
This paper is included in the Proceedings of the 
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the 
2024 USENIX Annual Technical Conference 

is sponsored by

ScalaCache: Scalable User-Space Page Cache 
Management with Software-Hardware 

Coordination
Li Peng and Yuda An, Peking University; You Zhou, Huazhong University of Science 

and Technology; Chenxi Wang, University of Chinese Academy of Sciences;  
Qiao Li, Xiamen University; Chuanning Cheng, Huawei;  

Jie Zhang, Peking University and Zhongguancun Laboratory
https://www.usenix.org/conference/atc24/presentation/peng



ScalaCache: Scalable User-Space Page Cache Management with
Software-Hardware Coordination

Li Peng1, Yuda An1, You Zhou3, Chenxi Wang4, Qiao Li5, Chuanning Cheng6, Jie Zhang1,2

National Key Laboratory for Multimedia Information Processing,
School of Computer Science, Peking University1

Zhongguancun Laboratory, Beijing, China2, Huazhong University of Science and Technology3

University of Chinese Academy of Sciences4

Xiamen University5, Huawei6

https://www.chaselab.wiki

Abstract
Due to the host-centric design principle, the existing page
cache management suffers from CPU consumption, commu-
nication costs, and garbage collection (GC) interference. To
address these challenges, we propose ScalaCache, a scalable
user-space page cache with software-hardware coordination.
Specifically, to reduce the host CPU overhead, we offload the
cache management into computational storage drives (CSDs)
and further merge the indirection layers in both the cache
and flash firmware, which facilitates lightweight cache man-
agement. To further boost scalability, we build a lockless
resource management framework that allows multiple CSD
internal cores to manage the cache space concurrently. Scala-
Cache also aggregates the computing power of multiple CSDs
to deliver scalable I/O performance. Moreover, ScalaCache
reduces communication costs by trimming the I/O control
path while mitigating GC interference via a GC-aware re-
placement policy, thereby enhancing its efficiency and perfor-
mance stability. Our evaluation results reveal that ScalaCache
exhibits 5.12× and 1.70× bandwidth improvements, respec-
tively, compared to kernel page cache and the state-of-the-art
user-space one. ScalaCache is open source and available at
https://github.com/ChaseLab-PKU/ScalaCache.

1 Introduction

The storage software stack, primarily consisting of a page
cache management module (called page cache manager)
[43, 54, 73] and an I/O engine [22, 42, 88], has been widely
adopted in diverse computing domains such as databases,
cloud computing, and high-performance computing [8,30,83],
as it narrows down the performance gap between processors
and storage devices. The page cache manager shortens the I/O
latency by buffering hot data with the high temporal locality
in main memory [40,61], while the I/O engine employs a rich
queue mechanism to concurrently access data residing in the
underlying storage media [3, 9].

Storage media (e.g., NAND flash) have undergone signifi-
cant technology shifts. For example, the emerging flash-based

Application
User space

Kernel space
Page cache manager

User space

Kernel I/O engine

NVMe SSD

Application

NVMe SSD

User space
Application

SPDK I/O engine

ScalaCache

GC I/O processN
V

M
e 

C
SD

(a) Kernel storage stack. (b) TriCache. (c) Our solution.

Slow

Slow

Slow

Fast

FastPage cache manager

Slow

Fast
SPDK I/O engine

SlowISR

Global lock

Ctx. switch
Msg passing

Req fragmnt. FTL
Cache mgr.CSD

FW

Figure 1: Comparison of representative storage stacks.

solid state drives (SSDs) have surpassed 14 GB/s I/O band-
width [2, 17, 52], whereas the kernel storage software stack
(cf. Figure 1a), unfortunately, fails to follow up on the perfor-
mance boost. Specifically, its page cache manager, residing in
the kernel space, necessitates user-kernel context switches and
global locking, which slows down the I/O services [30, 100].
On the other hand, the kernel I/O engine employs an intri-
cate interrupt service routine (ISR) to handle massive I/O
responses, which further prolongs the I/O latency [71, 84].

To address the aforementioned limitations, recent works
have explored moving the storage stack into user space
[22, 99]. In particular, the SPDK I/O engine [88] integrates a
polling-based NVMe driver into user space and further em-
ploys asynchronous concurrency and lock-free technologies
to eliminate the kernel I/O engine overheads. Building atop
SPDK, TriCache [15] customizes a lock-free page cache man-
ager in the user space (cf. Figure 1b), where multiple cache
manager threads are used for cache management, improving
I/O performance by 3.84× over the kernel page cache.

However, these page cache managers exclusively reside on
the host, overlooking storage taxes levied by the host-centric
page cache manager design. Specifically, this unilateral de-
sign imposes three sources of taxes. (1) CPU tax: These page
cache managers heavily tax the host CPU resources, depriving
applications of precious computing resources [35, 79]. For
example, TriCache dedicates multiple host CPU threads per
SSD to undertake index operations and cache replacement,
reflecting its heavyweight. The accumulated CPU consump-
tion is exacerbated as the number of SSDs scales up, high-

USENIX Association 2024 USENIX Annual Technical Conference    1185

https://github.com/ChaseLab-PKU/ScalaCache


lighting the poor scalability. (2) Communication tax: The
host-centric page cache managers necessitate an I/O engine
to communicate with SSDs. Unfortunately, the costly ISR,
context switching, and global locking in the kernel I/O en-
gine impede this communication. While TriCache adopts the
lightweight SPDK I/O engine, it allocates cache manager
threads to communicate with both applications and SSDs.
This tripartite structure [32] prolongs the I/O path compared
to the traditional producer-consumer model [11], exhibiting
poor efficiency. In other words, cache manager threads sit
on the critical I/O path. Moreover, to harness their paral-
lelism, I/O requests are split and distributed among them (i.e.,
fragmentation), worsening the manager-SSD communication
issue. Our experiment shows that the queuing latency due
to communication accounts for 77.74% of the total I/O la-
tency. (3) Interference tax: Multiple software layers of the
storage stack (e.g., I/O engine) sit between the host-centric
page cache manager and SSDs, hindering the cache manager
from detecting SSD internal activities such as GC. Such soft-
ware isolation leads to interference between GC and regular
I/O requests, compromising performance stability.

To address the aforementioned challenges, our key insight
is that the host memory buffer (HMB) feature in NVMe [3,24]
and the computational storage drives (CSDs) with ample re-
sources [28,87] present a promising opportunity to offload the
page cache manager, which can overcome these taxes. The
HMB feature allows SSDs to directly manage cached data
in main memory while also ensuring rapid data accessibility
for applications. The task offloading scheme eliminates re-
dundant functionalities between cache management and CSD
firmware (e.g., index operations), making the cache manager
lightweight enough to fit into CSDs. Consequently, the taxed
host CPUs are freed up for applications’ use. This in-storage
processing solution can also enhance scalability without host
CPU reliance while slashing communication and interference
taxes via coordinating cache management and CSD internals.

Thus, we propose ScalaCache, a user-space page cache
manager with software-hardware coordination (cf. Figure
1c). Specifically, towards successful offloading to reduce the
CPU tax, ScalaCache tightly integrates a lightweight cache
manager into the CSD firmware, which consolidates their in-
direction layers (i.e., cache indexing and SSD FTL [37, 89])
to simplify the redundant address translations. To further en-
hance scalability, ScalaCache builds a lockless resource man-
agement framework in CSDs, allowing multiple embedded
cores to manage the cache concurrently. It further aggregates
the computing power of multiple CSDs to deliver scalable
I/O performance without relying on the host CPU. To miti-
gate the communication tax, it allows applications to directly
access the cache manager and CSDs by integrating the cache
manager into CSDs, thereby removing the manager-SSD com-
munication inherent to the tripartite structure. Additionally,
cache replacement, which fetches or evicts non-contiguous
pages, compounds manager-SSD communication due to the

NVMe command requirement for contiguous addresses. To
alleviate this, ScalaCache bundles multiple pages into a sin-
gle NVMe command, which causes only one communication.
For the interference tax, the cache interface (i.e., pin inter-
face [63]) situates page writebacks on the critical I/O path,
where GC unintentionally stalls these writebacks. ScalaCache
mitigates this by introducing a GC-aware replacement policy,
which preferentially reclaims clean pages to prevent GC from
delaying writebacks. Our evaluation results reveal that Scala-
Cache improves bandwidth by 5.12× and 1.70× compared
to the kernel page cache and TriCache, respectively.

The main contributions can be summarized as follows:
• User-space cache with software-hardware coordination:
ScalaCache reaps the benefits of both user-space design and
software-hardware coordination. Specifically, our design in-
corporates the user-space SPDK I/O engine and follows its
design principles like lockless, resulting in a 78.13% latency
reduction. Coordination further slashes communication and
interference taxes. The offloading scheme trims the I/O path
by allowing applications to access CSDs directly and allevi-
ates communication burdens by enhancing NVMe commands
with cache activity awareness, which packs multiple I/O re-
quests into one command for batch processing. Moreover, by
exposing GC state to the page cache manager, we customize
a GC-aware replacement policy to mitigate GC disruption.
• Customizing lightweight cache management in CSDs: We
propose FusionFTL to address challenges of delegating cache
management to CSDs, which struggle with management bur-
dens. FusionFTL is a lightweight index structure that com-
bines the cache index and the FTL mapping table, facilitating
efficient address translation. We further incorporate cache
operations (i.e., fetches and evictions) into I/O processing,
allowing the CSD to handle multiple cache operations simul-
taneously in a single I/O request, eliminating the traditional
need for two separate I/O requests. These lightweight designs
enable successful cache offloading, which in turn reduces host
CPU usage by 77.75%.
• Enabling concurrent I/O processing for CSDs: Accessing
critical resources (e.g., cache space) by multiple CSD cores
may pose a potential lock penalty. To address this issue, we
build a lockless resource allocation framework within CSDs.
Specifically, we assign various resources of CSDs to each
core based on demand. As these resources are private to each
core, cores can access them concurrently, which enhances
scalability. To further extend scalability across multiple SSDs,
we build a parallel processing model that organizes CSDs into
a CSD array, which aggregates all their computing power.

2 Background

2.1 SSD Architecture
Figure 2 depicts a typical SSD architecture, which encom-
passes a storage backend and a computation frontend [16,97].

1186    2024 USENIX Annual Technical Conference USENIX Association



Channel 0

PC
Ie

H
o

st
 In

te
rf

ac
e 

C
tr

l.

Fl
as

h
 P

H
YARM

core

DRAM
LPN

PPN

Computation frontend Storage backend

Die 0

...

Request
process

GC

...

Interconnect

ARM
core

...

WL

 DDR
ctrl.

Plane 0

Die 0 Die M

Die M

Page 0
Block 0

...

...

...

Plane 1

Channel N

Figure 2: SSD internal architecture.

Storage backend. The storage backend primarily contains
multiple flash dies, which are organized as 4∼16 flash chan-
nels [49]. Each flash die consists of 2∼4 planes. A flash plane
comprises hundreds to thousands of blocks, each contain-
ing hundreds of pages. This organization capitalizes on the
parallelism of flash, thereby delivering superb I/O through-
put [95]. The flash intrinsic necessitates flash block erasure
before data can be overwritten [86]. To address this, the SSD
constructs an indirection layer called the flash translation layer
(FTL) [65,81], which maintains a mapping table to record the
mapping between the host logical address (i.e., LPN) and flash
physical address (i.e., PPN). For overwrites, SSD allocates
new PPNs from pre-erased blocks, updates the mapping table,
and then invalidates the stale flash pages. When overwrites
exhaust free blocks, garbage collection (GC) is triggered to re-
claim used blocks [86], which entails selecting victim blocks
based on the wear-leveling (WL) strategy, migrating all valid
pages to free blocks, and then erasing the victim blocks. Note
that GC invokes extensive flash reads and writes, which sig-
nificantly delay incoming I/O requests [64, 82, 96].
Computation frontend. The computation frontend consists
of a host interface controller, an embedded DRAM, and mul-
tiple ARM cores. Specifically, DRAM serves to store the
FTL mapping table, while the ARM cores offer the necessary
computing power to execute the aforementioned mechanisms
(e.g., FTL, GC, and WL). These cores handle I/O requests
from the host interface controller, forward them to the stor-
age backend through the flash physical layer (PHY) [69], and
subsequently respond to the host. In addition, the host inter-
face controller connects to the host via a high-performance
communication protocol (e.g., NVMe [3]), which enhances
I/O parallelism through a rich queue mechanism. The latest
version of NVMe protocol also releases several features to
enhance storage functionality. A notable one is the host mem-
ory buffer (HMB) [3, 24], which allocates a portion of host
memory to the SSD to buffer data. This feature is beneficial
for consumer-grade and cost-efficient enterprise SSDs, as it
enables these products to buffer internal metadata (e.g., FTL
mapping table) on the host, thereby reducing the heavy capac-
ity demand on the SSD internal DRAM [25, 65]. To manage
the buffered metadata, the SSD interacts with the HMB re-
gion via extra DMA, which incurs a minor latency (typically
a few microseconds) [24]. Moreover, to ensure the integrity
of the metadata, SSDs employ vendor-specific fault-tolerance

Request NVMe cmd

Request Request
queue

NVMe SSDs

Page cache

Interrupt

NVMe queue

Kernel Space

User Space
Client

thread 0
Client

thread N...

NVMe driver

Block-mq layer

(a) Kernel storage software stack.

Message
passing

Lo
ck

 F
re

e

User Space

...

Cache Cache 

Private
cache

Private
cache

...

Request NVMe cmd

NVMe queue

SPDK NVMe driver

NVMe SSDs

Polling

Page cache
mgr. thread 0

Page cache
mgr. thread M

Client
thread 0

Client
thread N

(b) User-space storage software stack.

Figure 3: Typical kernel and user-space software stacks.

mechanisms. Note that the default HMB feature limits the
maximum memory allocation to 128 MB [42], which con-
strains further advancements.
In-storage processing (ISP). In-storage processing [28], as
a new computing paradigm that offloads data-intensive tasks
directly to the underlying SSDs, diminishes the inefficien-
cies imposed by data movements and eases the computational
burden on the host. Computational storage drives (CSDs), a
typical ISP implementation, integrate multiple powerful ARM
cores and augment DRAM capacity [6,26,50,74–76,92]. For
example, a recent high-performance SSD controller boasts in
excess of 10 ARM cores and 8 GB memory [6, 50]. These
substantial computing and memory resource enhancements
empower CSDs to efficiently process the offloaded tasks while
simultaneously serving numerous I/O requests. Many prior
works [12, 39, 60] have explored the feasibility of ISP to ac-
celerate complicated applications, including large-scale graph
processing and recommendation inference [51, 80]. More-
over, several studies [21, 62] propose to offload intricate file
systems for direct access. Nevertheless, research endeavors
focusing on the storage tax associated with the page cache
manager remain in their infancy [96].

2.2 Kernel Storage Software Stack
The kernel storage software stack (cf. Figure 3a) includes the
I/O engine [42] and page cache management module [43].
Kernel I/O engine. The kernel I/O engine encompasses a
multi-queue block layer (blk-mq) and an NVMe driver. The
block layer buffers I/O requests from the page cache man-
agement module in the request queues, where they undergo
scheduling to optimize performance before being passed to
the NVMe driver. The driver places these requests into the
NVMe queues and informs the underlying SSD of their arrival.
Upon request completion, the SSD sends a message signaled
interrupt (MSI) to the host, which triggers the interrupt ser-
vice routine (ISR) [10, 78] to finish the post-processing of
the requests. Note that context switching and ISR within the

USENIX Association 2024 USENIX Annual Technical Conference    1187



2 4 6 8 10 12

5

10

15

20

25

B
a
n
d
w

id
th

 (
G

B
/s

)

#Cores

(a) Performance of various cores.

1 2 3 4 5 6 7 8

25

50

75

100

125

#SSDs

(b) Performance of various SSDs.

 TriCache  TriCache Ideal  Kernel  Kernel Ideal

Figure 4: Performance analysis.

interrupt processing lead to increased I/O latency [84].
Kernel page cache management module. This kernel mod-
ule, a typical host-centric cache management design, accom-
modates hot data at page granularity (i.e., 4 KB) to facilitate
fast data retrieval when requested. For simplicity, we use the
terms “page cache manager” and “page cache management
module” interchangeably. To enable a rapid lookup of the
buffered page location, the page cache manager employs a
radix tree index [7] to map the LPNs to their memory ad-
dresses (i.e., page frame address). Upon successful lookup of
the page frame address from the index structure (i.e., a cache
hit), it reads or overwrites the buffered data based on the I/O
request [94]. Otherwise, a cache miss triggers the kernel I/O
engine to fetch missing pages from the SSDs. When cached
pages occupy excessive memory, the page cache manager
frees up memory by evicting cold pages back to the SSD.
Note that the global lock mechanism in this module, which
serializes cache access and management in a multi-threaded
scenario, can severely hinder performance, especially when
employing high-performance SSDs [58, 61]. In addition, the
sole software design on the host side fails to detect the GC
activity in the underlying SSD, leading to blocked page evic-
tion [96].

2.3 User-space Storage Software Stack

To address the kernel space design issues, prior works [15,22,
88, 99] explore the user-space storage stack (cf. Figure 3b).
SPDK I/O engine. SPDK [88] is a high-performance user-
space I/O engine customized for NVMe SSDs that encapsu-
lates several strategies to enhance performance. Specifically,
it integrates the NVMe driver into the user space. This key
shift allows applications to directly access the SSDs without
kernel involvement, effectively obviating the context switch-
ing overhead. It also embraces a polling-based model for I/O
completion, ensuring prompt processing of I/O responses to
minimize I/O latency [71,84]. In addition, it adopts a lock-free
design principle throughout the entire I/O engine, which sig-
nificantly improves the parallelism of I/O processing [66,100].
Lastly, SPDK incorporates techniques like asynchronous con-
currency to further enhance performance.
TriCache. The prior work TriCache [15] proposes a user-
space page cache manager built on top of SPDK. To be spe-
cific, TriCache inherits the host-centric page cache manager

K
e
rn

e
l

T
ri
C

a
ch

e

0 10 20 30 40 50 60 70 80 90
Accumulated CPU time breakdown (s)

 I/O Engine  Lock  Cache                                                             

 Msg Pass  Msg Poll

Mgr. Client

(a) CPU time breakdown.

K
e
rn

e
l

T
ri
C

a
ch

e

0 200 400 600 800 1000
Latency breakdown (us)

 Client-Manager Queuing  Other

 Manager-SSD Queuing

(b) I/O latency breakdown.

K TC
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 Other  Cache

N
o
rm

. 
c
o
m

p
u
ti
n
g
 c

a
p
a
b
ili

ty 23.31 1.63

(c) Required computing 

             capability.

CSD computing
capability

Figure 5: Breakdowns and required computing capability.

design, which utilizes multiple CPU threads, referred to as
page cache manager threads, to conduct cache management.
Each page cache manager thread manages an exclusive por-
tion of the logical address space, which is partitioned based on
a page-grained hash algorithm. Based on its logical address,
an I/O request from an application thread (i.e., client thread)
is split and distributed to different page cache manager threads
to harness thread-level parallelism via message passing. The
page cache manager thread serves these requests from the in-
ternal index if the requested pages are buffered. Otherwise, the
page cache manager thread retrieves these missing pages from
the SSD via SPDK. This tripartite structure extends the I/O
control path as client threads interact with SSDs through page
cache manager threads first. Additionally, the page-grained
address space partition leads the page cache manager thread to
fetch pages with non-contiguous addresses, preventing SPDK
from merging small I/O requests into large ones (i.e., request
fragmentation), thereby increasing the manager-SSD commu-
nication overhead. This communication overhead also extends
to page evictions. To accelerate lookups, TriCache adds a pri-
vate cache index within each client thread to buffer page frame
addresses, avoiding additional client-manager communication
unless a private cache miss occurs.

3 Motivation and Challenges

3.1 Preliminary Study

We examine a macro-benchmark (i.e., mds [53]) to analyze
the aforementioned storage software stack designs: the kernel
storage software stack (Kernel) and TriCache (TriCache).
Please refer to Section 6 for the detailed experiment setup.
We evaluate their throughput by varying the number of CPU
cores and SSDs. For TriCache, we dedicate two CPU cores
as page cache manager threads for each SSD. Both Kernel
and TriCache are compared with their ideal cases (Kernel
Ideal and TriCache Ideal) that are mathematically esti-
mated by scaling the bandwidth of Kernel and TriCache
perfectly linearly with the number of cores or SSDs.
Analysis of kernel software stack. As depicted in Figure
4a, Kernel degrades performance by 36.76% compared to
Kernel Ideal when using 12 cores. It also fails to achieve
scalability on multiple SSDs, as evidenced by a 52.54% per-
formance gap when utilizing 8 SSDs (cf. Figure 4b). To figure

1188    2024 USENIX Annual Technical Conference USENIX Association



out the reason behind the performance gap, we analyze the
accumulated CPU time when using 8 cores and one SSD (cf.
Figure 5a), decomposing it into the time spent in the kernel
I/O engine (I/O Engine), lock contention (Lock), and the
kernel page cache manager (Cache). The analysis reveals that
I/O Engine and Lock consume 21.45% and 18.98% of the
total CPU time, respectively, indicating that they limit per-
formance. The latency breakdown (cf. Figure 5b) shows that
I/O Engine and Cache account for 25.22% and 74.07% of
the total I/O latency, respectively, which also indicates their
inefficiency.
Analysis of TriCache. While TriCache exhibits 89.13%
higher throughput than Kernel through the lockless design
and the user-space implementation, its performance cannot
scale as the number of cores increases (cf. Figure 4a). In
particular, when using 12 cores, TriCache degrades the per-
formance by 32.33% compared with TriCache Ideal. To
figure out the root cause of the tremendous performance gap,
we analyze the breakdown of the accumulated CPU time and
I/O latency, respectively, when testing with 8 client threads.

As shown in Figure 5a, we categorize the CPU time of page
cache manager threads into the SPDK (I/O Engine), cache
management (Cache), and message passing (Msg Pass),
while dividing the CPU time of the client threads into client
private cache (Cache), message passing (Msg Pass), and
polling the message queues (Msg Poll). The breakdown re-
veals that Msg Pass accounts for a considerable 10.08% of
the manager’s CPU time due to receiving extensive client
requests. To handle these requests, the manager threads con-
sume 30.5% CPU time for cache management. Moreover, the
request fragmentation (cf. Section 2.3) forces the page cache
manager threads to issue 6.72× more NVMe commands than
the number of I/O requests in the workload. The increased
NVMe commands further amplify the CPU overhead of I/O
Engine (cf. Section 6.3). These communication costs de-
crease the page cache manager’s processing capability, which
in turn forces the client threads to spend 68.14% CPU time
waiting for page cache manager responses (i.e., Msg Poll).

For the latency breakdown (cf. Figure 5b), we decompose
total I/O latency into the queuing latency for client-manager
communication (Client-Manager Queuing), the queuing
latency for manager-SSD communication (Manager-SSD
Queuing), and others (Other). Client-Manager Queuing
originates where page cache manager threads process re-
quests sequentially in the message queue, as each request
must wait for its predecessors to be handled. Additionally, re-
quests also suffer from Manager-SSD Queuing when await-
ing the page cache manager to forward them to the SSD.
These queuing latencies dramatically increase when massive
requests need to be processed due to request fragmentation.
Client-Manager Queuing and Manager-SSD Queuing ac-
count for 10.02% and 67.72% of the total latency, respectively,
revealing that the communication tax inherent to the tripartite
structure leads to considerable performance degradation.

In multi-SSD testing, the performance gap between
TriCache and TriCache Ideal becomes more severe (e.g.,
77.51% when employing 8 SSDs), which is shown in Figure
4b. This gap can be attributed to the heavy CPU occupancy
introduced by page cache manager threads (e.g., occupying 16
cores when using 8 SSDs). Such CPU occupancy diminishes
the computing resources available for client threads, which
in turn impairs the overall performance. The poor scalability
highlights the unavoidable host CPU tax that stems from the
host-centric page cache manager design.

3.2 Challenges and Key Insight

Through prior analysis, we summarize the challenges arising
from host-centric page cache manager designs as follows:
• CPU consumption: Kernel page cache and TriCache both
consume excessive computing resources to execute cache op-
erations. While TriCache embeds a private cache in client
threads to minimize this overhead, the page cache manager
threads are still heavyweight, as they impose a substantial
CPU load for the I/O engine and address translation. More-
over, the CPU reliance of these host-centric designs is ex-
acerbated as the SSD count scales up, posing a significant
challenge to scalability.
• Communication cost: The ponderous kernel I/O engine
impedes efficient communication between the kernel page
cache and SSDs. Additionally, the inherent tripartite structure
of TriCache necessitates frequent communication between
client and page cache manager threads, as well as between
page cache manager threads and SSDs, making the page cache
manager threads sit on the I/O critical path.
• GC interference: The GC activity in SSDs inadvertently
blocks cache management, diminishing the stability of I/O
services. Unfortunately, with multiple software layers isolat-
ing the page cache manager from SSDs, these host-centric
designs lack the necessary knowledge to mitigate the GC
interference [82, 96].

Existing host-centric designs struggle with these challenges.
However, as our analysis shows, sole software optimizations
are insufficient to eliminate these taxes if they adhere to the
host-centric design principle. Our key insight is that offload-
ing the page cache manager into CSDs offers a promising op-
portunity to address these challenges. Specifically, the HMB
feature enables CSDs to manage the host memory directly,
making it feasible to undertake cache management. The of-
floading scheme not only eliminates host CPU reliance but
also inherently achieves scalability with multiple CSDs by
aggregating compute resources within each CSD. Note that
CSD internal mechanisms similar to cache indexing (e.g., the
FTL mapping table) can potentially facilitate a lightweight
page cache manager design. Meanwhile, software-hardware
coordination can mitigate communication and interference
taxes by coordinating cache management and request han-
dling within CSDs.

USENIX Association 2024 USENIX Annual Technical Conference    1189



NVMe
cmd

NVMe CSD

User space

SPDK NVMe driver

NVMe
queue 0

Client
thread 0

...

Core 0 ...

Queue Index

Lockless resource
allocation

LPNFusion FTL 

FPN

Req.NVMe
queue N

Client
thread N

Core N

...

Pack

Look up

GC state
report

Direct access

Partitioned flash die
Lockless

cache mngt.

GC-aware
rplcmnt....

H
ost

CSD

0x1 0x2 0x3
Cache missCache hit

0x1 0x2 0x3

0x1 0x2 0x3Cache hit 
Cache miss Req.

1

2

3 Look up

HMB region

LPN 0x2
Page frame 0 Page frame M

LPN 0x......
...

Figure 6: Overview of ScalaCache.

We further analyze the computing capability demands of
these page cache manager designs to assess the feasibility
of this offloading (cf. Figure 5c). Specifically, we evaluate
Dhrystone million instructions per second (DMIPS) [31, 90],
a unified computing capability metric suitable for processors
with different ISAs (e.g., host x86 CPU and CSD ARM pro-
cessor), needed by their cache management. This evaluation is
under the same configuration as outlined in Section 3.1. The
results indicate the kernel page cache (K) is highly demanding
on the CSD (i.e., 22.31×), while TriCache (TC) shows promis-
ing potential for offloading. However, TriCache still requires
63% more computing capability than CSD supplies [50, 93],
indicating the need for a more lightweight design.

4 Overview of ScalaCache

To mitigate the heavy storage taxes analyzed above, we pro-
pose ScalaCache, a software-hardware coordination for user-
space page cache manager, which achieves lightweight and
scalable cache management with efficiency and stability. Serv-
ing as a block cache [15, 98], ScalaCache builds a logical
address-based cache to accelerate data access to storage de-
vices. Figure 6 shows the overview of ScalaCache.
Lightweight. ScalaCache exploits the HMB feature to enable
cache management for the underlying CSD. However, directly
delegating this management to the CSD is impractical due to
the intricate computational and memory demands. Notably,
both the page cache manager and CSD employ an indirec-
tion layer to figure out data location (i.e., address translation).
Consequently, we propose a high-performance and memory-
efficient index structure called FusionFTL, which tightly inte-
grates the cache index structure into the FTL mapping table.
FusionFTL allows the fast lookup of both page frame and
flash addresses in a single memory shot. It also consolidates
the metadata of the page cache manager and the CSD, sig-
nificantly reducing memory overhead. To further reduce the
computational demand, page eviction and fetching are incor-

porated into the CSD internal request processing. Specifically,
the offloaded page cache manager can evict and load pages in
a single I/O request rather than two separate flush and fetch
operations in traditional cache manager designs, thus mitigat-
ing the processing overhead. Furthermore, to prevent potential
CSD overloading due to numerous requests, we add Queue
Index within each client thread to buffer page frame addresses
for cached pages. As a result, client threads can rapidly access
the Queue Index for cached pages, significantly reducing the
number of requests to the CSD.
Scalability. To prevent the potential lock issue from constrain-
ing scalability, we design a lockless resource allocation frame-
work for CSDs. Specifically, we partition resources (e.g., the
FTL mapping table and the cache space) by CSD core, which
allows concurrent access without lock-based synchronization.
This partitioning extends to the NAND flash, which leverages
the hardware isolation offered by the flash die to negate inter-
core interference. Note that the host CPU reliance of existing
page cache manager designs limits the scalability across multi-
ple SSDs. By offloading cache management, we remove such
CPU reliance and further enhance scalability via computing
power aggregation. Specifically, we build a parallel process-
ing model to enable multiple CSDs to autonomously handle
their requests, thereby leveraging the aggregated computing
power to maintain scalability.
Efficiency and stability. To reduce communication costs, we
trim the I/O path by removing page cache manager threads
from the I/O critical path. Specifically, with cache manage-
ment delegated to CSDs, client threads can directly access
the cache via the SPDK I/O engine, avoiding additional com-
munication with page cache manager threads. Furthermore,
to mitigate the communication of fetching or evicting non-
contiguous pages, we pack multiple page information into a
single NVMe command, which only incurs one communica-
tion. To improve stability, we first expose the GC state inside
the CSD to client threads by piggybacking it with NVMe
commands. Subsequently, we design a GC-aware replace-
ment policy in client threads to prioritize the reclamation of
clean pages, preempting the stalling of dirty page writebacks.

Building upon all key components of ScalaCache, we de-
scribe the detailed I/O path of the entire cache management
from top to down. In particular, when the client thread initiates
an I/O request, it searches the target pages within its inter-
nal Queue Index ( 1 in Figure 6). If the client thread locates
the pages successfully (i.e., cache hits), the client can access
them directly. Otherwise, to fetch the missing pages, it packs
corresponding retrieval operations into a single NVMe com-
mand and then forwards the command to the offloaded cache
management within the CSD ( 2 ). Upon receiving the NVMe
command, the CSD leverages FusionFTL to perform rapid
address translation for these requested pages ( 3 ). For those
cached pages, the CSD returns their page frame addresses to
the client thread. Otherwise, the CSD reads the missing pages
from NAND flash and buffers them in free page frames.

1190    2024 USENIX Annual Technical Conference USENIX Association



LPN

FPN

Restore
Return addr.

Look up Look up

OFN

(a) Cache hit. (b) Cache miss. (c) Eviction.

Origin flash addr. Logical addr. Flash addr. Page frame addr. 

0...

100Flash

Back up
new FPN

Back up

new FPN

101

HMB region

FusionFTL

Flash backend

1...

010 011 010

Page frame addr.

1 010

Look up

0 100 1 011
Update

1 010 0 101

Transfer data

0...

Flash addr.

Trans1a

1b

Trans Trans

Transfer data

Update2a 3a

3d2b

2c

2d 3e

3b 3c

Figure 7: Details of FusionFTL.

5 ScalaCache Design

5.1 Cache Management Offloading
Cache space allocation. Our key insight is that the HMB
feature allows CSDs to directly manage pre-allocated host
memory. However, the current SPDK lacks support for this
feature, and the default HMB feature restricts the allocated
memory to 128 MB. To address these limitations, we enhance
SPDK with HMB support and extend its initialization to allo-
cate adequate memory. Specifically, the host uses the SPDK
memory API [88] to allocate sufficient DMA-able user-space
memory (e.g., more than 96GB) as cache space based on the
demand of the CSD. Memory addresses are conveyed to the
CSD, allowing it to manage cache via DMA.
FusionFTL. Figure 7 shows the details of FusionFTL. Noting
that both the page frame address (for cached data) and the
flash address (for uncached data) describe the data residing lo-
cation, we combine these two addresses into a unified address
referred to as Fusion Page Number (FPN). This unification al-
lows us to merge the FTL mapping table and the cache index
into a compact index structure (i.e., FusionFTL) that maps
LPN to FPN. The most significant bit of the FPN is used to
distinguish between page frame and flash addresses (i.e., 1 for
page frame address and 0 for flash address). To revert FPNs
of cached pages to their original flash addresses upon page
eviction, we incorporate the original flash address (i.e., OFN)
to record the flash address for each cached page.

To enable lock-free cache management, we shift the cache
access interface to the pin/unpin interface [5, 34, 63], which
employs reference count to track page frame access. Based
on the reference count, the page cache manager can safely
evict pages not in use by any client thread, thus eliminating
locks existing in kernel page cache that avoid evicting pages
being accessed. This interface also eliminates unnecessary
writebacks for dirty pages that are recently accessed [30, 43],
which not only eases communication with the CSD but also
lightens its load. After shifting this interface, the CSD handles
pin and unpin requests from client threads.

For unpin requests, the CSD looks up the target pages
in FusionFTL to decrease their reference counts. For pin

Host interface controller

ARM core ARM core ARM core...

Flash PHY

NAND Die NAND Die
...NAND Die NAND Die

...

FusionFTL FusionFTL FusionFTL

R
eq

. d
elivery M

n
gt.

Flash
 acc.

I/O Request

Req. buffer
Concurrent processing

NAND Die NAND Die
NAND Die NAND Die

ARM core
FusionFTL

No flash conflict

Splitting request

Figure 8: Concurrent I/O processing within CSD.

requests, the CSD looks up the FusionFTL first. If a cache hit
occurs, as depicted in Figure 7a, the CSD directly translates
LPNs to the page frame addresses ( 1a ), updates the reference
counts, and returns the addresses to the client thread ( 1b ).
Otherwise, the CSD converts LPNs to flash addresses ( 2a
and 3a ) and directly fetches flash pages. If sufficient free
page frames are available (cf. Figure 7b), the CSD buffers the
fetched flash pages into these frames ( 2b ) and then updates
the FusionFTL, which involves recording the original flash
addresses in the OFNs ( 2c ) and then writing new page frame
addresses into the FPNs ( 2d ). Afterward, the CSD returns the
page frame addresses to the client thread.

When no free page frames exist, the CSD evicts cached
pages to reclaim page frames (cf. Figure 7c). FusionFTL em-
ploys a clock replacement policy [72] to evict pages with
zero reference counts. While clean pages are simply evicted
without writeback, their FPNs require restoring to the origi-
nal flash addresses, ensuring correct flash page retrievals for
future requests. Hence, the CSD updates their FPNs with the
OFNs ( 3b ). Conversely, dirty pages must be written back
to the flash before eviction. Thus, their OFNs are discarded,
and their FPNs are updated with new flash addresses. Af-
terward, the reclaimed frames are reused for new pages, as
described earlier ( 3c∼ 3e ). Moreover, given that GC migrates
flash pages, we revise GC to fit FusionFTL. If the migrated
page is already cached, the CSD updates its OFN with the new
flash address, while the uncached page follows the default
GC processing, updating its FPN with the new flash address.

The FusionFTL is a lightweight index structure that offers
several benefits over traditional approaches. First, it offers
efficient lookups. The firmware requires just one memory
access to determine cache hit or miss, which is more efficient
than existing hash tables [89]. Second, the memory consump-
tion imposed by FusionFTL is negligible, as it removes the
redundant memory consumption caused by the FTL mapping
table and cache index. Its memory overhead, comprising OFN
and replacement policy data structures (e.g., reference count),
is less than 0.30% of the cache size (e.g., 12MB for a 4GB
cache). Lastly, unlike existing software stacks requiring sep-
arate eviction and fetch requests, FusionFTL can evict and
fetch multiple pages in a single I/O command.

USENIX Association 2024 USENIX Annual Technical Conference    1191



5.2 Concurrent I/O Processing inside CSD

After offloading the page cache manager, the entire I/O path
within the CSD involves request delivery, cache management,
and flash access. However, relying solely on lightweight cache
management (i.e., FusionFTL) is insufficient to enhance the
overall I/O performance. This limitation arises from the con-
tention among different CSD cores over critical resources in
the I/O path (e.g., FusionFTL, free page frames, and flash),
resulting in performance bottlenecks. To fully unleash the
computing capability of each CSD core, we redesign the I/O
path for highly concurrent request processing (cf. Figure 8).

To fully utilize each CSD core, the host interface controller
needs to balance the load among the cores effectively. To
this end, ScalaCache splits the logical address space into
many sub-address spaces by stripe (e.g., 128KB stripe) and
assigns them to cores in a round-robin manner. Thus, the host
interface controller first splits an I/O request into multiple sub-
requests based on the sub-address space division and address
range of the request. These sub-requests are further deliv-
ered to cores for processing. This fine-grained sub-request
division facilitates a balanced load distribution, obviating the
need for an additional load-balancing algorithm. To ensure
efficient sub-request delivery without lock, we allocate a lock-
free request buffer between the host interface controller and
each core, allowing each core to independently retrieve sub-
requests. Note that existing SSDs [27, 68] already adopt a
similar lock-free request buffer [55, 56]. However, this de-
sign only allocates one buffer in one-core SSDs, restricting
its applicability to multi-core CSDs. We extend the lock-free
design as described above while ensuring negligible mem-
ory overhead. For example, a 4-core CSD requires only a
negligible 16KB memory for four request buffers.

Since each core exclusively handles sub-requests from its
own logical sub-address space, the same FPN in FusionFTL
is not concurrently updated by multiple cores, obviating the
need for locks to serialize updates. However, the free page
frame allocation potentially encounters locking issues when
multiple cores attempt to acquire free frames simultaneously.
To address this, we allocate all page frames evenly to each
core. Consequently, each core can manage its free page frames
independently based on its respective replacement policy data
structure, thereby removing locking concerns during both
free frame allocation and cache replacement. Interference
may also arise when cores access the same flash die simul-
taneously, which causes flash accesses to block each other,
thereby prolonging the overall access latency. To avoid such
interference, the aforementioned partition is extended to the
flash, which is divided based on its inherent isolation (i.e.,
flash dies). Hence, each core can access the flash with hard-
ware isolation and maintain low access latency.

I/O request

FusionFTL

0x01 0x04 Queue IndexQueue Index 0x01 0x04

Miss Hit
Look up

Page status
1010

0x01 0x03
FPN

Ref count +1+1

Fetch 
missing page

Page frame address
0x01: 0x123 0x03: 0x456

Return frame addr.

PRP/SGL

Overwrite

Cache miss
Cache hit

Figure 9: Coordination between Queue Index and FusionFTL.

5.3 Cache Access on the Host-side

Merely offloading the cache manager cannot sufficiently en-
sure high I/O performance, as in such a hardware-only design,
numerous requests can overload underlying CSDs. Even with
cache hits in FusionFTL, requests might suffer from a long
queuing delay within CSDs (cf. Section 6 for detailed evalua-
tion results). Our solution is to add Queue Index to the SPDK
driver to buffer mappings from LPNs to page frame addresses
of cached pages in the client threads. Specifically, we adopt
a lightweight hash table [89] to construct an index structure
on top of each NVMe queue. This hash table occupies mem-
ory that is less than 3.25% of the cache space size, which is
similar to other index structures [15, 33, 70]. As described in
Section 5.2, for pin commands, the offloaded cache manager
increments the reference count of requested pages and then
returns the page frame addresses to the host. These addresses
are buffered in the Queue Index for fast subsequent access
without repetitive lookups in FusionFTL, which also reduces
the load inside the CSD.

Figure 9 depicts the workflow after incorporating Queue
Index. Specifically, when processing an I/O request, the client
thread checks the Queue Index for target LPNs. Once a cache
hits, it readily accesses the data by referring to the buffered
page frame addresses. Note that when multiple client threads
access the same page frame, consistency is ensured by the
CPU cache, which is aligned with existing caches [15, 43].
Otherwise, it issues a pin command to the CSD, which returns
the page frame address. In addition, to maintain fair cache
allocation, each client thread owns an equal portion of cache
capacity. When the number of cached pages exceeds its ca-
pacity limit, the client evicts cold pages based on the clock
replacement policy. These page frame addresses are packaged
into an unpin command, which is subsequently issued to the
CSD to release these pages. We will describe the specific
pin and unpin commands shortly. Our pre-partitioned design
matches the cache designs in current applications such as
databases and graph processing [23,45,57,63], where threads
are assigned a predetermined cache size based on a load-
balance algorithm. Therefore, ScalaCache does not require a
redundant algorithm for cache allocation. Moreover, to meet
varying cache size demands, ScalaCache allows applications
to customize the cache size for different client threads.

1192    2024 USENIX Annual Technical Conference USENIX Association



5.4 Coordination between Host and CSDs

Trimmed communication. Section 3 highlights that current
page cache manager designs heavily burden CPU resources
due to intense communication. ScalaCache trims the commu-
nication through cache offloading, which removes the commu-
nication between cache manager threads and SSDs. Further,
to allow client threads to directly access the offloaded cache,
we incorporate pin and unpin commands into NVMe com-
mands. However, these commands, which transfer massive
amounts of information, are not well supported by the NVMe
protocol. Specifically, when client threads send LPNs of the
missing pages through a pin command, these non-contiguous
LPNs (cf. Figure 9) create substantial CSD traffic, as NVMe
commands necessitate contiguous addresses. After complet-
ing a pin command, the CSD returns multiple page frame
addresses, but the NVMe commands lack sufficient reserved
bits for this address transfer [3]. Similarly, during eviction, the
unpin command also faces increased communication, which
sends multiple non-contiguous addresses of evicted pages.

Note that when issuing the pin and unpin commands, the
client thread no longer needs the address information structure
(i.e., the physical region page (PRP) list or the scatter-gather
list (SGL) [3]) to convey the data buffer address of requests,
as the CSD transfers data directly into page frames rather
than the data buffer. In addition, in SPDK, to avoid repeated
memory allocations, each NVMe command is pre-allocated
with these structures. We utilize these structures to transmit
the aforementioned information, as shown in Figure 9. Specif-
ically, for pin requests, the client thread stores the page hit or
miss status into a bitmap (e.g., 0 and 1 indicate a cache hit and
miss, respectively) within the structure. Thus, based on the
bitmap, the CSD fetches the missing pages and then returns
their page frame addresses by overwriting these structures.
For evictions via unpin commands, the client also populates
the structure with the LPNs of evicted pages, thus circumvent-
ing the limitations of the NVMe command. To further reduce
communication overhead, when transferring a few pages (e.g.,
only one page), the client writes page frame addresses directly
into the reserved bits in the NVMe command. Through these
optimizations, the client and CSD communicate only once
to pin and unpin multiple discontinuous pages, thus greatly
reducing communication overhead.
GC-aware replacement policy. For better performance, the
client thread aggressively uses its full cache capacity by pin-
ning all cached pages in memory. By doing so, fetching new
pages necessitates releasing pages first via the unpin com-
mand, and the cache manager in the CSD subsequently writes
back these pages, placing page writeback in the critical path
of the fetching page. However, GC can significantly delay the
page writeback, as the SSD cannot serve new I/O requests
during GC, thus extending the fetching latency. Therefore, to
minimize the GC interference on page eviction, we propose a
GC-aware replacement policy. Specifically, the CSD shares

Global logical address space

...

CSD array

Client thread ...

Sub-address space

Send I/O request

...

...Stripe 0 Stripe 1 Stripe 2

Req. routing

Client thread Client thread

NVMe CSD 0
FusionFTL

NVMe CSD 1
FusionFTL

NVMe CSD 2
FusionFTL

NVMe CSD N
FusionFTL

Figure 10: Page cache manager built on the CSD array.

its internal GC state with the client thread by appending the
state to a reserved bit in the NVMe CQ response (i.e., 0 for
non-GC state and 1 for GC state). Thus, the client thread can
customize its replacement policy based on GC activity. When
GC occurs, the replacement policy prioritizes the eviction of
clean pages (i.e., pages that do not require writeback), pre-
venting page evictions from being blocked. That is, the policy
first targets clean pages for eviction using the clock algorithm
and only evicts dirty pages if clean ones are unavailable.

5.5 Concurrent Cache Built on a CSD Array

The host-centric cache manager over multiple SSDs heavily
taxes the CPU resources, depriving client threads of available
computing resources. This constraint not only restricts the
available CPU threads for applications but also impedes ap-
plications from exploiting the full performance of multiple
SSDs. This issue is exacerbated as the SSD count increases,
highlighting the poor scalability. In contrast, ScalaCache of-
floads the cache manager to CSDs, freeing up the host CPU
resources for applications. In addition, to fully capitalize on
the aggregated computing capability of CSDs, we design a
parallel processing model that organizes multiple CSDs into
a CSD array (cf. Figure 10). Specifically, we finely partition
the global address space of the CSD array, whose size is equal
to the aggregated capacity of all CSDs, into multiple stripes
(e.g., 64KB). These stripes are then allocated in a round-robin
manner to different sub-address spaces, each designated for a
specific CSD. When I/O requests are received, the sub-address
space to which these requests belong can be found based on
their address range, and thus they are routed to the appropriate
CSDs and processed concurrently. The fine-grained division
enables multiple CSDs to handle requests independently and
simultaneously, enhancing scalability across multiple CSDs.

5.6 Implementation

We build ScalaCache atop SPDK v22.01.2 [88] and NVMe
Base Specification 2.0c [3]. To develop our CSD hardware,
we adopt FEMU, a popular QEMU-based SSD emulator in
academia [18, 36–38]. The host-side and CSD-side parts take
3.2K and 3.1K LOC, respectively. Specifically, we customize

USENIX Association 2024 USENIX Annual Technical Conference    1193



Host system FEMU Software

CPU AMD EPYC 9654 VM 24 Core /
128 GB DRAM Linux

kernel 6.8
96 Core / 2.4 GHz

Flash
Rd./Prog.: 18/35 us

Mem. 768 GB DRAM 8 Channel / 4 Die / 1024
Block / 512 Page / 4 KB

SPDK 22.01.2
Cache size 18.75%

Table 1: System configurations.

Trace Req cnt.
(Mops)

Avg req size
(KB)

Data size
(GB) Hit ratio Randomness Hotness [19]

(reuse dis. (GB))
webmail 7.80 4 29.74 0.96 0.22 0.21
online 5.70 4 21.80 0.94 0.26 0.62

webusers 5.70 4.22 22.90 0.71 0.30 0.40
prn_0 5.59 11.09 59.09 0.89 0.77 0.81
usr_0 2.24 22.66 48.37 0.96 0.89 1.05
src2 3.37 34.19 109.97 0.90 0.95 0.47

T1205 0.33 160.10 50.47 0.61 0.89 1.45
T2982 1.06 65.55 66.02 0.67 0.97 2.59
proj_1 23.64 34.42 775.93 0.78 0.87 1.02

mds 2.85 36.56 99.33 0.76 0.91 0.50

Table 2: The characteristics of examined workloads.

FEMU to emulate multi-core CSDs and facilitate the parallel
I/O path described in Section 5.2. Additionally, to reconcile
the differing memory addresses used by client threads (virtual
memory addresses to access page frames) and CSDs (DMA
addresses to transfer data), we extend the HMB initiation
process. During HMB setup, the host provides both the DMA
and virtual memory addresses of the HMB region to the CSD.
Thus, the CSD returns the virtual memory address to the client
threads during processing pin commands while employing
DMA addresses for data transfer.
Software and firmware implementation. The Queue In-
dex, pin/unpin interface, and partitioning strategy (i.e., stripe)
are implemented in user-space software. These user-space
designs not only improve cache management by eliminat-
ing context switches and lock mechanism but also allow the
SPDK integration to enhance the efficiency of the I/O engine.
Our firmware designs, including cache manager offloading,
FusionFTL, pin/unpin command batching, and GC reporting
further customize lightweight, scalable, and stable cache man-
agement. Note that these techniques can be integrated into
the CSD firmware without any hardware modification.

6 Evaluation

6.1 Experimental Setup

Methodology. We allocate the FEMU virtual machine with
24 cores and 128GB DRAM. The NVMe CSDs in FEMU
are set for 18us read latency and 35us write latency, which
matches high-performance SSDs [61, 100]. We match the
CPU frequency of the emulated CSD cores to prior ISP works
[21, 62, 93] for accurate computing capability emulation. In
addition, cache memory is set to 18.75% of SSD capacity,
consistent with prior studies [8,61]. We use SPDK perf [4] and
Linux perf [1] to measure the performance of cache manager
designs and capture the CPU usage of their key functions.
The detailed configurations are listed in Table 1.
Platforms. We compare ScalaCache against its hardware-only

variant and the existing cache managers. (1) ScalaCache: A
software-hardware coordinated user-space cache manager that
includes all our proposed designs. (2) Hardware: A vanilla
version of ScalaCache, which simply offloads the cache man-
agement to the CSD without the host-side design (i.e., designs
in Section 5.3). (3) TriCache [15]: A state-of-the-art user-
space cache manager atop the SPDK I/O engine. Due to the
lack of the block interface required by the storage stack test-
ing tools, we reproduce TriCache based on its open-source
repository [77]. (4) Kernel: The cache manager implemented
in the Linux kernel space [43]. Unless otherwise specified,
we set up 4 CSD cores in both Hardware and ScalaCache.
Workloads. We evaluate ScalaCache with multiple block I/O
workloads, including MSR, FIU, and Tencent trace [53,67,98].
These workloads cover read-intensive, write-intensive, and
mixed scenarios with requests ranging from 4 to tens of KB.
We profile their cache behavior by running them with 8 client
threads on Kernel. Table 2 lists their key characteristics.

6.2 Overall Performance

Bandwidth. Figure 11a illustrates the bandwidth comparison
when using 8 host CPU cores and a CSD. TriCache varies
cache manager thread numbers, running remaining cores as
client threads (e.g., TriCache-2M6C with 2 manager threads
and 6 client threads), while other cache manager designs
use all cores for client threads. The I/O depth of each client
thread is set to 32. Due to its lockless and user-space design,
TriCache-2M6C outperforms Kernel by 3.84×. Further-
more, in proj_1 and mds workloads, TriCache-4M4C outper-
forms TriCache-2M6C, indicating that more cache manager
threads are required to enhance performance. In other words,
its cache manager thread is heavyweight and becomes the bot-
tleneck. ScalaCache outperforms all other cache manager
designs in all workloads. It outperforms Kernel by 5.12×
while outperforms Hardware by 1.95× as Queue Index ac-
celerates cache lookups and avoids overloading the CSD. For
TriCache-2M6C and TriCache-6M2C, ScalaCache outper-
forms them by 35.30% and 94.78%, respectively, as it frees
up taxed CPU for more client threads by manager offloading.
It also benefits from the lightweight FusionFTL and current
processing, fully exploiting the CSD computing capability.

We also relax the number of cores in TriCache, that is, it
uses fixed (8) cores for client threads while allocating extra
cores as cache manager threads. Despite this, ScalaCache
still outperforms it (cf. Figure 11b). ScalaCache outper-
forms TriCache-2M8C and TriCache-4M8C by 28.68% and
11.53%, respectively, as more cache manager threads in
TriCache increase the communication cost, limiting the per-
formance improvement. In contrast, ScalaCache removes
the communication cost. We analyze this in Section 6.3.
I/O latency. Figure 12a shows the average latency compari-
son with fixed (8) CPU cores. ScalaCache achieves a 78.13%
latency reduction compared to Kernel while reducing la-

1194    2024 USENIX Annual Technical Conference USENIX Association



webmail

onlin
e

webusers
prn_0

usr_0
src2

T1205
T2982

proj_1
mds

avg
0

10
20
30
40
50
60
70
80

B
a
n
w

id
th

 (
G

B
/s

)

Kernel Hardware TriCache-2M6C TriCache-4M4C TriCache-6M2C ScalaCache

0.0

0.5

1.0

N
o
rm

.b
a
n
d
w

id
th

(a) Bandwidth comparison with fixed (8) host CPU cores.

webmail

onlin
e

webusers
prn_0

usr_0
src2

T1205
T2982

proj_1
mds

avg
0

10
20
30
40
50
60
70
80
90

B
a
n
w

id
th

 (
G

B
/s

)

 TriCache-2M8C  TriCache-4M8C  TriCache-6M8C  ScalaCache

0.0

0.5

1.0

N
o
rm

.b
a
n
d
w

id
th

(b) Bandwidth comparison with fixed (8) client threads.
Figure 11: Bandwidth comparison.

1
6
9
1
1

6
6
0
3

1
3
3
6

1
0
6
0

1
2
8
8

6
2
6

4
3
5

5
0
6

1
1
6
4

webmail

onlin
e

webusers
prn_0

usr_0
src2

T1205
T2982

proj_1
mds

avg
0

50
100
150
200
250
300
350
400

L
a
te

n
c
y
 (

u
s
)

 Kernel  Hardware  ScalaCache

0

2

4

6

8

1 N
o
rm

. 
la

te
n
c
y

(a) Latency comparison with fixed (8) host CPU cores.

1
3

7
8

1
2

2
3

1
2

1
2

1
1

6
4

webmail

onlin
e

webusers
prn_0

usr_0
src2

T1205
T2982

proj_1
mds

avg
0

100

200

300

400

500

600

L
a

te
n

c
y
 (

u
s
)

 TriCache-2M8C  TriCache-4M8C  TriCache-6M8C  ScalaCache

0.0

0.5

1.0

1.5

N
o

rm
. 

la
te

n
c
y

(b) Latency comparison with fixed (8) client threads.
Figure 12: Latency comparison.

T1205 T2982
0.0

0.2

0.4

0.6

0.8

1.0

(a) Tail latency comparison.

N
o
rm

. 
p
9
9
9
9
 l
a
te

n
c
y

 TriCache  ScalaCache

98 99
99

.5
99

.9

99
.9

9
40

45

50

55

60

65

(b) Improvement of GC-aware replacement policy.

L
a
te

n
c
y
 (

m
s
)

Percentiles

T1205

98 99
99

.5
99

.9

99
.9

9
20

30

40

50

60

Percentiles

 ScalaCache w/o GC-aware   ScalaCache

T2982

Figure 13: Tail latency comparison.

tency by 56.07% over Hardware since it buffers page frame
addresses in client threads to shorten the cache hit path. La-
tency results of TriCache are omitted since it has fewer client
threads issuing I/O requests than ScalaCache, leading to an
unequal I/O load. A fair comparison with an equal number
of clients is shown in Figure 12b. ScalaCache lowers la-
tency by up to 53.50%, 33.97%, and 27.33% compared to
TriCache-2M8C, TriCache-4M8C, and TriCache-6M8C, re-
spectively. This efficiency stems from lightweight FusionFTL
and efficient communication, which boost its processing ca-
pability and consequently diminish queuing latency.

GC impact. We compare the tail latency between
ScalaCache and TriCache in two representative write-
intensive workloads, T1205 and T2982. Due to the GC-aware
replacement policy, ScalaCache reduces the number of GC-
affected requests by 8.19% on average, which further leads
to 11% reduction in the 99.99th latency (cf. Figure 13a). This
reduction is unattainable with host-centric cache manager
designs like TriCache. To further explore the effectiveness
of this policy, we evaluate the tail latency of ScalaCache
with and without GC awareness. Figure 13b reveals that the
GC-aware replacement policy can reduce 99.9th latency by
17.44% in T1205 and 99.99th latency by 16.76% in T2982, re-
spectively. This reduction shows that this software-hardware
coordinated fashion can alleviate GC impact by preventing
GC from stalling page writebacks.

6.3 Performance Analysis

Figures 14 and 15 illustrate the I/O latency and CPU time
breakdown for two representative workloads, webmail and
mds. Both manager designs use 8 client threads, with varying
manager threads for TriCache. TriCache (T) is decomposed
based on the previously described methodology (cf. Section
3), while ScalaCache (SC) is categorized into the queuing
latency of communication between client threads and Fusion-
FTL (Client-FusionFTL Queuing) and inevitable latency
(Other) that is unrelated to the cache (e.g., accessing flash).
Latency breakdown. ScalaCache achieves lower la-
tency than Kernel due to the efficient cache manager
and I/O engine. Compared to TriCache, ScalaCache re-
moves Client-Manager Queuing due to the trimmed
I/O path. In mds, compared to the counterpart in
TriCache (i.e., Manager-SSD Queuing), ScalaCache re-
duces Client-FusionFTL Queuing by 47.09%. This is be-
cause numerous NVMe commands in TriCache due to
request fragmentation overload its cache manager threads,
which prolongs the queuing latency, while ScalaCache op-
timizes communication through bundling multiple missing
pages into a single NVMe command. It also benefits from the
lightweight cache index structure, which accelerates the ad-
dress translation. We further analyze the performance issues
caused by cache offloading. Although requests suffer from
the additional I/O engine, the latency penalty is slight, such
as a 13.97% increase in webmail against TriCache.
CPU time breakdown. Compared to Kernel, ScalaCache
decreases CPU time by 77.75%. Note that client threads
in TriCache consume much CPU waiting for manager re-
sponses (i.e., Msg Poll), indicating cache manager threads
become a bottleneck. Moreover, its communication cost es-
calates with cache manager thread counts. For instance, I/O
engine in T-6M requires 1.03× more CPU time than T-2M,

USENIX Association 2024 USENIX Annual Technical Conference    1195



K T-2M T-4M T-6M SC
0

10

80

L
a
te

n
c
y
 (

u
s
)

(a) webmail
K T-2M T-4M T-6M SC

0

150

300

450

1000

(b) mds

 I/O Engine  Manager-SSD Queuing  Client-Manager Queuing

 Cache  Client-FusionFTL Queuing  Other

Figure 14: I/O latency breakdown.

K T-2M T-4M T-6M SC
0

5

10

20

C
P

U
 t
im

e
 (

s
)

(a) webmail
K T-2M T-4M T-6M SC

0

20

40

60
95

(b) mds

 I/O Engine  Lock  Cache  Msg Pass  Msg Poll

Client

Mgr.

Figure 15: CPU time breakdown.

m
dsw

eb
m

ai
l

0 1 2 3 4 5 6
(a) Norm. FTL access latency

m
dsw

eb
m

ai
l

0.0 0.2 0.4 0.6 0.8 1.0
(b) Norm. computing capability

 Replacement  Index lookup  Other

Figure 16: FTL access latency and computing capability.

as more cache manager threads exacerbate request fragmenta-
tion. In contrast, ScalaCache reduces CPU time by 45.67%
on average compared to TriCache, which can be attributed
to the elimination of the CPU burden imposed by cache man-
ager threads as well as the trimmed I/O path. In addition,
I/O engine consumes 34.58% less compared to TriCache,
thanks to the batch NVMe command process.
FusionFTL analysis. We measure the FusionFTL access
latency and the required CSD computing capability, which
are normalized to the counterpart in Kernel and existing
CSDs [50, 93], respectively. Figure 16a reveals that Fusion-
FTL introduces 2.76× latency overhead on average, where the
overhead due to the replacement policy accounts for 5.28%.
Figure 16b shows that even under the intense load in mds,
ScalaCache only consumes 74.06% of the CSD computing
capability. Under the reduced load (e.g., webmail) due to
software-hardware coordination, the computing burden is re-
duced to 23.26%. Consequently, the lightweight cache man-
ager in the CSD handles pin/unpin calls for webmail and mds
at 1.49 Mop/s and 0.24 Mop/s, respectively, outperforming
the naive scheme (i.e., integrates the hash table directly into
the CSD) by 1.14× on average. These results indicate that
CSDs can effectively undertake cache offloading. Note that
CSD exhibits a lower processing frequency than the request
frequency in webmail as Queue Index filters a large fraction
of requests, leaving the remaining requests to the CSD.

6.4 Scalability

Scalability with host CPU cores. Figure 17 depicts the
performance scalability against varying CPU cores. Due to
page limits, we show six representative results. Hardware is
more scalable than Kernel in some workloads (e.g., proj_1)

by eliminating locks, but faces scalability issues when over-
loaded (e.g., webmail). TriCache maintains good scalability
in scenarios with small I/O requests (e.g., webmail), how-
ever, it struggles with large I/O requests (e.g., src2), where
cache manager threads become the bottleneck due to the re-
quest fragmentation. Conversely, ScalaCache consistently
shows improved scalability in all workloads. For example,
the peak performance in src2 surpasses TriCache-2M and
TriCache-4M by 35.17% and 31.59%, respectively. The good
scalability is due to lightweight and lockless designs, includ-
ing lightweight cache management, the lockless resource al-
location framework, and the concurrent I/O processing.
Scalability with multiple SSDs. Figures 18a and 18b depict
the bandwidth when using 14 and 18 host CPU cores by
varying SSD counts, respectively. In TriCache, we allocate
two cache manager threads for each SSD, while in Hardware
and ScalaCache we set to two cores for each CSD. TriCache
performance decreases with more SSDs, revealing its inability
to scale across SSDs due to the heavy CPU tax. As the SSD
count scales up, fewer cores are available for client threads,
leading to SSDs being underutilized. In contrast, ScalaCache
and Hardware maintain scalability. With 18 cores and 8 SSDs,
they outperform TriCache by 1.34× and 1.70×, respectively.
By offloading cache management to CSDs, they allow the host
CPU to be entirely dedicated to client threads, fully utilizing
all CSDs. Moreover, the CSD array aggregates the computing
power of multiple CSDs to process requests concurrently.

7 Related Work and Discussion

Cache management. Previous efforts [15, 58, 61, 85] aim
to mitigate cache management overhead. FrozenHot [61] re-
moves unnecessary management for hot data, while [58, 85]
focus on locking mechanism optimization. TriCache [15] ad-
vances this by designing a lock-free cache manager. Despite
these advancements, cache management continues to tax the
host CPU. Unlike these host-centric designs, ScalaCache of-
floads the cache to the CSD, thereby eliminating such CPU
overhead. Moreover, ScalaCache accelerates address transla-
tion and reduces GC disruption via hardware-software coor-
dination, which is unattainable by these host-centric caches.
User-space storage software stack. To alleviate the overhead
of the kernel storage stack, several works [14, 15, 88] shift
part or the entire storage stack into user space. [20, 29, 46, 91]
design user-space file systems to avoid trapping into the ker-
nel. Differing from their contributions, ScalaCache focuses
on the user-space cache manager. SPDK [88] relocates the
NVMe driver to user space and employs lock-free resource
allocation to enhance performance. Extending this lock-free
paradigm, ScalaCache proposes a lock-free resource alloca-
tion framework in CSDs. Unlike SPDK, which concentrates
on host resources, ScalaCache addresses the overlooked CSD
resource allocation to mitigate interference within CSDs.
In-storage processing. Capitalizing on the rich resources

1196    2024 USENIX Annual Technical Conference USENIX Association



2 4 6 8 10 12
0

10

20

30

40

50

60

webmail

B
a

n
d

w
id

th
 (

G
B

/s
)

# Cores
2 4 6 8 10 12

0

10

20

30

40

50

60

prn_0

# Cores
2 4 6 8 10 12

10

20

30

40

50

60

src2

# Cores
2 4 6 8 10 12

0

10

20

30

40

T2982

# Cores
2 4 6 8 10 12

0

5

10

15

20

25

proj_1

# Cores
2 4 6 8 10 12

0

10

20

30

40

mds

# Cores

 Kernel    Hardware    TriCache-2M    TriCache-4M    TriCache-6M    ScalaCache

Figure 17: Scalability with host CPU cores.

1 2 4 6
0

10

20

30

40
proj_1 (14 cores)

B
a
n
d
w

id
th

 (
G

B
/s

)

# SSDs

1 2 4 6
0

20

40

60

80
mds (14 cores)

# SSDs

 Kernel   Hardware   TriCache   ScalaCache

(a) Performance with 14 host CPU cores.

1 2 4 6 8
0

10

20

30

40

50

proj_1 (18 cores)

B
a
n
d
w

id
th

 (
G

B
/s

)

# SSDs

1 2 4 6 8
0

20

40

60

80

mds (18 cores)

# SSDs

(b) Performance with 18 host CPU cores.
Figure 18: Scalability with varying CPU cores and SSDs.

within CSDs, many studies [12, 28, 39, 60] propose to of-
fload data-intensive tasks, such as database scans and ma-
chine learning. [21, 62, 93] delegate file systems to CSDs for
high-performance direct I/O access. In contrast to their contri-
butions, ScalaCache focuses specifically on offloading cache
management. ScalaCache further exploits the aggregation of
multiple CSDs to enable scalability, while they ignore the
optimization opportunity to apply ISP on multiple CSDs.
Message batching. Prior studies [15, 17, 88] adopt message
batching to amortize the overhead between different host
threads. However, they overlook the host-device communica-
tion. Although [44] reduces the I/O engine communication
via batching requests, it cannot eliminate excess NVMe com-
mands, potentially tripling overhead. In contrast, ScalaCache
reduces this by customizing NVMe commands and CSD in-
ternals, which is unachievable through sole software design.
Load balance. Most well-optimized applications have al-
ready integrated effective algorithms to balance loads be-
tween threads, which have been widely studied in prior works
[23, 45, 57, 63]. A lightweight resource partitioning strategy
and request slicing as what ScalaCache provides are sufficient
for these applications to fully exploit the high concurrency
and throughput of ScalaCache. In rare cases of ill-tuned appli-
cations, ScalaCache can integrate existing sophisticated bal-
ancing schemes [8, 41, 47] to meet load-balancing demands.
CXL interconnect. CXL [13] offers efficient fine-granule
access between host memory and CXL devices, which may
aid small-size metadata transfers in ScalaCache (e.g., GC

reporting). However, adopting CXL into CSDs necessitates
customized hardware units to support cache coherence. Scala-
Cache does not require such a strong coherence guarantee. For
instance, cache replacements do not demand cache coherence
support, as the CPU is guaranteed not to access pages being
loaded or evicted by the cache management within CSD.
Pin/unpin interface. Multiple applications [5, 59, 63] con-
struct their built-in caches by explicitly utilizing the pin/unpin
interface to access pages. Alternatively, other applications can
customize a compiler module to implicitly call this interface,
which is facilitated by inserting pin/unpin calls into I/O func-
tions (e.g., read) via LLVM instrumentation [48]. The explicit
invocation supported by applications allows direct integration
of ScalaCache into applications, while the implicit invocation
necessitates only recompilation to insert pin/unpin calls.

8 Conclusion

We propose software-hardware coordination for the user-
space cache manager, called ScalaCache. Specifically, Scala-
Cache offloads the cache manager to CSDs and further con-
structs a lightweight cache index within CSDs, reducing the
CPU tax. Moreover, it reduces communication tax by trim-
ming the I/O path while mitigating interference tax via a
GC-aware replacement policy. Our evaluation reveals that
ScalaCache improves bandwidth by 1.70× over prior work.

Acknowledgement

We thank our shepherd, Animesh Trivedi, and the anonymous
reviewers for their constructive feedback. This work is mainly
supported by the National Key Research and Development
Program of China under Grant No. 2023YFB4502702, the
National Natural Science Foundation of China under Grant
No. 62332021, the Fundamental Research Funds for the Cen-
tral Universities, Peking University, and the State Key Lab of
Processors, Institute of Computing Technology, CAS under
Grant No. CLQ202309. Dr. Li is supported in part by the Na-
tional Natural Science Foundation of China under Grant No.
62202396. Dr. Wang is supported in part by the Innovation
Funding of ICT, CAS under Grant E261110. The correspond-
ing author is Jie Zhang.

USENIX Association 2024 USENIX Annual Technical Conference    1197



References

[1] Linux perf. https://perf.wiki.kernel.org/
index.php/Main_Page, 2022.

[2] Marvel bravera sc5 ssd controllers. https:
//www.marvell.com/products/ssd-controllers/
mv-ss1331-1333.html, 2022.

[3] Nvm express base specification 2.0c. https:
//nvmexpress.org/wp-content/uploads/NVM-
Express-Base-Specification-2.0c-2022.10.04-
Ratified.pdf, 2022.

[4] Spdk perf. https://github.com/spdk/spdk/blob/
master/examples/nvme/perf/perf.c, 2022.

[5] Mania Abdi, Amin Mosayyebzadeh, Mohammad Hos-
sein Hajkazemi, Emine Ugur Kaynar, Ata Turk, Larry
Rudolph, Orran Krieger, and Peter Desnoyers. A com-
munity cache with complete information. In 19th
USENIX Conference on File and Storage Technolo-
gies (FAST 21), pages 323–340, 2021.

[6] ANANDTECH. Marvell announces new client nvme
ssd controllers. https://www.anandtech.com/show/
12895/marvell-announces-new-client-nvme-
ssd-controllers.

[7] Thomas W Barr, Alan L Cox, and Scott Rixner. Trans-
lation caching: skip, don’t walk (the page table). ACM
SIGARCH Computer Architecture News, 38(3):48–59,
2010.

[8] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter,
et al. The CacheLib caching engine: Design and ex-
periences at scale. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 753–768, 2020.

[9] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux block io: introducing multi-
queue ssd access on multi-core systems. In Proceed-
ings of the 6th international systems and storage con-
ference, pages 1–10, 2013.

[10] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerat-
ing malicious device drivers in linux. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10), 2010.

[11] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient distributed
memory management with rdma and caching. Pro-
ceedings of the VLDB Endowment, 11(11):1604–1617,
2018.

[12] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei
Li, Wenjie Wu, Linqiang Ouyang, Peng Wang, Yijing
Wang, Ray Kuan, et al. POLARDB meets computa-
tional storage: Efficiently support analytical workloads
in Cloud-Native relational database. In 18th USENIX
conference on file and storage technologies (FAST 20),
pages 29–41, 2020.

[13] CXL. Compute express link. https://
computeexpresslink.org/.

[14] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the ZoFS
user-space NVM file system. In Proceedings of the
27th ACM Symposium on Operating Systems Princi-
ples, pages 478–493, 2019.

[15] Guanyu Feng, Huanqi Cao, Xiaowei Zhu, Bowen Yu,
Yuanwei Wang, Zixuan Ma, Shengqi Chen, and Wen-
guang Chen. TriCache: A User-Transparent block
cache enabling High-Performance Out-of-Core pro-
cessing with In-Memory programs. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 395–411, 2022.

[16] Donghyun Gouk, Miryeong Kwon, Jie Zhang,
Sungjoon Koh, Wonil Choi, Nam Sung Kim, Mahmut
Kandemir, and Myoungsoo Jung. Amber: Enabling
precise full-system simulation with detailed modeling
of all ssd resources. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture
(MICRO), pages 469–481. IEEE, 2018.

[17] Gabriel Haas and Viktor Leis. What modern nvme stor-
age can do, and how to exploit it: High-performance
i/o for high-performance storage engines. Proceedings
of the VLDB Endowment, 16(9):2090–2102, 2023.

[18] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. ZNS+: Advanced zoned namespace in-
terface for supporting in-storage zone compaction. In
15th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 21), pages 147–162,
2021.

[19] Song Jiang, Feng Chen, and Xiaodong Zhang. Clock-
pro: An effective improvement of the clock replace-
ment. In USENIX Annual Technical Conference, Gen-
eral Track, pages 323–336, 2005.

[20] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing software overhead in file systems
for persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
494–508, 2019.

1198    2024 USENIX Annual Technical Conference USENIX Association

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.marvell.com/products/ssd-controllers/mv-ss1331-1333.html
https://www.marvell.com/products/ssd-controllers/mv-ss1331-1333.html
https://www.marvell.com/products/ssd-controllers/mv-ss1331-1333.html
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://github.com/spdk/spdk/blob/master/examples/nvme/perf/perf.c
https://github.com/spdk/spdk/blob/master/examples/nvme/perf/perf.c
https://www.anandtech.com/show/12895/marvell-announces-new-client-nvme-ssd-controllers
https://www.anandtech.com/show/12895/marvell-announces-new-client-nvme-ssd-controllers
https://www.anandtech.com/show/12895/marvell-announces-new-client-nvme-ssd-controllers
https://computeexpresslink.org/
https://computeexpresslink.org/


[21] Sudarsun Kannan, Andrea C Arpaci-Dusseau,
Remzi H Arpaci-Dusseau, Yuangang Wang, Jun Xu,
and Gopinath Palani. Designing a true Direct-Access
file system with DevFS. In 16th USENIX Conference
on File and Storage Technologies (FAST 18), pages
241–256, 2018.

[22] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim.
NVMeDirect: A user-space I/O framework for
application-specific optimization on NVMe SSDs. In
8th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 16), 2016.

[23] Juno Kim and Steven Swanson. Blaze: fast graph
processing on fast ssds. In SC22: International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pages 1–15. IEEE, 2022.

[24] Kyusik Kim, Eunji Lee, and Taeseok Kim. Hmb-ssd:
Framework for efficient exploiting of the host mem-
ory buffer in the nvme ssd. IEEE Access, 7:150403–
150411, 2019.

[25] Yoona Kim, Inhyuk Choi, Juhyung Park, Jaeheon Lee,
Sungjin Lee, and Jihong Kim. Integrated Host-SSD
mapping table management for improving user expe-
rience of smartphones. In 21st USENIX Conference
on File and Storage Technologies (FAST 23), pages
441–456, 2023.

[26] Gunjae Koo, Kiran Kumar Matam, Te I, HV Kr-
ishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven
Swanson, and Murali Annavaram. Summarizer: trad-
ing communication with computing near storage. In
Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 219–
231, 2017.

[27] Jaewook Kwak, Sangjin Lee, Kibin Park, Jinwoo Jeong,
and Yong Ho Song. Cosmos+ OpenSSD: Rapid proto-
type for flash storage systems. ACM Transactions on
Storage (TOS), 16(3):1–35, 2020.

[28] Miryeong Kwon, Donghyun Gouk, Sangwon Lee,
and Myoungsoo Jung. Hardware/Software Co-
Programmable framework for computational SSDs to
accelerate deep learning service on Large-Scale graphs.
In 20th USENIX Conference on File and Storage Tech-
nologies (FAST 22), pages 147–164, 2022.

[29] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages
460–477, 2017.

[30] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W Lee, and Jinkyu Jeong. Asynchronous I/O stack:
A low-latency kernel I/O stack for Ultra-Low latency
SSDs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 603–616, 2019.

[31] Jongwon Lee, Jaejun Ko, and Young-June Choi. Task
offloading technique using dmips in wearable devices.
In 2017 International Conference on Information Net-
working (ICOIN), pages 414–416. IEEE, 2017.

[32] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
Mind: In-network memory management for disaggre-
gated data centers. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles,
pages 488–504, 2021.

[33] Viktor Leis, Alfons Kemper, and Thomas Neumann.
The adaptive radix tree: Artful indexing for main-
memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pages 38–49.
IEEE, 2013.

[34] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy
Shapiro, Sagi Grimberg, Liran Liss, Muli Ben-Yehuda,
Nadav Amit, and Dan Tsafrir. Page fault support for
network controllers. ACM SIGARCH Computer Archi-
tecture News, 45(1):449–466, 2017.

[35] Dingji Li, Zeyu Mi, Chenhui Ji, Yifan Tan, Binyu Zang,
Haibing Guan, and Haibo Chen. Bifrost: Analysis
and optimization of network I/O tax in confidential
virtual machines. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23), pages 1–15, 2023.

[36] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan RK Ports, Irene
Zhang, Ricardo Bianchini, Haryadi S Gunawi, and
Anirudh Badam. Leapio: Efficient and portable vir-
tual nvme storage on arm socs. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 591–605, 2020.

[37] Huaicheng Li, Mingzhe Hao, Michael Hao Tong,
Swaminathan Sundararaman, Matias Bjørling, and
Haryadi S Gunawi. The CASE of FEMU: Cheap, ac-
curate, scalable and extensible flash emulator. In 16th
USENIX Conference on File and Storage Technologies
(FAST 18), pages 83–90, 2018.

[38] Huaicheng Li, Martin L Putra, Ronald Shi, Xing Lin,
Gregory R Ganger, and Haryadi S Gunawi. lODA:
A host/device co-design for strong predictability con-
tract on modern flash storage. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 263–279, 2021.

USENIX Association 2024 USENIX Annual Technical Conference    1199



[39] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive SSD: A deep
learning engine for In-Storage data retrieval. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 395–410, 2019.

[40] Yu Liang, Riwei Pan, Tianyu Ren, Yufei Cui, Rachata
Ausavarungnirun, Xianzhang Chen, Changlong Li, Tei-
Wei Kuo, and Chun Jason Xue. CacheSifter: Sifting
cache files for boosted mobile performance and life-
time. In 20th USENIX Conference on File and Storage
Technologies (FAST 22), pages 445–459, 2022.

[41] Yu-Shan Lin, Ching Tsai, Tz-Yu Lin, Yun-Sheng
Chang, and Shan-Hung Wu. Don’t look back, look
into the future: Prescient data partitioning and migra-
tion for deterministic database systems. In Proceedings
of the 2021 International Conference on Management
of Data, pages 1156–1168, 2021.

[42] Linux. NVMe driver. https://github.com/
torvalds/linux/tree/master/drivers/nvme.

[43] Linux. Page cache layer. https://github.com/
torvalds/linux/tree/master/fs.

[44] Heiner Litz, Javier Gonzalez, Ana Klimovic, and Chris-
tos Kozyrakis. Rail: Predictable, low tail latency for
nvme flash. ACM Transactions on Storage (TOS),
18(1):1–21, 2022.

[45] Hang Liu and H Howie Huang. Graphene:Fine-
Grained IO management for graph computing. In 15th
USENIX Conference on File and Storage Technologies
(FAST 17), pages 285–300, 2017.

[46] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye,
Sudarsun Kannan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Scale and performance in
a filesystem semi-microkernel. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 819–835, 2021.

[47] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. DistCache: Provable load balancing for Large-
Scale storage systems with distributed caching. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 143–157, 2019.

[48] LLVM. The llvm compiler infrastructure. https:
//llvm.org/.

[49] Bo Mao, Suzhen Wu, and Lide Duan. Improving
the ssd performance by exploiting request character-
istics and internal parallelism. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 37(2):472–484, 2017.

[50] Marvell. Marvell® bravera™ sc5 ssd con-
trollers. https://www.marvell.com/content/
dam/marvell/en/public-collateral/storage/
marvell-ssd-mv-ss1331-1333-product-
brief.pdf.

[51] Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-
Wei Tseng, and Murali Annavaram. GraphSSD: graph
semantics aware SSD. In Proceedings of the 46th inter-
national symposium on computer architecture, pages
116–128, 2019.

[52] Cayla McGinnis. Pci-sig® fast tracks evolution to
32gt/s with pci express 5.0 architecture. News Release,
June, 7, 2017.

[53] Storage networking industry association. the snia’s
i/o traces, tools, and analysis (iotta) repository. http:
//iotta.snia.org/.

[54] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In 10th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 13), pages 385–398, 2013.

[55] OpenSSD. Cosmos-openssd. https://github.com/
Cosmos-OpenSSD/Cosmos-OpenSSD.

[56] OpenSSD. Cosmos-plus-openssd. https:
//github.com/Cosmos-OpenSSD/Cosmos-plus-
OpenSSD.

[57] Oracle. Setting the database cache. https:
//docs.oracle.com/cd/E22289_01/html/821-
1274/setting-the-database-cache.html.

[58] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos
Saloustros, Manolis Marazakis, and Angelos Bilas.
Optimizing memory-mapped I/O for fast storage de-
vices. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 813–827, 2020.

[59] Neoklis Polyzotis and Yannis E Ioannidis. Speculative
query processing. In CIDR. Citeseer, 2003.

[60] Yifan Qiao, Xubin Chen, Ning Zheng, Jiangpeng Li,
Yang Liu, and Tong Zhang. Closing the b+-tree vs.
LSM-tree write amplification gap on modern storage
hardware with built-in transparent compression. In
20th USENIX Conference on File and Storage Tech-
nologies (FAST 22), pages 69–82, 2022.

[61] Ziyue Qiu, Juncheng Yang, Juncheng Zhang, Cheng
Li, Xiaosong Ma, Qi Chen, Mao Yang, and Yinlong
Xu. Frozenhot cache: Rethinking cache management

1200    2024 USENIX Annual Technical Conference USENIX Association

https://github.com/torvalds/linux/tree/master/drivers/nvme
https://github.com/torvalds/linux/tree/master/drivers/nvme
https://github.com/torvalds/linux/tree/master/fs
https://github.com/torvalds/linux/tree/master/fs
https://llvm.org/
https://llvm.org/
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-ssd-mv-ss1331-1333-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-ssd-mv-ss1331-1333-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-ssd-mv-ss1331-1333-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/storage/marvell-ssd-mv-ss1331-1333-product-brief.pdf
http://iotta.snia.org/.
http://iotta.snia.org/.
https://github.com/Cosmos-OpenSSD/Cosmos-OpenSSD
https://github.com/Cosmos-OpenSSD/Cosmos-OpenSSD
https://github.com/Cosmos-OpenSSD/Cosmos-plus-OpenSSD
https://github.com/Cosmos-OpenSSD/Cosmos-plus-OpenSSD
https://github.com/Cosmos-OpenSSD/Cosmos-plus-OpenSSD
https://docs.oracle.com/cd/E22289_01/html/821-1274/setting-the-database-cache.html
https://docs.oracle.com/cd/E22289_01/html/821-1274/setting-the-database-cache.html
https://docs.oracle.com/cd/E22289_01/html/821-1274/setting-the-database-cache.html


for modern hardware. In Proceedings of the Eigh-
teenth European Conference on Computer Systems,
pages 557–573, 2023.

[62] Yujie Ren, Changwoo Min, and Sudarsun Kannan.
CrossFS: A cross-layered Direct-Access file system.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 137–154,
2020.

[63] Rocksdb. Rocksdb. https://github.com/
facebook/rocksdb, 2023.

[64] Zhibing Sha, Jun Li, Lihao Song, Jiewen Tang, Min
Huang, Zhigang Cai, Lianju Qian, Jianwei Liao, and
Zhiming Liu. Low i/o intensity-aware partial gc
scheduling to reduce long-tail latency in ssds. ACM
Transactions on Architecture and Code Optimization
(TACO), 18(4):1–25, 2021.

[65] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao,
Xiong-Fei Cai, Seungryoul Maeng, and Feng-Hsiung
Hsu. Ftl design exploration in reconfigurable high-
performance ssd for server applications. In Proceed-
ings of the 23rd international conference on Supercom-
puting, pages 338–349, 2009.

[66] SNIA. 10 million i/ops from a single thread.
https://www.snia.org/educational-library/
10-million-iops-single-thread-2019.

[67] SNIA. Fiu traces. http://iotta.snia.org/traces/
block-io/390.

[68] Yong Ho Song, Sanghyuk Jung, Sang-Won Lee, and
Jin-Soo Kim. Cosmos OpenSSD: A pcie-based open
source ssd platform. Proc. Flash Memory Summit,
pages 1–30, 2014.

[69] Avinash Srinivasan, Jie Wu, Panneer Santhalingam, and
Jeffrey Zamanski. Deaddrop-in-a-flash: Information
hiding at ssd nand flash memory physical layer. SE-
CURWARE, 79:2014, 2014.

[70] Yuanyuan Sun, Yu Hua, Song Jiang, Qiuyu Li, Shunde
Cao, and Pengfei Zuo. SmartCuckoo: A fast and Cost-
Efficient hashing index scheme for cloud storage sys-
tems. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 553–565, 2017.

[71] Amy Tai, Igor Smolyar, Michael Wei, and Dan Tsafrir.
Optimizing storage performance with calibrated inter-
rupts. ACM Transactions on Storage (TOS), 18(1):1–
32, 2022.

[72] Andrew S Tanenbaum. Modern operating systems.
China-Pub-Com, 2002.

[73] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: Advanced photo caching on flash
for facebook. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 373–386, 2015.

[74] TechTarget. Computational storage takes
spotlight in new ngd systems ssd. https:
//www.techtarget.com/searchstorage/news/
252459062/Computational-storage-takes-
spotlight-in-new-NGD-Systems-SSD.

[75] Mahdi Torabzadehkashi, Siavash Rezaei, Vladimir
Alves, and Nader Bagherzadeh. Compstor: An in-
storage computation platform for scalable distributed
processing. In 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops
(IPDPSW), pages 1260–1267. IEEE, 2018.

[76] Mahdi Torabzadehkashi, Siavash Rezaei, Ali Heydarig-
orji, Hosein Bobarshad, Vladimir Alves, and Nader
Bagherzadeh. Catalina: in-storage processing accel-
eration for scalable big data analytics. In 2019 27th
Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), pages
430–437. IEEE, 2019.

[77] TriCache. Tricache. https://github.com/thu-
pacman/TriCache, 2022.

[78] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee,
and Tzi-cker Chiueh. A comprehensive implementa-
tion and evaluation of direct interrupt delivery. Acm
Sigplan Notices, 50(7):1–15, 2015.

[79] Lluís Vilanova, Lina Maudlej, Shai Bergman, Till
Miemietz, Matthias Hille, Nils Asmussen, Michael
Roitzsch, Hermann Härtig, and Mark Silberstein.
Slashing the disaggregation tax in heterogeneous data
centers with FractOS. In Proceedings of the Seven-
teenth European Conference on Computer Systems,
pages 352–367, 2022.

[80] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline
Trippel, Carole-Jean Wu, David Brooks, and Gu-Yeon
Wei. Recssd: near data processing for solid state drive
based recommendation inference. In Proceedings of
the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, pages 717–729, 2021.

[81] Guanying Wu and Xubin He. Delta-ftl: Improving ssd
lifetime via exploiting content locality. In Proceedings
of the 7th ACM european conference on Computer
Systems, pages 253–266, 2012.

USENIX Association 2024 USENIX Annual Technical Conference    1201

https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://www.snia.org/educational-library/10-million-iops-single-thread-2019
https://www.snia.org/educational-library/10-million-iops-single-thread-2019
http://iotta.snia.org/traces/block-io/390
http://iotta.snia.org/traces/block-io/390
https://www.techtarget.com/searchstorage/news/252459062/Computational-storage-takes-spotlight-in-new-NGD-Systems-SSD
https://www.techtarget.com/searchstorage/news/252459062/Computational-storage-takes-spotlight-in-new-NGD-Systems-SSD
https://www.techtarget.com/searchstorage/news/252459062/Computational-storage-takes-spotlight-in-new-NGD-Systems-SSD
https://www.techtarget.com/searchstorage/news/252459062/Computational-storage-takes-spotlight-in-new-NGD-Systems-SSD
https://github.com/thu-pacman/TriCache
https://github.com/thu-pacman/TriCache


[82] Suzhen Wu, Haijun Li, Bo Mao, Xiaoxi Chen, and
Kuan-Ching Li. Overcome the gc-induced perfor-
mance variability in ssd-based raids with request redi-
rection. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 38(5):822–833,
2018.

[83] Shuai Xue, Shang Zhao, Quan Chen, Gang Deng,
Zheng Liu, Jie Zhang, Zhuo Song, Tao Ma, Yong Yang,
Yanbo Zhou, et al. Spool: Reliable virtualized NVMe
storage pool in public cloud infrastructure. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 97–110, 2020.

[84] Jisoo Yang, Dave B Minturn, and Frank Hady. When
poll is better than interrupt. In FAST, volume 12, pages
3–3, 2012.

[85] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Seg-
cache: a memory-efficient and scalable in-memory key-
value cache for small objects. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 21), pages 503–518, 2021.

[86] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun,
Wenwen Chen, Zhonggang Chen, Wei Xia, Junke Li,
and Kihyoun Kwon. Reducing garbage collection over-
head in SSD based on workload prediction. In 11th
USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 19), 2019.

[87] Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen,
Junru Li, Siyu He, and Jiwu Shu. λ-IO: A unified
IO stack for computational storage. In 21st USENIX
Conference on File and Storage Technologies (FAST
23), pages 347–362, 2023.

[88] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. Spdk:
A development kit to build high performance storage
applications. In 2017 IEEE International Conference
on Cloud Computing Technology and Science (Cloud-
Com), pages 154–161. IEEE, 2017.

[89] Idan Yaniv and Dan Tsafrir. Hash, don’t cache (the
page table). ACM SIGMETRICS Performance Evalua-
tion Review, 44(1):337–350, 2016.

[90] Richard York. Benchmarking in context: Dhrystone.
ARM, March, 2002.

[91] Takeshi Yoshimura, Tatsuhiro Chiba, and Hiroshi Horii.
EvFS: User-level,Event-Driven file system for Non-
Volatile memory. In 11th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 19),
2019.

[92] Cristian Zambelli, Riccardo Bertaggia, Lorenzo Zuolo,
Rino Micheloni, and Piero Olivo. Enabling computa-
tional storage through FPGA neural network accelera-
tor for enterprise ssd. IEEE Transactions on Circuits
and Systems II: Express Briefs, 66(10):1738–1742,
2019.

[93] Jian Zhang, Yujie Ren, and Sudarsun Kannan. Fu-
sionFS: Fusing I/O operations using CISCOps in
firmware file systems. In 20th USENIX Conference
on File and Storage Technologies (FAST 22), pages
297–312, 2022.

[94] Jie Zhang, David Donofrio, John Shalf, Mahmut T Kan-
demir, and Myoungsoo Jung. Nvmmu: A non-volatile
memory management unit for heterogeneous gpu-ssd
architectures. In 2015 International Conference on
Parallel Architecture and Compilation (PACT), pages
13–24. IEEE, 2015.

[95] Jie Zhang and Myoungsoo Jung. Zng: Architecting
gpu multi-processors with new flash for scalable data
analysis. In 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA),
pages 1064–1075. IEEE, 2020.

[96] Jie Zhang, Miryeong Kwon, Sanghyun Han, Nam Sung
Kim, Mahmut Kandemir, and Myoungsoo Jung.
FastDrain: Removing page victimization overheads
in NVMe storage stack. IEEE Computer Architecture
Letters, 19(2):92–96, 2020.

[97] Jie Zhang, Miryeong Kwon, Michael Swift, and My-
oungsoo Jung. Scalable parallel flash firmware for
many-core architectures. In 18th USENIX Conference
on File and Storage Technologies (FAST 20), pages
121–136, 2020.

[98] Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying
Hu, Yongguang Ji, and Bin Cheng. OSCA: An Online-
Model based cache allocation scheme in cloud block
storage systems. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 785–798, 2020.

[99] Kan Zhong, Wenlin Cui, Xin Chen, Qiao Li, Zhe Yang,
Youyou Lu, Xiaodan Yan, Siwei Luo, Qizhao Yuan,
and Keji Huang. Revisiting swapping in user-space
with lightweight threading. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 2023.

[100] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis
Zarkadas, Jeffrey Tao, Evan Mesterhazy, Michael
Makris, Junfeng Yang, Amy Tai, Ryan Stutsman, et al.
XRP:In-Kernel storage functions with eBPF. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 375–393, 2022.

1202    2024 USENIX Annual Technical Conference USENIX Association


	Introduction
	Background
	SSD Architecture
	Kernel Storage Software Stack
	User-space Storage Software Stack

	Motivation and Challenges
	Preliminary Study
	Challenges and Key Insight

	Overview of ScalaCache
	ScalaCache Design
	Cache Management Offloading
	Concurrent I/O Processing inside CSD
	Cache Access on the Host-side
	Coordination between Host and CSDs
	Concurrent Cache Built on a CSD Array
	Implementation

	Evaluation
	Experimental Setup
	Overall Performance
	Performance Analysis
	Scalability

	Related Work and Discussion
	Conclusion

