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Abstract
Network performance is critical to the user experience of
many real-time interactive applications, such as video confer-
encing and live streaming. Empirical studies [46] show that
transport latency over 300ms would become unacceptable,
leading to significant user satisfaction declining. Unfortu-
nately, due to the best-effort nature of Internet, such strict per-
formance requirement can hardly be fully met. Despite con-
tinuous efforts have been made to improve the performance
of Internet (e.g., overlay routing optimization and content
delivery network), we are still far from delivering satisfying
network performance for these applications. The stringent net-
work requirements, the world-wide cross-continental network
transfers, and the large-scale Internet-wide users, together
make it a complex challenge to deliver ideal user experience
for emerging real-time applications.

In this paper, we present Panorama, a scalable system
for delivering desired user experience to real-time applica-
tions over a globally distributed overlay network. Specifically,
Panorama takes a centralized approach with end-to-end multi-
objective traffic engineering optimization to meet tight perfor-
mance requirement for real-time applications, and in the mean-
while achieving good scalability with a batch of optimizations
including intelligent measurement-based user/session group-
ing and parallelizable path calculation. We evaluate Panorama
based on 81 million selected real-world traces in deployment
environment with clients across 66 countries. The extensive
evaluation demonstrates that Panorama can support a routing
service for millions of users, while providing latency lower
than 200ms for 96.34% of the communication sessions, and
improving SLA satisfaction by up to 88.0%.

1 Introduction

In recent years, due to the rapid growth of video conferenc-
ing, online education and virtual entertainment, there has
been an increasingly strong requirement for high performance
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and scalable real-time interactive services. On the one hand,
driven by the continuous improvement in interactivity and
video quality, the emerging applications impose much more
stringent requirement on both latency (e.g., cloud game re-
quires a persistent low latency within 200ms for acceptable
user experience [14]) and throughput (e.g., 8K immersive
videos require a throughput of over 60Mbps [43]). On the
other hand, the number of interactive applications and their
users increases exponentially. For example, daily active users
of video conferencing products have increased 2,900% since
the COVID-19 pandemic [38]. This calls for a scalable solu-
tion to offer high-quality real-time services in a cost-effective
way.

It is well-known that the public Internet was originally de-
signed for connectivity as a best-effort infrastructure, and thus
can hardly meet such growing requirements. In the past few
decades, tremendous efforts have been made in designing and
building overlay networks, for the purpose of overcoming the
Internet’s inherent inefficiency and other limitations [25, 41].
On top of the overlay networks, many overlay routing schemes
are proposed to achieve better end-to-end performance than
that provided by the native Internet [1, 4, 5, 9, 22, 40]. There
are also some other efforts, such as traffic engineering (TE)
solutions [20, 21, 28, 51] and content delivery network (CDN)
systems [8, 11, 16, 33, 35].

Despite these efforts, with a more in-depth analysis, we
found that all existing solutions are ill-suited for our scenario.
The requirements of supporting low-latency interactivity, high
data volumes and Internet-wide user scale have not been
jointly considered before. Existing solutions either had un-
matched goals (e.g., SWAN [20] and B4 [21] targeted higher
cross-datacenter link utilization), or did not fully consider the
dynamic nature of interactive application from end to end
(e.g., the CDN system [11] is mainly for improving the deliv-
ery of cacheable content from servers to clients). Hence they
fell short of achieving the best possible quality-of-experience
(QoE) for emerging real-time interactive applications (more
detailed discussions in Section 2.3 and Section 7).

In summary, there are mainly three challenges in provid-
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ing desired performance for real-time interactive applications.
First, persistently meeting the requirements of high through-
put and low latency needs careful routing arrangement and
traffic scheduling. Second, the communication is often world-
wide, and thus a global joint optimization over a set of cross-
continental networks is unavoidable. Third, handling Internet-
wide millions of daily active users itself presents a fundamen-
tal scalability difficulty.

To address the above challenges simultaneously, in this
paper, we present Panorama, a scalable system for deliver-
ing desired QoE to clients of real-time interactive applica-
tions over globally distributed overlay network. At its core,
Panorama takes a centralized approach that performs end-to-
end multi-object QoE optimization by jointly coordinating
the routes along the communication paths. Panorama sys-
tematically achieves better scalability by dynamic user and
session grouping based on real-time measurements, and a
heuristic, parallelizable, but nearly optimal K-shortest path al-
gorithm to compute feasible path sets that satisfy application
requirements. Besides routing, Panorama also dynamically
engineers traffic across different paths to support bursty/high
throughput for real-time interactive applications.

Panorama has been implemented and deployed in a large-
scale overlay network testbed. We evaluate it extensively
using 81 million real-world traces in deployment environ-
ment from users across 66 countries worldwide. Our exper-
imental evaluation demonstrates the ability of Panorama to
scale to millions of users, and shows a substantial amount of
performance gain. In particular, Panorama can limit the la-
tency of 96.34% of the communication sessions below 200ms,
and 99.98% of the sessions below 300ms. Besides latency,
Panorama achieves better loss and jitter performance than
other solutions, resulting in significant service-level agree-
ment (SLA) satisfaction improvement by up to 88.0%. We
also compare Panorama with another widely-used commer-
cial real-time overlay networking service–Agora SD-RTN [1]
in a small-scale testbed with 21 users from 18 countries. The
results show that Panorama achieves lower latency than Agora
in more than 80% cases, by up to 250 ms, and 30.6% improve-
ment on the median latency. Lastly, Panorama can reduce
bandwidth cost by 44.3%, and balance load by 54.5% com-
pared with other solutions.

2 Background and Motivation

This section gives some background of real-time application
and overlay networking, and the motivation of Panorama.

2.1 Real-time interactive application
Some Internet-based applications, such as video conferencing
and online gaming, are featured by their real-time interactivity,
in the sense that the transmitted content is generated based
on users’ interaction with the applications in real-time. As
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Figure 1: Overlay networking architecture.

content is dynamic and uncacheable, the user-perceived QoE
is highly sensitive to the quality of network(s) that carries
request/response between source(s) to and destination(s).

Driven by the continuous advances in technology, aug-
mented reality (AR) and virtual reality (VR) systems are now
being integrated with traditional real-time interactive applica-
tions for realizing immersive user experience. For instance,
Meta is building its metaverse by augmenting its social media
applications with immersive video support [31]. Given this
trend, new challenges have emerged in terms of network la-
tency and throughput. For example, to achieve acceptable im-
mersive experience, a latency within 200ms and a throughput
above 60Mbps is required [14]. Delivering ideal user expe-
rience is more challenging, i.e., 40ms latency and 100Mbps
throughput is required. The scalability is also a big challenge.
It is reported that, over 600 million people use Spark AR
on Facebook and Instagram, and AR/VR will reach 25% of
Internet users by 2023 [47].

2.2 Overlay networking

An overlay network is a logical network, built on top of the
physical network, for providing richer network functional-
ity and service. Overlay networking has been proposed for
decades to overcome shortcomings of the IP routing infras-
tructures. It is first designed to improve fault recovery capa-
bility and reliability [4,34,39,44], and then studied to provide
better service performance [18, 19, 30, 42].

Figure 1 shows the architecture of a modern overlay net-
work, which consists of a number of geographically dis-
tributed overlay nodes (called Service Edge (SE)). Each SE
plays as an relay node that receives/forwards packets from/to
users or other SEs with en/decapsulation. The connectivity
among SEs can be hybrid, including private links and Internet
links.

As depicted in the figure, SEs are usually controlled by a
logically-centralized controller, and thus an overlay routing
algorithm can be used to explicitly compute a set of overlay
paths among communicating pairs. SE can do fine-grained ac-
tive network measurement, making it possible to learn latency,
bandwidth, loss and jitter of the hops along the paths connect-
ing sources and destinations. This motivates our design to
deliver desired network performance for real-time interactive
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applications via end-to-end overlay routing optimization.

2.3 Limitation of existing solutions
Routing optimization over overlay network has been explored
in a number of contexts [4, 5, 9]. Of interest to us are the ones
to improve performance of service delivery. For the consid-
erations of simplicity and scalability, existing commercially-
deployed overlay networking systems widely adopt a “nearby
access + backbone optimization” routing approach, which
we refer to as Nearby solution for short. Such systems in-
clude Agora SD-RTN [1], Akamai overlay transport net-
work [35, 41], AWS GA [15], Google Premium Network Ser-
vice Tier [37], etc. The Nearby solution works typically in the
following way: the source and destination users get associated
with the closest SEs as ingress and egress respectively, and
an optimized path between the ingress and egress is used to
traverse the backbone.

The intuition behind Nearby solution is based on the as-
sumption that the backbone network is typically private with
significant more capacity and better performance than the
public Internet. Therefore the Nearby solution can minimize
the Internet usage and takes advantage of the backbone as
much as possible. While being simple to scale, such indepen-
dent routing optimizations across multiple networks is always
non optimal from end to end, i.e., Nearby solution can fail to
satisfy the strict end-to-end performance requirement (e.g.,
200ms) for real-time interactive applications.

Via [22] is a recent research effort that takes a global view
to jointly optimize end-to-end network performance for audio
calls. It leverages client-side passive measurement, and com-
bines prediction-based filtering with an online exploration-
exploitation strategy to select desired relay paths for audio
calls. Via is the closest work to us and partially inspires our
design. The major limitation of Via is that, it was specifically
designed for voice calls, and only provides the routing so-
lution (without TE), as bandwidth and throughput were not
considered due to the low data rate of audio call streams.
Such design fails to support high-throughput applications
(e.g., VR/AR) requirement.

3 System Design

In this section, we present an overview of Panorama system,
including the architecture, workflow, and some components
to handle scalability and dynamicity.

3.1 System architecture
Figure 2 depicts the system architecture, and key components.

Panorama Global Controller. Panorama runs a logically
centralized control plane to compute and manage the overlay
routing for all communication sessions. The Global Controller
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Figure 2: System architecture of Panorama.

itself is a fault-tolerant distributed platform that is able to
survive failures of multiple data centers without interruption.

Init Mgmt manages the activities in user initialization pro-
cess, including user authorization, application management,
Route Server allocation, and so forth. User/session Grouping
divides IP addresses and sessions of the whole network into
equivalent classes in order to handle the scalability challenge.
The grouping is not static, but changes adaptively based on
measurement (details in Section 3.3). SLA and Cost Mgmt is
used for operators to configure related parameters for over-
lay routing. Overlay Routing and TE (Section 4) is the main
component in Panorama system, which computes the optimal
path allocation in real time. Backbone Routing computes the
optimal backbone path between any SE pair. This component
belongs to the previous Nearby routing solution, and now is
used as a backup in Panorama. Measurement DB, collecting
measurement from both SEs and users, creates a real-time,
topological Internet map capturing and estimating the state
and quality of any connectivity across the overlay network.
This map is an essential input for Routing and TE.

Panorama Route Server. To offload routing queries from
millions of users to the global controller, as well as to bring the
route request service closer to users, a set of Route Servers are
deployed globally. It provides two main functions: (1) cache
of readily computed grouping and routing decisions from the
Global Controller, and (2) efficient lookup service to quickly
response path requests. Most of the Route Servers are co-
located with SEs. This deployment design reduces operational
cost by efficiently reusing the overlay infrastructures and
control channels.

• Session-group Table maps any session to a session group
(SG) that the session belongs to. This table is updated by the
User/session Grouping component in the Global Controller,
at a relatively low frequency (e.g., every tens of hours).

• Group-routing Table maps an SG ID to a weighted set paths
for each SG, describing how incoming sessions in the SG
should be mapped onto those paths. This table is updated by
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the Routing and TE component, at a high frequency (e.g.,
every 5 minutes).

Panorama User. Each user exchanges path information with
Route Servers by HTTP protocols through the Path Request
and Adjustment interface (Section 3.4). This component re-
quests for an optimal path when a session is first created, and
dynamically adjusts path during the session. User Overlay
SR Encap is a data plane component that encodes an overlay
path into the header of each packet, and sends the packets
via overlay source routing (SR). User Measurement lever-
ages Real User Measurement (RUM) techniques to measure
user-side performance. The measurement results are used to
evaluate our routing approaches, and provide monitoring data
for application developers.

Overlay Service Edge (SE). Each SE runs a SE Measure-
ment module that sends active probes to other SEs and end-
points on the Internet to collect information of latency, jitter,
loss, and throughput, which is the main source of the Measure-
ment DB. Another basic component in SE is the Encap/decap
to support SR, relays packets based on the overlay path inside
the packet header.

3.2 API and Workflow

The functions of Panorama are invoked by its APIs, among
which the two routing-related APIs are Pano_INIT for ini-
tialization and Pano_TX for sending data. In every applica-
tion program context, a Panorama instance maintains the
user states and the callback functions, which is configured
by Pano_INIT during the process of initialization. To send
data by Panorama service, the application program first cre-
ates a local sockfd, and then calls Pano_TX with sockfd as
parameters to create a RTC session. In this way, the following
packets in sockfd will be associated in the session and sent
via Panorama.

The steps in following workflows are labeled in Figure 2.

0 When Pano_INIT API is first invoked, the Panorama
user interacts with the Init Mgmt component at Global
Controller to download init configurations, including the
user’s nearby Route Server address and nearby SEs (for
Nearby access), and get updated in every 30 minutes.

1 When Pano_TX API is invoked, the user sends a route
request to the Route Server, attached with the session
information.

2 Route Server looks up the two-table pipeline and deter-
mines a weighted path set.

3 A weighted random selection process, which is omitted
in the figure, eventually selects one path and returns to
the user.

4 The user then sends data via overlay SR according to
path decision.

One may notice Panorama may incur an extra latency when

IP Panaroma header Raw IP packetUDP

Figure 3: Panorama packet encapsulation.

requesting the path. In practice, such latency is negligible
because (1) the request latency is 111.67ms on average, and
each request has 200ms timeout to fall back to Nearby routing
as a backup, and (2) it is a one-shot thing when creating a
socket, and following packets in the socket do not need the
request.

Data plane forwarding via overlay source routing (SR).
As shown in Figure 3, the User Overlay SR Encap component
first derives raw IP packets from the upper applications, and
then encapsulates each packet with a private Panorama header
to encode the entire overlay route as a segment list of SE IDs.
The component also maintains an SE-FWDR-MAP table pre-
installed in the init process, and the table maps an SE ID to
a set of IPs of the forwarders within the SE. Based on the
table, a tunnel address is derived by hashing the inner packet’s
5-tuple against the IP pool of the ingress SE, so that the packet
can be sent through the underlay UDP tunnel hop by hop.

3.3 User/session grouping

In order to provide routing service for Internet-scale users, we
need to group users into groups–a user group (UG) represents
a set of users identified by an IP address space. As a common
scale-reduction technique, user grouping is widely used in
existing systems, e.g., based on geographic location in [13,26],
autonomous system number (ASN) in [22], LDNS in [11,35],
IP prefix in [23, 28] or common router in traceroute in [27].
Ideally, the users in a UG should share the same best routing
decision to a given destination. Therefore, user grouping in
Panorama must account for the deployment of SEs.

In our approach, the finest grain unit is IP /24 prefix block,
because /24 prefix is also the finest unit in BGP tables, and
users in a /24 subnet also often share similar patterns of net-
work performance. First for each /24 block, we rank all SEs
in the ascending order of latency; then we combine all /24
blocks into UGs that have the same SEs in the top-M posi-
tions in the same order. We set M = 2 for UGs inside some
countries where SEs are deployed more densely, and M = 3
for the other UGs. The user grouping can be adjusted based
on latency measurement, but in practice, we find the grouping
results are relatively stable. Panorama system covers around
750K active IP /24 blocks, and the grouping creates around
3K of UGs in the scenario with 30+ SEs.

Session group (SG). Based on UGs, SGs are simply given
by sg := (src_ug,dst_ug,service_class). As a cross product,
SG is on the order of millions. SG is the unit of granularity
that Panorama routing works at, i.e., the routing and TE com-
ponent makes routing decision for each SG. For SGs whose
src_ug = dst_ug, the routing decisions are just direct Internet
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path without using overlay, because the two ends are supposed
to be close with each other. Next section describes how to
compute routing for SGs that transmit data across different
UGs.

3.4 Path adjustment

The overlay path of each session is determined when it is
first created. But a session (e.g., a teleconference session)
may last for long time, and the originally-allocated path may
not be able to provide acceptable performance all through
the session. Therefore, Panorama must support dynamic path
adjustment capability during a session.

Specifically, to check if the current path is still feasible,
the user’s adjustment component uses a different interface
to request the whole weighted path set, instead of just one
path as when the session is created. Based on the path set, the
component checks if the current path is within the set. If it
is, the session will continue using the current path; and if no,
the adjustment component will randomly select one based on
the path weights to use. Path switching does not interrupt the
session transmission, and it can be completed fast by simply
encapsulating a different Panorama header.

Currently, the adjustment process is regularly triggered in
every 10 minutes. We find the path is not switched in most
cases, except for when the network has major degradation
or the user is moving. We plan to design more sophisticated
triggering algorithms based on network condition change and
mobility in our future work.

3.5 Fast Reroute (FRR) from Failures

To guarantee the reliability, Panorama can safely reroute pack-
ets according to different failure locations on the route.

Case 1: Ingress Hop/SE failure. In this case, the Panorama
user will fall back to use regular packet forwarding in the
underlay network without activating Panorama function.

Case 2: En-Route SE failure. When the next-hop SE in
packet header is failed, the packets will be directly sent to the
egress SE via UDP tunnels.

Case 3: Egress failure. If the egress SE is failed or cannot
be reached, the penultimate SE would serve as the egress. It
locally removes the Panorama header and directly forwards
the raw application packet to the final destination.

Case 4: Last hop failure. If the egress SE cannot reach the
destination, it then reroutes the packet to the SE closest to
the destination based on the destination IP. If the destination
itself fails or becomes isolated, the Panorama user will be
informed to deactivate Panorama function.

4 Overlay Routing and Traffic Engineering
(TE)

This section gives the details of algorithms and implementa-
tion of the Panorama Overlay Routing and TE component,
which computes the set of end-to-end paths and their weights
to be used for each SG.
Specifically, the computation process consists of three phases.
In Phase 1, based on the overlay network topology and real-
time network measurement, the Top K shortest paths (KSP) in
terms of latency connecting each pair of UGs are computed in
a scalable, heuristic manner. In Phase 2, the paths that do not
meet a given set of SLA constraints of each service class are
filtered out from the KSP, to generate a feasible path set (FPS)
for each SG. In phase 3, considering both traffic cost and
link utilization, a simplified multi-commodity flow (MCF)
problem is solved to compute the path weights in each FPS.
The three phases are executed sequentially. Since both Phase 1
and Phase 2 can be parallelized among SGs, the computation
is split and assigned to a dozen of workers, and each worker
is in charge of a subset of SGs. Phase 3 collects the results
from distributed workers and conducts joint computation at
a powerful super server. By default, the controller runs the
above computation process every 5 minutes as a scheduling
cycle. Based on computation results, the controller incremen-
tally reconfigures and updates the group-decision tables in
Route Servers. Operators can also trigger the computation
and update manually.

4.1 Phase 1: Heuristic Top K shortest path
(KSP)

As Panorama targets at providing premium real-time perfor-
mance, latency is thus the most critical metric considered
in Panorama. In this phase, the system first selects the Top
K latency-wise shortest overlay paths of each SG based on
real-time measurement.
A natural solution is to label the average latency as the weight
of each overlay link, and run a classical (Top K) shortest path
algorithm (e.g., Dijkstra, Yen [50]) to get the result. However,
even though users have been abstracted into O(K) UGs, run-
ning classical KSP algorithms at such scale in real-time is
computationally impossible.

One-big-switch abstraction of the backbone. To cope with
the scalability issue in computing KSP, we propose a heuristic
KSP algorithm tailored for Panorama. The algorithm relies on
two facts observed in the overlay network: First, the backbone
is the common part for every UG pair, so the computation
inside the backbone can be reused. Second, SGs are highly
independent with each other, so the computation for different
SGs can be parallelized. The key idea of our heuristic KSP
algorithm is to abstract the backbone as a big switch, and for
each SG, the ingress/egress SE candidates are the ports of the
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Figure 4: Example of the one-big-switch abstraction. The backbone
is abstracted as a common big switch, where the KSP of any SE
pair is computed in Step 1. The KSP of different UG pairs can be
computed separately based on the backbone KSP.

K 3 5 7 9 10
AVG(# ingress) 2.16 2.87 3.36 3.72 3.85
AVG(# egress) 2.15 2.89 3.40 3.79 3.93

Table 1: Average numbers of ingress/egress SEs in the optimal KSP
for diffferent K.

switch. Based on this abstraction, the algorithm consists of
two following steps:
• Step 1 runs a classical loop-free KSP algorithm solely in-

side the backbone, and returns K′ shortest backbone paths
between any two SEs and the corresponding performance
metrics.

• Step 2 searches the K shortest end-to-end paths for each SG
among at most Ni×Ne×K′ conjunctional paths concatenat-
ing the src-ingress, ingress-egress and egress-dst segments,
where Ni and Ne are the numbers of ingress and egress
candidates of that SG respectively.

Figure 4 shows a concrete example of the one-big-switch
abstraction idea in our heuristic KSP. The backbone can be
abstracted as a common big switch, and different SGs can be
computed separately upon it. For example sg = (ug1,ug2,∗),
its ingress candidates are {SE1,SE2} and egress candidates
{SE1,SE3}. Assuming K′ = 2 for the backbone KSP, then
the algorithm just needs to search 7 end-to-end paths, 1 using
only SE1 + 2 using (SE1,SE3) + 2 using (SE2,SE1) + 2
using (SE2,SE3), and keeps the first K paths with lowest
latency.

Theorem 1 When Ni = Ne = Ntotal_SE , and K′ ≥ K, the
heuristic KSP can always achieve the optimal.

Theorem 1 can be simply proved by route algebra, providing
a sufficient condition to achieve the optimal in our algorithm.
However, if all SEs are considered as candidates, the searching
complexity as O(Ni ∗Ne ∗K′) will become computationally
infeasible. Fortunately, we observe the following facts based
on historical trace. First, as shown in Table 1, the average
numbers of ingress/egress SEs in the optimal KSP (K ≤ 10)
is considerably small. Second, the optimal set is changed
infrequently over time (i.e., retaining for tens of scheduling
cycles) and gradually (i.e., changing only a small part at a
time). Therefore, as long as the ingress/egress candidates
are selected appropriately, the algorithm can achieve good
optimality even with limited Ni and Ne.

Ingress/egress candidate selection based on reinforce-
ment learning. We use the exploration-exploitation strategy
to identify the ingress/egress candidates. The intuition of this
strategy is to exploit currently-expected optimal decisions,
while still giving chance to explore other potentially optimal
decisions, thus adapting to dynamic change in the optimal set.
The selections of ingress and egress candidates use the same
algorithm and can be decoupled independently, so we only
describe the ingress candidate selection process from now on.
Exploration-exploitation strategy is originally proposed for
the classic multi-armed bandit (MAB) problem. Compared
with MAB, the difference in our scenario is that we need to
select Ni “arms”, instead of one each time. We use a modified
version of discounted Upper Confidence Bound (UCB) [17]
algorithm to determine the best candidates.
The discounted UCB is typically applied when the distribu-
tions of rewards remain constant over epochs and change at
unknown time instants, so the weight of each observation
keeps discounted along with time. Internet is well suited in
such situation, as average performance can be affected by
events like infrastructures outage or construction, new busi-
ness relationships between ISPs and so on.

UCBk,t = µ̂k,t +

√
ln t
nk,t

,

µ̂k,t =
1

nk,t

t

∑
s=1

γ
t−srs(i)I{SEk∈Candidates}

nk,t =
t

∑
s=1

γ
t−sI{SEk∈Candidates}.

(1)

Equation (1) shows the discounted UCB for selecting SEk as
a candidate at time t. In the equation, µ̂k,t is the discounted
empirical average, I{SEk∈Candidates} is a indicator function,
with value 1 if SEk is selected in the candidate at time s,
and γ ∈ (0,1) is time discount factor. rs(k) is the reward for
choosing SEk as a candidate at time s, which, in our sce-
nario, is defined as the fraction of KSP paths that use SEk
as the ingress. For example, assuming at time s, the candi-
dates are {SE1,SE2,SE3}, and after calculation, the KSP are
{SE1,SE1−SE2,SE2−SE3−SE4}. Therefore, rs(1) = 2/3,
rs(2) = 1/3, and rs(3) = 0.
The selection of Ni candidates is split into two parts. Firstly,
Ni/2 candidates are determined by selecting SEs with the
highest µ̂i,t , and then the other Ni/2 places are taken by the
rest SEs with the highest UCBi,t . This is because we found if
we choose the Ni candidates only based on UCBi,t , there exists
cases that none of the candidates are in the oracle optimal
set, leading to poor performance of the KSP. Our method that
selects half by µ̂i,t and half by UCBi,t , increases the possibility
of having the optimal SEs, while not giving up exploration,
thus is much safer and better.
The computation complexity of this phase mainly lies in the
searching process in Step 2. In practice, we set Ni = Ne = 4,
K′ = 5 and K = 5. Table 2 evaluates the computation time
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# SG 100 1K 10K 100K 1M
Time (s) 0.18 0.21 0.40 2.96 23.70

Table 2: Completion time of Step 2 in our heuristic KSP for different
numbers of SGs, in single-machine, single-core computation.
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Figure 5: CDF of latency increase (a) and ratio (b) between the
heuristic KSP and the optimal KSP (K = 5).

of our heuristic KSP algorithms. Note that for clear illustra-
tion, the result is computed in a single machine with a single
core, without parallelism optimization. We can tell that our
algorithm is faster than classic algorithms by orders of magni-
tudes. Even without parallelism optimization, searching mil-
lions of SGs in Step 2 can be finished in 20 seconds. The fast
execution not only stems from the significantly pruned com-
plexity, but also is because the entire algorithm is executed
by database operations, which have been greatly optimized
by well-developed software. In practice, the computation is
parallelized at multiple workers and cores, and each core is
in charge of 10s of thousand SGs on average. The backbone
KSP in Step 1 typically takes tens of milliseconds, so the
entire of Phase 1 can be completed in one second.
While significantly reducing complexity, our algorithm does
not lose optimality too much. Figure. 5 shows the evaluation
of average latency of our heuristic KSP and the optimal KSP
(K = 5) in 6.6 million of real session instances. On average,
our heuristic algorithm increases latency by only 6.67ms and
4.49% than the optimal solution. Later we can see, following
phases described in next subsections can further lower the
impact of latency increase.

4.2 Phase 2: Feasible path set (FPS) by SLA
filtering

The above end-to-end KSP is computed solely on the objec-
tive of latency, but sometimes a low-latency path may suffer
from large packet loss or jitter that hurts service performance
heavily. To avoid a path poor in any metrics, this phase ex-
cludes the paths violating the SLA requirements we assigned
for each service class, and outputs an FPS for each SG.
An SLA requirement is defined as three upper bound thresh-
olds of three performance metrics, namely, latency, jitter and
loss. The SLA requirements are different across different
service_class values, and independent to (src_ug,dst_ug).
The values in SLA requirement are configured by opera-
tors in advance, and since Panorama deployed, they have
been adjusted several times based on systematic measure-
ment, analysis and feedback of application performance. Ta-

service_class priority latency (ms) jitter (ms) loss
Premium 1 200 40 0.1
Standard 0 300 50 0.1
Default 0 400 50 0.1

Table 3: SLA requirement in current Panorama.

Figure 6: Multi-stage SLA filter.

ble 3 shows the SLA requirements used in the current version
of Panorama. The diversity in service class empowers cus-
tomers to optimize their service for performance and price.
The Premium class users pay more for using exceptional
better-performance paths with higher SLA requirement and
a higher priority in bandwidth allocation (in Phase 3). The
standard class users get control over cost, while still able to
have SLA acceptable for RTC service. The Default class is
mainly for free or trail users, and its values are also parts of
the filtering algorithm.
The SLA filter works in multiple stages as shown in Figure. 6
(a). First, the SLA filter discards unsatisfiable paths and keeps
the paths with all three metrics lower than the thresholds for
each SG. In most cases, the filter process terminates at this
stage and returns the FPS. But in some cases, due to either
network degradation or too strict threshold (especially for
long-distance SGs), there is no path in its KSP can satisfy
the SLA. To ensure the FPS is not empty, the two-metric re-
laxation stage finds the paths that satisfy both the following
conditions: 1) satisfying the SLA requirement in any two met-
rics, and 2) having the minimum value in the third unsatisfied
metric. An example of the two-metric relaxation is shown
in Figure.6 (b)). If still no path is found, the requirement is
downgraded to a lower class all the way to Rdefault. Finally, if
still no path found, the lowest-latency path is simply selected
into the FPS, and an alarm will be triggered to notify opera-
tors to check if the network has any issues. Our measurements
show that the last stage happens rarely: to only 0.47%. The
multi-stage filter ensures at least one path in the FPS.

4.3 Phase 3: Weight allocation among the
paths in FPS

After Phase 2, each SG obtains a set of paths that are expected
to meet its SLA based on measurement results. However, the
real network performance of a path may not be consistent
with, and more seriously, may be worse than the estimated
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performance, especially when the path faces major conges-
tion. Therefore, instead of giving one path to each SG, the
system computes the optimal weight allocation in FPS so
that sessions in an SG can be distributed over those paths to
minimize the congestion possibility.
In the literature, this problem is known as the multi-
commodity flow (MCF) problem: given a capacitated network
and a set of commodities (flow demands) between nodes, find
an assignment of flows to paths that optimizes for some crite-
rion, such as maximum overall throughput or max-min fair-
ness [2]. In our scenario, the parameters of the MCF problem
are as follows:
• Network graph and capacities: The nodes in the network

graph G should include all SEs and UGs. The links include
all backbone links (i.e., between SEs) and edge links (from
a UG to an SE). The capacities of backbone links are es-
timated based on measurement, reflecting the maximum
traffic that can be sent across that link. The edge links are
difficult to be measured and they share the same port to an
SE. To model the capacities of edge links, we extend the
graph to G′ by adding a virtualized node V N for each SE,
as shown in Figure 7. The link capacity from each UG to
V E is infinity, and that from V N to SE is the network card
rate.

• Commodities: The commodities are all SGs, and the de-
mand di of sgi is estimated by measuring the average traffic
rate of sgi over the last scheduling cycle.

• Constraint paths: Constraining usable paths in a given
set can greatly simplify the computation of MCF. The con-
straint paths of an SG is a modified version of FPS aligning
with the extended topology G′.

• Objectives: Since the main goal here is to balance load
and minimize congestion, the optimization objective is cost-
weighted maximum link utilization (C-MLU). Here the cost
reflects the bandwidth price variation of different links.

We solve the MCF problem using linear programing (LP),
as formulated in equation (2), with terms shown in Table 4.
Specifically, the allocation runs the LP twice, separately for
SGs in priority order. After high-priority SGs are allocated,
the allocation is removed from the remaining link capacities.

minimize C−MLU

s.t. Ue =

∑
sgi∈SG

∑
p j∈FPSi

wi j ·di

cape
,

Ue · coste ≤ C−MLU, ∀e ∈ E,

∑
p j∈FPSi

wi j = 1, ∀i|sgi ∈ SG,

wi j ≥ 0, ∀i, j|sgi ∈ SG, p j ∈ FPSi.

(2)

Optimization. The LP in our allocation is much less com-
plex than the LP used to solve traditional MCF, but solving

SE1

SE2

SE3

UG1

UG2

UG3

SE1

SE2

SE3

UG1

UG2

UG3

VN1

cap=

NIC rateInfinity

Figure 7: Extension of the topology graph to G′ with virtual nodes
to model edge link capacities. The link capacity from each UG to
V N1 is infinity, and that from V N1 to SE1 is the network card rate of
SE1.

Variable Definition

Input

G′(V,E) Extended topology graph
{cape} Capacity of links {e}
{coste} Cost of links {e}
{FPSi} FPS of {sgi}
{di} Predicted demands of {sgi}

Auxiliary
p j Path j
Ue Utilization of link e

C-MLU Maximum link utilization
Output {wi j} {weight of path p j in FPSi}

Table 4: Terminologies in equation (2).

O(million) SGs still can takes up to several minutes. To this
end, we optimize the scale by running the LP only for the
“active” SGs, which are defined as the SGs with demand over
a certain threshold. The number of “active” SGs is typically
at the scale of O(10K), which significantly speeds up the LP
process. As to the allocation for “inactive” SGs, the weights
are simply divided equally among its FPS. In addition, before
running the LP, we trim down the FPS to include at most 3
paths with minimum hops. This can also save traffic cost, as
more hops mean more traffic flowing in and out the overlay
infrastructure, resulting in more money needs to be paid for
bandwidth resource. We use a customized optimizer software
to solve the LP, and we set a time constraint (e.g., 1 minutes).
When timeout, the optimizer can returns the currently best
solution. In this way, even in the face of busy hours with sub-
stantial “active” SGs, the allocation phase can still be finished
in definite time.

5 Evaluations

This section demonstrates the benefits of Panorama in real-
world deployment environment.

5.1 Real-world deployment of Panorama
Panorama has been implemented and deployed in one of
the largest real-time overlay networks in the Internet. The
overlay network has been built since three years ago, and now
it already covers SEs deployed in 30+ locations globally, and
carries a colossal amount of real-time interacting applications
traffic for multiple content providers (CPs). Each of our SE
can access the public Internet. To provide redundancy and
inter-ISP optimization, half of SEs are BGP multihoming, i.e.,
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by peering with more than one ISPs. In each SE, multiple
forwarding instances (a.k.a. forwarders) are deployed for the
purpose of load balancing and fault tolerance. Each forwarder
is allocated with an elastic IP (EIP). SEs can process and relay
traffic at greatly high rate: a single forwarder can process 1
million packets per second, forward traffic at rate of 10 Gbps.
On top of the overlay network, the Nearby paradigm was
first adopted, until its inefficiency was recognized based on
the operation and maintenance observation. Since Dec. 2021,
Panorama has been tested and gradually used to replace the
previous Nearby-based system.
We develop a hands-on SDK for application developers to
use Panorama and the overlay networking service in a sim-
ple way. The SDK supports a variety of applications with
diverse requirements, and can be applied at different kinds of
endpoint devices including user terminals (e.g., smart phone),
PCs and backend servers (e.g., CDN, SFU and Http server).
As for compatibility, the SDK has versions supporting most
mainstream platforms, including Android, iOS, Linux, and
Web.

Evaluation methodology. To evaluate the performance of
Panorama, we collect 81 million session instances in deploy-
ment environment, where the session instances are distributed
among users in 66 countries. In order to fairly compare rout-
ing paradigms among the three: Panorama, Nearby and direct
Internet, we keep sessions only if this session’s belonging SG
has performance data for all three routing paradigms within a
5-minute window. We accept performance data of a session
either directly collected from the SDK RUM, or constructed
using network tomography [10] based on real-time measure-
ment within the belonging SG. After the selection, 6.6 million
sessions in total are eligible for participating in the evalua-
tion, and they belong to 6K “active” SGs. We also synthesize
an Oracle-latency-optimal path for each SG purely based on
measurement results.

5.2 Panorama improves network performance

Improvement on general network metrics. Figure 8 shows
the network performance CDF of three metrics respectively,
for different routing paradigms. From Figure 8 (a), we can tell
that the 50th, 90th, and 99th of Panorama is 10.2%, 17.5%, and
23.0% faster than Nearby, respectively, and 18.2%, 27.9%,
and 32.9% faster than direct Internet, respectively. Panorama
outperforms the previous Nearby approach by jointly opti-
mizing both user access and backbone, while considering link
utilization to avoid congestion. Figure 8 (b) and (c) shows
Panorama can achieve better loss and jitter performance than
Nearby and even the oracle. This is because the oracle method
is purely based on latency, but our approach accounts for mul-
tiple objectives more than just latency, thus can find paths
good in all three metrics.
One may notice that Panorama sometimes can bring negative

gains compared with direct Internet. Indeed, for some short-
distance sessions, there is no need to use the overlay network
which incurs extra latency and jitter. However, most of the
negative gains would not be perceived by users, as they happen
only in <100ms sessions. Therefore, the negative gain will not
affect the user experience. Currently, only the SGs within the
same UG are using direct routing, and in the future we plan
to design more advanced mechanism to allow more closely-
located UGs to use direct Internet.
Figure 10 shows the latency “sub optimality” of both
Panorama and Nearby, which is defined as the latency in-
crease ratio compared with the oracle optimal [22]. The me-
dians of “sub optimality” of Panorama and Nearby are 3.83%
and 16.51%, respectively. As we can see, the algorithm of
Panorama shows great efficiency by increasing optimality by
76.80%, and achieving close performance indicated by the
oracle optimal.

Improvement on SLA satisfaction. The main benefit of
Panorama is not to turn a good-quality session into a great-
quality one, but to change more bad-quality sessions into
good-quality ones, as only the latter can truly improve the
user experience to meet the SLA requirement. Figure 9 shows
the portions of bad-quality sessions under different perfor-
mance metric conditions. We can tell that Panorama reduces
>300ms sessions by 97.8% than Nearby, and 99.3% than di-
rect. More importantly, in Panorama, the experienced latency
of 96.34% sessions can be limited under 200ms, and that of
99.98% of the sessions under 300ms. Bad-quality sessions
with large loss and jitter can also be reduced to improve ap-
plication performance.
Table 5 illustrates the SLA satisfaction for different ap-
proaches. We can tell Panorama increases satisfaction by up
to 27.0%, 2.5%and 4.3% than Nearby approach, and 88.02%,
5.5% and 1.6% than direct Internet for Premium, Standard and
Default service classes respectively. Among all the classes,
Panorama improves the Premium service the most, there-
fore it plays a critical role to compete with other commercial
real-time overlay networking. According to Table 3, the SLA
requirement for Premium service is the most strict, especially
in terms of latency: 200ms already exceeds the physical limita-
tion of some SGs. By carefully picking the best-performance
paths and allocating appropriate bandwidth, Panorama can
still achieve good satisfaction, showing the ability to support
more time-sensitive applications such as online gaming.

SLA_satisi f ication(%) Panorama Nearby Direct
Premium 76.60 60.33 40.74
Standard 83.96 79.94 79.56
Default 84.05 80.59 82.69

Table 5: SLA satisfaction for different routing approaches.

Improvement by locations. A session’s network perfor-
mance can depend on the locations of its communication
pairs. As Panorama has been deployed and used around the
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Figure 8: Network performance CDF of three metrics respectively: (a) Latency, (b) Loss, and (c) Jitter.

Latency Oracle Panorama Nearby Direct

>200ms 3.55% 3.66% 23.12% 27.74%

>300ms 0.02% 0.02% 0.92% 3.03%

>400ms 0.00% 0.00% 0.03% 0.51%

Loss Oracle Panorama Nearby Direct

>20% 7.98% 5.15% 9.15% 8.72%

>50% 0.47% 0.34% 0.62% 1.79%

>70% 0.22% 0.16% 0.25% 0.55%

Jitter Oracle Panorama Nearby Direct

>50ms 1.41% 0.86% 1.34% 4.13%

>100ms 0.33% 0.24% 0.30% 0.91%

>250ms 0.07% 0.04% 0.03% 0.26%

(a) Latency (b) Loss (c) Jitter

Figure 9: Portions of bad-quality sessions under different performance metric conditions: (a) Latency, (b) Loss, (c) Jitter.
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Figure 10: Latency “sub optimality” of Panorama and Nearby.

whole world, there is abundant data to further dissect the im-
provement of Panorama by locations. We group users into
five representative regions: EA with 2 countries represents
East Asian, AS with 21 countries represents the rest of Asian
and a country in Oceania, EU with 25 countries is Europe,
AM with 9 countries include both North and South America,
and AF with 9 countries is Africa. The session performance
is then aggregated and calculated by the regions.
Figure 11 shows the average latency comparison across dif-
ferent regions. To better illustrate, we aggregate the latency
results for both directions of each region pair, e.g., AM-AF
represents session results either from America to Africa or
from Africa to America. Figure 12 shows the average latency
comparison within each region. From the figures we can tell
there is a substantial diversity on improvement across differ-
ent regions. The improvement of Panorama over Nearby can
achieve 44.61% for inter-region sessions from EU to AM, and

40.97% for intra-region sessions in EA. Besides decreasing
the average latency, Panorama can also provide more stable
performance by narrowing down the confidence interval by
up to 35.32% for AS-AM inter-region sessions, and 49.97%
for EA intra-region sessions. Both figures demonstrates that
Panorama can achieve the almost equivalent average latency
to the oracle wherever the session is sent from or to, and
Panorama can successfully control the average latency below
180 ms for any inter-region sessions, and below 150 ms for
any intra-region sessions.
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Figure 11: Latency comparison for inter-region sessions.
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Figure 12: Latency comparison for intra-region sessions.
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Comparison with another real-time overlay networks. To
better demonstrate Panorama’s practical benefit, we compare
Panorama with another widely-used commercial real-time
overlay networking service–Agora SD-RTN [1] in a small-
scale testbed. The testbed include 21 users spread over 18
countries, and each user is running on a Linux virtual ma-
chine with both Panorama and Agora SDKs installed. We
choose Agora as a comparison because Agora SD-RTN has
competitive performance in providing high QoE for real-time
communications in the world, and it has a similar deployment
scale as Panorama, so that we can minimize the infrastructure
affect and focus on comparison of the routing system. We
develop a script on each user to continuously send UDP pack-
ets to each other and echo back, using Agora and Panorama
services in turns, and we can record the latency of each UDP
packet and the associated overlay service.
Figure 13(a) shows the latency improvement (decrease) of
Panorama over Agora for the same transmission. We can tell
that both systems have their superiority in different cases re-
spectively, but in most cases (80%), Panorama outperforms
Agora, by up to 250 ms. Figure 13(b) further shows the latency
comparison of the three methods. We can observe Panorama
achieves 30.6% improvement (i.e., reduction) on median la-
tency compared to Agora. More interestingly, the 95th latency
values (in ms) of Agora, Panorama and Nearby are 268, 191
and 280 respectively, indicating Nearby is worse than Agora,
while Panorama surpasses Agora. The result demonstrates
the effect of Panorama from an algorithmic perspective rather
than an infrastructure-based one.

5.3 Panorama reduces bandwidth cost and im-
proves load balancing

The bandwidth cost of operating the overlay network is con-
fidential information, so we use the overlay hop numbers to
reflect the cost. Figure 13(c) shows the session distribution in
different hop numbers along the paths. In Panorama, about
65.1% sessions use only one hop, and about 93.1% use no
more than two hops. In Nearby approach, each session re-
quires at least two hops for ingress and egress (unless they are
the same). The average SE numbers of Panorama and Nearby
are 1.43 and 2.57. Roughly, Panorama can save bandwidth
cost by 44.3%.
Figure 14 shows the normalized load distributions in all
SEs, ordered by the traffic load. We use standard deviation
(STDDEV) to reflect the balance level, and the STDDEVs of
Panorama and Nearby are 0.10 and 0.22 respectively. As a
result, Panorama balances the load 54.5% more than Nearby,
achieving much lower and more balanced load than Nearby
approach. To clarify, SE load depends on the geographical
distribution of users and sessions (e.g., some hot spots), so
it’s impossible to accomplish equally balanced.

6 Discussion

This section summarizes some experience we learned in im-
plementing and deploying Panorama.

Public Internet overlay is an important addition to pri-
vate networks. Since building large-scale private networks
can take exponential cost for private circuits if strong network
connectivity is desired, we adopt another deployment strategy
using hybrid connectivity, where private links are used on
critical overlay links in a “circle + star”-like topology, and
Internet links connect every two SEs in a full mesh manner.
Internet link and private link can coexist between two SEs,
implemented by installing two NICs in a forwarder. Public In-
ternet overlay is a good addition to private links, with proved
benefits including offloading traffic from private links, enhanc-
ing network capacity with low cost, and providing shortcut
paths even better than private links. The hybrid networking
strategy has been used in industrial overlay networks like
SD-RTN by Agora [1], and SD-WAN service providers like
Aryaka [36]. We believe the “overlay + hybrid connectivity”
is not only a preliminary strategy for low cost networking, but
also a trend for building large-scale WANs in the future.

There is inconsistency between active measurement and
real experience. As a main input of routing and TE, the mea-
surement DB basically comes from active measurement at
SEs. However, there can be huge inconsistency between mea-
surement and real experience, e.g., the measured latency of
a link is small, but when sending real traffic, the latency be-
comes large, leading to suboptimal in routing decisions. The
purpose of Phase 3 in our computation is to alleviate the
inconsistency by minimizing congestion, but it can not be
fully eliminated. We observe the experience of UDP packets,
especially low-rate UDP packets, is mostly consistent with
measurement, but http packets may have huge difference. In
the future work, we plan to incorporate with more passive
measurement data as input, and enrich active measurement to
approximate real experience, e.g., by using the same protocol,
same encapsulation and so on.

Machine learning (ML) techniques must be used in a safe
way. Recently, substantial efforts have been devoted to use
ML techniques for traffic control. Despite the appealing bene-
fit, their practical deployment faces difficulty. For example,
Via [22] applies an online exploration-exploitation strategy to
select desired relay paths. Therefore, there inevitably will be
some “unluck” sessions in the exploration phase using unde-
sirable paths with extremely poor performance. This is against
the objective of Panorama to improve the SLA satisfaction of
all users. The fundamental reason is the unpredictable behav-
iors in ML methods. Panorama only uses ML in intermediate
processes (i.e., to provide ingress/egress candidates), thus pre-
vents such risk in final decisions. We will introduce more
ML techniques into Panorama (e.g., for user grouping and
measurement) in the future.
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Figure 13: (a) CDF of the latency improvement (decrease) of Panorama over Agora. (b) CDF of latency for Panorama, Nearby and Agora. (c)
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Figure 14: Normalized load distributions among SEs.

7 Related Work

In Section 2.3, we have extensively discussed the closely
related overlay routing solutions. Here we overview some
other related ideas which have not been discussed elsewhere.

Traffic engineering (TE). WAN TE has been an important
topic for the past decades, and tons of solutions have been
proposed in a variety of contexts. In recent years, to improve
the transmission efficiency of bulk-data transfers across dat-
acenters(DCs), a number of solutions, such as SWAN [20],
B4 [21] and SMORE [24], are proposed. Most of the solutions
under this category fall short of scalability (i.e., operating on
hundreds of nodes rather than millions), and their operation
over aggregated traffic at coarse timescale does not meet the
stringent latency requirement for each individual task. Foot-
print [28] and Entact [51] are two TE schemes for delivering
online services over integrated infrastructure which consists
of multiple networks. They consider the traffic of mixed on-
line services and mainly target the user-DC scenario, rather
than the scenario to end-to-end deliver real-time interactive
content.

Content delivery network (CDN) system. Another typical
routing system that support Internet-scale users is CDN. For
example, Akamai’s end-user mapping system [11] and Mi-
crosoft’s Odin system [8] use the DNS protocol to route
each client’s request to a “proximal” server that serves the
requested content. Unfortunately, the techniques to deploy

edge servers close to users for caching static content does not
fit our problem of end-to-end delivering real-time content.

Machine Learning in TE. Following the success of Deep
Learning in many fields of computing, it is inevitable that a
significant amount of effort is devoted to researching its ap-
plication in the field of network TE in the past few years [48].
MARL-GNN [6] proposes an ML-based TE framework that
combines RL and GNN to generate good OSPF link weight
settings to minimize MLU with shortest path routing. Many
of the research efforts are dedicated to leveraging DRL, a
DL technique that utilizes historical information for future
decision-making. DRL has been applied to many different TE
scenarios, including intradomain TE [7, 45, 49], Software De-
fined Wide Area Networks (SD-WAN) [29, 32], SDN-based
Optical Transport Network [3], and Data Center TE [12]. How-
ever, these line of work are seldomly deployed in practice,
as the performance of the ML-based method heavily hinges
on arbitrarily determined reward values, which may output
unpredictably bad decisions as we discussed in Section 6.

8 Conclusion

Network performance is critical to Internet real-time appli-
cations nowadays, yet still far from satisfiable under the tra-
ditional Internet framework. Given its importance, substan-
tial efforts in both infrastructure and algorithms have been
devoted to improving the network performance. Despite con-
siderable progress, existing approaches still suffer from major
limitations in taking full use of the infrastructure, mainly be-
cause of the scalability issue in handling millions of global
users. This paper presents Panorama, which pushes the SD
control domain to every end user, and optimizes routing
in user-backbone integration. Panorama systematically ad-
dresses the scalability challenge in multiple dimensions with
coherent combination, and has been proved to perform well
in real-world environment. While our approach does not gen-
eralize to all WANs or overlay networks, we hope that our
experience summarized from our practice with real systems
can inform future work in these domains.
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