the average access count among GPUs of embed-
ding ek. Ak can be obtained by profiling the training dataset.

Embedding Communication: As mentioned before,
Pk[i][j] > 0 indicates that GPU-i will fetch embedding ek
from GPU- j. Thus, the communication latency from GPU- j
to GPU-i can be calculated by:

Ci, j =
N

∑
k=1

(Sk ·Ak ·Pk[i][j]) ·L[i][j] (3)

here we only consider the embedding communication amount
in the forward pass. We discuss the gradient communication
amount in the DLRM training in §4.3.

670 2024 USENIX Annual Technical Conference USENIX Association

3.3 Complexity of Parallelization Problem
Based on the theoretical modeling presented in the last sub-
section, the problem of finding the optimal parallelization
can be formulated as a constrained optimization problem
like mixed-integer linear programming (MILP). The optimal
EMT parallelization can be obtained by traversing all valid
parallelizations P , ensuring that the memory consumption
computed by Equation 1 does not exceed the memory capac-
ity of GPUs, with the goal of minimizing the lookup workload
and communication overhead computed by Equation 2 and 3.
However, such a brute-force approach is infeasible due to the
extra large search space. For each embedding, it has a M×M
binary matrix. Such that, we have N ×M2 binary variables in
total, and the search space contains 2NM2

possible solution. N
is on the order of billions and M is on the order of hundreds
in the industry scale DLRM. It is challenging to search for
the optimal inside such a huge search space, even using the
commercial MILP solver.

Facing such a large search space, we wonder if there exists
an algorithm that can solve the EMT parallelization problem
efficiently rather than iterating through all possible solutions.
Unfortunately, the EMT parallelization problem is an NP-
hard problem, which means no polynomial algorithm exists
for computing optimal EMT placement unless NP=P. To prove
the NP-hardness of EMT, we start from the simplest case of
the EMT parallelization problem: place EMTs on two GPUs
with equal memory capacity and the total memory capacity
can just fit all embeddings. Since there is no extra memory
space, there is no need to consider data parallelism. Such that,
the simplest case of the EMT parallelization problem is equiv-
alent to a classic NP-complete problem, equal-cardinality
PARTITION [17]. This indicates that the EMT parallelization
problem is at least as difficult as the equal-cardinality PAR-
TITION problem which guarantees the NP-hardness. Given
the proven NP-hardness, the polynomial-time solutions are
unlikely to exist. This calls for an efficient heuristic approach
(§4) to approximate the optimal EMT parallelization.

4 Approximating Near-Optimal EMT Paral-
lelization

In this section, we will detail our optimality-guided heuristic
algorithm design for searching for an empirically near-optimal
EMT parallelization for DLRM training and inference. As
discussed in the last section, the heterogeneity in EMT size
and embedding access frequency makes it difficult to achieve
balance in all three aspects based on a coarse-grained EMT
partition. Meanwhile, the NP-hard complexity and a large
number of embeddings make it impractical to perform a fine-
grained parallelization at the embedding level. To overcome
this issue, we propose to partition the EMTs adaptively and
find the “sweet point” between parallelization granularity and
optimality.

GPU-0

Data Parallelism

Sorted
EMTs

…

Access Frequency …

Access-bounded
EMT partitions

GPU-1 GPU-N

…

Model
Parallelism

GPU-0 GPU-1 GPU-N

…

Two different data parallel strategies:

Partitioning(a)

(b)

(c)

(1) Communication-oriented EMT data parallelism
for inference.

(2) Frequency-aware data parallelism for training.

Parallelize for lookup
workload balance

Memory-bounded
EMT partitions

Parallelize for
memory balance

Optimality not satisfied,
reduce partitioning threshold

Optimality
Satisfied

GPU-0

Data Parallelism

Sorted
EMTs

…

Access Frequency …
Access-bounded

EMT partitions

GPU-1 GPU-N

…

Model
Parallelism

GPU-0 GPU-1 GPU-N

…

Two different data parallel strategies:

Partitioning(a)

(b)

(c)

(1) Communication-oriented EMT data parallelism
for inference.

(2) Frequency-aware data parallelism for training.

Parallelize for lookup
workload balance

Memory-bounded
EMT partitions

Parallelize for
memory balance

Feedback loop for
threshold tuning

Optimality
Satisfied

Figure 3: Three steps of our optimality-guided heuristic al-
gorithm for optimal EMT parallelization: (a) Access- and
memory-aware EMT partitioning to shrink the large search
space; (b) Backtrack searching for balanced EMT model par-
allelism and partitioning threshold selection; (c) Minimizing
inter-GPU communication through EMT data parallelism.

4.1 Access- and Memory-aware Partitioning

Due to the highly skewed access pattern of EMTs, there is a
trade-off between placement balance and search complexity.
The key tuning knob is partition granularity. Finer-grained
partitions could yield better parallelization, but also increase
the complexity of the problem. Thus, we propose an Access-
and Memory-aware Adaptive EMT Partition method to divide
the EMTs into smaller partitions that have balanced memory
footprint and access frequency. The key insight of our method
is the adaptive division of EMTs, taking into account both
memory and access frequency, rather than equally dividing
EMTs along one dimension.

As shown in Figure 3(a), we first sort the embeddings based
on the average access frequency on all GPUs. And then we
go through all the embeddings to divide them into small par-
titions. Here, we introduce a hyperparameter threshold to
control the partition granularity. The threshold constrains the
maximum footprint and access frequency of an EMT partition.
For example, the EMT partitions marked with red boxes in
Figure 3(a) are bound by access frequency, indicating that this
partition’s access frequency exceeds the threshold. Similarly,
the EMT partitions marked with green boxes are bound by
the memory constraint. This approach helps achieve a bal-
anced partition size and access frequency, which is crucial for
finding a near-optimal parallelization.

4.2 Algorithm for Balanced Model Parallelism

In this step, we tried to find an optimal model parallelism plan
for EMTs. The primary goal of EMT model parallelism is
to balance the memory consumption and embedding lookup
workloads on GPUs. To approximate the optimal solution for
this two-objective optimization problem, we propose sepa-

USENIX Association 2024 USENIX Annual Technical Conference 671

rating all the EMT partitions into two distinct types: access-
bounded partitions and memory-bounded partitions. We then
parallelize these partitions in a greedy way with the access-
balance objective and memory-balance objective, respectively.
The key idea is to leverage the highly skewed access pattern of
DLRM EMTs. Our profiling results show that access-bounded
partitions account for over 90% of the total embedding ac-
cess but less than 5 of the EMT footprint. This means that
parallelizing access-bounded partitions significantly affects
the embedding lookup workload balance, but the impact on
memory balance is relatively minor.

Based on this observation, we first parallelize the access-
bounded EMT partitions to balance the embedding lookup
workload. We do this iteratively by assigning partitions to the
GPU with the lowest embedding lookup workload Ei, com-
puted using Equation 2. Then, we parallelize the memory-
bounded partitions in a similar manner to balance memory
consumption. This is achieved by assigning partitions to the
GPU with the lowest memory consumption Mi, computed us-
ing Equation 1. After obtaining the model parallelization plan,
its optimality can be evaluated by calculating the degree of
balance of memory consumption and embedding lookup work-
load. If the degree of balance does not meet the expectations,
it indicates that the threshold chosen for EMT partitioning
(§4.1) was not small enough. In this case, we will re-generate
new partitions and a model parallelism plan with a smaller
threshold until we obtain a near-optimal parallelization plan
that satisfies the balance requirements.

4.3 EMT Data Parallelism Tailored for Infer-
ence and Training

As shown in Figure 3 (3), in this step, we exploit EMT data
parallelism by duplicating the EMT partitions to multiple
GPUs. To maximize communication reduction, we design
different parallelization approaches for training and inference,
as they have distinct communication patterns.

Communication-oriented EMT data parallelism for in-
ference: In inference, we only need to focus on reducing
the amount of communication between each GPU, without
worrying about the AllReduce communication for gradients.
Therefore, we design a communication-oriented EMT data
parallelism algorithm for inference. As shown in Algorithm 1,
in each iteration, we first identify the target GPU with the
highest communication cost (Line 4). We then examine all
EMT partitions placed on the target GPU (Line 6) and attempt
to find a partition that can be accommodated within the local
GPU memory (Line 7). If a suitable partition is found, we
update the EMT partition’s communication path and mod-
ify the communication latency between GPUs accordingly
(Lines 9-12). To maximize communication latency reduction,
it is crucial to assess whether this data parallelism can benefit
other GPUs (Lines 13-20). For instance, if an EMT partition
is duplicated from another node, all GPUs on the same node

Algorithm 1: EMT Data Parallelism for inference.
input :#GPU: M, #Partitions: N, EMT Partitions: Par,

communication latency between GPUs: CLM×M ,
available memory on GPUs: Ava_Mem1×M ,
per-embedding fetching latency: LM×M ,

output :Updated EMT partitions using data parallelism: Par
1 Stop_gpu[M] = {0};
2 while sum(Stop_gpu) < M do
3 for gid in {0,1, ...,M} and Stop_gpu[gid] == 0 do

/* Find the interconnect with highest comm. latency */
4 tid = argmax(CL[gid]);
5 find_p = 0;
6 for each p in Par and p.comm_path[gid] == tid do
7 if p.mem < Ava_Mem[gid] then

/* Data parallel partition p to GPU-gid. */
8 find_p = 1;
9 p.comm_path[gid] = gid;

10 CL[gid][tid] -= g.access × L[gid][tid];
11 CL[gid][gid] += g.access × L[gid][gid];
12 Ava_Mem[gid] -= p.mem;

/* Update all GPUs with lower comm. cost. */
13 for i in {0,1, ...,M} and i != gid do
14 oid = g.comm_path[i];
15 if L[i][gid]<L[i][oid] then
16 g.comm_path[i] = gid;
17 CL[i][oid] -= g.access × L[i][oid];
18 CL[i][gid] += g.access × L[i][gid];
19 end
20 end
21 Break;
22 end
23 end
24 if find_p == 0 then
25 Stop_gpu[gid] = 1;
26 end
27 end
28 end

could retrieve this EMT partition from the intra-node GPU
rather than the original inter-node GPU. It would greatly re-
duce the traffic along the inter-node interconnection which is
the key bottleneck in multi-node DLRMs.

Frequency-aware data parallelism for training: If the
embedding is duplicated for data parallelism in DLRM train-
ing, gradients AllReduce communication is required to make
sure the embedding parameter is updated correctly which in-
curs additional inter-GPU communication. Therefore, it is
necessary to take into account the impact of gradient AllRe-
duce communication for distributed EMT training.

Assuming we have an embedding ek, whose access fre-
quency is f and footprint is Sk. We want to know whether
duplicating embedding ek will reduce the overall communica-
tion amount. If the embedding ek is not duplicated and only
be placed on a single GPU, then the average communication
latency for ek in each iteration will be:

Tnon−dup = 2 · f ·Batch_Size · (M−1)
M

·Sk / BWP2P (4)

M is the number of GPUs, f ·Batch_Size measures the average
access count for ek in each batch. The factor M−1

M is multiplied

672 2024 USENIX Annual Technical Conference USENIX Association

Figure 4: The design of all-in-one EMT abstraction: (a) The
workflow of index mapping and decoding of all-in-one EMT;
(b) The execution timeline comparison between all-in-one
EMT and existing EMT frameworks based on collective com-
munication.

since only the access from other GPUs needs communication.
And BWP2P is the bandwidth of P2P communication.

If the embedding ek is duplicated to all GPUs, there will be
no communication in the forward process, the communication
only comes from the gradient AllReduce for ek:

Tdup = 2 · M−1
M

·Sk / BWAR (5)

Here, 2 · M−1
M · Sk represents the communication amount of

each GPU when using the ring-based AllReduce algorithm.
BWAR is the bandwidth of AllReduce. To minimize the com-
munication amount, the embedding ek should be duplicated
only when Tdup < Tnon−dup. Solving this equation yields
f > BWP2P

Batch_Size·BWAR
, which indicates that, for DLRM training,

we should only duplicate the embeddings whose access fre-
quency is greater than BWP2P

Batch_Size·BWAR
.

5 Distributed Shared Memory-based EMT

As described in previous sections (§2.2), existing EMT train-
ing systems typically rely on collective communication APIs,
which only support specific types of communication patterns.
This limits their capability in representing more complex
and fine-grained communication patterns, which are exactly
what the theoretically optimal EMT parallelization (§4) in-
troduced. To overcome these challenges, we designed a dis-
tributed shared memory-based EMT training system, incorpo-
rating an array of system-level optimizations tailored for EMT
computation and communication. This effectively translates
the theoretical savings into real performance speedup.

5.1 All-in-one EMT Abstraction
We first address the challenge of how to efficiently repre-
sent fine-grained EMT parallelization. Existing DLRM frame-
works [4, 41] leverage a “high-level” parallelization represen-

Figure 5: The workflow of local-aggregated sparse AllReduce.

tation, based on table-level EMT primitives and collective
communication APIs. This approach lacks the flexibility to
coordinate the parallelization of different embedding rows
separately. To overcome this limitation, we propose an All-
in-one EMT Abstraction that enables “low-level” paralleliza-
tion representation on a per-embedding basis. Follow the
parallelization plan searched by our heuristic algorithm, we
map all embeddings into a distributed global memory space
that is shared by all GPUs. Here, each GPU allocates an
equal amount of consecutive memory within a global virtual
memory space. The memory size on each GPU is computed
as SHMEM_Size= EMT _Size

#GPU . This results in a distributed shared
memory space, which can be conceptualized as a large dis-
tributed embedding table encompassing all EMTs.

Besides where to place the embeddings, another essential
aspect of EMT parallelization is how to communicates em-
beddings. In our all-in-one EMT abstraction, this information
is encoded into the address of the embeddings. As shown
in Figure 4 (a), the dataloader first converts EMT indices to
addresses in the global shared memory space by looking up
a mapping table maintained in host memory. Each address
will be mapped to a warp of GPU threads and decoded to
obtain the target GPU ID (GPU_id) and the offset in the
shared memory (offset) at runtime. With the target GPU ID
and offset information, the embedding lookup kernel can de-
termine whether it needs to initiate a communication request
to retrieve the embeddings from remote memory.

In summary, our all-in-one EMT abstraction offers a
lightweight and efficient way to represent any EMT paral-
lelization at a per-embedding granularity. The address map-
ping table is stored in the host memory, ensuring that GPU
memory consumption does not increase. Furthermore, the
CPU-side index conversion can be seamlessly pipelined with
EMT training, resulting no additional overhead.

5.2 Local-remote EMT Lookup Overlapping

Due to the limitations of collective communication, exist-
ing DLRM frameworks utilize separate embedding lookup
kernels and communication APIs to support various EMT par-
allelizations. Figure 4 (b)(1) illustrates the execution timeline

USENIX Association 2024 USENIX Annual Technical Conference 673

of the lookup process for a combination of table-wise and
row-wise EMT parallelization. Since these two paralleliza-
tion strategies require different communication patterns, two
lookup kernels and two communication calls are invoked to
complete the embedding lookup. If we consider more fine-
grained and complicated EMTs parallelization, the overhead
of kernel launching and communication initialization will
become a bottleneck.

To overcome this challenge, we first implement an All-in-
one Lookup Kernel to perform the lookup of all EMTs within
a single kernel. This design is facilitated by our address encod-
ing technique (§5.1), which provides an efficient way to access
all necessary information at runtime regarding where the em-
bedding is placed and how to communicate the embedding.
Furthermore, we propose a novel Local-remote Embedding
Lookup Overlapping technique to overlap the computation
and communication of embedding lookup. In the distributed
shared memory-based architecture, the GPU memories are
mapped to the NIC, making GPU memory directly acces-
sible by remote GPU threads without local or remote CPU
involvement. When the lookup kernel encounters an embed-
ding stored in remote GPU memory, it can directly initialize a
remote memory get request to fetch the embedding from other
GPUs, thereby hiding part of the communication latency with
the embedding lookup computation. As shown in Figure 4
(b), the local-remote lookup overlapping significantly reduces
the overall EMT lookup latency.

5.3 Sparse AllReduce for Data-Parallel EMT

To synchronize gradients, AllReduce communication is re-
quired for data-parallel EMTs. Existing methods either
treat gradients as dense tensors and use ring-based Dense
AllReduce [30], or leverage AllGather-based Sparse AllRe-
duce [32], which involves sending sparse gradients to all
GPUs and completing gradient reduction locally on each
GPU. However, neither approach considers the sparse and
input-dependent nature of data-parallel EMTs, resulting in
inferior performance.

To overcome it, we propose a novel Local-aggregated
Sparse AllReduce to reduce the sparse gradient communi-
cation overhead. Our key insight is that some embedding
rows are much more popular than others, these popular em-
beddings may be accessed multiple times in an input batch.
We could first aggregate these replicated gradients locally to
reduce the amount of communication. As shown in Figure 5,
the step- 1 is to find the unique indices from all input batches.
Then we aggregate the gradient locally based on the unique
indices. If some unique indices are not accessed locally, we
perform zero-padding to ensure that the aggregated gradients
on GPUs have the same size (step- 2). Once the local aggre-
gation is complete, the aggregated gradients on each GPU can
be treated as dense gradients. Then we leverage the ring-based
AllReduce primitive (e.g. NCCL) to communicate the dense

Table 1: Details of Datasets and Model Architecture.

Dataset Embedding Tables Model Architecture
#Rows Dim. Size Bottom MLP Top MLP

Avazu 8.9M 16 0.55GB 512-256-64-16 512-256-1
Criteo Kaggle 30.8M 16 1.9GB 512-256-64-16 512-256-1
Criteo Terabyte 242.5M 64 59.2GB 512-256-64-64 512-256-1
Syn_Small 838.9M 64 200GB / /
Syn_Large 2.5B 64 600GB / /

aggregated gradients(step- 3).

6 Evaluation

In this section, we provide a comprehensive evaluation of
OPER in terms of training and inference efficiency. Addi-
tionally, we assess the optimality of the parallelization plan
generated by OPER.

6.1 Experimental Setup
Benchmark and Dataset: We choose three widely adopted
real-world DLRM datasets for single-node evaluation. Since
the data-scale of these publicly available DLRM datasets is
relatively small compared to industry-scale models. We gen-
erate two larger datasets that follow a power-law embedding
access distribution to validate the performance of OPER in
a large-scale and multi-node setting: Avazu [1] is an open-
source dataset of a click-through rate competition. It consists
of 11 days of the Avazu users’ behavior data. Each sample
in Avazu has 20 categorical features and 1 numerical feature.
Criteo Terabyte [3] is the largest publicly available DLRM
dataset. It contains 24 days data records which have over
four billion training samples that consist of feature values and
click feedback of display ads. Each training sample contains
26 sparse features and 13 numerical features. Criteo Kag-
gle [2] is the dataset for Criteo Kaggle Display Advertising
Challenge. It is a subset of Criteo Terabyte which contains
the records of Criteo’s traffic spanning 7 days. Syn_Small
and Syn_Large are two larger datasets that we generated for
multi-node experiments. Both are generated using the data
generation script provided by FBGEMM [20]. The details of
the datasets (e.g., dimensions, footprints) and the correspond-
ing network architectures can be found in Table 1.

Hyperparameter Setting: For most of the experiments,
we set the extra memory ratio for EMTs data parallelism to
5%, which means the total memory space allocated for EMTs
is (1+ 5%)× the footprint of EMTs. Both the access- and
memory-partitioning thresholds in §4.1 are initially set to
0.1%. We conduct a sensitivity study of the extra memory
ratio and partitioning threshold in §6.5 to demonstrate the
impact of hyperparameter settings.

Baseline: To demonstrate the advantages of OPER, we
choose several state-of-the-art DLRM frameworks as base-
lines for comparison. DLRM [26], an open-source recom-

674 2024 USENIX Annual Technical Conference USENIX Association

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Avazu Terabyte Kaggle Avazu Terabyte Kaggle Avazu Terabyte Kaggle Avazu Terabyte Kaggle
1GPU 2GPU 4GPU 8GPU

DLRM TorchRec
HugeCTR OPER

Sp
ee
du
p

OOM

(a) Inference latency comparison.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Avazu Terabyte Kaggle Avazu Terabyte Kaggle Avazu Terabyte Kaggle Avazu Terabyte Kaggle

1GPU 2GPU 4GPU 8GPU

DLRM TorchRec
HugeCTR OPER

Sp
ee
du
p

OOM

(b) Training throughput comparison.

Figure 6: End-to-end DLRM training and inference perfor-
mance on a single node (DGX-A100). Both training and
inference speedups are normalized to TorchRec.

mendation model training framework proposed by Meta. It
supports multi-GPU DLRM training with table-wise EMT
parallelization which does not further split EMT and place
the whole EMT on a single GPU. TorchRec [4] was recently
released by Meta. It provides the different types of EMT par-
allelism including table-wise, row-wise, column-wise, and
data-parallel for training massive embedding operators in DL-
RMs. An EMT parallelization strategy will be generated au-
tomatically based on the information of the given dataset and
hardware. HugeCTR [41] is a highly-optimized DLRM train-
ing framework proposed by Nvidia. HugeCTR offers different
implementations of EMTs. In our comparison, we choose
LocalizedSlotEmbeddingHash which parallelizes EMTs in a
table-wise way, as it achieves higher efficiency in compared
with other EMT implementations of HugeCTR.

Platform & Tools: We implement OPER mostly with
C++ and CUDA, and the front-end part of our paralleliza-
tion search algorithm is implemented with Python to make
it more user-friendly. Our single-node experiments are con-
ducted on Nvidia DGX-A100 [28] which incorporates 8×
Nvidia A100 GPUs (40 GB). The GPUs are fully connected
through NVSwitch and NVLink with high P2P communica-
tion bandwidth. Our multi-node experiments are conducted
on a GPU-based HPC cluster. Each node contains 4× Nvidia
A100 GPUs (40 GB) with NVLink for intra-node connections
and HPE Slingshot network for inter-node connections.

6.2 Overall Performance
Single-node DLRM inference and training efficiency: In
single-node evaluation, we run OPER and all baseline works
on diverse numbers of GPUs (from 1 to 8) with three real-
world DLRM datasets. The end-to-end DLRM inference and

(a) Syn_Small Lookup. (b) Syn_Small Training.

(c) Syn_Large Lookup. (d) Syn_Large Training.

Figure 7: Multi-node embedding table lookup and training
scaling test on two large synthetic datasets Syn_Small and
Syn_Large (n×4 means n nodes in total and each node has 4
GPUs).

training speedup over baseline frameworks has been shown in
Figure 6 (a) and (b), respectively. Overall, OPER achieves sig-
nificant improvement over DLRM and TorchRec in all settings.
And OPER also beats HugeCTR in most cases, typically in
multi-GPU settings (e.g., 4 GPUs and 8 GPUs). Compared to
TorchRec, OPER attains 2.4× to 6.4× speedup in inference
latency and 1.9× to 3.5× improvement in training through-
put. We further observe up to 6.6× speedup in inference and
up to 2.4× speedup in training over HugeCTR. From the per-
spective of the number of GPUs, the performance speedup
remains low when using only one GPU. This is because, with
a single GPU, there is no inter-GPU communication, and the
speedup solely comes from our system-level optimization. As
the number of GPUs increases, we achieve higher speedup,
particularly when compared to HugeCTR.

Multi-node scaling test: To validate the effectiveness
of OPER on large-scale distributed platforms with multi-
ple machines, we compare the embedding lookup and train-
ing throughput of OPER and TorchRec across different num-
bers of computing nodes using two large synthetic datasets.
Figure 7 shows that when the number of nodes increases,
OPER exhibits a similar scaling trend to TorchRec, and the
absolute throughput consistently outperforms TorchRec in
all experimental settings. On average, OPER achieves 2.76×
and 1.65× improvements in embedding lookup and train-
ing throughput, respectively. The speedup in the multi-node
setting is relatively lower than that in the single-node experi-
ments. This is because, rather than using collective commu-
nication to synchronize all embeddings at once, OPER com-
municates the embeddings in a fine-grained, per-embedding
manner that makes it hard to achieve the peak bandwidth of
the inter-node connection. However, the speedup we achieved
demonstrates that fine-grained parallelization is worthwhile
since it can greatly reduce the overall communication volume
and achieve better end-to-end performance.

USENIX Association 2024 USENIX Annual Technical Conference 675

(a) (b)

Figure 8: Adaptability for heterogeneous bandwidths: (a) Nor-
malized per embedding communication latency on 2×4 com-
puting cluster. (b) Normalized embedding communication
cost between GPUs (normalized to lowest cost).

6.3 Optimization Analysis

Adaptability for heterogeneous bandwidth: The bandwidth
of inter-GPU connection may not be identical. Figure 8 (a)
shows the normalized per-embedding communication latency
on a 2× 4 computing cluster. The embedding communica-
tion latency exhibits a hierarchical pattern, with inter-node
connections having a much higher communication cost than
intra-node connections. Our heuristic algorithm design (§4)
considers the heterogeneous bandwidth between different in-
terconnections and automatically adjusts the embedding par-
allelization. Figure 8 (b) shows that the EMT parallelization
plan generated by OPER achieves balanced embedding com-
munication among GPUs. Despite the per-embedding com-
munication latency between the intra-node and inter-node
connection having a gap of about 4.21×, OPER achieves
about a 1% gap in terms of embedding communication cost.
This highlights the effectiveness of OPER in handling hetero-
geneous bandwidths.

Speedup breakdown: To better understand the benefits
of different optimizations, we show the speedup breakdown
of EMT computation and communication in Figure 9 (a).
Here, we evaluate the embedding lookup and the embedding
communication latency in the forward pass on DGX-A100
server using the Syn_Small dataset. We start from a baseline
implementation of EMT and incrementally add individual
optimizations to assess their impact on performance. Overall,
OPER achieves 8.5× speedup over TorchRec in this setting,
in which 2.11× speedup from our all-in-one lookup kernel,
1.79× speedup from EMT model parallelization optimization,
and 2.26× speedup from EMT data parallelization optimiza-
tion. These results clearly show the contribution of individual
optimizations to the overall performance improvement.

Sparse AllReduce optimization analysis: To demonstrate
the effectiveness of our local-aggregated sparse AllReduce
design (§5.3), we test OPER with two other AllReduce im-
plementations: ring-based dense AllReduce (Dense AllRe-
duce) [30] and AllGather-based sparse AllReduce (AllGather
AllReduce) [32]. The experiment used a 4× 4 computing

0.885

0.481
0.269

0.119
0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

(m
s)

Latency

+ Local-remote Overlapping
+ All-in-one Lookup
+ OPER's Model Parallelism
+ OPER's Data Parallelism

TorchRec
(1.013 ms)

(a)

43.605 38.159
31.934

0
10
20
30
40
50
60
70

La
te

nc
y

(m
s)

OPER + Dense AllReduce
OPER + AllGather AllReduce
OPER + Sparse AllReduce

TorchRec (53.403 ms)

(b)

Figure 9: Optimization Analysis: (a) Embedding lookup and
communication speedup breakdown on DGX-A100. (b) Per
iteration embedding training latency comparison with differ-
ent AllReduce methods on 4×4 computing cluster.

cluster and the Syn_Small dataset. As shown in Figure 9
(b), OPER with the local-aggregated sparse AllReduce out-
performs all other AllReduce implementations. Compared
to Dense AllReduce, the local-aggregation method greatly
reduces the communication amount for data-parallel EMTs
and achieves a 1.37× improvement. Our local-aggregated
sparse AllReduce also outperforms the AllGather-based
sparse AllReduce. The communication volume of AllGather
is proportional to the number of GPUs, making it unsuitable
for large-scale DLRM training that requires many of GPUs.

6.4 Placement Optimality Analysis
We evaluate the near-optimality of OPER’s EMT paralleliza-
tion by conducting a comprehensive comparison with two
methods from state-of-the-art DLRM frameworks and two
greedy strategies specifically optimized for memory and com-
munication balance, respectively.

1. Memory-Greedy Parallelization (MG): only focusing
on memory balance which places the equal size of EMTs
on each GPU for model parallelism.

2. Access-Greedy Parallelization (AG): starts from the
embedding with the highest access frequency and as-
signs embeddings one by one to the GPUs for model
parallelism to balance the embedding access on GPUs.

3. Table-wise (TW) [26, 41]: the EMTs are equally scat-
tered across GPUs without further partitioning. The
GPUs will have roughly the same number of EMTs.

4. TorchRec [4, 25]: the EMT parallelization of TorchRec
combines different types of EMT parallelism (e.g., table-
wise, model-parallel, data-parallel) to balance the mem-
ory consumption and lookup workload.

We use the EMT parallelization strategies described above
to generate EMT parallelization plans for three real-world
DLRM datasets on a DGX-A100 server (8 GPUs). We then
evaluate the optimality of the plans in three aspects: Memory
balance: the gap between the largest and smallest memory

676 2024 USENIX Annual Technical Conference USENIX Association

(a) (b) (c)

Figure 10: Parallelization optimality analysis: (a) Embedding table memory consumption comparison on GPUs. (b) Embedding
Lookup workload comparison on GPUs. (c) Inter-GPU embedding communication amount comparison between GPUs.

consumption for EMTs among all GPUs. Workload balance:
the gap between the largest and smallest amount of embedding
lookup workload among all GPUs. Communication balance:
the gap between the largest and smallest amount of embedding
communication between GPUs.

Memory balance analysis: We compute the footprint
of EMTs on GPUs and show the maximum, average, and
minimal memory consumption in Figure 10 (a). Memory-
Greedy Parallelization shows the highest balance in mem-
ory consumption. OPER also achieves balanced memory
consumption, showing our heuristic EMT placement is near-
optimal from the memory perspective. It has slightly higher
memory use than the Memory-Greedy Placement method
due to duplicating some embeddings for data parallelism.
However, Access-Greedy Parallelization, Table-wise, and
TorchRec show a high variance in the memory consumption
on different GPUs. This is mainly due to the diversity in EMT
sizes, some EMTs are extremely large and some EMTs only
contain tens of embeddings. Such significant diversity in EMT
size makes it easily fall into memory unbalance.

Workload balance analysis: We analyze the lookup work-
load by calculating the average data volume of embeddings
lookup in each iteration on GPUs. As shown in Figure 10 (b),
Memory-Greedy Parallelization has large variance in work-
load distribution due to its focus on memory balance. Table-
wise and TorchRec perform better, but still, show a consider-
able gap between the maximum and minimal lookup work-
load which will inevitably increase the overall EMT lookup
latency. Access-Greedy Parallelization and OPER both show
near-optimal performance in lookup workload balance. These
results demonstrate the effectiveness of our EMT partitioning
and parallelization algorithm.

Communication balance analysis: We count the average
embedding communication amount among all interconnec-

tions in each iteration. Figure 10 (c) shows that Memory-
Greedy Parallelization has high variance in communica-
tion. Access-Greedy Parallelization, Table-wise, and TorchRec
show balanced communication, but the average amount of
communication still stays high. OPER shows not only the
lowest variance but also the minimal average communication
amount, indicating our frequency-aware data parallelism ef-
fectively reduces the total communication amount. Although
TorchRec also employs data parallelism for small EMTs, it
duplicates the entire EMT, which contains many non-popular
embeddings, leading to more overall communication.

In conclusion, OPER is the only one that achieves near-
optimal performance in all three aspects.

6.5 Sensitive Study

In this section, we conduct a sensitive study of data parallelism
memory consumption and EMT partition granularity. We
also compare our heuristic algorithm with MILP solver to
demonstrate the efficiency of OPER.

Memory Consumption for Data-parallel EMTs: Al-
though data parallelize EMTs will greatly reduce the embed-
ding communication, they also introduce additional memory
consumption. To better understand the memory consumption
overhead of data-parallel EMTs, we experiment on all three
datasets with different ratios of extra memory space (the ratio
between the extra memory space and the total EMT foot-
print) for data parallelism from 0% to 20%. As shown in
Table 2, only 1% extra memory for data parallelism achieves
more than 10× communication amount reduction on average.
Continue to increase the extra memory space will reduce the
communication amount and variance but the effect becomes
limited. This is due to the highly skewed access pattern of
EMTs. When the popular embeddings are already duplicated,

USENIX Association 2024 USENIX Annual Technical Conference 677

Table 2: Sensitive study of memory consumption for data-
parallel EMTs (Mean: average embedding communication
amount (MB) in each iteration, Var.: the variance of embed-
ding communication among all GPU-GPU interconnections).

Extra Memory Avazu Terabyte Kaggle
Ratio Mean Var. Mean Var. Mean Var.
0% 2.50 1.4E-1 13.00 8.4E-4 3.25 2.0E-7
1% 0.16 2.0E-5 0.95 4.2E-3 0.46 6.9E-2
2% 0.15 6.4E-5 0.84 1.5E-3 0.30 8.9E-4
5% 0.13 6.1E-5 0.73 1.6E-3 0.24 1.3E-3
10% 0.12 1.0E-4 0.66 1.2E-3 0.20 4.6E-5
15% 0.10 1.3E-4 0.57 2.7E-3 0.19 2.8E-5
20% 0.10 7.3E-5 0.52 5.6E-3 0.18 1.3E-5

increasing the memory will bring limited improvement.
EMT Partition Granularity: We evaluate the impact of

partition granularity of our access- and memory-ware EMT
partition method on the performance of distributed EMTs. We
experiment on the Kaggle dataset, fixing other settings while
only adjusting the access and memory threshold (§4.1). As
shown in Table 3, a lower threshold leads to less inter-GPU
embedding communication and a higher degree of communi-
cation balance (DoB). We also tried the commercial mixed-
integer linear programming (MILP) solver [16] to solve the
EMT parallelization problem. As shown in Table 3, when the
partitioning threshold is set to 5%, the solver delivers a better
DoB than OPER. However, the solving time was extremely
high, taking 3.8 hours. With a lower partitioning threshold, the
solver could not find a solution within a reasonable time. In
contrast, the heuristic algorithm of OPER efficiently searched
for an empirically near-optimal parallelism plan within sev-
eral minutes, achieving a 99.1% DoB, which is better than
the solver under the 5% partitioning threshold.

7 Related Work

System Design for DLRM: Existing system designs for
DLRM largely fall into three categories. The first category is
built on the Parameter Server architecture [21, 22] which cap-
italizes on the host memory for maintaining the embedding
parameters of large size [14, 19, 33, 50]. This approach often
suffers from CPU-side computation and CPU-GPU commu-
nication. The second type of work scaling out the training
of EMTs on multi-GPU/multi-node platforms to better uti-
lize the high-bandwidth memory on GPUs [25, 41]. This
approach demonstrates higher efficiency compared to other
DLRM system designs but still suffers from high embedding
communication overhead due to suboptimal EMT paralleliza-
tion. Another direction of work leverages embedding table
compression to decrease the footprint of EMTs. Jie et al. [44]
and Hui et al. [13] represent embeddings with fewer bits.
TT-Rec [45] and EL-Rec [43] leverages tensor-train decom-
position to compress the EMTs. CAFE [48] compresses the
embedding tables by sharing embeddings between several

Table 3: Sensitive study of EMT partition granularity (Thre.:
the access and memory threshold for partitioning; Max/Min
Comm.: the maximum/minimum communication cost per
iteration; DoB: degree of balance, defined as Min_Comm.

Max_Comm.).

Method Thre. Time Max Comm. Min Comm. DoB

OPER

5% 15.8 s 48.6 34.8 71.6%
1% 28.4 s 42.3 33.9 80.1%

0.5% 41.5 s 38.4 33.9 88.3%
0.1% 120.3 s 34.1 33.8 99.1%

0.05% 235.2 s 34.2 33.9 99.1%
Solver 5% 3.8 hr 35.2 32.9 93.5%

non-hot features through hashing. Our proposed method is
orthogonal to these embedding compression techniques and
can be potentially applied in conjunction with them to better
utilize the limited capacity of GPU HBM.

Optimization for Embedding Placement and Paralleliza-
tion: Early works focus on embedding communication over-
head between the host memory and GPU. FAE [6] and Rec-
Shard [34] split EMTs based on the embedding access fre-
quency and put the popular embeddings on the GPU to reduce
the communication between host memory and GPU. The re-
cent trend of DLRM system design is to distribute EMTs to
multiple GPUs which incurs the EMT parallelization problem.
The complex combination of multiple parallelisms leads to a
significantly larger search space for the EMT parallelization
problem. Compromising on the complexity of the multi-GPU
EMT parallelization problem, exist works [4, 25, 26, 41] usu-
ally employ an empirical and coarse-grained way which either
places the whole EMT without partitioning [26,41] or equally
splitting the EMT along one dimension [25]. Such that, their
parallelization strategy could hardly achieve memory and
communication balance simultaneously. UGACHE [37] de-
signs a multi-GPU embedding cache and optimizes the embed-
ding placement in a fine-grained manner. However, it focuses
on settings where the EMT is not updated (e.g., GNN training,
DLRM inference), which cannot comprehensively address
the EMT parallelism problem in both DLRM training and
inference. Recent works leverage reinforcement learning (RL)
for EMT parallelization [46, 47]. However, these works focus
solely on the EMT lookup workload balance through model
parallelism, without considering the use of data parallelism
for communication optimization.

8 Discussion

Handling Input Distribution Shift: The serving of DLRM
inference and DLRM online training [42] continuously incor-
porates new data. The distribution of new input data may shift
over time and may not align with the previous data distribution
used for deciding EMT parallelism. The input distribution
shift may affect the balance of the EMT parallelism plan and
potentially impact the performance of OPER. To address this

678 2024 USENIX Annual Technical Conference USENIX Association

issue, OPER can continuously monitor the data distribution at
runtime and evaluate the optimality of the existing parallelism
using the formulation provided in Section 3.2. If the input
distribution shift is significant enough to degrade optimality,
OPER can generate a new parallelism plan and redistribute
the EMTs accordingly. Thanks to our efficient heuristic al-
gorithm design, the regeneration process takes only a few
minutes, minimizing disruption to the system.

Design Choices for EMT CUDA Kernel Implementation:
To support fine-grained EMT parallelism, OPER leverages
NVSHMEM to map all embeddings onto a distributed shared
memory space accessible by all GPUs. Building on top of
the distributed shared memory, there are two major design
choices for implementing the CUDA kernel for EMT-related
operations. Using the embedding table lookup kernel as an
example, the first implementation is Retrieve-based: each
GPU retrieves the required embeddings from remote GPUs
and then performs pooling locally. The second implemen-
tation is Send-based: each GPU conducts embedding pool-
ing according to requests from remote GPUs and then sends
the pooled embeddings back to the requesting GPUs. OPER
follows the retrieve-based design for kernel implementation.
This approach supports more general pooling operations be-
yond traditional sum-based pooling, such as sequence-based
pooling or attention-based pooling [35], which require all
embedding vectors to perform the pooling operation.

9 Conclusion

In this work, we propose OPER, a systematic framework for
accelerating large-scale DLRM training and inference through
input-aware fine-grained EMT parallelization. Specifically,
OPER conducts a thorough investigation of how paralleliza-
tion affects the efficiency of distributed EMTs, and gives a
formal definition of the optimal EMT parallelization. OPER
designs a heuristic algorithm that can efficiently generate
empirically near-optimal EMT parallelization for training
and inference which comprehensively balances the memory,
computation, and communication across GPUs. OPER imple-
ments a distributed shared memory-based EMT training sys-
tem to better support fine-grained parallelization and achieve
end-to-end performance improvement. Comprehensive ex-
periments demonstrate that OPER outperforms the existing
DLRM framework in both training and inference.

10 Acknowledgment

We would like to express our appreciation for the great help
and invaluable suggestions from the ATC anonymous review-
ers. This work was supported in part by NSF 2124039. Ad-
ditionally, this research was partially supported by the U.S.
DOE Office of Science, Office of Advanced Scientific Com-
puting Research, under award 66150: "CENATE - Center for

Advanced Architecture Evaluation". Also, we would like to
thank the generous help and support from Meta for their grant
in support of UCSB IEE for energy efficiency research.

References

[1] Avazu mobile ads ctr. https://www.kaggle.com/c/
avazu-ctr-prediction.

[2] Criteo display ad challenge. https://www.kaggle.
com/c/criteodisplay-ad-challenge.

[3] Terabyte click logs. https://labs.criteo.com/
2013/12/downloadterabyte-click-logs.

[4] Torchrec. github.com/pytorch/torchrec/, 2022.

[5] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade
Nie, Carole-Jean Wu, and Kim Hazelwood. Under-
standing training efficiency of deep learning recommen-
dation models at scale. In 2021 IEEE International
Symposium on High-Performance Computer Architec-
ture (HPCA), pages 802–814. IEEE, 2021. https:
//doi.org/10.1109/HPCA51647.2021.00072.

[6] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud,
Divya Mahajan, and Prashant J Nair. Accelerating
recommendation system training by leveraging pop-
ular choices. Proceedings of the VLDB Endowment,
15(1):127–140, 2021. http://www.vldb.org/pvldb/
vol15/p127-mahajan.pdf.

[7] Newsha Ardalani, Carole-Jean Wu, Zeliang Chen, Bhar-
gav Bhushanam, and Adnan Aziz. Understanding
scaling laws for recommendation models. arXiv
preprint arXiv:2208.08489, 2022. https://doi.org/
10.48550/arXiv.2208.08489.

[8] Barbara Chapman, Tony Curtis, Swaroop Pophale,
Stephen Poole, Jeff Kuehn, Chuck Koelbel, and Lau-
ren Smith. Introducing openshmem: Shmem for the
pgas community. In Proceedings of the Fourth Confer-
ence on Partitioned Global Address Space Programming
Model, pages 1–3, 2010. https://doi.org/10.1145/
2020373.2020375.

[9] Yuxin Chen, Benjamin Brock, Serban Porumbescu, Ay-
dın Buluç, Katherine Yelick, and John D Owens. Scal-
able irregular parallelism with gpus: getting cpus out
of the way. In 2022 SC22: International Conference
for High Performance Computing, Networking, Storage
and Analysis (SC), pages 708–723. IEEE Computer
Society, 2022. https://doi.org/10.1109/SC41404.
2022.00055.

USENIX Association 2024 USENIX Annual Technical Conference 679

https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/criteodisplay-ad-challenge
https://www.kaggle.com/c/criteodisplay-ad-challenge
https://labs.criteo.com/2013/12/downloadterabyte-click-logs
https://labs.criteo.com/2013/12/downloadterabyte-click-logs
github.com/pytorch/torchrec/
https://doi.org/10.1109/HPCA51647.2021.00072
https://doi.org/10.1109/HPCA51647.2021.00072
http://www.vldb.org/pvldb/vol15/p127-mahajan.pdf
http://www.vldb.org/pvldb/vol15/p127-mahajan.pdf
https://doi.org/10.48550/arXiv.2208.08489
https://doi.org/10.48550/arXiv.2208.08489
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1109/SC41404.2022.00055
https://doi.org/10.1109/SC41404.2022.00055

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,
Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu,
and Hemal Shah. Wide & deep learning for recom-
mender systems. In Alexandros Karatzoglou, Balázs
Hidasi, Domonkos Tikk, Oren Sar Shalom, Haggai Roit-
man, Bracha Shapira, and Lior Rokach, editors, Pro-
ceedings of the 1st Workshop on Deep Learning for
Recommender Systems, DLRS@RecSys 2016, Boston,
MA, USA, September 15, 2016, pages 7–10. ACM, 2016.
https://doi.org/10.1145/2988450.2988454.

[11] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Pro-
ceedings of the 10th ACM conference on recommender
systems, pages 191–198, 2016. https://doi.org/10.
1145/2959100.2959190.

[12] Carlos A Gomez-Uribe and Neil Hunt. The netflix
recommender system: Algorithms, business value, and
innovation. ACM Transactions on Management In-
formation Systems (TMIS), 6(4):1–19, 2015. https:
//doi.org/10.1145/2843948.

[13] Hui Guan, Andrey Malevich, Jiyan Yang, Jongsoo Park,
and Hector Yuen. Post-training 4-bit quantization on
embedding tables. arXiv preprint arXiv:1911.02079,
2019. http://arxiv.org/abs/1911.02079.

[14] Huifeng Guo, Wei Guo, Yong Gao, Ruiming Tang, Xi-
uqiang He, and Wenzhi Liu. Scalefreectr: Mixcache-
based distributed training system for ctr models with
huge embedding table. In Proceedings of the 44th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 1269–
1278, 2021. https://doi.org/10.1145/3404835.
3462976.

[15] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford Cot-
tel, Kim M. Hazelwood, Mark Hempstead, Bill Jia,
Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudi-
gere, Mikhail Smelyanskiy, Liang Xiong, and Xuan
Zhang. The architectural implications of facebook’s
dnn-based personalized recommendation. In IEEE In-
ternational Symposium on High Performance Computer
Architecture, HPCA 2020, San Diego, CA, USA, Febru-
ary 22-26, 2020, pages 488–501. IEEE, 2020. https:
//doi.org/10.1109/HPCA47549.2020.00047.

[16] LLC Gurobi Optimization. Gurobi optimizer ref-
erence manual, 2021. https://www.gurobi.com/
documentation/current/refman/index.html.

[17] Juris Hartmanis. Computers and intractability: a guide
to the theory of np-completeness (michael r. garey and
david s. johnson). Siam Review, 24(1):90, 1982.

[18] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,
Xia Hu, and Tat-Seng Chua. Neural collaborative fil-
tering. In Proceedings of the 26th international confer-
ence on world wide web, pages 173–182, 2017. https:
//doi.org/10.1145/3038912.3052569.

[19] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and
Minsoo Rhu. Centaur: A chiplet-based, hybrid
sparse-dense accelerator for personalized recommen-
dations. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages
968–981. IEEE, 2020. https://doi.org/10.1109/
ISCA45697.2020.00083.

[20] Daya Khudia, Jianyu Huang, Protonu Basu, Summer
Deng, Haixin Liu, Jongsoo Park, and Mikhail Smelyan-
skiy. Fbgemm: Enabling high-performance low-
precision deep learning inference. arXiv preprint
arXiv:2101.05615, 2021. https://arxiv.org/abs/
2101.05615.

[21] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo
Cho, Eunji Jeong, Hyeonmin Ha, Sanha Lee, Joo Seong
Jeong, and Byung-Gon Chun. Parallax: Sparsity-aware
data parallel training of deep neural networks. In
Proceedings of the Fourteenth EuroSys Conference
2019, pages 1–15, 2019. https://doi.org/10.1145/
3302424.3303957.

[22] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long,
Eugene J Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In 11th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pages 583–598, 2014.
https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/li_mu.

[23] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao,
Shin-Yeh Tsai, Carole-Jean Wu, and Mark Hempstead.
Understanding capacity-driven scale-out neural recom-
mendation inference. In 2021 IEEE International Sym-
posium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 162–171. IEEE, 2021. https:
//doi.org/10.1109/ISPASS51385.2021.00033.

[24] Yifei Ma, Balakrishnan Narayanaswamy, Haibin Lin,
and Hao Ding. Temporal-contextual recommendation
in real-time. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 2291–2299, 2020. https://doi.
org/10.1145/3394486.3403278.

680 2024 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
http://arxiv.org/abs/1911.02079
https://doi.org/10.1145/3404835.3462976
https://doi.org/10.1145/3404835.3462976
https://doi.org/10.1109/HPCA47549.2020.00047
https://doi.org/10.1109/HPCA47549.2020.00047
https://www.gurobi.com/documentation/current/refman/index.html
https://www.gurobi.com/documentation/current/refman/index.html
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1109/ISCA45697.2020.00083
https://doi.org/10.1109/ISCA45697.2020.00083
https://arxiv.org/abs/2101.05615
https://arxiv.org/abs/2101.05615
https://doi.org/10.1145/3302424.3303957
https://doi.org/10.1145/3302424.3303957
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://doi.org/10.1109/ISPASS51385.2021.00033
https://doi.org/10.1109/ISPASS51385.2021.00033
https://doi.org/10.1145/3394486.3403278
https://doi.org/10.1145/3394486.3403278

[25] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhi-
hao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti
Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani,
Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang
Chu, Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo
Feng, Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li,
Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts,
Krishna Dhulipala, K. R. Kishore, Tyler Graf, Assaf
Eisenman, Kiran Kumar Matam, Adi Gangidi, Guo-
qiang Jerry Chen, Manoj Krishnan, Avinash Nayak,
Krishnakumar Nair, Bharath Muthiah, Mahmoud kho-
rashadi, Pallab Bhattacharya, Petr Lapukhov, Maxim
Naumov, Ajit Mathews, Lin Qiao, Mikhail Smelyan-
skiy, Bill Jia, and Vijay Rao. Software-hardware co-
design for fast and scalable training of deep learn-
ing recommendation models. In Valentina Salapura,
Mohamed Zahran, Fred Chong, and Lingjia Tang, edi-
tors, ISCA ’22: The 49th Annual International Sympo-
sium on Computer Architecture, New York, New York,
USA, June 18 - 22, 2022, pages 993–1011. ACM, 2022.
https://doi.org/10.1145/3470496.3533727.

[26] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey
Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vi-
jay Rao, Bill Jia, Liang Xiong, and Misha Smelyan-
skiy. Deep learning recommendation model for per-
sonalization and recommendation systems. CoRR,
abs/1906.00091, 2019. http://arxiv.org/abs/
1906.00091.

[27] Nvidia. Nvidia collective communication library (nccl).
developer.nvidia.com/nccl.

[28] Nvidia. Nvidia dgx a100. www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/
nvidia-dgx-a100-datasheet.pdf.

[29] Nvidia. Nvshmem communication library. developer.
nvidia.com/nvshmem.

[30] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-
reduce algorithms for clusters of workstations. Journal
of Parallel and Distributed Computing, 69(2):117–124,
2009. https://doi.org/10.1016/j.jpdc.2008.
09.002.

[31] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic.
Distributed shared memory: Concepts and systems.
IEEE Parallel & Distributed Technology: Systems &

Applications, 4(2):63–71, 1996. https://doi.org/
10.1109/88.494605.

[32] Cèdric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh,
Dan Alistarh, and Torsten Hoefler. Sparcml: High-
performance sparse communication for machine learn-
ing. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, pages 1–15, 2019. https://doi.org/
10.1145/3295500.3356222.

[33] Haidong Rong, Yangzihao Wang, Feihu Zhou, Junjie
Zhai, Haiyang Wu, Rui Lan, Fan Li, Han Zhang, Yuekui
Yang, Zhenyu Guo, and Di Wang. Distributed equiva-
lent substitution training for large-scale recommender
systems. In Jimmy X. Huang, Yi Chang, Xueqi Cheng,
Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun
Liu, editors, Proceedings of the 43rd International ACM
SIGIR conference on research and development in In-
formation Retrieval, SIGIR 2020, Virtual Event, China,
July 25-30, 2020, pages 911–920. ACM, 2020. https:
//doi.org/10.1145/3397271.3401113.

[34] Geet Sethi, Bilge Acun, Niket Agarwal, Christos
Kozyrakis, Caroline Trippel, and Carole-Jean Wu. Rec-
shard: statistical feature-based memory optimization for
industry-scale neural recommendation. In Babak Falsafi,
Michael Ferdman, Shan Lu, and Thomas F. Wenisch,
editors, ASPLOS ’22: 27th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Lausanne, Switzerland,
28 February 2022 - 4 March 2022, pages 344–358.
ACM, 2022. https://doi.org/10.1145/3503222.
3507777.

[35] Geet Sethi, Pallab Bhattacharya, Dhruv Choudhary,
Carole-Jean Wu, and Christos Kozyrakis. Flexshard:
Flexible sharding for industry-scale sequence recom-
mendation models. arXiv preprint arXiv:2301.02959,
2023.

[36] Brent Smith and Greg Linden. Two decades of recom-
mender systems at amazon. com. Ieee internet comput-
ing, 21(3):12–18, 2017. https://doi.org/10.1109/
MIC.2017.72.

[37] Xiaoniu Song, Yiwen Zhang, Rong Chen, and Haibo
Chen. Ugache: A unified gpu cache for embedding-
based deep learning. In Proceedings of the 29th Sympo-
sium on Operating Systems Principles, pages 627–641,
2023.

[38] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep
Baines, Carlos Efrain Quintero Narvaez, Vinay Ramakr-
ishnaiah, Nirmal Prajapati, Patrick S. McCormick, Ja-
maludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,
Jongsoo Park, Misha Smelyanskiy, and Alex Aiken.

USENIX Association 2024 USENIX Annual Technical Conference 681

https://doi.org/10.1145/3470496.3533727
http://arxiv.org/abs/1906.00091
http://arxiv.org/abs/1906.00091
developer.nvidia.com/nccl
www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
developer.nvidia.com/nvshmem
developer.nvidia.com/nvshmem
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1109/88.494605
https://doi.org/10.1109/88.494605
https://doi.org/10.1145/3295500.3356222
https://doi.org/10.1145/3295500.3356222
https://doi.org/10.1145/3397271.3401113
https://doi.org/10.1145/3397271.3401113
https://doi.org/10.1145/3503222.3507777
https://doi.org/10.1145/3503222.3507777
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.1109/MIC.2017.72

Unity: Accelerating DNN training through joint opti-
mization of algebraic transformations and paralleliza-
tion. In Marcos K. Aguilera and Hakim Weather-
spoon, editors, 16th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2022,
Carlsbad, CA, USA, July 11-13, 2022, pages 267–284.
USENIX Association, 2022. https://www.usenix.
org/conference/osdi22/presentation/unger.

[39] Minjie Wang, Chien-chin Huang, and Jinyang Li. Sup-
porting very large models using automatic dataflow
graph partitioning. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–17, 2019. https:
//doi.org/10.1145/3302424.3303953.

[40] Yuke Wang, Boyuan Feng, Zheng Wang, Tong
Geng, Kevin Barker, Ang Li, and Yufei Ding.
{MGG}: Accelerating graph neural networks with
{Fine-Grained}{Intra-Kernel}{Communication-
Computation} pipelining on {Multi-GPU} platforms.
In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), pages 779–795,
2023. https://www.usenix.org/conference/
osdi23/presentation/wang-yuke.

[41] Zehuan Wang, Yingcan Wei, Minseok Lee, Matthias
Langer, Fan Yu, Jie Liu, Shijie Liu, Daniel G Abel,
Xu Guo, Jianbing Dong, et al. Merlin hugectr: Gpu-
accelerated recommender system training and inference.
In Proceedings of the 16th ACM Conference on Recom-
mender Systems, pages 534–537, 2022.

[42] Zheng Wang, Yuke Wang, Jiaqi Deng, Da Zheng, Ang
Li, and Yufei Ding. Rap: Resource-aware automated gpu
sharing for multi-gpu recommendation model training
and input preprocessing. In Proceedings of the 29th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 2, pages 964–979, 2024.

[43] Zheng Wang, Yuke Wang, Boyuan Feng, Dheevatsa
Mudigere, Bharath Muthiah, and Yufei Ding. El-rec:
Efficient large-scale recommendation model training
via tensor-train embedding table. In SC22: Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–14. IEEE,
2022.

[44] Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping
Tak Peter Tang, and Andrew Tulloch. Mixed-
precision embedding using a cache. arXiv preprint
arXiv:2010.11305, 2020. https://arxiv.org/abs/
2010.11305.

[45] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and
Xing Liu. Tt-rec: Tensor train compression for deep
learning recommendation models. Proceedings of

Machine Learning and Systems, 3, 2021. https:
//proceedings.mlsys.org/paper/2021/hash/
979d472a84804b9f647bc185a877a8b5-Abstract.
html.

[46] Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv
Choudhary, Jade Nie, Yuandong Tian, Jay Chae, Yin-
bin Ma, Arun Kejariwal, and Xia Hu. Autoshard: Au-
tomated embedding table sharding for recommender
systems. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pages 4461–4471, 2022. https://doi.org/10.1145/
3534678.3539034.

[47] Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-
Herng Lai, Bhargav Bhushanam, Yuandong Tian, Arun
Kejariwal, and Xia Hu. Dreamshard: Generalizable
embedding table placement for recommender systems.
Advances in Neural Information Processing Systems,
35:15190–15203, 2022.

[48] Hailin Zhang, Zirui Liu, Boxuan Chen, Yikai Zhao, Tong
Zhao, Tong Yang, and Bin Cui. Cafe: Towards compact,
adaptive, and fast embedding for large-scale recommen-
dation models. Proceedings of the ACM on Management
of Data, 2(1):1–28, 2024.

[49] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian,
Ruiquan Ding, Mingming Sun, and Ping Li. Dis-
tributed hierarchical gpu parameter server for mas-
sive scale deep learning ads systems. arXiv preprint
arXiv:2003.05622, 2020. https://proceedings.
mlsys.org/book/315.pdf.

[50] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian,
Ronglai Jia, and Ping Li. Aibox: Ctr prediction model
training on a single node. In Proceedings of the
28th ACM International Conference on Information
and Knowledge Management, pages 319–328, 2019.
https://doi.org/10.1145/3357384.3358045.

[51] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. Alpa: Automating inter- and
Intra-Operator parallelism for distributed deep learn-
ing. In 16th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 22), pages 559–
578, 2022. https://www.usenix.org/conference/
osdi22/presentation/zheng-lianmin.

682 2024 USENIX Annual Technical Conference USENIX Association

https://www.usenix.org/conference/osdi22/presentation/unger
https://www.usenix.org/conference/osdi22/presentation/unger
https://doi.org/10.1145/3302424.3303953
https://doi.org/10.1145/3302424.3303953
https://www.usenix.org/conference/osdi23/presentation/wang-yuke
https://www.usenix.org/conference/osdi23/presentation/wang-yuke
https://arxiv.org/abs/2010.11305
https://arxiv.org/abs/2010.11305
https://proceedings.mlsys.org/paper/2021/hash/979d472a84804b9f647bc185a877a8b5-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/979d472a84804b9f647bc185a877a8b5-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/979d472a84804b9f647bc185a877a8b5-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/979d472a84804b9f647bc185a877a8b5-Abstract.html
https://doi.org/10.1145/3534678.3539034
https://doi.org/10.1145/3534678.3539034
https://proceedings.mlsys.org/book/315.pdf
https://proceedings.mlsys.org/book/315.pdf
https://doi.org/10.1145/3357384.3358045
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin

	Introduction
	Background and Motivation
	DLRM and EMT Parallelization
	Multi-GPU Communication Support

	Theoretical Modeling for Parallelization
	Impact of Parallelization on Efficiency
	Formulating the Parallelization Problem
	Complexity of Parallelization Problem

	Approximating Near-Optimal EMT Parallelization
	Access- and Memory-aware Partitioning
	Algorithm for Balanced Model Parallelism
	EMT Data Parallelism Tailored for Inference and Training

	Distributed Shared Memory-based EMT
	All-in-one EMT Abstraction
	Local-remote EMT Lookup Overlapping
	Sparse AllReduce for Data-Parallel EMT

	Evaluation
	Experimental Setup
	Overall Performance
	Optimization Analysis
	Placement Optimality Analysis
	Sensitive Study

	Related Work
	Discussion
	Conclusion
	Acknowledgment

