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Abstract
With the increasing popularity of large deep learning model-
serving workloads, there is a pressing need to reduce the
energy consumption of a model-serving cluster while main-
taining satisfied throughput or model-serving latency require-
ments. Model multiplexing approaches such as model par-
allelism, model placement, replication, and batching aim to
optimize the model-serving performance. However, they fall
short of leveraging the GPU frequency scaling opportunity for
power saving. In this paper, we demonstrate (1) the benefits
of GPU frequency scaling in power saving for model serving;
and (2) the necessity for co-design and optimization of fine-
grained model multiplexing and GPU frequency scaling. We
explore the co-design space and present a novel power-aware
model-serving system, µ-Serve. µ-Serve is a model-serving
framework that optimizes the power consumption and model-
serving latency/throughput of serving multiple ML models
efficiently in a homogeneous GPU cluster. Evaluation results
on production workloads show that µ-Serve achieves 1.2–2.6×
power saving by dynamic GPU frequency scaling (up to 61%
reduction) without SLO attainment violations.

1 Introduction

Over the past few years, increasingly capable large models
have been developed for everything from recommendations
to text or image generation. Pre-trained deep learning (DL)
models make it easy for developers to develop and deploy
new models with lightweight fine-tuning, few-shot learning, or
even prompting [3]. As a result, model serving (i.e., inference)
has become an essential workload in modern cloud systems.

However, serving deep learning models at scale puts a press-
ing need to improve power efficiency, i.e., to reduce energy
consumption while maintaining model-serving performance
requirements. A recent study from Google attributed 60% of
its ML energy use to inference [29]. AWS estimates inference
to make up 90% of total ML cloud computing demand [24].
Unfortunately, existing model-serving systems focus on either
performance (i.e., latency and throughput) [7,14,22,26,52,53],
model prediction accuracy [8, 15, 35], or LLM optimiza-
tion [12, 20, 47, 51], but are not power-aware. In this paper,
we target power efficiency in DL model serving.

Challenges. We could potentially leverage GPU Dynamic
Voltage and Frequency Scaling (DVFS) techniques that have
been widely used during GPU training [5, 6, 42, 50] to save
energy. However, dynamic GPU frequency scaling on modern
deep learning model-serving workloads poses three main
challenges due to their unique characteristics.

[C1] First, it is challenging to determine the optimal GPU
frequency that meets performance requirements while max-
imizing power efficiency. Since low latency in inference is
critical, model-serving workloads are typically associated
with service-level objectives (SLOs) [22, 52, 53] on end-to-
end latency. To meet stringent SLOs, contemporary serving
systems either fix the GPU frequency at the default setting or
rely on DVFS to scale down frequency based on utilization
metrics [27]. However, DVFS is sub-optimal, imprecise, and
has non-intuitive implementations in production [27] while
overprovisioning GPU frequency leads to high power con-
sumption. The optimal frequency is non-trivial to set for a
GPU device that can serve different models or a mix of model
partitions from different models [22] when considering strin-
gent latency SLOs, throughput, and costs.

[C2] Second, serving non-deterministic generative models
makes it hard to differentiate the negative impact of GPU
frequency down-scaling from the inherent non-determinism
in execution time. The non-determinism comes from the au-
toregressive nature of generative models. To process each
request, one has to run multiple iterations; the output of each
iteration is used as input in the following iteration. Worse, a
first-come-first-serve (FCFS) request scheduling policy suf-
fers from head-of-line blocking issues [30], leading to less
power-saving headroom without SLO attainment violations.

[C3] Finally, unlike CPUs, GPUs do not support fine-
grained (e.g., per-core) frequency scaling. Therefore, if the
model or multiple model partitions (from different models)
are placed onto a device, the frequency can only be reduced to
the maximum frequency demand among all partitions. Power-
unaware model partitioning and placement strategies [22] fail
to unlock further power saving, even if the optimal frequency
mentioned in [C1] can be figured out for each partition.
Our Work. This paper addresses the above challenges by pre-
senting µ-Serve, the first power-aware deep learning model
serving framework with fine-grained model provisioning and
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GPU frequency scaling. The goal of µ-Serve is to maximize
power efficiency while preserving the model-serving perfor-
mance (i.e., SLO attainment). To achieve the goal, µ-Serve
consists of the following main components:
• Power-aware fine-grained model provisioning. µ-Serve

generates a model parallelism plan (i.e., model partitioning)
for each model and then places model partitions onto de-
vices in a power-aware manner. A model comprises a series
of operators (e.g., multiply) over multidimensional tensors.
Our key insight is that some operators are more sensitive 1 to
frequency changes while others are not; those operators that
are insensitive to frequency changes often contribute less to
the end-to-end latency of serving a request. Based on this
insight, we design a novel model provisioning algorithm
(§3.1 and §3.2) by considering operator sensitivities to gen-
erate model partitions and ensure that each device contains
partitions with comparable sensitivities. This algorithm ad-
dresses [C3] and maximizes power-saving opportunities.

• Speculative request serving. To address non-deterministic
execution when serving generative models (i.e., [C2]), we
introduce a lightweight proxy model that is fine-tuned to
predict the execution times of each input query. This is
based on our insight that a much smaller model can be
quite good at understanding the output length of a large
model. Based on the proxy model, we design a speculative
shortest-job-first (SSJF) scheduler (§3.3) that improves the
performance predictability of serving requests of autore-
gressive models. SSJF helps achieve higher SLO attainment
and, consequently, more power-saving opportunities.

• SLO-preserving GPU frequency scaling. At runtime,
µ-Serve uses a multiplicative-increase-additive-decrease
(MIAD) algorithm (§3.4) to exploit the power-saving op-
portunities and dynamically scale GPU frequency while
preserving performance SLOs, which addresses [C1].

Offline Profiling and Online Orchestration. µ-Serve re-
quires an offline phase before running online for power-aware
model serving. In the offline phase, µ-Serve first profiles each
primitive operator [40] to get its sensitivity score, indicating
how operator execution latency changes with the change in
GPU frequency. After obtaining a sensitivity score database,
µ-Serve then generates power-aware model partitioning plans
by utilizing model parallelism (§3.1) and deploys model parti-
tions based on placement plans (§3.2) that create maximized
power-saving opportunities. Such power-saving opportunities
are then exploited at runtime by dynamic GPU frequency scal-
ing based on workloads and SLO performance. In the online
phase, µ-Serve serves model inference requests with a novel
speculative shortest-job-first scheduler (§3.3) that addresses
non-deterministic execution patterns of autoregressive mod-
els. To reduce power consumption while preserving model-
serving performance SLOs, µ-Serve dynamically scales GPU
frequency at each device with an MIAD algorithm (§3.4).

1We define sensitivity as the change in operator execution latency (∆L >
0) given the change in GPU frequency (∆F < 0), i.e., −∆L/∆F .

Results. We evaluate µ-Serve with a diverse set of deep learn-
ing models (including traditional non-Transformer models
like CNNs, Transformers, and Transformer-based generative
models) and production workloads on an 8-node 16-GPU
cluster (§4). Evaluation results show that, compared to ex-
isting state-of-the-art serving systems, µ-Serve achieves a
power reduction factor of 1.9–2.6× at varying rates, 1.5–2.3×
at varying stringent SLOs, and 1.2–2× when scaling to higher
numbers of devices, without SLO attainment violations.
Contributions. In summary, our main contributions are:
• A novel power-aware ML model serving framework that

unlocks power-saving opportunities through fine-grained
operator management and dynamic GPU frequency scaling.

• A speculative request scheduler with light proxy models
that addresses non-determinism in generative models.

• An open-source implementation of µ-Serve and evaluation
on real-world model datasets and production traces.

2 Background and Motivation

We begin with an overview of model-serving systems (§2.1),
opportunities for power saving (§2.2), and non-deterministic
execution of generative model workloads (§2.3).

2.1 Model Serving System Model
Model training is the process of building or learning a model
from datasets, starting from scratch or pre-trained models [3].
The training process requires iterative forward and backward
passes. After training, those ready-to-serve models are saved
to a model registry (Fig. 1 left).

Model serving, or model inference, is to use the model
to extract useful features from the inputs through a forward
pass (Fig. 1 right). The structure of model-serving workloads
follows a simple request-response paradigm where clients
(either users or AI applications) submit requests for that model
to a serving system, which schedules the requests, dispatches
them to hardware devices (e.g., GPUs), and returns the results.
Compared to model training, model serving does not involve
complex backward computation and model weight updates but
has more demanding performance requirements in inference
latency (i.e., request completion time) and throughput. With
the rise of pre-trained foundation models (e.g., in NLP and
vision), it is expected that a model can be trained once and
serve an extensive sequence of millions of inferences.

In this paper, we focus on the Deep Neural Network
(DNN) model (including CNNs [16], Transformers [10], and
Transformer-based generative models [46]) serving on homo-
geneous GPU clusters (Fig. 1).
Model Parallelism and Partitioning. To satisfy user demand,
model serving often must adhere to stringent SLOs on latency
(e.g., 99% of the requests for a model must be finished within
500 ms). However, there can be significant and unpredictable
burstiness in the arrival process of user requests [22, 44, 49].
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Figure 1: Model training and model serving.

Parallel model execution is necessary when attempting to sat-
isfy the serving latency requirements or support large models
that do not fit in the memory of a single device [22].

DNN models are composed of a series of operators (e.g.,
matrix multiplication and activation functions) over multidi-
mensional tensors. There are two categories of model par-
allelism: intra-operator and inter-operator parallelism [57].
Intra-operator parallelism is to partition a single operator
across multiple devices for parallel execution. It reduces the
computation latency for serving a request but introduces the
communication overhead of splitting the input and merging
the output. Inter-operator parallelism is to partition a model’s
operator execution graph into multiple stages that can execute
on multiple devices in a pipeline fashion. It allows the model
to exceed the memory limitation of a single GPU device but
it does not reduce the computation latency of a single request.
Power Efficiency. To the best of our knowledge, µ-Serve is
the first power-aware DNN model-serving framework that
aims to minimize power consumption while preserving the
model-serving performance. State-of-the-art model-serving
frameworks and commercial model-serving products use de-
fault GPU core frequency settings [27] for two main reasons.
First, it is nontrivial to determine the optimal GPU frequency
when serving diverse models or a mix of model partitions
from different models when considering both stringent SLOs
and costs. Second, GPU DVFS (dynamic frequency scaling
based on utilization) is shown to be sub-optimal, imprecise,
and has non-intuitive implementations in production [27].

Power optimization in ML model training [5, 6, 42, 50] has
been active in the past few years. The central idea is to find the
optimal GPU core frequency based on the valley trends when
scaling frequencies (i.e., energy saving is maximized on the
middle-level frequency). Building on top of that, EnvPipe [5]
reduces frequencies at stages that are not on the critical path of
the training pipeline with interleaving forward and backward
passes. Perseus [6] identifies straggler stages (e.g., due to
I/O bottleneck or hardware failures) and reduces frequencies
to synchronize the speed of all other stages. However, these
optimization tricks cannot be applied to model inference with
a single forward pass. It gets challenging in model serving
due to a mixture of model partition placement and dynamic
request arrival patterns (unlike static and iterative training).
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Figure 2: Model-serving latency and power consumption
characterization at varying GPU core frequency levels.

2.2 Opportunities for Power Saving

To understand if model serving also exhibits power-saving
opportunities like model training, we start with an illustra-
tive experiment to show how GPU frequency affects model
serving latency. We use two NVIDIA Tesla V100 (16 GB)
GPUs to serve each DNN model from Table 1. During the
experiments, we reduce the GPU frequency from 1300 MHz
to 200 MHz with a step size of 100 MHz. Fig. 2 (left) shows
the end-to-end latency of serving a single request while Fig. 2
(right) shows the corresponding power efficiency.

The model-serving latency-frequency curves of all models
exhibit a steep decline at low frequencies, but the decrease
rate eventually approaches a horizontal asymptote at high fre-
quencies. In contrast, the power curves for serving all models
show a nearly linear relationship between the GPU frequency
and the power consumption. This contrasting observation
leads to a power-saving opportunity by reducing the GPU
frequency when the SLO attainment is high. For example,
serving gpt2-large can meet the SLO (1000 ms) even when
the GPU frequency is reduced from 1300 MHz to 800 MHz.
By doing so, the power consumption is reduced by a factor of
1.8× from 214 Watts to 120 Watts.

However, such power-saving opportunity varies as the SLO
attainment depends on factors such as request arrival rate,
burstiness, and SLO scales (as defined in [22]). In addition,
coarse-grained GPU frequency scaling for an entire model
cannot fully unlock the power-saving opportunity. We show
in §3 how fine-grained model multiplexing and dynamic GPU
frequency scaling can help based on the performance-power
sensitivity and activation frequency of different operators.

2.3 Autoregressive Patterns

Traditional DNN models (e.g., ResNet and BERT) have de-
terministic execution patterns while Transformer-based gen-
erative models (e.g., GPT) are trained to generate the next
token in an autoregressive manner. Therefore, to process a
request to generative models, multiple iterations of the model
have to be run; each iteration generates a single output token,
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Figure 3: Output token length distributions of various large
language models collected in the LMSYS-Chat-1M dataset.

which is then appended to the original input in the following
iteration (except for the termination token <EOS>).

To illustrate this non-deterministic nature of serving model
inference workloads due to autoregressive patterns, we an-
alyze the output token length distribution in the LMSYS-
Chat-1M dataset [56] which contains one million real-world
conversations with 25 state-of-the-art LLMs. The output to-
ken length (N) dominates the execution time (T ) of a request
because T =C+K ∗N, where K is the latency to generate one
token and C is the model-serving system’s overhead including
DNS lookups, proxies, queueing, and input tokenization. K
depends on model optimization techniques (e.g., quantiza-
tion) and execution environment (e.g., hardware), which are
the same for all inputs. As shown in Fig. 3, the output token
length of the model output varies significantly for the same
model. The p95/p50 of the output token length for each model
varies from 1.7 (claude-1) to 20.5 (llama-13b).

Since model executions are non-deterministic, it is chal-
lenging to differentiate the negative impact of GPU frequency
down-scaling from the inherent non-determinism. Worse, it
suffers from head-of-line blocking issues when scheduling
requests for model-serving as most state-of-the-art LLM infer-
ence systems use a first-come-first-serve (FCFS) scheduling
policy. FastServe [47] uses a multi-level feedback queue to im-
prove the average job completion time but it does not address
the non-determinism nature.

3 µ-Serve Design and Implementation

µ-Serve is a power-aware multi-model model-serving frame-
work designed for a homogeneous GPU cluster that serves
Deep Neural Network (DNN) models (including Transform-
ers and Transformer-based generative models [46]) serving
systems. From §2, we can see that there are several key chal-
lenges to improving power efficiency in DNN model serving:
• Determine the optimal SLO-preserving GPU frequency that

minimizes power consumption (i.e., [C1]).
• Address non-deterministic execution patterns in generative

models for performance predictability and avoiding head-
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Figure 4: µ-Serve architecture overview and workflow.

of-line blocking (i.e., [C2]).
• Maximize the power-saving opportunity while GPUs do

not support fine-grained frequency scaling (i.e., [C3]).
We propose µ-Serve to specifically tackle these challenges.
The overall architecture of µ-Serve is shown in Fig. 4, which
consists of an offline phase and an online phase. In the offline
phase, µ-Serve first profiles each primitive operator [40] to
get its sensitivity score, indicating how operator execution
latency changes with the GPU frequency reduction. Based on
the operator-level sensitivities, µ-Serve then generates power-
aware model partitioning plans by utilizing model parallelism
(§3.1) and deploys model partitions based on placement plans
(§3.2) that maximize power-saving opportunities.

In the online phase, µ-Serve serves model inference re-
quests while dynamically managing device frequency scaling.
For each autoregressive model, µ-Serve uses a novel specula-
tive shortest-job-first scheduler (§3.3) that improves SLO at-
tainment by avoiding head-of-line blocking and thus increases
power-saving opportunities. For the remaining models, µ-
Serve uses the default FCFS scheduling policy. To minimize
power consumption while preserving model-serving perfor-
mance SLOs, µ-Serve dynamically scales GPU frequency at
each device with a multiplicative-increase-additive-decrease
(MIAD) algorithm (§3.4).

3.1 Power-aware Model Parallelism
Model parallelism is necessary to enable running larger mod-
els, or larger batches of inputs, and to serve bursty workloads
with better latency and throughput [22, 57]. µ-Serve paral-
lelism module ( 1 in Fig. 4) partitions each ML model (by
using model parallelism) to generate model partitions that
can maximize power efficiency while considering the latency
and throughput trade-offs so that the placement module ( 2

in Fig. 4) can choose the best combination for all models in
the whole cluster. To achieve this, µ-Serve relies on profiled
operator sensitivity scores and AlpaServe [22], an auto ML
model parallelization system for inference.

As described in §2.1, when compiling and deploying DNN
models for request-serving, each model is commonly defined
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Algorithm 1 Operator Clustering
Require: Model specification M, Operator sensitivity score

database D (a map of <operator, score> pairs)
1: procedure OPERATORCLUSTERING(M, D)
2: clusters←∅
3: currCluster←∅
4: currCluster.add(M.head)
5: clusterScore← avg(currCluster)
6: for each op in M.operators do
7: if abs(D.get(op) - clusterScore < T HRES) then
8: currCluster.append(op)
9: clusterScore← avg(currCluster)

10: else
11: clusters.append(currCluster)
12: currCluster← newList([op])
13: end if
14: end for
15: Return clusters
16: end procedure

as a computational (dataflow) graph where nodes are opera-
tors and edges are tensors (or data) [48]. Example operators
include matrix multiplication and relu or tanh activation
functions). Serving a request means the completion of the
dataflow in the execution graph. Our key insight is that (1)
some operators are more sensitive to GPU frequency changes
(i.e., sensitive operators) while others are not (i.e., insensitive
operators); and (2) insensitive ones often contribute less to the
end-to-end latency of serving a request. Since the minimum
GPU frequency that a model partition can tolerate is deter-
mined by the most sensitive operators, µ-Serve avoids mixing
sensitive and insensitive operators into the same partition.
Operator Sensitivity Score Profiling. Since the model
graphs are represented in XLA’s HLO format [40], a backend-
agnostic intermediate representation (IR), we choose to profile
only the primitive operators 2 defined in HLO that are shared
by all models. We define the sensitive score of each operator
as ∆Latency/∆Frequency where ∆Latency is the increase in
execution time (normalized) of the operator when decreasing
the GPU core frequency from the default setting to half of the
default frequency and ∆Frequency is the frequency decrease3.
We adopt the tensor dimensions from AI-Matrix [54], a pro-
duction dataset released by Alibaba. When profiling primitive
operators, we run each operator independently with each ten-
sor dimension repeated 5000 times and take the average of
all runs. Profiling of primitive operators happens offline and
the obtained sensitivity score database is then used in model
parallelism and placement plan generation.
Model Parallelism Plan Generation. Since different par-

2As a unifying abstraction for multiple frameworks (e.g., Pytorch and
TensorFlow) and hardware platforms (CPUs, GPUs, and TPUs), XLA sum-
marizes common DL operators into around 100 primitive operators.

3We draw inspiration from delay sensitivity [28].

Algorithm 2 Model Partition Placement
Require: Device group DP (list of GPUs), Model partition

plan MP (multi-model), D (same in Alg. 1), CT (maxi-
mum number of devices to place to))

1: procedure MODELPLACEMENT(DP, MP, D)
2: bins←∅ ▷ a map of device to a list of partitions
3: modelBinsCount←∅
4: for each model in MP do
5: // Sort partitions by sensitivity scores
6: for each p in model.getSortedPartitions() do
7: bestDevice = None
8: bestScore = INFINITY
9: selectedBins = getAvailableBins(bins, p)

10: for each d, partitions in selectedBins do
11: if modelbinsCount[model] <CT then
12: // Get similarity in sensitivity scores
13: score← getSimilarity(p, partitions)
14: if bestScore < score then
15: bestScore = score
16: bestDevice = d
17: end if
18: end if
19: end for
20: bins[bestDevice].append(p)
21: modelBinsCount[model] += 1
22: end for
23: end for
24: Return bins
25: end procedure

allelization configurations (intra-/inter-operator parallelism)
have different latency and throughput trade-offs, µ-Serve ex-
tends AlpaServe [22] to run an auto-parallelization compiler
to generate a list of possible configurations for every single
model and let the placement module (§3.2) choose the best
combination for all models in the whole cluster.

At the core of AlpaServe runs an optimization algorithm
with one inter-operator pass (based on dynamic program-
ming) and one intra-operator pass (based on integer linear
programming) to generate efficient model parallel partitions.
AlpaServe treats each operator as the smallest unit for parti-
tioning. To prevent operators with similar sensitivities from
being split we do not change the AlpaServe auto-parallelism
algorithm but extend AlpaServe with a new abstraction, i.e.,
operator cluster, which is a cluster of operators that share
similar sensitivity scores. µ-Serve treats each operator cluster
instead of each operator as the partitioning unit. As shown in
Alg. 1, generating operator clusters can be achieved by taking
the model specifications and profiled sensitivity scores and
grouping neighbor operators with similar sensitivity scores
(below a threshold) together. The output is the model paral-
lelism plan (i.e., partitions and their memory demands for a
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given model) that optimizes the per-request execution latency.
We leave the decision of model placement (offline) to §3.2.

3.2 Power-aware Model Placement

Given a list of model partitions (generated by §3.1) and a
fixed GPU cluster, model placement is to map each model
partition to a GPU device within the memory constraint. The
goal of model placement is to maximize SLO attainment (i.e.,
the percentage of requests served within SLO). Power-aware
model placement module ( 2 in Fig. 4) takes model partitions
and the GPU cluster specification as inputs and generates a
model partition placement plan that preserves SLOs while
maximizing power-saving opportunities.

However, model placement is typically modeled as a bin-
packing problem and is a computationally NP-hard prob-
lem [18]. For scalability and serving potentially a larger de-
vice cluster, we partition the cluster into several groups of
devices (same as in AlpaServe). Each group of devices selects
a subset of models to serve. Finding the optimal ⟨model par-
tition, device group, device⟩ is a combinatorial optimization
problem with a configuration space growing exponentially
with the number of devices and the number of models. µ-Serve
first selects the ⟨model partition, device group⟩ configurations
that maximize SLO attainment based on AlpaServe [22] and
then generates ⟨model partition, device⟩ configurations that
maximize the power-saving opportunities. After deploying
the placement plan, the offline stage is completed.
Mapping Models to Device Groups. µ-Serve runs the
model placement algorithm in AlpaServe [22] that (1) uses a
simulator-guided greedy algorithm to decide which models to
select for each group, and (2) enumerates group partitions and
model-parallel configurations to pick the best ⟨model, device
group⟩ placement that maximizes SLO attainment.
Mapping Model Partitions to Devices. For each device
group, given a list of devices and model partitions that are
assigned to the device group from the last step, µ-Serve gener-
ates ⟨model partition, device⟩ placement plans that maximize
the power-saving opportunities. Based on our insight that (1)
operators have diverse sensitivity to GPU frequency scaling
and (2) insensitive operators contribute less to the end-to-end
latency, the intuition behind µ-Serve’s model placement algo-
rithm is to group operators with similar sensitivities together.
Since how much the GPU frequency can be reduced is deter-
mined by the most sensitive model partition on that device,
µ-Serve avoids co-locating a mix of sensitive and insensitive
partitions onto the same GPU devices.

The overall procedure is shown in Alg. 2. µ-Serve first
estimates the sensitivity scores of a model partition based on
the weighted sum of operator sensitivity scores (using the op-
erator count and tensor dimensions as the weights). All model
partitions are then sorted based on the estimated sensitivity
scores. For each model partition in the sorted list, we get the
feasible “bins” or devices (by checking memory availability)
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Figure 5: Workflow of the speculative scheduling in µ-Serve.

and assign the partition to a bin that has the best fitting score.
The fitting score for ⟨partition p, bin b⟩ is defined as the sim-
ilarity between the sensitivity score of p and the weighted
average of the sensitivity scores of all existing partitions in
b. To avoid spreading partitions from the same model to too
many devices (and thus inducing high communication over-
head), we enforce an upper limit CT on how many bins a
model can be packed into. CT is set based on the empirical
results of the maximum number of devices to partition onto
without SLO violations. The outcome is the model placement
plan with a list of bins and corresponding model partition
assignment. µ-Serve takes the model placement plan for de-
ployment, which completes the offline stage.

3.3 Scheduling

User requests are dispatched to corresponding models at
runtime. For each model instance, a request queue is main-
tained, and µ-Serve uses a speculative shortest-job-first (SJF)
scheduler( 3 in Fig. 4) to decide the request execution or-
der of autoregressive models and a default FCFS scheduler
for traditional deep learning models. SJF alleviates the non-
determinism of generative models and the head-of-line block-
ing issue in FCFS scheduling. We must have knowledge or a
good estimate to deploy SJF. As shown in Fig. 5, µ-Serve’s
speculative SJF scheduler relies on the prediction from an out-
put token length predictor. The prediction is used to estimate
the job execution time in SJF as the output token length domi-
nates the execution time (linear relation) as described in §2.3.
The predictor relies on a lightweight proxy model based on
our insight that a small model is already quite good at predict-
ing the lengthiness of a significantly larger (>20×) model’s
output. In addition, we use a semantic cache to improve the
prediction accuracy of hot input queries.
Output Token Length Predictor. Given the user input to
a certain generative model, our predictor tries to predict the
length of the model’s response in terms of the number of
tokens because the model inference time is linearly related
to the output token length (§2.3). We use BERT as a proxy
model and build a multi-class classifier based on BERT as
the output token length predictor. Specifically, we take the
last layer hidden state of the first token (i.e., CLS) from the
BERT output, and pass it through an additional two-layer feed-
forward neural network to generate the prediction (Fig. 6). As
suggested by the original BERT paper [10], the final hidden
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state corresponding to this token is used as the aggregate se-
quence representation for classification tasks. We could get
better classification performance by averaging or pooling the
sequence of hidden states for the whole input sequence. How-
ever, taking the whole sequence is more compute-intensive
and, therefore, not worth the marginal gains.
Predictor Training. Our predictor adopts the pre-trained
BERT model weights as provided by [10] and we further
fine-tune the weights (together with the additional two-layer
classifier network) on the LMSYS-Chat-1M training data [56].
Pre-training on a large corpus of unlabeled text gives BERT
some basic understanding of human languages, while the fine-
tuning step allows BERT to learn the task-specific knowledge
(in our case, the output token length of a generative model
given the input query). Our fine-tuning has two phases: In the
first phase, the parameters of both BERT and the classifier are
tuned, while in the second phase, we fix the weights of BERT
and only update the classifier’s parameters. Such a two-phase
regime turns out to achieve a good balance between prediction
accuracy and training efficiency.

Since predicting the exact length of the output can be diffi-
cult, we treat the token length prediction problem as a coarse-
grained (multi-class) ordinal classification task [45]. Specifi-
cally, we characterize the output token length percentiles of
each generative model based on its training samples and cate-
gorize the length labels of each model into 5 classes, namely
[0, p25), [p25, p50), [p50, p75), [p75, p99), and [p99, +). We
convert the classes into 5 integers {0,1,2,3,4} and let our pre-
dictor output a real value as the prediction. We apply a mean
squared error (MSE) training loss to minimize the distance be-
tween the real-valued predictions and the integer-valued class
labels. During inference, we round the prediction value to the
nearest integer in {0, . . . ,4}. As shown in Sec. 4.3, such an
ordinal classification approach outperforms pure regression-
or classification-based solutions.
Choices of Classification. The granularity of classification
(i.e., how many classes to predict) is determined by the end-
to-end scheduling results (in latency and throughput) instead
of the prediction accuracy. It is because of our observation
that better prediction accuracy does not necessarily lead to
better scheduling performance. Empirical evaluations on our
datasets suggest that as the number of classes rises, prediction
accuracy drops (because it gets harder to predict more fine-

grained output lengths), but scheduling performance first rises
and then falls, peaking when there are 5 classes. We attribute
this observation to the fact that the scheduler benefits from
more fine-grained prediction but receives negative impacts
when prediction is worse, i.e., when predicting >5 classes.
Use of Semantic Cache. The µ-Serve scheduler includes a
simple semantic cache based on GPTCache [2] to store the
ground truth output token sequence length of hot inputs. In-
stead of going through the predictor to get an estimated output
length prediction, µ-Serve retrieves the cached length for the
input that triggers a cache hit. Caching has been commonly
used to reduce frequent and computationally expensive data
accesses. In µ-Serve, a semantic cache is a ⟨key, value⟩ mem-
ory buffer where keys are embeddings and values are output
lengths. Embeddings are generated by embedding models
that map text inputs into a low-dimensional continuous vector
space and are stored in a vector database [2]. For each input,
the most similar cached input is retrieved using a similarity
evaluation function to determine if the cached input matches
the input query semantically. The cached ground truth length
is then used by the scheduler. If there is a cache miss, the
scheduler still uses the predicted output length. See §3.5 for
implementation details.

3.4 GPU Frequency Scaling

µ-Serve’s GPU frequency scaler ( 4 in Fig. 4) consists of
a monitoring and a frequency scaling component. The for-
mer monitors per-model request-serving latency while the
latter determines appropriate GPU frequency scaling actions
for each GPU device. We adopt a multiplicative-increase-
additive-decrease (MIAD) algorithm [58] for GPU scaling
based on the feedback signal of the slack between the target
SLO latency and the actual latency, inspired by the AIMD al-
gorithm in congestion control. The intuition behind adopting
MIAD is that we want to be conservative when scaling down
GPU frequencies to avoid interruptions to SLO attainment
(addictive decrease) while being aggressive when scaling up
GPU frequencies to respond fast to workload spikes.

As shown in Alg. 3, the scaler starts from the default fre-
quency (usually the maximum frequency). After initializa-
tion, model latencies are sampled every 500 ms, and the fre-
quency scaling step is determined at every iteration by scan-
ning through all model partitions’ latency slack (as defined
in L10 in Alg. 3). For each model partition, any negative or
small slack leads to an up-scaling action (we set the threshold
= 0.05). Otherwise, we estimate the degradation of down-
scaling the frequency based on the linear relationship between
frequency and execution latency. A larger-than-degradation
slack results in a down-scaling action. Ultimately, after scan-
ning through all model partitions, an up-scaling action doubles
the current frequency while a down-scaling action decreases
the current frequency by ST EP.

When it needs to scale up, there is no difference across
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Algorithm 3 GPU Frequency Scaling
Require: GPU Device GD, Model Partitions MP (a map of
⟨model, partition⟩ pairs placed on GD)

1: procedure GPUFREQUENCYSCALING(GD, MP)
2: // Start from the default high frequency
3: f req = DEFAULT
4: GD.setFrequency( f req)
5: while True do
6: action = SAME ▷ one of {UP,DOWN,SAME}
7: for each p in MP do
8: target = p.getModelSLO()
9: actual = p.getModelLatency()

10: slack = (target−actual)/target
11: if slack < 0.05 then
12: action = UP ▷ requires up-scaling
13: break
14: end if
15: latency = p.getWeight() * actual
16: degradation = latency∗ST EP/ f req
17: if degradation/target < slack−0.05 then
18: action = DOWN ▷ down-scaling
19: end if
20: end for
21: if action==UP then
22: f req = min(MAX , f req∗2)
23: else if action==DOWN then
24: f req = max(MIN, f req−ST EP)
25: end if
26: GD.setFrequency( f req)
27: end while
28: end procedure

model partitions because we typically need to aggressively
scale up to mitigate SLO violations (by doubling the current
frequency). L15 in Alg. 3 refers to the difference in scal-
ing down, i.e., a partition with lower sensitivity scores has
lower weights, and thus can tolerate more down-scaling. Note
that when the current frequency reaches the maximum but
scaling-up is repeatedly called, it can be treated as a signal
to replicate the model instance (i.e., autoscaling to scale out).
Each iteration is performed every second.

3.5 Implementation
µ-Serve is implemented with 6.1K lines of code in Python
on top of an existing model-parallel inference system, Al-
paServe [22]. We extend its auto-parallelization algorithms
to get the power-aware model-parallel strategies and place-
ment plans. In µ-Serve’s scheduler, the semantic cache is
implemented with GPTCache [2]. We use the HuggingFace
embedding function, the NumpyNormEvaluation similarity
evaluation function (with a default similarity threshold of
0.8), the SQLiteCache cache manager, and the FAISS vector

Table 1: Details of the models used in experiments. The
latency is measured for a single query with a sequence length
of 512 on a single GPU. AR stands for autoregressive.

Model # of Params Size Latency AR?

ResNet-50 25M 0.2 GB 51 ms No
BERT-base 110 M 0.5 GB 123 ms No
BERT-large 340 M 1.4 GB 365 ms No
RoBERTa-base 125 M 0.5 GB 135 ms No
RoBERTa-large 355 M 1.4 GB 382 ms No
OPT-1.3b 1.3 B 5.0 GB 1243 ms Yes
OPT-2.7b 2.7 B 10.4 GB 2351 ms Yes
GPT2-large 774 M 3.3 GB 832 ms Yes
GPT2-xl 1.5 B 6.4 GB 1602 ms Yes
CodeGen-350m 350 M 1.3 GB 357 ms Yes
CodeGen-2b 2.0 B 8.0 GB 2507 ms Yes
Bloom-1b1 1.1 B 4.0 GB 523 ms Yes
Bloom-3b 3.0 B 11.0 GB 1293 ms Yes
Switch-base-16 920 M 2.4 GB 348 ms Yes
Switch-base-32 1.8 B 4.8 GB 402 ms Yes

database. To avoid starvation in scheduling, µ-Serve adopts
aging [36] to promote jobs with long waiting times. Pre-
emption could help correct previous suboptimal decisions
with a least-slack-time-first policy. However, µ-Serve does
not adopt preemption due to its added complexity in context
switch [1], memory management [20], and cache replacement
policies [47] (for key-value cache in serving LLMs).

4 Evaluation

Our experiments addressed the following research questions:
§4.2 Does µ-Serve achieve power-saving (and how much)

while preserving SLO attainment?
§4.3 How much does the proxy-model-based scheduler in

µ-Serve improve latency and throughput?
§4.4 How robust is µ-Serve’s power-aware model partitioning

and placement under model variations?

4.1 Experiment Setup
Models. Since µ-Serve is a general ML model-serving frame-
work, we consider traditional non-Transformer models, Trans-
formers, and Transformer-based generative models for evalua-
tion. For each model family, we select several most commonly
used model sizes and variants (to mimic different fine-tuned
versions) for experimentation. Table 1 provides details about
model sizes and inference latency on testbed GPUs.
Workloads. We use the Microsoft Azure function traces [55]
and production traces from a private datacenter dedicated to
ML workloads in SenseTime [17] to drive the inference work-
loads. Since the SenseTime dataset contains both ML training
and inference workloads (without distinction), we select the
traces with job completion time < 5 seconds and the number
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Figure 8: SLO preservation evaluation.

of used GPUs ≥ 1 to ignore training jobs and admin query
workloads (CPU workloads, e.g., training progress check).
For each model in Table 1, we round-robin serverless func-
tions and ML inference jobs to generate traffic. For vision
model inputs, we use the ImageNet dataset [9]. For language
model inputs, we use the LMSYS-Chat-1M dataset [56] which
contains one million real-world conversations.
Metrics. We use SLO attainment (i.e., the percentage of re-
quests served within the latency SLO) and power consumption
(in Watts) as the major evaluation metrics since the goal of
µ-Serve is to minimize power consumption while preserving
SLO performance. We adopt the definition of SLO Scales
from AlpaServe [22] which refers to different multiplies of
the SLO latency of the model request. The SLO latency of
the model request is measured as the single-request latency
with the parallelism plan generated by AlpaServe. We are
also interested in model-serving throughput and how these
measures change with varying numbers of devices, request
arrival rates, and traffic burstiness.
Testbed. We deploy µ-Serve on a cluster with 8 nodes and
16 GPUs. Each node is an IBM Cloud gx2-16x128x2v100
instance with 2 NVIDIA Tesla V100 (16GB) GPUs. Each
GPU supports a maximum Streaming Multiprocessor (SM)
frequency of 1380 MHz and a minimum of 200 MHz.

4.2 End-to-end Results
In this section, we compare µ-Serve against three baselines
(AlpaServe [22], AlpaServe-Sched, and AlpaServe-Scaling)
when serving widely used open-source large deep learning
models on publicly available workload traces (as described
in §4.1). AlpaServe is a state-of-the-art model-serving sys-
tem that generates model parallelism and placement plans

to maximize SLO attainment under varying workload condi-
tions. AlpaServe-Sched is AlpaServe with the FCFS scheduler
replaced with µ-Serve’s scheduler (§3.3) but without GPU fre-
quency scaling. AlpaServe-Scaling deploys model partitions
according to parallelism and placement plans from AlpaServe
and runs µ-Serve’s GPU frequency scaling algorithm (§3.4)
and scheduler at runtime. We are interested in the power-
saving comparison and knowing whether µ-Serve achieves
power-saving while preserving the SLO attainment.

We deploy all models (in Table 1) in the experiments. Each
model instance is driven by an independent request generator
using a randomly selected trace set as described in §4.1. The
memory consumption of all models (including activation and
runtime contexts) is 62.5 GB which can be fit onto 4 devices.
Power Saving. Fig. 7 shows the power consumption of serv-
ing all models with varying SLO scales, (combined) arrival
rates, and the number of devices. Note that when SLO at-
tainment is violated, there is no power saving (as shown in
the red-shaded area, e.g., an SLO scale of 0.8) because the
device frequency is the same for all approaches. When SLO
attainment is met, µ-Serve reduces the power consumption in
AlpaServe by 1.51–2.29× at different SLO scales. At different
arrival rates, the reductions in power consumption are 1.85–
2.61×, compared to AlpaServe. The larger the SLO scale (less
stringent SLO) and the smaller the arrival rate, the more the
power saving. We find that adding dynamic GPU frequency
scaling on top of AlpaServe has already been able to reduce
power consumption by a factor of 1.1–1.5× and 1.4–1.7× at
varying SLO scales and rates. µ-Serve further improves the
power saving by an average of 1.4× compared to AlpaServe-
Scaling. We find that the improvement does not vary with SLO
scales or arrival rates because it is the statically set model par-
tition placement strategies that cause different power savings
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from the same GPU frequency scaling approach.
In the experiments with varying numbers of devices, we

replicate each model instance (so now the total model memory
demand is up to 8 devices) and increase the number of devices
from 4 to 14. Fig. 7 (right) shows the per-device average
power consumption. When there are no idle devices (i.e., at 6
and 8 devices), the power saving from µ-Serve compared with
AlpaServe is 1.23–1.39×. When there are more idle devices,
all per-device power consumption curves start to decrease.
Since µ-Serve and AlpaServe-Scaling actively down-scale the
GPU frequency, the power saving increases to 1.75–2× and
1.44–1.64× compared to AlpaServe. AlpaServe-Sched is not
shown in Fig. 7 since we observe that it has the same power
consumption as AlpaServe. This is because only the execution
ordering of the requests is different between the two baselines
and there is no idle time. Therefore, the scheduler does not
have an effect on power saving.
Model Serving Performance. We evaluate the SLO attain-
ment to understand what the cost of µ-Serve is while achieving
power savings. We measure the 99th-percentile (p99) latency
of serving a request for each model and normalized it to the
SLO latency. When the normalized p99 latency is less than
1, it means the SLO attainment is greater than 99%. On the
other hand, the model serving system does not meet the SLO
attainment of 99%. Fig. 8 shows the normalized p99 latency
of serving all models with varying SLO scales, (combined)
arrival rates, and the number of devices.

Same as in the power-saving evaluation, the red-shaded
area indicates that the 99% SLO attainment of AlpaServe-
Sched is not met. Therefore, the three approaches AlpaServe-
Sched, AlpaServe-Scaling, and µ-Serve converge to nearly the
same p99 latency because the device frequencies are fixed at
the maximum. When there is no SLO violation in AlpaServe-
Sched, µ-Serve and AlpaServe-Scaling both meet the 99%
SLO attainment. µ-Serve has 2–9% higher p99 latency than
AlpaServe-Scaling. By replacing FCFS with µ-Serve’s sched-
uler, AlpaServe-Sched achieves 26–31% lower p99 latency. In
the experiments with varying numbers of devices (as shown
in Fig. 8 (right)), since serving all models requires at least 8
devices, there are SLO attainment violations at 4 and 6 de-
vices. At 6 devices, only AlpaServe fails to meet the SLO
attainment. At 8 devices, all approaches meet the SLO at-
tainment, and µ-Serve has 5% higher p99 latency compared
to AlpaServe-Scaling, which also holds when there are idle
devices (i.e., at 10–14 devices).

Without SLO violations, µ-Serve achieves 1.5–2.3×, 1.9–2.6×,
and 1.8–2× power saving compared to AlpaServe under vary-
ing SLO scales, request arrival rates, and number of devices.

4.3 Scheduling

In this section, we evaluate the output length predictor and
scheduler performance. Additional ablation studies on the

Table 2: Output token length predictor evaluation results.
Columns are five predictor types: ordinal classification with
MSE/L1 loss, classification, and regression with MSE/L1 loss.

Metrics
Ord. CLS

(MSE)
Ord. CLS

(L1)
CLS

REG
(MSE)

REG
(L1)

Accuracy ↑ 0.4290 0.4272 0.4599 0.4014 0.4383
F1 Score ↑ 0.3563 0.3332 0.4021 0.3318 0.3477
L1 Error ↓ 0.7587 0.7480 N/A 0.6077 0.5557

MSE ↓ 0.9859 1.0857 N/A 0.8077 0.8996

scheduler can be found in appendices A.2 and A.3.
Token Length Predictor Evaluation. We evaluate our out-
put token length predictor on the LMSYS-Chat-1M dataset.
Overall, our predictor achieves an average accuracy of 0.42
across 25 models (compared to the accuracy of 0.2 for a ran-
dom guess). As shown in Fig. 11, despite using a shared pre-
dictor, our predictor achieves rather balanced performances
across different models, with the prediction accuracy ranging
from 0.33 for llama-13b to 0.50 for wizardlm-13b. Train-
ing a customized predictor for each individual model leads to
slightly better accuracy. For instance, a customized predictor
for vicuna-13b achieves an accuracy of 0.429 (>0.42 for a
general predictor). However, training customized predictors
can incur more training and model management overhead.
Therefore, we do not proceed with customized predictors.

We also conduct ablation studies to investigate the effective-
ness of our ordinal-classification-based token length predictor.
In Table 2, we compare our predictor with multiple alterna-
tive approaches, including ordinal classification with L1 loss,
(standard) classification with cross-entropy loss and resam-
pling, and regression with MSE & L1 loss. Interestingly, we
find that higher prediction accuracy does not necessarily lead
to better scheduling performance (e.g., lower latency or higher
throughput). Instead, it matters more to the scheduler that the
predictor can rank any two inputs correctly. A predictor with
higher mean accuracy may mispredict several long outputs to
be very short, leading to HoL and much worse latency (rele-
vant to the findings in [11]). Table 2 shows that our ordinal
classifier with MSE loss fails to outperform the alternative
predictors in any metrics. However, as we will show in the
scheduler evaluation next, µ-Serve’s scheduler benefits more
from our chosen predictor despite a slightly lower accuracy
of 0.4290 (< 0.4599 compared to CLS).
Scheduler Evaluation. We evaluate the scheduling perfor-
mance regarding the job completion time (JCT) and the serv-
ing throughput to understand if prediction accuracy is suffi-
cient. Our comparison baselines include (1) first-come-first-
serve (FCFS), which is the default scheduler in state-of-the-
art model-serving frameworks such as AlpaServe [22] and
Orca [51], and (2) shortest-job-first (SJF) with oracle output
token prediction. Fig. 9 and Fig. 10 show the scheduling per-
formances with varying request arrival rates and burstiness.
We also compare with three alternative designs, i.e., SJF with
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Figure 9: Scheduler evaluation across varying request arrival rates.
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Figure 10: Scheduler evaluation across varying request burstiness.

regression predictor, binary-class predictor, and multi-class
predictor (with no semantic cache). With varying request rates,
µ-Serve reduces JCT by 41.3% compared to FCFS and in-
creases the throughput by 2.5×. In comparison, the oracle SJF
reduces the JCT by 49.8% and increases the throughput by
3.6×. Under different burstinesses, µ-Serve reduces JCT by
38.6% compared to FCFS and increases the throughput by
2.2×. In comparison, the oracle SJF reduces the JCT by 43.8%
and increases the throughput by 3.6×. With semantic cache,
µ-Serve improves JCT by 23% and increases throughput by
1.2× (i.e., the comparison with Multi-CLS).
Predictor Overhead. We evaluate the latency overhead of the
predictor for autoregressive models (as indicated in Table 1)
because the output token prediction is only on the critical
path of serving autoregressive models. The latency overhead
includes both semantic cache lookup and proxy model pre-
diction. Fig. 12 compares the predictor latency overhead and
model request execution time. Note that the Y -axis is in the
log scale. The average model execution time is 9.8 s, and the
p5th execution time is 360 ms. The average predictor latency
is 37.6 ms (0.4% of the total latency), and the maximum is
56.3 ms, which is less than the minimum model execution
time of 120 ms. Therefore, we conclude that the predictor in-
troduces negligible overhead to the end-to-end model-serving
latency of autoregressive models, which supports the design
and benefits of using a lightweight proxy model in µ-Serve.

Better prediction accuracy does not necessarily translate to
better scheduling performance. With negligible overhead, µ-
Serve reduces the average JCT by up to 41.3% and increases
the throughput by up to 2.5× at varying workloads.

4.4 Model Partitioning and Placement

In this section, we aim to understand the power-saving oppor-
tunity concerning the percentage of insensitive operators in a
model, output non-determinism, and workload variation.
Power Saving Opportunity vs. Insensitivity Ratio. Power
saving stems from the key insight that operators have diverse
sensitivity to GPU frequency scaling, and thus, insensitive
operators are leveraged to down-scale GPU frequency while
preserving the SLO attainment. We define insensitive op-
erators to be those model operators with sensitivity scores
less than 1. Fig. 14 (a) illustrates how power-saving oppor-
tunities vary with the percentage of insensitive operators in
different open-source models (up to 60%). Compared with
AlpaServe-Scaling, the power reduction increases by 2.2×
when the percentage increases from 10% to 60%.
Robustness to Model Execution Non-determinism. Fig. 14
(b) shows the relationship between power saving and the
model output length. We find that as the average model output
length increases (i.e., more iterations per model request), the
power reduction of µ-Serve compared to AlpaServe decreases
from 59% to 10% because of more intensive model executions
(and thus fewer power-saving opportunities).
Robustness to Workload Variations. As shown in §4.2,
µ-Serve achieves power saving while preserving SLO at-
tainment by dynamic GPU frequency scaling. In reaction to
workload variations, Fig. 13 illustrates the scaling actions of
the MIAD algorithm in µ-Serve with the changes in request
arrival rates. µ-Serve adopts an aggressive (multiplicative)
frequency increase policy and conservatively decreases the
frequency at each step (e.g., during the time 10–20 seconds).
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Figure 11: Predictor accuracy.
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Figure 14: Robustness analysis.

Note that if the frequency stays at the maximum frequency but
there are continuous SLO attainment violations, a scale-out
signal can be sent to the model autoscaler (which µ-Serve
does not implement), left to the discussion in §6.

Power saving varies with insensitivity ratio and model output
intensities. Power-aware partitioning/placement in µ-Serve
gives us maximized saving opportunities that only pay off
when the frequency-scaler dynamically down-scales device
frequencies within the SLO attainment requirement.

5 Related Work

General Model-Serving Systems. The emergence of ML
applications motivates the prevalence of ML model-serving
systems that provide services such as scheduling, place-
ment, batching, and autoscaling. Clipper [8], TensorFlow-
Serving [26], MArk [52], InferLine [7], Shepherd [53], and
Clockwork [14] are some earlier general ML model serving
systems for serving models like ResNet that are relatively
small. They support latency-aware provision to maximize the
overall goodput. More recently, AlpaServe [22] utilizes model
parallelism for statistical multiplexing. INFaaS [35] and Cock-
tail [15] propose a model-less serving framework to automate

the model selection and autoscaling to meet SLOs. However,
these general systems are not power-aware and fail to con-
sider the autoregressive property of LLMs. Instead, dynamic
batching and autoscaling are complementary to µ-Serve.

LLM Inference Optimization. Recently, several model-
serving systems [20, 47, 51] have been proposed to opti-
mize LLMs. Orca [51] considers the autoregressive token
generation pattern of LLMs and introduces iteration-level
scheduling. However, it uses a first-come-first-serve (FCFS)
scheduling policy that suffers from head-of-line blocking
which we address in this paper. FastServe [47] proposes
preemptive scheduling with a Multi-Level Feedback Queue.
However, it introduces extra memory overhead to maintain
intermediate states for unfinished jobs. vLLM [20] is a high-
throughput LLM serving engine based on PagedAttention
for token storage that achieves near-zero waste in KV cache
memory. vLLM also adopts an FCFS scheduling policy for
all requests. TurboTransformers [12] proposes a memory al-
location algorithm to balance the memory footprint and (de-
)allocation efficiency and a batching scheduler using dynamic
programming to achieve optimal throughput. µ-Serve can
benefit from the memory management optimization of these
systems and improve the power efficiency of serving LLMs.

Operator Placement Optimization. AlpaServe [22] parti-
tions collections of models using inter- and intra-operator
parallelism and generates operator placement strategies to
reduce serving latency in the presence of bursty workloads.
µ-Serve relies on AlpaServe to generate feasible operator
parallelism partitioning plans. Another line of work is GPU-
centric offloading which utilizes CPU memory or disk to
store portions of the model parameters. For instance, Power-
Infer [39] loads frequently-activated neurons onto the GPU
for fast access while offloading infrequently-activated neu-
rons to the CPU, thus significantly reducing GPU memory
demands and CPU-GPU data transfers. FlexGen [37] pro-
poses a novel scheduling approach to prioritize throughput
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over latency, processing batches sequentially for each layer.
DejaVu [23] accelerates LLM inference by using activation
sparsity to selectively process only those neurons that are
predicted to be activated. These systems are orthogonal to
µ-Serve as their objective is to reduce GPU memory demand
with offloading while µ-Serve aims to improve the power
efficiency of model serving.
Speculative LLM Inference. Speculative decoding or look-
ahead decoding accelerates LLM token generation with
smaller approximation models [21, 25], multiple decoding
heads [4], or n-gram generation [13]. We do not consider
speculative LLM inference because of its extra computational
overhead of token generation and verification.

6 Discussion and Future Challenges

Batching and Autoscaling. Request batching and autoscaling
(adding/removing model instances) are two essential orches-
tration tasks. Adaptive batching [8,52] has been used to maxi-
mize throughput while meeting latency objectives [8]. Model
replica autoscaling is another widely used model-serving
technique [8, 15, 35, 52] to adapt to workload spikes. SLO-
oriented cloud workload autoscaling and frequency scaling
techniques [31, 33, 34, 43] can also potentially benefit model
serving. These techniques are complementary to µ-Serve. We
present how µ-Serve scheduler works with various batching
techniques in [32], and we leave it to future work on integrat-
ing µ-Serve with dynamic model replication.
Heterogeneous Accelerators. In µ-Serve’s system model, we
consider only a homogeneous GPU cluster. However, GPU
devices in a cluster can be heterogeneous in terms of hard-
ware (e.g., A100, V100, and T4), resource configurations (e.g.,
memory size), frequency range, and power features [19,38,44].
Device heterogeneity raises challenges in both model provi-
sioning (e.g., which type of device to assign to a specific
model partition) and dynamic frequency scaling (the power
saving, idle power, and power efficiency differ across different
types of devices). We leave the study of such complicated
optimization space to future work.
Other Power Management Features. In µ-Serve’s GPU man-
agement model, we consider only SM frequency scaling be-
cause of fast actuation and fine-grained increments. Instead,
there are other power management features on more advanced
GPUs such as power capping, various GPU operation modes,
memory frequency scaling, and MIG sharing [27]. It is worth-
while to study the interplay between these power features and
explore co-optimization policies for power saving.
Scalability. Fig. 7 shows that µ-Serve consistently facilitates
per-device power savings as the cluster undergoes scaling
out at no idle devices. Based on these results, we assert that
similar power-saving opportunities are likely to be present in
cloud-scale deployment while ensuring SLO attainment.

7 Conclusion

We have presented µ-Serve, a system for serving multiple
large deep learning models that maximizes power saving
while preserving request-serving SLO attainment. The key
innovation of µ-Serve lies in the fine-grained modeling of
operator sensitivity and power-aware model provisioning that
creates power-saving opportunities. Such opportunities can
be exploited by dynamic GPU frequency scaling online to
achieve power reduction without SLO violations at varying
conditions. We quantify and discuss when and to what extent
such saving opportunities exist through extensive evaluations.
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Figure 15: Output token length predictor evaluation results for each individual model.
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A Appendix

A.1 Artifact
An open-source implementation of µ-Serve and results
are available at: https://gitlab.engr.illinois.edu/
DEPEND/power-aware-model-serving.

A.2 Ablation Study on Proxy Models in the
Output Length Predictor

Model-Specific Results. In Fig. 15, we plot the detailed eval-
uation results of our output token length predictor on each
individual model from the LMSYS-Chat-1M dataset. We
consider standard evaluation metrics including accuracy, pre-
cision, recall, and F1 score. Our predictor achieves rather
balanced performances across different models, with the pre-
diction accuracy ranging from 0.33 for llama-13b to 0.50
for wizardlm-13b.
Evaluation Results for Smaller Predictor Models. In the
main text of the paper, we primarily build our predictor on top
of the “BERT-Base” model [41] with 12 Transformer layers
and 768 hidden dimensions. In this appendix, we consider a
smaller predictor based on the “BERT-Tiny” model with 2
layers and 128 dimensions. Table 3 summarizes the evalua-
tion results of multiple predictors built upon BERT-Tiny using
different training schemes, including ordinal classification,

standard classification, and regression. Compared with the
BERT-Base results in Table 2, we can see that the smaller
BERT-Tiny model has lower prediction performance in almost
every metric that we consider. In fact, the BERT-Tiny-based
regressors (trained using MSE or L1 loss) seem to signifi-
cantly underfit the training data and do not perform much
better than random guesses. This is expected because the
smaller BERT-Tiny architecture is less expressive and can
hardly capture the subtle features from the input queries in
natural languages.

Table 3: BERT-tiny-based output token length predictor eval-
uation results.

Metrics
Ord. CLS

(MSE)
Ord. CLS

(L1)
CLS

REG
(MSE)

REG
(L1)

Accuracy ↑ 0.3947 0.4097 0.4193 0.2425 0.2425
F1 Score ↑ 0.3121 0.3193 0.3687 0.0781 0.0781
L1 Error ↓ 0.7752 0.7558 N/A 0.9528 0.9530

MSE ↓ 0.9656 1.0398 N/A 1.8639 1.8643

Scheduling Performance Comparison In terms of the pre-
diction latency overhead, the average, p99.9, and maximum
inference latencies of the predictor built on top of BERT-Tiny
are 1.8 ms, 3.7 ms, and 10.2 ms, respectively, less than that
of the predictor built with BERT-Base. We then use predic-
tors based on BERT-Base and BERT-Tiny proxy models in
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Figure 17: Power saving evaluation (without µ-Serve scheduler).
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Figure 18: SLO preservation evaluation (without µ-Serve scheduler).

the µ-Serve scheduler and compare the scheduling perfor-
mance regarding the job completion time (JCT) and through-
put. Fig. 16 shows the comparison of the two proxy models
when we use different training schemes: multi-class classifica-
tion, ordinal classification with L1 loss and MSE, and regres-
sion with L1 loss and MSE. The scheduler with BERT-Base
as the proxy model achieves 1–3.6% less JCT and 4.7–8.5%
higher throughput. As expected, the smaller model incurs
even less latency overhead but suffers worse prediction accu-
racy and scheduling performance in return. Therefore, we use
BERT-Base as the proxy model in µ-Serve’s scheduler.

A.3 Ablation Study on µ-Serve Scheduler

In this section, we conduct experiments to understand the role
of the speculative shortest-job-first (SJF) scheduler (§3.3) in
power saving. The results in §4.3 show an improvement of
38.6–41.3% in JCT and 2.2–2.5× in throughput. Using the
same setup as in §4.2, we compare three methods: AlpaServe,
AlpaServe-Scale (No Sched), and µ-Serve (No Sched). All
three methods are implemented without µ-Serve scheduler,
i.e., they are based on the default FCFS scheduler in Al-
paServe. Fig. 17 and Fig. 18 show the comparison of power
saving and SLO attainment of the three methods.

In terms of SLO attainment, without µ-Serve scheduler,
there are more situations that the p99 latency is above the
SLO latency as suggested by the wider red-shaded area com-
pared to Fig. 8 (indicating worse SLO attainment). When
there is an SLO attainment violation, online GPU device fre-
quency scaling does not actuate any down-scaling. Even with-
out SLO attainment violation, AlpaServe has a worse SLO
attainment compared with AlpaServe-Sched (up to 31% lower

p99 latency as shown in Fig. 8). Therefore, the power-saving
opportunities are reduced.

Fig. 17 shows the power consumption when running the
three approaches. At SLO attainment violations (i.e., in the
red-shaded area), there is no power saving. When there are
no SLO attainment violations, the power saving achieved by
µ-Serve (No Sched) compared to AlpaServe is up to 1.8×,
1.92×, and 1.49× at varying SLO scales, rates, and numbers
of devices (less than the improvement of 2.3×, 2.61×, and 2×
when µ-Serve runs on its scheduler as shown in Fig. 7). This
21–27% reduction in power saving attributed to the missing
of µ-Serve’s scheduler justifies the role of the scheduler in
µ-Serve empirically. AlpaServe-Scaling (No Sched) has up to
1.42×, 1.42×, and 1.28× power saving compared to AlpaServe
at varying SLO scales, rates, and numbers of devices, respec-
tively. Compared to the improvement of AlpaServe-Scaling
on top of AlpaServe (as shown in Fig. 7), AlpaServe-Scaling
(No Sched) also has less improvement (e.g., 1.42× < 1.7×
improvement at varying rates).

Without the speculative SJF scheduler in µ-Serve, the power
saving from µ-Serve and AlpaServe-Scaling becomes 21–27%
less. The main reason is that replacing µ-Serve’s scheduler
with FCFS leads to worse SLO attainment and more SLO vi-
olations, and consequently less GPU frequency down-scaling
(i.e., power saving) opportunities.

Potential Uses of µ-Serve Scheduler for Other Tasks. In
this paper, we study the benefit of µ-Serve’s scheduler in
model-serving latency and throughput, and consequently the
SLO attainment. Because of higher SLO attainment, there is
more headroom for dynamically down-scaling GPU device

92    2024 USENIX Annual Technical Conference USENIX Association



frequencies to save power without introducing SLO attain-
ment violations. However, we anticipate that there can be
more potential use cases and extensions of µ-Serve’s proxy-
model-based scheduler.
• Optimization in model-serving latency or throughput. A

proxy-model-based model output length predictor can be
used with existing model-serving systems (e.g., Clipper [8],
TensorFlow-Serving [26], MArk [52], InferLine [7], Shep-
herd [53], and Clockwork [14]) to maximize the systems
throughput/goodput or to support better latency-aware pro-
vision by avoiding head-of-line blocking and optimizing
the waiting time of queued requests.

• Optimized batching and GPU utilization. Output token
length prediction can be used to batch requests with sim-
ilar execution lengths together to improve GPU utiliza-
tion and prevent shorter requests from waiting for longer
ones [51]. We present how µ-Serve scheduler works with
various batching techniques in [32].

• Optimization in load balancing. Requests with longer pre-
dicted output lengths could be routed to more powerful or
dedicated servers or clusters, while shorter requests can be
handled by less resource-intensive instances.

• Optimization in model-serving memory and key-value cache
management. The memory management system needs to
accommodate a wide range of output lengths [20]. In addi-
tion, as the output length of a request grows at decoding, the
memory required for its key-value cache also expands and
may exhaust available memory for incoming requests or
ongoing generation for existing requests. µ-Serve’s predic-
tion can potentially help make scheduling decisions, such
as deleting or swapping out the key-value cache of some
requests from GPU memory.
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