é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Expeditious High-Concurrency MicroVM SnapStart
in Persistent Memory with an Augmented Hypervisor

Xingguo Pang, Yanze Zhang, and Liu Liu, University of Macau;
Dazhao Cheng, WuHan University; Chengzhong Xu
and Xiaobo Zhou, University of Macau
https://www.usenix.org/conference/atc24/presentation/pang

This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.
July 10-12, 2024 - Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference
is sponsored by

alllase Ellall deals
g 5l potal

'\% King Abdullah University of

Science and Technology

+ g ;EE,- . =y :,, e

Expeditious High-Concurrency MicroVM SnapStart in Persistent Memory
with an Augmented Hypervisor

Xingguo Pang', Yanze Zhang', Liu Liu', Dazhao Cheng?, Chengzhong Xu', Xiaobo Zhou'*

University of Macau

Abstract

The industry has embraced snapshotting to tackle the cold
starts and efficiently manage numerous short-lived functions
for microservice-native architectures, serverless computing,
and machine learning inference. A cutting-edge research ap-
proach FaaSnap, while innovative in reducing page faults
during on-demand paging through prefetching the profiled
working set pages into DRAM, incurs high caching overheads
and I/O demands, potentially degrading system efficiency.

This paper introduces PASS, a system leveraging byte-
addressable persistent memory (PMEM) for cost-effective
and highly concurrent MicroVM SnapStart execution. PASS,
functioning as a PMEM-aware augmented hypervisor in the
user space, revolutionizes MicroVM memory restoration. It
constructs complete address indexing of the guest memory
mapped to single-tier PMEM space, enabling zero-copy on-
demand paging by exploiting PMEM’s direct access feature.
This approach bypasses the cache layer and maintains guest
OS transparency, avoiding invasive modifications. Experi-
mental results, derived from real-world applications, reveal
that PASS substantially decreases SnapStart execution time,
achieving up to 72% reduction compared to the Firecracker
hypervisor on the PMEM filesystem, and 47% reduction com-
pared to FaaSnap. Moreover, PASS achieves double the maxi-
mum concurrency compared to both Firecracker and FaaSnap.
It improves the cost-effectiveness by 2.2x and 1.6x over the
Firecracker and FaaSnap, respectively.

1 Introduction

The cold start issue, characterized by the latency incurred dur-
ing instance initialization, significantly impacts short-lived
functions, leading to extended response times and negative
user experiences [4, 15, 23,26, 33]. To address this issue,
the industry is increasingly adopting a snapshot-based ap-
proach, particularly in MicroVM environments. This ap-
proach, known as SnapStart, leverages a hypervisor feature

* The corresponding author. Email: waynexzhou@um.edu.mo.

1

WuHan Um'versity2

to perform comprehensive memory state checkpointing of
MicroVMs, storing these states as files. SnapStart dramati-
cally reduces startup times by restoring a MicroVM’s mem-
ory from a pre-saved snapshot, thus bypassing the time-
consuming process of initializing and setting up dependencies
from scratch. Beyond accelerating startup times, SnapStart
also shortens overall execution times. This is particularly
beneficial for short-lived functions in microservice-native
architectures [13, 14, 18, 52], serverless computing frame-
works [32, 36, 44], and machine learning inference work-
loads [21,47,51], where minimizing latency is crucial.

In current production platforms, such as AWS Lambda
SnapStart [35], the MicroVM snapshot restoration process
encounters a significant performance bottleneck. This issue
stems from frequent page faults during on-demand paging,
particularly problematic within modern tiered memory archi-
tectures. While lazy loading techniques are implemented to re-
duce initialization time and improve memory efficiency, they
inadvertently cause a high frequency of page faults, which in
turn, significantly slow down function execution.

FaaSnap, a forefront research approach cited in [7], intro-
duces a non-blocking method that prefetches the profiled
working set pages into DRAM, thus accelerating MicroVM
SnapStart execution. This technique involves copying pages
in batches of 1,024 into user-space memory buffers before
remapping them, significantly reducing the overhead typically
associated with page faults. However, each prefetching cycle
involves a notable pre-warm time due to the movement of
data from disk to DRAM. This becomes inefficient, especially
for ephemeral workloads where the majority of pages are ac-
cessed only once, leading to the underutilization of resources
by caching snapshots into DRAM. Furthermore, the reliance
on DRAM caching limits the capacity for concurrent Snap-
Start executions. The intensive prefetching also demands a
higher level of I/O, in contrast to on-demand methods like
AWS Lambda SnapStart, where pages are loaded more grad-
ually. This approach, while reducing memory overhead, can
interfere with concurrent workload disk operations, poten-
tially deteriorating the overall system efficiency.

USENIX Association

2024 USENIX Annual Technical Conference 985

In this paper, we explore the potential of leveraging Per-
sistent Memory (PMEM), a byte-addressable memory device
on the memory bus, to enable on-demand and direct data
access for expeditious and high-concurrency MicroVM Snap-
Start in a cost-effective manner. Storing snapshots on single-
tier PMEM, which is inherently persistent, allows for direct
byte-addressable access. This capability makes it feasible
to proactively establish page mappings from PMEM’s mem-
ory space to a MicroVM’s guest memory. Consequently, the
MicroVM can directly access its snapshot memory pages in
PMEM through these pre-built mappings, bypassing the need
for repeated address translations and page table lookups. This
proactive method offers the opportunity to efficiently tackle
the page fault bottleneck, facilitating fast SnapStart execution.
However, fully capitalizing on the potential of PMEM for
efficient SnapStart poses three technical challenges.

Challenge I: Efficient page mapping in PMEM. Prefetching-
based methods such as FaaSnap [7] and REAP [38] are tai-
lored for tiered memory architectures and perform partial
mapping of the profiled working set pages. However, these
methods are not readily applied to single-tier PMEM systems.
In PMEM, partial mappings are dispersed non-continuously,
leading the OS to exert additional effort to merge these dis-
jointed segments into complete mappings, which could nega-
tively affect system performance. To fully leverage PMEM’s
capabilities for a MicroVM’s SnapStart, it is essential to aug-
ment the hypervisor, enabling it to efficiently map PMEM’s
memory space to the guest’s physical memory.

Challenge II: Direct data access in PMEM. Enabling the
Direct Access (DAX) feature in a PMEM filesystem improves
performance by bypassing cache intermediaries for direct
data access. However, simply mounting snapshots on a DAX-
enabled filesystem does not fully harness this advantage for
MicroVM SnapStart. As the PMEM filesystem and the Mi-
croVM each maintain separate address mapping tables for a
snapshot memory file, a semantic gap arises in page recogni-
tion, leading to expensive DAX faults during a MicroVM’s
on-demand paging. Deactivating DAX avoids these faults but
at the cost of losing PMEM’s byte-addressable direct access,
a key performance feature. Additionally, the overhead from
converting between on-disk file formats and in-memory data
structures can further impair SnapStart’s efficiency. Conse-
quently, the challenge lies in eliminating DAX faults while
still preserving the direct access capability, which is essential
for the efficient execution of MicroVM SnapStart.

Challenge IlI: Ephemeral workloads. Swapping data into
DRAM from persistent storage devices introduces substantial
overhead, particularly for non-iterative, single-access work-
loads such as those in linear DNN inference. These workloads
produce many "ephemeral pages", data accessed temporarily
and then quickly discarded. The core challenge lies in the
inefficiency of existing caching-based methods, which cre-
ate unnecessary replication overhead for these short-lived,
single-use pages. For workloads rich in ephemeral pages,

[MicroVM] MicroVM
!
DRAM DRAM
page table page table
page faultingl/ prefetching index| copy
s N ———
PMEM address
VMM VMM
. J
. .
snapshot memory snapshot memory
Disk PMEM

(a) FaaSnap (b) PASS

Figure 1: (a) FaaSnap employs page faulting or prefetching to
copy memory pages from the secondary storage into DRAM
to execute microVM workloads. (b) PASS allows for direct
access to PMEM in a single-tier memory architecture.

PMEM with its DAX capability provides an avenue for more
streamlined single-use access by avoiding the replication over-
head for data being cached into DRAM. Since ephemeral
pages gain no lasting advantage from being cached, leverag-
ing PMEM DAX could circumvent the redundancy and offer
a more suitable solution for such fleeting data interactions.

We introduce PASS, a PMEM-aware augmented hypervisor
designed to enable low-latency, high-concurrency SnapStart
execution in MicroVMs by constructing complete address
indexing of the guest memory during snapshot restoration.
Utilizing the compatibility of byte-addressable PMEM and
DRAM in accommodating the same page format, PASS al-
lows direct access to restored snapshots in PMEM through
memory load instructions. This innovative mechanism fa-
cilitates zero-copy on-demand paging, mapping guest mem-
ory directly to the PMEM in user space, bypassing both the
cache layer and the PMEM filesystem. Leveraging hardware
MMU mappings and a hash-based snapshot address table,
PASS gains precise control over the PMEM in the user space,
thereby greatly enhancing MicroVM SnapStart execution by
fully exploiting the on-demand paging capabilities of byte-
addressable PMEM in virtualized environments.

As illustrated in Figure 1, unlike FaaSnap which involves
costly data movement across different memory tiers, PASS im-
plements zero-copy on-demand paging that bypasses caching
intermediaries. PASS not only minimizes page faults by
pre-building complete guest memory mappings and lever-
aging PMEM DAX capability but also, crucially, eliminates
DAX faults. This is achieved by treating PMEM as a pri-
mary memory, rather than as a disk-style device mounted
in a PMEM filesystem. It is particularly advantageous in
memory-constrained environments where, unlike FaaSnap
which requires paging data to the storage, PASS’s on-demand
paging efficiently manages memory resources.

The key contributions of PASS are summarized as follows:

986 2024 USENIX Annual Technical Conference

USENIX Association

* PASS leverages single-tier PMEM’s byte-addressability
to proactively establish complete page mappings from
PMEM’s memory space to guest memory. This elim-
inates repetitive address translations and enables Mi-
croVMs to directly access snapshot memory pages.

* PASS employs a zero-copy, on-demand paging mech-
anism with a hash-based address table, allowing Mi-
croVMs to bypass caching layers and directly access
PMEM-stored snapshots, thereby significantly enhanc-
ing SnapStart execution and memory resource efficiency.

* PASS has been implemented through augmentation of
the Firecracker 1.4.1 hypervisor, utilizing KVM for x86
hardware-assisted virtualization. It ensures non-intrusive
and guest OS-agnostic operations. The open-source arti-
fact is available on GitHub for community use.

Our experimental framework employs the nine applica-
tions from Functionbench [17], a suite of practical function
workloads widely used in public cloud services. The exper-
imental analysis highlights PASS’s significant performance
enhancement. In SnapStart execution time, PASS surpasses
the Firecracker hypervisor on the PMEM filesystem by up
to 72% and FaaSnap by up to 47%. These improvements
are even more notable in scenarios of high concurrency or
memory pressure. Moreover, PASS achieves double the max-
imum concurrency of both Firecracker and FaaSnap, with
2.2x and 1.6x better cost-effectiveness, respectively. These
results demonstrate PASS’s potential as a highly efficient and
economically viable option for production environments.

2 Motivational Studies

2.1 Page Fault Overhead in SnapStart

In this case study, we investigate the page fault overhead in the
SnapStart execution, focusing on the approach currently used
in production platforms, AWS Lambda SnapStart integrated
within the Firecracker VMM. As in FaaSnap, we adopted the
nine applications from Functionbench [17]; see experimental
setup in 5.1. We utilized Firecracker v1.4.1 as the VMM, lever-
aging Linux KVM to create and manage MicroVMs. Each
MicroVM is configured with 1 vCPU and 1GB of DRAM, a
typical setup in a lightweight virtualization environment.
The experimental results, as depicted in Figure 2, demon-
strate that page fault overhead contributes significantly to
the SnapStart execution time, accounting for 40% to 60%
whether the snapshot memory is mounted in a PMEM filesys-
tem or SSD disks. This high overhead is primarily attributed
to the inefficiency of the lazy loading scheme in handling
page faults. A key factor behind this inefficiency is the lack
of pre-established page mappings from the host to the guest’s
physical address space before SnapStart execution. To further
underscore the significance of pre-established page mappings,

a
=]

lllm PMEM
ws SSD

o
=)

Page Fault Overhead Ratio(%)
- N w »
(=] o (=] =) o

3 S 1 i\ i
Pagera“‘:mpregs\"“pyae 10" jmad® oV fecoﬂ“‘noz\‘\a“‘e‘eo“ snpe?
c

Figure 2: Page fault overhead in SnapStart execution.

Table 1: SnapStart performance on an ephemeral workload.

Metric s .
execution time memory footprint
Approac
Lambda SnapStart 240 ms 83 MB
FaaSnap 218 ms 243 MB
DRAM-cached 204 ms 1,024 MB

we conduct a comparative analysis of end-to-end execution
latency between cached SnapStart and warm start scenarios.
Our results find that cached SnapStart is, on average, over 30%
slower than a warm start. This considerable latency difference
highlights the impact of missing mappings on performance:
without these pre-established mappings, page faults continue
to incur substantial overhead during SnapStart execution.

2.2 SnapStart under Ephemeral Workloads

Ephemeral workloads, characterized by their one-time, non-
iterative access to data, play a pivotal role in evaluating the
efficacy of MicroVM SnapStart methods. This case study fo-
cuses on comparing the execution performance of such work-
loads, a json parse function from Functionbench with a 20MB
data input, using three SnapStart approaches: Lambda Snap-
Start on a PMEM filesystem with DAX enabled, FaaSnap,
and DRAM-cached snapshots which preloads the snapshot
memory files into the in-DRAM filesystem before execution.

The performance of these approaches is quantified in Ta-
ble 1. Lambda SnapStart on PMEM completed the task in
240 ms with a 83 MB memory footprint. DRAM-cached
snapshots and FaaSnap completed the task more quickly, in
204 ms and 218 ms respectively, but used significantly more
memory, 1,024 MB and 243 MB, respectively. Despite being
slower by 15% and 9% than the DRAM-cached and FaaSnap
approaches, Lambda SnapStart on PMEM with DAX enabled
reduces DRAM usage by 92% and 66%. This marginal per-
formance latency for short-lived ephemeral workloads with
poor data reuse implies that the PMEM DAX capability is a
compelling alternative. It offers considerable memory usage
efficiency without a significant performance penalty, making
it a promising solution for SnapStart execution.

USENIX Association

2024 USENIX Annual Technical Conference 987

—v¥-- DRAM-Cached

g FaaSnap
<2500
£
£ 2000
§1500
S
1000 o= R R N SV N o
X
@ 500
0 5 10 15 20 25 30

Concurrency (# of MicroVMs)

Figure 3: SnapStart execution time under high concurrency.

2.3 SnapStart under High Concurrency

In this case study, we evaluate the performance of SnapStart
execution under various concurrency levels, comparing FaaS-
nap with DRAM-Cached snapshots using the CNN image
recognition workload. Figure 3 shows that the SnapStart exe-
cution time for DRAM-Cached warm start remains consistent
even as the number of concurrent MicroVMs increases from
1 to 32. On the other hand, the performance of FaaSnap does
not scale as well. Its average SnapStart execution time more
than triples when the number of concurrent MicroVMs is
increased from 1 to 32.

The observed decline in FaaSnap’s performance under
high concurrency levels is largely due to the interference
from the I/O-intensive prefetching process, which becomes
increasingly disruptive as more MicroVMs initiate SnapStart
concurrently. This prefetching process, a key component of
FaaSnap’s design for anticipating future snapshot data needs,
competes for resources with the ongoing memory operations
of the MicroVMs. The resulting contention adversely affects
the disk operations associated with the concurrent workload,
leading to a significant reduction in the SnapStart efficiency.

2.4 FaaSnap in a PMEM Filesystem

In this case study, we evaluate FaaSnap’s performance in a
PMEM filesystem with DAX enabled. A MicroVM is config-
ured with 2 vCPUs and 2GB of DRAM, a setup recommended
for FaaSnap’s prefetching method. The workloads are derived
from the nine applications included in Functionbench.

Figure 4 presents an intriguing finding: for most workloads,
the execution time of SnapStart when using the FaaSnap
framework on PMEM with DAX is slower compared to its
performance on SSD. This discrepancy prompted a deeper
investigation into the underlying causes.

Our profiling process revealed a key difference in the
way FaaSnap operates. On the PMEM filesystem, FaaSnap
recorded zero working set pages because of the DAX feature.
This outcome is linked to FaaSnap’s dependency on tracking
pages accessed in DRAM to determine its working set. How-
ever, in the SSD-based system, FaaSnap successfully profiled
a significant number of working set pages. This variance in
profiling capability helps explain the observed longer Snap-

1 mmm PMEM
wws SSD

%é 7 Z 7. Z

v,ess“’“ 1500 (ma9® \,\,aes a“\e\eﬂ agera““ " cognti® ot cped

-
o
®

Execution Time (ms)

=
1

Figure 4: SnapStart execution time by FaaSnap.

Table 2: Two types of kernel faults are observed: (1) page

fault triggered by KVM, and (2) DAX fault from the ext4-dax
PM filesystem due to KVM page fault handling.

Event Time Proportion
Eng-to-End Execution 517 ms 100%
Page Fault* 301 ms 58.2%
DAX Fault® 147 ms 28.4%

dMeasured by kvmm_mmu_page_fault.
bMeasured by dax_iomap_pte_fault, a part of page fault overhead.

Start execution time on PMEM with FaaSnap, highlighting
its suboptimal performance in a DAX-enabled PMEM envi-
ronment compared to SSDs. It’s important to note that if the
DAX feature is disabled, the performance characteristics of
PMEM become more closely aligned with those of SSDs.

2.5 DAX Faults in a PMEM Filesystem

In this study, we evaluate the practicality of mounting a Mi-
croVM memory snapshot on a PMEM filesystem to leverage
the PMEM DAX feature [16]. Contrary to expectations, we
find this method introduces significant page fault overhead.

As shown in Table 2, deploying a MicroVM snapshot on
a PMEM filesystem for the CNN image recognition work-
load, a function from Functionbench, results in page faults
dominating the execution time. Specifically, the handling of
page faults, indicated by the kvm_mmu_page_fault event, ac-
counts for 58.2% of the workload’s total execution time. The
DAX feature of a PMEM filesystem is designed to expedite
data access. However, during page validation, if a page is
missing, the page fault handler’s retrieval of the page via the
filesystem interface leads to conflicts with the DAX-mapped
addresses, resulting in substantial DAX faults.

These DAX faults, logged by dax_iomap_pte_fault
event, add significant overhead to the MicroVM when ac-
cessing the snapshot memory file on a PMEM filesystem. Our
measurements indicate that they contribute to 28.4% of the
workload’s execution time. In essence, DAX faults consti-
tute over half of the total page fault overhead, undermining
the expected performance benefits of using a DAX-enabled
filesystem for memory snapshots.

988 2024 USENIX Annual Technical Conference

USENIX Association

Guest Memory | T

Lo U
NS

\@ mapping

MicroVM

A

/

[

o
ﬁ‘snapshotting
I

‘ PMem
I
I Manager
|

@} init @) paging ~~@)sync
\ \ KVM

A 4
\"| Snapshot Memory |

Manager

Figure 5: PASS architecture and workflow. PASS augments
the Firecracker VMM by introducing two new components.

[Summary] The case studies reveal that 1) Page fault over-
head critically hinders SnapStart execution time; 2) The DAX
feature in PMEM can enhance memory access efficiency
for certain ephemeral workloads; 3) High concurrency sig-
nificantly degrades FaaSnap’s performance; 4) FaaSnap’s
prefetching is incompatible with PMEM DAX feature; and 5)
MicroVM memory snapshots on a PMEM filesystem under-
utilize DAX capabilities. Direct management of PMEM may
optimize SnapStart’s use of PMEM’s potential.

3 PASS Design

3.1 Overview

PASS, a PMEM-aware augmented hypervisor, is designed to
accelerate MicroVM SnapStart with high concurrency and
cost-effectiveness. It leverages the byte-addressability and
direct access capability of PMEM, bypassing the filesystem
to fully unlock the hardware’s inherent potential. PASS trans-
forms MicroVM memory restoration by constructing the com-
plete address indexes of the guest memory mapped to the
PMEM space, thus enabling zero-copy and on-demand pag-
ing for direct data access. As illustrated in Figure 5, the PASS
system comprises two principal components: the PMEM Man-
ager and the MicroVM Manager. The PMEM Manager is
tasked with allocating PMEM space for storing MicroVM
snapshot memory states and managing a hash-based snapshot
address table. The MicroVM Manager is in charge of Mi-
croVM instances, which is responsible for pre-building a full,
page-aligned address indexing for each MicroVM’s memory
after its allocation in PMEM.

The workflow of PASS involves five main steps in two
phases. At the initial phase, @ the PMEM Manager initial-
izes the whole PMEM space for direct access via memory
addresses and makes it ready for receiving and storing snap-
shotted memory. In the snapshotting phase, @ a MicroVM
directly snapshots its memory state into the PMEM space allo-

cated by the PMEM Manager, instead of storing the snapshot
memory as a file. When a VM snapshot restoration request
is received, 0 the PMEM Manager allocates the appropriate
memory space guided by its hash table for the guest memory
use. The hash table contains the function name as the key
and the base address of the snapshot memory with the offset
as the value. Next, @) the MicroVM Manager pre-builds the
full address index for the MicroVM’s guest memory. Finally,
@ the MicroVM Manager registers the constructed address
indexing in the KVM memory region for synchronization.
PASS’s integrated management of PMEM allocation and
snapshot restoration significantly reduces page fault overhead,
facilitating efficient MicroVM SnapStart execution.

3.2 Pre-fault Page Mapping

To reduce cold start latency, Firecracker VMM employs a lazy
loading strategy using the mmap () system call. This technique
defers the mapping of physical memory pages to their corre-
sponding virtual addresses until the first access attempt. The
aim is to avoid the significant increase in cold start latency
that can result from immediately populating the entire snap-
shot memory, including page tables, into DRAM. In a tiered
memory architecture, this on-demand mapping is necessary
because page tables derived directly from disk snapshots are
unable to confirm memory mappings for a running MicroVM
without inducing page faults.

As depicted in Figure 6(a), this lazy loading approach re-
serves a contiguous virtual address space without establishing
actual physical-to-virtual page mappings until a page fault
occurs. Consequently, when a MicroVM accesses memory
pages during snapshot restoration, it encounters frequent page
faults. Each fault incurs considerable overhead as the sys-
tem must navigate the page table, locate the storage location
of the page, and then populate the relevant page table entry.
This method, however, overlooks the capabilities of modern
PMEM devices, which allow data to be accessed directly,
similar to DRAM—via memory load instructions, thereby
enabling direct access through mapped memory addresses
and avoiding the substantial overheads associated with data
movement and page table entry population.

FaaSnap introduces a prefetching approach to expedite
SnapStart by creating profiles of a workload’s actively used
pages, known as the working set. The set is stored and then uti-
lized during subsequent SnapStart executions. As Figure 6(b)
demonstrates, FaaSnap preemptively fetches and maps only
these pre-identified working set pages from the snapshot mem-
ory to the guest VM’s address space, optimizing the restora-
tion process. However, this mapping strategy has a limitation.
Pages not included in the working set, the "unrecorded" pages,
do not get pre-mapped. Consequently, should a MicroVM at-
tempt to access any of these unmapped pages, it will incur
a page fault, leading to performance penalties. Therefore,
while FaaSnap optimizes SnapStart for the known working

USENIX Association

2024 USENIX Annual Technical Conference 989

Guest
Memory
continuous address space

HEEEEEEEEEEEEE
Memory

(a) page mapping in Firecracker.

DO NN vermory
BN Voo

(b) page mapping in FaaSnap.
HLDHLMDMBMMMIMIMEMDNMEMENIONENNNY ey

Snapshot
Memory

(c) page mapping in PASS.

. Snapshot Memory Page Mapped Page . Unmapped Page

— => Page Mapping
— Address Indexing

@ WorkingSet Page - Unrecorded Page

Figure 6: Page mapping in Firecracker, FaaSnap, and PASS.
(a) Firecracker: validates mappings on the first guest page
access. (b) FaaSnap: prefetches working set pages, leaving
unrecorded pages of snapshot memory unmapped. (c) PASS:
pre-faults complete address indexing for all guest pages.

set, it may not efficiently handle unexpected accesses to pages
outside of this set, resulting in potential page faults.

PASS introduces a method for pre-fault page mapping,
which involves mapping a MicroVM’s snapshot memory onto
PMEM prior to SnapStart execution. The innovation of PASS
lies in its ability to fully index the guest memory addresses
in advance, setting up all necessary mappings before the Mi-
croVM is started. As demonstrated in Figure 6(c), unlike
the partial mapping approach of FaaSnap, PASS ensures that
all snapshot memory pages, including those previously un-
mapped, are assigned to the guest memory. This compre-
hensive mapping significantly reduces the incidence of page
faults during operation.

In traditional systems, the process of mapping from a disk
snapshot to guest memory is multilayered, involving separate
logical and physical stages that can introduce latency. PASS,
however, benefits from the single-tier architecture of PMEM,
which simplifies this process. Logical mapping, the translation
of PMEM snapshot pages to guest memory addresses, and the
subsequent physical mapping occur concurrently in a single
step. This streamlined approach contrasts with FaaSnap in the
tiered memory architecture, where the logical mapping is a
distinct step from the physical allocation of host memory and
the copying of disk snapshot pages.

In PASS, address indexing is akin to OS page mapping. By
pre-building address indexes, PASS facilitates a direct transla-
tion from guest memory to host PMEM, bypassing expensive
data transfers and page table entry updates. This method of
pre-fault page mapping capitalizes on the DAX capability of
PMEM and is designed to streamline the lifetime management
and synchronization of address indexing. The development
of pre-built address indexing within PASS is underpinned by

three critical sub-components: complete address indexing to
establish all necessary mappings, robust management of the
lifespan of these indexes, and meticulous synchronization of
the indexing process. Each sub-component plays a pivotal
role in ensuring the seamless operation of the pre-fault page
mapping process in PASS.

Complete Address Indexing. Building partial address in-
dexing for a MicroVM presents challenges due to the uncer-
tainty in determining the appropriate subset of snapshot pages
to map and their corresponding address ranges. This approach
often relies on extensive profiling of access patterns, necessi-
tating thousands of executions to gain prior knowledge. This
can be especially burdensome for functions that frequently
snapshot, as rapidly changing snapshots offer little opportu-
nity for effective profiling. Moreover, if future access patterns
diverge significantly, prefetching-based methods, like those
used in FaaSnap, may lose their effectiveness.

In contrast, PASS constructs complete address indexing.
This approach is both beneficial and cost-effective, as it in-
volves merely constructing indexes without the need for
caching pages to DRAM. The indexing process is relatively
low-cost and can be completed quickly, considering that a
typical MicroVM uses only 1-2 GB of guest memory. This
is a stark contrast to the FaaSnap scheme, which involves
mapping individual sub-regions of the snapshot memory sepa-
rately before combining them into a complete mapping. Such
a process introduces considerable scheduling overhead for the
OS. PASS, however, achieves complete address indexing by
sequentially mapping guest addresses directly to PMEM. We
deliberately trigger page faults by accessing all virtual pages
in advance for establishing the actual page mappings. Thereby
PASS bypassed the significant overhead associated with the
fragmented mapping approach of FaaSnap. Consequently,
full-range indexing in PASS proves to be both practical and
advantageous for managing MicroVM memory space.

Address Indexing Lifetime Management. In PASS, ad-
dress indexing is constructed during the snapshot restoration
process. This complete set of indexes remains active through-
out the entire SnapStart execution of a MicroVM. Since the
address indexing of the snapshot memory is pre-established,
there is no need for dynamic updates during SnapStart. Upon
the shutdown of a MicroVM, the indexing is automatically
decommissioned. At this point, the MicroVM Manager com-
municates with the PMEM Manager to initiate the reclamation
of the indexed PMEM region, subsequently marking this re-
gion as "available". This efficient lifecycle management of
address indexing ensures that system resources are optimally
utilized and promptly freed when no longer needed.

Address Indexing Synchronization In PASS, the guest
memory is concurrently managed by both the VMM and the
KVM. To prevent inconsistency issues, such as violations of
the Extended Page Table, PASS implements a synchroniza-
tion mechanism. This mechanism aligns the address indexing
created in the user space with the corresponding address space

990 2024 USENIX Annual Technical Conference

USENIX Association

MicroVM
| Guest Memory |

Snapshot ‘t

Populating DAX
e - — —
User [‘\ VirtlO /) M aeger I
Space \——==g===T —_—
File API _I Load/Store
ge;"c‘: PMem-aware MEIU
P file system mappings I
r
NVDIMM
driver ost Kernel
[4 v

E)

MicroVM -> VMM -> PMem-aware filesystem -> VMM -> MicroVM
MicroVM -> VMM (PMem manager) -> MicroVM

Figure 7: Datapath for on-demand memory paging. Left: the
black lines represent the datapath in Firecracker on the PMEM
filesystem. Right: the red lines represent the datapath in PASS.

in the host kernel of the MicroVM. By bridging the seman-
tic gap between user-space and kernel-space representations
of the guest memory, this synchronization ensures that the
address indexing in PASS can be accessed both reliably and
consistently during MicroVM operations. This is crucial for
maintaining the integrity and efficiency of the memory man-
agement system in a virtualized environment.

3.3 Zero-copy On-demand Paging

PASS introduces an innovative zero-copy on-demand pag-
ing mechanism. This mechanism uniquely manages PMEM
snapshots directly in user space, bypassing the kernel. This
approach avoids traditional filesystem interactions, instead
utilizing direct hardware MMU mappings. Figure 7 illustrates
the datapath for on-demand memory paging. In Lambda Snap-
Start, as used in Firecracker on the PMEM filesystem, the
datapath involves four stages: guest memory to VMM, VMM
to PMEM-aware filesystem, back to VMM, and finally to
guest memory, with three transitions between user and kernel
spaces. In contrast, PASS simplifies this process to just two
stages: guest memory to VMM (serving as PMEM Manager)
and back to guest memory, reducing the transitions to only
one user-kernel switch. This streamlined approach enhances
efficiency and reduces latency in memory management.

The paging mechanism in PASS is zero-copy in the sense
that it involves only the copying of page indexes, not the actual
memory pages. This operation is efficiently executed by the
MicroVM, which directly accesses pages using their indexes.
The guest OS recognizes these pages as allocated by the
PMEM Manager and updates its page tables to reflect this. By
not requiring the immediate transfer of the snapshot memory

- Snapshotted & Available PMEM Manager

Snapshotted & Unavailable Address Table

\:I Empty & Available n

0x00000000

0x40000000 0x80000000 ...

Full PMEM address space

Figure 8: Snapshot memory management via the hash-based
address table in PASS’s PMEM Manager.

state into volatile DRAM, PASS significantly reduces the
overhead associated with the multi-stage memory snapshot
population, a common issue in other systems like Firecracker
VMM and FaaSnap.

The effectiveness of zero-copy on-demand paging in PASS
hinges on its proficient management of PMEM space. This is
achieved by the system’s PMEM Manager. By mapping guest
memory pages directly to snapshot memory pages, PASS cir-
cumvents the host OS’s page caching overhead. Furthermore,
by bypassing the PMEM filesystem, the system effectively
avoids DAX faults that typically occur during PMEM device
access. This bypass is achievable because the snapshot mem-
ory size remains constant, and the memory for each MicroVM
is continuously presented in PMEM, allowing effective space
management via byte-addressable memory management.

The PMEM Manager in PASS is designed for specialized
management of the PMEM device, utilizing a hash-based
snapshot address table, as depicted in Figure 8. This table
allows the user-space Manager to directly control PMEM
operations, eliminating the need for frequent transitions to
kernel space and reducing multi-stage interactions. Control
over the PMEM is established through hardware MMU map-
ping. This occurs during the PMEM space initialization phase,
wherein the PMEM Manager collaborates with the OS. The
hash-based address table plays a pivotal role by recording
the state of the PMEM and the address space of the snapshot
memory pages stored within the PMEM. This information
is crucial for the efficient execution of SnapStart. In the fol-
lowing, we will detail the PMEM management process which
includes four core functions or areas of responsibility integral
to the PMEM Manager’s operation.

PMEM Space Initialization. We configure the PMEM
device as a devdax device, facilitating direct access to the
persistent storage. The PMEM Manager, responsible for the
PMEM device space, first secures permission from the OS for
access. Subsequently, it maps the entire PMEM device space
by traversing and obtaining the hardware MMU mappings for
each physical page on the PMEM. This completion of map-
pings readies the PMEM Manager for critical functions like
snapshotting and restoring MicroVM memory states, integral
for the efficient execution of the SnapStart function.

USENIX Association

2024 USENIX Annual Technical Conference 991

Table 3: Comparison of PASS, Firecracker, and FaaSnap.

'Approach Firecracker = FaaSnap PASS
Metric

Profiling No Yes No
Mapping No Partial Complete
On-demand Yes Partial Yes
Zero-copy No No Yes
PMEM support Yes No Yes

PMEM Space Allocation. Snapshot Storage: PASS builds
upon the snapshotting mechanism of Firecracker VMM but
copies the snapshot memory to the native byte-addressable
PMEM. The PMEM Manager allocates continuous PMEM
space for storing each snapshot memory. Utilizing the hash-
based address table, it records the address space of these snap-
shots. The allocation of new or existing continuous PMEM
space depends on if the snapshot memory is newly generated
or needs to be updated with existing content. As depicted in
Figure 8, for content updates, the Manager locates and up-
dates the existing address space. During snapshotting, this
space is marked as "snapshotted and unavailable" to prevent
overlapping requests. For new snapshots, the PMEM Manager
assigns an "empty and available" continuous address space.

Snapshot restoration: To restore a MicroVM’s snapshot,
the PMEM Manager references the hash-based address table
to locate the necessary data. This enables the MicroVM to
directly interact with the mapped PMEM pages, avoiding
traps or faults. The PMEM Manager can allocate an available
PMEM region for any MicroVM at any time, marking it as
"snapshotted and available" in Figure 8. If a snapshot memory
is not recorded in the address table, the Manager does not
allocate PMEM space for its restoration.

Page-granularity Partitioning. As illustrated in Figure
8, the PMEM Manager ensures that the starting and ending
addresses of the PMEM region, which are mapped to the
guest memory, align with page size boundaries (typically
4KB). This alignment is crucial for enabling precise page-
level mapping. After the restoration of its snapshot memory,
the MicroVM’s kernel autonomously partitions this snapshot
memory into pages. This partitioning adheres to the page size
specified by the PMEM Manager, which is designed to be
identical to the page size used in the host OS. This alignment
ensures consistency in memory management across both the
MicroVM and the host system.

PMEM Space Reclamation. After the completion of the
SnapStart execution, the PMEM Manager proceeds to recycle
the PMEM space previously allocated to the MicroVM. It
then marks this space as available for future requests. This
status is indicated as "snapshotted and available" in Figure 8.

In summary, Table 3 presents a comparative analysis of
PASS, Firecracker, and FaaSnap, highlighting their key char-
acteristics relevant to SnapStart execution.

4 Implementation

We have implemented PASS by augmenting the Firecracker
1.4.1 VMM, utilizing KVM for x86 hardware-assisted virtual-
ization. This implementation includes roughly 1,300 lines
of Rust code integrated into the open-source Firecracker
VMM. Additionally, we have developed a suite of tools com-
prising 1,500 lines of Python code for performance profil-
ing and bottleneck identification in the system. The PASS
artifact is open-source for community use on GitHub at
https://github.com/DISCOPASS/PASS.

By embedding PASS functionality directly within the
VMM layer, the system can efficiently manage both PMEM
and guest memory, which is crucial for rapid snapshot booting
processes. The memory page mappings are established during
the initial launch of a MicroVM and are subsequently utilized
for SnapStart executions.

Populating Page Tables. To build the guest memory space
address index from PMEM, we create a GuestMemoryMmap
list. Each element of this list is a GuestRegionMmap struct,
comprising two main components: a struct that details the
host memory region, and a 64-bit integer representing the
guest address within the MicroVM. We iterate through this
list to populate the page mappings for user-space mem-
ory, subsequently passing them to the KVM region through
the kvm_userspace_memory_region interface in the Fire-
cracker hypervisor. This setup enables quick translation of
guest addresses to host physical addresses during MicroVM
runtime, leveraging the pre-built address index.

Address Index Synchronization. In our system, while
the KVM operates in the kernel space, the page table is con-
structed in user space. Merely populating these mappings in
user space would lead to page faults since KVM in the kernel
space is initially unaware of these mappings. To synchronize
the user-space page table with the kernel’s KVM, we utilize
the Linux userfaultfd interface, which allows us to register
the user-space mappings with the KVM. When the first page
fault occurs, the interface intervenes to establish the full map-
ping, making it recognizable by KVM. Notably, our approach
diverges from the standard usage of userfaultfd. Instead,
we employ userfaultfd solely for the initial mapping ini-
tialization. Post this setup, the userfaultfd handler exits,
avoiding ongoing operation and polling. This modification
significantly reduces synchronization overhead.

PMEM Address Management. Linux cgroups do not of-
fer a way to manage PMEM. We treat PMEM as primary
memory in devdax mode, avoiding DAX faults. This neces-
sitates the full mapping of the entire address space, as par-
tial mapping would limit page access via mmap (). We devel-
oped the PMEM Manager in PASS, assigning a unique, non-
overlapping address range to each MicroVM. For efficiency,
these addresses are aligned with the MicroVM memory size
boundaries, typically in 1GB increments. Thus, each starting
address allocated by the PMEM Manager is a multiple of 230,

992 2024 USENIX Annual Technical Conference

USENIX Association

https://github.com/DISCOPASS/PASS

This strategy effectively prevents overlapping or out-of-bound
allocations by concurrent users. As a result, PMEM can be di-
rectly mmapped and accessed safely throughout the MicroVM
lifecycle, ensuring conflict-free operation.

5 Evaluation

5.1 Experimental Setup

Testbed. Our study utilizes the Intel® Optane™ PMEM ar-
chitecture, a key player in persistent memory. It is configured
with 128 (8x16) GB DDR4 DRAM; 512GB Intel Optane
PMEM 200 series on an Interleaved four-DIMM configured
in AppDirect mode; Intel® Xeon® Gold 5317 processor X2;
Linux OS Ubuntu 22.04.3 LTS x86_64 with kernel 5.10.130.

The guest MicroVMs were allocated 1 vCPU and 1GB
DRAM each, typical of serverless configurations in AWS
Lambda. MicroVMs operate on Debian with kernel 5.14.

Prior to each test, we ensured a clean slate by dropping the
page cache for all relevant files, including the snapshot mem-
ory file and the working set file. This step is crucial to ensure
that our performance measurements accurately reflect PMEM
reads, as opposed to cached DRAM accesses. By flushing
the page cache, we eliminate potential biases from caching,
thereby benchmarking the true PMEM access performance
within the guest MicroVMs under a realistic environment.
Approaches. For comparison with PASS, we evaluated the
following approaches for SnapStart execution:

¢ Lambda SnapStart: The standard approach on SSD.

e Vanilla: Lambda SnapStart on the PMEM filesystem
(ext4-dax), enabling DAX for performance enhancement.

* FaaSnap: The state-of-the-art. It accelerates MicroVM
SnapStart by employing a prefetching technique [7].

* DRAM-Cached: While effective, it is unsuitable for pro-
duction platforms due to substantial memory demands.

Workloads As in FaaSnap, we adopted the nine applications
from Functionbench [17]. Table 4 lists these functions, which
encompass a diverse range of applications including web ser-
vices, multimedia, scientific computing, machine learning,
and graph processing. These workloads were chosen for com-
prehensive performance analysis across different scenarios.
Metrics. We evaluated the MicroVM SnapStart approaches
using the following metrics: SnapStart execution time, Con-
currency, and Cost-effectiveness.

5.2 SnapStart Execution Time

In this experiment, we evaluated the SnapStart execution time
of five different approaches across nine workloads. As shown
in Figure 9, PASS consistently outperforms or matches the
performance of FaaSnap, improving SnapStart execution time

Table 4: Functions used in the performance evaluation.

Function Description Input
Compression file compression file

Json deserialize and serialize json json
Image rotate a JPEG image JPEG
Pyaes AES encryption string
Chameleon render HTML table table size
Recognition ~ PyTorch ResNet image recognition JPEG
PageRank igraph PageRank graph size
Matmul matrix multiplication matrix size
FFmpeg apply grayscale filter video

m Lambda

w Vanilla
0 10° === FaaSnap
#=%% DRAM-Cached

102

Execution time (m

—
o

(-

1oM S ey \
o ‘press“’“ 190 (ma9® gyae cha“"‘e::cog“mo:a‘)e'a“‘(mat™ mped
!

Figure 9: SnapStart execution time of different approaches.

by 1% to 47%. Against Vanilla, PASS shows even more sub-
stantial improvements, reducing SnapStart execution times
by 3% to 72% across various workloads. Moreover, PASS
closely matches the performance of DRAM-Cached, show-
casing its efficiency. Specifically, in the workload "matmul",
which represents a worst-case scenario, PASS’s performance
was less than 3% behind DRAM-Cached, underscoring its
robustness even in the most demanding situations.

A deeper dive into PASS’s performance reveals its
strengths. For instance, in ephemeral workload "recognition",
PASS is 47% and 72% faster than FaaSnap and Vanilla, respec-
tively. FaaSnap’s prefetching technique, although innovative,
introduces contention with the process of guest memory page
fetching, particularly in the case of the single vCPU config-
uration. This contention adversely impacts the critical path
of guest memory page fetching in scenarios where caching
is less beneficial. In contrast, PASS’s approach of complete
mapping of the guest memory with zero-copy on-demand
paging circumvents this issue, thus enhancing performance,
especially in ephemeral workloads.

When compared to the DRAM-cached approach, PASS
even outperforms under certain workloads like "image" and
"recognition”. This can be attributed to two main factors:
firstly, the on-demand paging in both PMEM and DRAM
is similarly fast; secondly, the page mappings in PASS are
synchronized with the MicroVMs, providing a more efficient
operation than the DRAM-cached approach, where page map-
pings are not as promptly synchronized.

USENIX Association

2024 USENIX Annual Technical Conference 993

wwz Vanilla

== FaaSnap
st DRAM-Cached %
@29 PASS

=
o
w

Execution time (ms)
=
o
R

=
o
r

_

recog n

json read-list

Figure 10: The execution latency of ephemeral workloads.

Table 5: A microscopic performance view of four approaches.

Total time Page fault DAX fault
Vanilla 517ms 301ms 147ms
FaaSnap 441ms 218ms Oms
DRAM-Cached 361ms 144ms Oms
PASS 297ms 47ms Oms

Due to the markedly lower performance of the standard

Lambda SnapStart, it will not be included in further studies.
Ephemeral Workload. We extended the performance anal-
ysis of PASS to encompass additional categories, focusing
on the management of ephemeral workloads. Figure 10 illus-
trates that PASS outperformed Vanilla (by 56% and 72%) and
FaaSnap (by 38% and 47%) in the "json" and "recognition”
tasks. We introduced a microbenchmark, "read-list", which
entails reading a 512MB list once, page by page. This bench-
mark, depicted at the end of Figure 10, specifically evaluates
the performance of ephemeral, single-pass workloads. In the
"read-list" test, PASS demonstrated a substantial performance
increase, executing 6.38 times faster than Vanilla and 4 times
faster than FaaSnap. Overall, PASS significantly enhances
efficiency in handling short-lived, single-pass workloads.
A Microscopic View. We examined the "recognition" work-
load to provide a detailed analysis of PASS, Vanilla, FaaSnap,
and DRAM-Cached in the SnapStart execution time. As de-
tailed in Table 5, the DRAM-Cached approach incurred a
significant page fault overhead of 144ms (39.8%), markedly
higher than the 47ms (15.8%) observed in PASS. This differ-
ence is attributed to DRAM-Cached’s page mappings being
established but not fully synchronized with the KVM. More-
over, each SnapStart in DRAM-Cached necessitates remap-
ping pages due to the closure of snapshot file descriptors.
FaaSnap prefetches pages from disk to DRAM but does not
fully construct mappings to guest memory. As a result, FaaS-
nap still incurs significant page fault overhead of about 218ms,
accounting for 49.6% of its total execution time. PASS, on
the other hand, efficiently reduces page faults and avoids the
overhead associated with disk-style DAX faults. Additionally,
PASS minimizes page faults by pre-faulting page mappings
through full address indexing, resulting in a more efficient
performance than both Vanilla and FaaSnap approaches.

Py v Vanilla Y
E 103 === FaaSnap %
E s PASS ?
*10?

5 %
£

g10! % ?
u 7

) Z Z / 7= 7 Z

K

ion jgon aes e oran! oo
¥ 12} name'® jage o '

com p\,ess t_\o“ﬁmpeg

eco9™

Figure 11: SnapStart execution time under a high concurrency.

recognition

N
=1
(=]
o

wwtt Vanilla

1500 == FaaSnap

wssa PASS

1000
p %
2 4 16
ffmpeg

4000 w7 vanilla
3000 === FaaSnap

@@ PASS

= N
o o
e ©
o ©

1

Execution time (ms) Execution time (ms)
(=)

ww
N
& IS

N
-
)
w
N

2 4 8

Figure 12: SnapStart execution under different concurrency.

o

5.3 High Concurrency

Impact of High Concurrency on SnapStart. We evaluated
the performance of SnapStart approaches across the nine
workloads, increasing the number of concurrent MicroVMs
from 1 to 32. DRAM-Cached was excluded as it opposes
SnapStart’s aim to minimize warm instances and conserve
DRAM resources. Figure 11 illustrates that PASS outper-
formed Vanilla (by 1.56x to 6.38x) and FaaSnap (by 1.38x to
4x) in the execution time under the concurrency level 32.

For a detailed analysis, we focused on "recognition” and
"ffmpeg" workloads, incrementally increasing the number of
concurrent MicroVMs from 2 to 64, in powers of 2. Under
concurrency levels of 1-32, FaaSnap maintained relatively
stable execution times, unlike the other approaches. At 32
concurrent tasks, PASS accelerated the execution by 1.6x and
3.5x compared to FaaSnap and Vanilla, respectively, for the
"recognition" workload, as illustrated in Figure 12.

On the other hand, as also shown in Figure 12, in the initial
stages of the "ffmpeg" workload, under concurrency levels of
1-32, PASS did not demonstrate much performance advantage
over FaaSnap and Vanilla. The unique, resource-intensive
nature of "ffmpeg", with its frequent video data sampling
and repetitive computations, constrains the efficiency gains
achievable by PASS. However, as the concurrency increased
to 64, FaaSnap and Vanilla began to lag significantly behind
PASS, likely due to their increased memory contention and
processing overhead under high concurrency.

994 2024 USENIX Annual Technical Conference

USENIX Association

Vanilla
—e- FaaSnap

—— PASS infinity

-]
=]

[}
I
I
I
]
]

N
C

N
(=]
~

Normalized Execution Time (/PASS)

(=]

70 60 50 40 30
Available Memory (/GB)

Figure 13: Execution time under varying memory pressure.

PASS’s superior high-concurrency performance is cred-

ited to its efficient PMEM memory management for swift
allocation and zero-copy on-demand paging. This approach
is increasingly advantageous at higher concurrency levels.
When concurrency reaches 64, Vanilla and FaaSnap suffer
performance drops due to prolonged OS memory and CPU
allocation times. In contrast, PASS enables direct MicroVM
access to a PMEM memory pool, requiring only CPU real-
location between batches, thus facilitating faster MicroVM
execution even at a concurrency level of 64.
Impact of Memory Pressure on SnapStart. In this study,
we assessed the performance of PASS, FaaSnap, and Vanilla
under varying memory constraints, ranging from 64GB down
to 2GB in powers of 2. We sent 32 requests for "recogni-
tion" functions to the server under varying levels of memory
pressure. The CPU resources remained sufficient for precise
performance measurements under 32 requests.

Figure 13 illustrates the performance differences, showing
the execution times of FaaSnap and Vanilla relative to PASS.
We observed that as memory availability decreased, PASS
showed increasingly significant performance advantages over
FaaSnap, ranging by 1.48x to 30x, and over Vanilla by about
3.5x. This is particularly notable in memory-constrained envi-
ronments. For FaaSnap, when under less than 32 GB of avail-
able memory, the invocations appeared to run concurrently
from a logical perspective but had to be executed sequen-
tially in physical terms due to the memory resource limitation.
In the worst-case scenario, where only 2GB of memory is
available, FaaSnap is unable to run, and its execution time is
recorded as "infinity". In such scenarios, FaaSnap’s reliance
on paging data to storage becomes a bottleneck, whereas
PASS’s strategy of on-demand paging proves to be more effi-
cient in managing limited memory resources, thereby main-
taining higher performance levels. Unlike FaaSnap, Vanilla
also relies on PMEM DAX technology, so its performance is
not sensitive to varying memory pressure like FaaSnap. How-
ever, compared to PASS, Vanilla relies heavily on the PMEM
filesystem, which cannot fully unlock PMEM’s performance
for SnapStart applications like PASS is able to achieve.
Maximum Concurrency. To determine the maximum con-
currency that PASS, FaaSnap, Vanilla, and DRAM-Cached
can sustain, we sequentially launched MicroVMs until reach-
ing the system’s concurrency limit. During the test, the Mi-

Vanilla
=@- FaaSnap
DRAM-Cached

=- PASS

50

25

Memory Usage (GB)

0 50 100 150 200 250
of MicrovMs

Figure 14: Maximum MicroVM concurrency.

croVMs were not reclaimed. We sent individual calls to each
MicroVM for the "recognition" function, and verified their
proper operation based on the returned results. Every Mi-
croVM that successfully launched and responded was counted
as an active MicroVM. Figure 14 shows that PASS achieves
the highest concurrency in launching MicroVMs. Specifi-
cally, PASS achieves 2x the maximum concurrency compared
to both Vanilla and FaaSnap, and 2.63x improvement over
the DRAM-cached approach. Interestingly, FaaSnap outper-
forms DRAM-cached because it prefetches less memory for
each MicroVM, thereby conserving more DRAM resources.
Vanilla achieves performance nearly comparable to FaaSnap.
This is partly due to its use of PMEM DAX capability, which
helps mitigate the increased memory pressure relative to FaaS-
nap. However, Vanilla, FaaSnap, and DRAM-cached all are
ultimately constrained by the host’s DRAM capacity.

In contrast, though it utilized about 48GB DRAM due to
runtime overheads, PASS ensures that MicroVMs are not
severely constrained in DRAM resources or subject to interfer-
ence, by pre-allocating necessary PMEM space via its PMEM
manager. This strategy allows PASS to maintain higher Mi-
croVM concurrency compared to the other approaches.
Cost-effectiveness. The current unit cost of 128 GB DIMM
DDR4 DRAM is $16.61/GB, while the unit cost for 512 GB
Optane PMEM 200 series is $7.85/GB, and STAT SSD is
$0.35/GB. Considering that PASS, with approximately 48
GB of DRAM and 262 GB of PMEM, can double the max-
imum concurrency of both Vanilla and FaaSnap, its cost-
effectiveness becomes apparent. In contrast, Vanilla requires
128 GB of DRAM and 130 GB of PMEM, and FaaSnap uti-
lizes 128 GB of DRAM and 512 GB of SSD. Therefore,
based on these configurations and costs, PASS achieves 2.2x
and 1.6x improvements in cost-effectiveness over Vanilla and
FaaSnap, respectively. This significantly underscores the eco-
nomic advantage of PASS in production environments.

5.4 Discussions

Overhead. Before activating PASS, its PMEM manager must
access all PMEM data to create MMU mappings for userspace
control. This one-time setup incurs a minor initial delay, but
it is conducted offline, ensuring no impact on PASS’s online
allocation of PMEM space for SnapStart.

USENIX Association

2024 USENIX Annual Technical Conference 995

Consistency Guarantee. Lambda SnapStart ensures data con-
sistency firstly by triggering a page fault for synchronizing
the DRAM data from the disk snapshot, and secondly through
a copy-on-write mechanism that maintains data integrity dur-
ing write operations in DRAM. PASS leverages the unique
properties of PMEM to streamline this process. By utiliz-
ing a single-tier memory architecture where data is directly
accessed from PMEM, PASS eliminates the need for hierar-
chical data flushes. Thus, it simplifies the consistency model
by reducing the synchronization overhead typically required
between DRAM and other storage media.

Intel Optane PMem Discontinuation. The design principles
of PASS and its VMM enhancements are designed to be inde-
pendent of any specific persistent memory hardware. While
our experiments utilized Intel Optane PM, the architecture of
PASS is flexible and readily adapted to alternative persistent
memory technologies like CXL-attached memory.

6 Related Works

Cold Start. Various approaches have been proposed to miti-
gate cold starts, including container reuse, pre-warming, stor-
age optimization, and snapshot-based solutions. Container
reuse techniques, such as SAND [4], SOCK [28], and Pagu-
rus [24], aim to repurpose warm but idle containers from
previous function invocations. While effective in reducing
start-up time, these techniques might compromise isolation.
Pre-warming strategies, referenced in works like Orion [26]
and Icebreaker [30], involve keeping instances ready for im-
mediate use, but can be resource-intensive. Storage optimiza-
tion methods, such as studies [6, 14, 18, 25,29, 40,41, 48],
focus on efficient data management to speed up function de-
ployment. An emerging approach is SnapStart which is par-
ticularly suitable for functions executed infrequently, where
maintaining warm instances is less efficient. Our work, PASS,
focuses on SnapStart in MicroVM environments.

SnapShotting. Snapshotting captures a system’s complete
state at a specific moment, enabling efficient restoration
and replay of prior workload scenarios. Innovative snapshot-
ting works are seen in Catalyzer [12], Firecracker [3], Fire-
works [34], and FaaSnap [7], where snapshots are used to ef-
ficiently reproduce system conditions. These technologies are
often paired with record and replay tools like ClusterRR [42]
and Vidi [53] to facilitate this process. Furthermore, NVOver-
lay [43] aims to facilitate frequent snapshotting directly in
PMEM. TreeSLS [46] represents an advancement in snap-
shotting technology. By leveraging single-level non-volatile
memory, it reduces data movement overhead, significantly
improving upon earlier systems like Aurora [37].

SnapStart. Efforts to enhance snapshot restoration, particu-
larly in lightweight MicroVM environments like Firecracker,
have seen significant advancements recently. Work in [8] op-
timized AWS Lambda SnapStart through efficient datapath
management for file image transfers. While recent approaches

like FaaSnap [7] and REAP [38] have explored prefetching
memory pages to quicken SnapStart execution, they encounter
limitations due to expensive data movement between memory
tiers. This is where PASS comes into play, which leverages
PMEM'’s byte-addressability and DAX capability for faster
data access. Container-based snapshot restoration methods,
as seen in works like [6, 10, 11,39], offer effective solutions
for applications where the overhead of full virtualization are
unnecessary. Unikernels, in studies like [9,49], are optimized
for lightweight virtualization and snapshot restoration. PASS
currently focuses on the utilization of MicroVMs.

PMEM. Optimizing memory use is crucial across various
computing domain, particularly in cloud computing. Indus-
try leaders like Intel [1] and MemVerge [2], along with re-
search initiatives such as MEMTIS [20], vITMM [31], LL-
FREE [45], and TIPS [19], focus on balancing capacity and
latency by managing page migrations between DRAM and
PMEM. PASS is specifically designed for accelerating Snap-
Start in cloud services using PMEM, distinct from the broader
focus on heterogeneous memory coordination. Unlike PMEM
file mapping efforts in DaxVM [5], cfFS [22], HashFS [27],
and ArckFS [50], which optimize PMEM filesystems for
quick cloud application access, PASS uniquely maps directly
from the raw persistent device. It treats PMEM as the primary
memory source for guest applications, leveraging its speed
and persistence to enhance SnapStart performance, thereby
streamlining memory architecture more effectively.

7 Conclusion

In conclusion, PASS revolutionizes MicroVM SnapStart
execution by harnessing the full potential of PMEM’s
byte-addressable nature, delivering low-latency and high-
concurrency performance. Our innovative PMEM-aware hy-
pervisor design, with zero-copy on-demand paging and pre-
cise PMEM control through hardware MMU mappings and
a hash-based address table, eliminates the bottlenecks of tra-
ditional address translation and DAX faults. Implemented in
the Firecracker hypervisor and validated by Functionbench
workloads, PASS significantly outperforms Lambda Snap-
Start and offers a superior alternative to FaaSnap. With its
demonstrated enhancements in execution time, concurrency,
and cost-effectiveness, PASS stands as a practical approach to
efficient memory management for virtualized environments.

Looking ahead, we aim to extend PASS’s capabilities to
container and unikernel environments with additional real-
world workloads, seeking to broaden its applicability.

8 Acknowledgement

The work was supported in part by the Science and Tech-
nology Development Fund, Macao S.A.R (FDCT) projects
0078/2023/AMJ and SKL-IOTSC(UM)-2024-2026.

996 2024 USENIX Annual Technical Conference

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

[9

—

(10]

(11]
(12]

(13]

(14]

(15]

Intel memory-optimizer. https://github.com/intel/
memory-optimizer. Accessed on July 2, 2023.

MemVerge. https://www.memverge.net. Accessed on July
2,2023.

Alexandru Agache, Marc Brooker, Alexandra lordache, An-
thony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-
Maria Popa. Firecracker: Lightweight virtualization for server-
less applications. In Proceedings of the USENIX NSDI, pages
419-434, 2020.

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein,
Klaus Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt.
SAND: Towards high-performance serverless computing. In
Proceedings of the USENIX ATC, pages 923-935, 2018.

Chloe Alverti, Vasileios Karakostas, Nikhita Kunati, Georgios
Goumas, and Michael Swift. Daxvm: Stressing the limits of
memory as a file interface. In Proceedings of the IEEE/ACM
MICRO, pages 369-387. IEEE, 2022.

Mohamed Alzayat, Jonathan Mace, Peter Druschel, and Deepak
Garg. Groundhog: Efficient request isolation in faas. In
Proceedings of the ACM EuroSys, pages 398—415, 2023.

Lixiang Ao, George Porter, and Geoffrey M Voelker. FaaSnap:
FaaS made fast using snapshot-based VMs. In Proceedings of
the ACM EuroSys, pages 730-746, 2022.

Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Pi-
wonka. On-demand container loading in AW S lambda. In
Proceedings of the USENIX ATC, pages 315-328, 2023.

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran
Krieger, and Jonathan Appavoo. SEUSS: Skip redundant paths
to make serverless fast. In Proceedings of the ACM EuroSys,
pages 1-15, 2020.

Wei Chen, Rao Jia, and Xiaobo Zhou. Preemptive, low la-
tency datacenter scheduling via lightweight virtualization. In
Proceedings of the USENIX ATC, pages 251-263, 2017.

CRIU Dec. Checkpoint/restore in userspace, 2015.

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan,
Chenggang Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-
millisecond startup for serverless computing with initialization-
less booting. In Proceedings of the ACM ASPLOS, pages
467-481, 2020.

Darby Huye, Yuri Shkuro, and Raja R Sambasivan. Lifting the
veil on {Meta’s} microservice architecture: Analyses of topol-
ogy and request workflows. In Proceedings of the USENIX
ATC, pages 419-432, 2023.

Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and
scalable serverless computing for latency-sensitive, interactive
microservices. In Proceedings of the ACM ASPLOS, pages
152-166, 2021.

Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh,
Luke Darlow, Jianfeng Wang, and Adam Barker. How does it
function? characterizing long-term trends in production server-
less workloads. In Proceedings of the ACM SoCC, pages
443-458, 2023.

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

Christos Katsakioris, Chloe Alverti, Vasileios Karakostas, Kon-
stantinos Nikas, Georgios Goumas, and Nectarios Koziris. Faas
in the age of (sub-) us i/o: a performance analysis of snap-
shotting. In Proceedings of the ACM SYSTOR, pages 13-25,
2022.

Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of
workloads for serverless cloud function service. In Proceedings
of the IEEE CLOUD, pages 502-504. IEEE, 2019.

Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava
Basu. Faastlane: Accelerating Function-as-a-Service work-
flows. In Proceedings of the USENIX ATC, pages 805-820,
2021.

R Madhava Krishnan, Wook-Hee Kim, Xinwei Fu, Sumit Ku-
mar Monga, Hee Won Lee, Minsung Jang, Ajit Mathew, and
Changwoo Min. Tips: making volatile index structures persis-
tent with dram-nvmm tiering. In Proceedings of the USENIX
ATC, pages 773-787, 2021.

Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and
Young Ik Eom. Memtis: Efficient memory tiering with dy-
namic page classification and page size determination. In
Proceedings of the ACM SOSP, pages 17-34, 2023.

Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li.
TETRIS: Memory-efficient serverless inference through tensor
sharing. In Proceedings of the USENIX ATC, pages 473-488,
2022.

Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael Stumm,
and Ding Yuan. {ctFS}: Replacing file indexing with hardware
memory translation through contiguous file allocation for per-
sistent memory. In Proceedings of the USENIX FAST, pages
35-50, 2022.

Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian,
Yi Tao, Bin Zha, Qiang Wang, Weidong Han, and Minyi Guo.
RunD: A lightweight secure container runtime for high-density
deployment and high-concurrency startup in serverless com-
puting. In Proceedings of the USENIX ATC, pages 53-68,
2022.

Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao
Xu, Deze Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li,
et al. Help rather than recycle: Alleviating cold startup in
serverless computing through inter-function container sharing.
In Proceedings of the USENIX ATC, pages 69-84, 2022.

Ashraf Mahgoub, Li Wang, Karthick Shankar, Yiming Zhang,
Huangshi Tian, Subrata Mitra, Yuxing Peng, Hongqi Wang,
Ana Klimovic, Haoran Yang, et al. SONIC: Application-
aware data passing for chained serverless applications. In
Proceedings of the USENIX ATC, pages 285-301, 2021.

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar,
Sameh Elnikety, Somali Chaterji, and Saurabh Bagchi. ORION
and the three rights: Sizing, bundling, and prewarming for
serverless DAGs. In Proceedings of the USENIX OSDI, pages
303-320, 2022.

Ian Neal, Gefei Zuo, Eric Shiple, Tanvir Ahmed Khan,
Youngjin Kwon, Simon Peter, and Baris Kasikci. Rethink-
ing file mapping for persistent memory. In Proceedings of the
USENIX FAST, pages 97-111, 2021.

USENIX Association

2024 USENIX Annual Technical Conference 997

https://github.com/intel/memory-optimizer
https://github.com/intel/memory-optimizer
https://www.memverge.net

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(371

(38]

(39]

[40]

[41]

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler
Harter, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau.
SOCK: Rapid task provisioning with serverless-optimized con-
tainers. In Proceedings of the USENIX ATC, pages 57-70,
2018.

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling,
fast and slow: Scalable analytics on serverless infrastructure.
In Proceedings of the USENIX NSDI, pages 193-206, 2019.

Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Icebreaker:
Warming serverless functions better with heterogeneity. In
Proceedings of the ACM ASPLOS, pages 753-767, 2022.

Sai Sha, Chuandong Li, Yingwei Luo, Xiaolin Wang, and Zhen-
lin Wang. vtmm: Tiered memory management for virtual ma-
chines. In Proceedings of the ACM EuroSys, pages 283-297,
2023.

Mohammad Shahrad, Rodrigo Fonseca, fﬁigo Goiri, Gohar
Chaudhry, Paul Batum, Jason Cooke, Eduardo Laureano, Colby
Tresness, Mark Russinovich, and Ricardo Bianchini. Serverless
in the wild: Characterizing and optimizing the serverless work-
load at a large cloud provider. In Proceedings of the USENIX
ATC, pages 205-218, 2020.

Jiuchen Shi, Kaihua Fu, Quan Chen, Changpeng Yang, Pengfei
Huang, Mosong Zhou, Jieru Zhao, Chen Chen, and Minyi
Guo. Characterizing and orchestrating vm reservation in
geo-distributed clouds to improve the resource efficiency. In
Proceedings of the ACM SoCC, pages 94-109, 2022.
Wonseok Shin, Wook-Hee Kim, and Changwoo Min. Fire-
works: A fast, efficient, and safe serverless framework us-
ing vm-level post-jit snapshot. In Proceedings of the ACM
EuroSys, pages 663-677, 2022.

AWS Lambda SnapStart. https://docs.aws.amazon.com/
lambda/latest/dg/API_SnapStart.html, 2023.

Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Tor-
rellas. Mxfaas: Resource sharing in serverless environments
for parallelism and efficiency. In Proceedings of the ACM
ISCA, pages 1-15, 2023.

Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José
Mashtizadeh. The aurora single level store operating system.
In Proceedings of the ACM SOSP, pages 788-803, 2021.

Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard
Bugnion, and Boris Grot. Benchmarking, analysis, and op-
timization of serverless function snapshots. In Proceedings of
the ACM ASPLOS, pages 559-572, 2021.

Ranjan Sarpangala Venkatesh, Till Smejkal, Dejan S Milojicic,
and Ada Gavrilovska. Fast in-memory criu for docker con-
tainers. In Proceedings of the ACM MEMSYS, pages 53-65,
2019.

Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran
Yang, Huiba Li, Rui Du, and Yue Cheng. FaaSNet: Scalable
and fast provisioning of custom serverless container runtimes
at Alibaba cloud function compute. In Proceedings of the
USENIX ATC, pages 443-457, 2021.

Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Replayable
execution optimized for page sharing for a managed runtime
environment. In Proceedings of the ACM EuroSys, pages 1—
16, 2019.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

[53]

Wei Wang, Zhiyu Hao, and Lei Cui. Clusterrr: a record and
replay framework for virtual machine cluster. In Proceedings
of the ACM VEE, pages 31-44, 2022.

Ziqi Wang, Chul-Hwan Choo, Michael A Kozuch, Todd C
Mowry, Gennady Pekhimenko, Vivek Seshadri, and Dim-
itrios Skarlatos. Nvoverlay: enabling efficient and scalable
high-frequency snapshotting to nvm. In Proceedings of the
ACM/IEEE ISCA, pages 498-511. IEEE, 2021.

Ziqi Wang, Kaiyang Zhao, Pei Li, Andrew Jacob, Michael
Kozuch, Todd Mowry, and Dimitrios Skarlatos. Memento:
Architectural support for ephemeral memory management in
serverless environments. In Proceedings of the IEEE/ACM
MICRO, pages 122-136, 2023.

Lars Wrenger, Florian Rommel, Alexander Halbuer, Christian
Dietrich, Daniel Lohmann, Dominik Tollner, Christian Diet-
rich, Illia Ostapyshyn, Florian Rommel, Daniel Lohmann, et al.
Llfree: Scalable and optionally-persistent page-frame alloca-
tion. In Proceedings of the USENIX ATC, volume 65, 2023.

Fangnuo Wu, Mingkai Dong, Gequan Mo, and Haibo Chen.
Treesls: A whole-system persistent microkernel with tree-
structured state checkpoint on nvm. In Proceedings of the
ACM SOSP, pages 1-16, 2023.

Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie
Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li. INFless:
A native serverless system for low-latency, high-throughput
inference. In Proceedings of the ACM ASPLOS, pages 768—
781, 2022.

Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Nar-
rowing the gap between serverless and its state with storage
functions. In Proceedings of the ACM SoCC, pages 1-12,
2019.

Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen
Zhang, Huiba Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong,
and Guihai Chen. {KylinX}: A dynamic library operating
system for simplified and efficient cloud virtualization. In
Proceedings of the USENIX ATC, pages 173-186, 2018.

Diyu Zhou, Vojtech Aschenbrenner, Tao Lyu, Jian Zhang,
Sudarsun Kannan, and Sanidhya Kashyap. Enabling high-
performance and secure userspace nvm file systems with the
trio architecture. In Proceedings of the ACM SOSP, pages
150-165, 2023.

Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu Sun.
{PetS}: A unified framework for {Parameter-Efficient} trans-
formers serving. In Proceedings of the USENIX ATC, pages
489-504, 2022.

Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou.
Aquatope: Qos-and-uncertainty-aware resource management
for multi-stage serverless workflows. In Proceedings of the
ACM ASPLOS, pages 1-14, 2022.

Gefei Zuo, Jiacheng Ma, Andrew Quinn, and Baris Kasikci.
Vidi: Record replay for reconfigurable hardware. In
Proceedings of the ACM ASPLOS, pages 806-820, 2023.

998

2024 USENIX Annual Technical Conference

USENIX Association

https://docs.aws.amazon.com/lambda/latest/dg/API_SnapStart.html
https://docs.aws.amazon.com/lambda/latest/dg/API_SnapStart.html

	Introduction
	Motivational Studies
	Page Fault Overhead in SnapStart
	SnapStart under Ephemeral Workloads
	SnapStart under High Concurrency
	FaaSnap in a PMEM Filesystem
	DAX Faults in a PMEM Filesystem

	PASS Design
	Overview
	Pre-fault Page Mapping
	Zero-copy On-demand Paging

	Implementation
	Evaluation
	Experimental Setup
	SnapStart Execution Time
	High Concurrency
	Discussions

	Related Works
	Conclusion
	Acknowledgement

