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Abstract
Multi-tenancy is essential for unleashing SmartNIC’s poten-
tial in datacenters. Our systematic analysis in this work shows
that existing on-path SmartNICs have resource multiplexing
limitations. For example, existing solutions lack multi-tenancy
capabilities such as performance isolation and QoS provision-
ing for compute and IO resources. Compared to standard
NIC data paths with a well-defined set of offloaded functions,
unpredictable execution times of SmartNIC kernels make
conventional approaches for multi-tenancy and QoS insuffi-
cient. We fill this gap with OSMOSIS, a SmartNICs resource
manager co-design. OSMOSIS extends existing OS mech-
anisms to enable dynamic hardware resource multiplexing
of the on-path packet processing data plane. We integrate
OSMOSIS within an open-source RISC-V-based 400Gbit/s
SmartNIC. Our performance results demonstrate that OSMO-
SIS fully supports multi-tenancy and enables broader adoption
of SmartNICs in datacenters with low overhead.

Network Host

PUs

data path

Conventional
NIC path

sNIC path

DMA read/write

Egress send
NIC

packets
compute

Non deterministic work

Deterministic work

Figure 1: A predictable NIC data path versus the unpre-
dictable sNIC kernel execution.

1 Introduction

Network data plane design has undergone two decades
of exciting research, leading to the achievement of sub-
microsecond packet processing host latency [8, 25, 27, 38,
41,47–49,63,75,79,86]. SmartNICs (sNICs) have further im-

proved processing times by enabling direct in-network packet
processing, thereby reducing data movement [45]. sNICs
started a trend in datacenter networking acceleration [50, 96]
similar to the GPU trend in high-performance computing [98].

sNICs enable running kernels on programmable, energy-
efficient cores tailored for packet processing and integrated
within the host network interface card (NIC) System-on-Chip
(SoC). These cores are attached directly (i.e., on-path) to the
datacenter Ethernet or InfiniBand link [5, 57]. Such a design
reduces the latency of some applications since the sNIC can
process the packets in the network [61] and reply directly
without moving the packets to/from the host OS network-
ing stack [1, 34]. This enables the offload and acceleration of
several workloads such as distributed learning gradients aggre-
gation [93, 98], disaggregation and storage [29, 33, 52, 65, 66],
Key-Value Stores (KVS) [78, 92, 104], Remote Procedure
Calls (RPCs) [14, 56, 60, 82, 102], network protocols and
telemetry [14, 16, 23, 42, 67, 89, 102, 103].

Network resources in a datacenter are multiplexed between
tenants through a virtualization layer [12, 18, 54, 69, 106].
However, processing user code by sNICs brings a set of con-
siderable resource management issues. As Figure 1 shows,
NICs have three resources that must be multiplexed: com-
pute, Direct Memory Access (DMA) bandwidth, and egress
bandwidth. The traditional NIC data path only forwards pack-
ets to host memory and executes simple operations with a
predictable and bounded complexity. Typically, the number
of incoming bytes equals the number of outgoing bytes, and
NICs do not run any elaborate processing on them. In con-
trast, sNICs can execute unpredictably complex stateful of-
floads [77]. For example, heavily used in machine learning [9]
Allreduce operates on the payload and is compute-bound,
while storage offloading predominantly accesses host memory
and is DMA/IO bound. sNICs need to operate on uncoordi-
nated, non-deterministic, and concurrent data streams while
meeting Service Level Objective (SLO) policies set by the
administrator.

Achieving a fair resource multiplexing for sNICs is chal-
lenging. sNICs combine characteristics of an accelerator, such
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as a GPU, and a traditional NIC. While this provides the afore-
mentioned benefits, the resource management of neither is
directly applicable due to the unique sNIC requirements (Sec-
tion 3). Conventional RDMA NICs (rNICs) have bounded and
predictable workloads (e.g., atomics, scatter-gather RDMA
reads/writes) and often use link bandwidth allocation as a
"just enough" mechanism for resource isolation and Quality-
of-Service (QoS) measure between tenants. Although rNICs
exhibit bounded and foreseeable behavior, achieving fairness
is challenging [100] even within their simpler than sNIC
context. In contrast, accelerators fall entirely under the gover-
nance of the host OS, which oversees all active kernels [51,53].
These accelerators neither generate nor receive events beyond
instructions from accelerated applications, setting them apart
from sNICs capable of executing arbitrary kernels indepen-
dently of the host’s involvement.

Furthermore, for sNICs to sustain the sub-nanosecond
packet arrival intervals at fully utilized 400Gbit/s link (Sec-
tion 3, [28]), resource multiplexing must be conducted fast.
On-path sNICs have much stricter compute and buffering
constraints than traditional NICs and accelerators due to the
packet rate and the three multiplexed resources (compute,
DMA, and egress). This issue is even more critical as network
rates constantly increase and are expected to exceed Terabit
per second by 2025 [15, 24, 36, 95].

A common approach to effectively manage processing
at high packet arrival rates involves implementing resource
management in hardware [2, 4, 28]. This is usually accom-
plished through scheduling policies such as Weighted Round
Robin (WRR), which divide link bandwidth among ten-
ants [20, 21, 100]. However, because sNICs have varying
application kernel requirements, incorporating WRR for com-
pute resource allocation can lead to unfairness. For example,
as we show in Section 3, if one application (e.g., Allreduce)
is compute-bound and takes twice as much compute time as a
non-compute-bound application (e.g., KVS), the former will
be able to process twice as many bytes. Other recently pro-
posed methods for compute isolation in sNICs are not optimal
for all scenarios as they are either non-work conserving [32]
or rely on the host CPU as a fallback path [60].

We tackle these issues by introducing OSMOSIS
(Operating System Support for Streaming In-Network
Processing) (Section 4). OSMOSIS is a lightweight sNIC
management layer that supports performance-critical data-
plane management in hardware and non-critical management
tasks in a flexible software runtime. OSMOSIS is a fair, work-
conserving sNIC resource manager that requires minimal
hardware footprint and employs expressive yet simple Ser-
vice Level Objective (SLO) semantics. In OSMOSIS, the
sNIC is exposed to the tenant as Single-Root Input/Output
Virtualization (SR-IOV) Virtual Function (VF). This allows
the administrator to allocate proportionally more compute
processing units, egress bandwidth, and DMA bandwidth to
VFs associated with high-priority tenants.

We implement (Section 5) and evaluate (Section 6) OS-
MOSIS on top of one of the available open-source on-path
sNIC architectures, PsPIN [19,35]. PsPIN is based on energy-
efficient silicon-proven RISC-V cores. In our setup, PsPIN is
the hardware backbone for packet processing using kernels
written in C. Our performance evaluation focuses on typi-
cal datacenter workloads such as storage IO and in-network
Allreduce, and shows that OSMOSIS provides comprehensive
support for multi-tenancy without sacrificing performance.

In summary, we make the following contributions:

1. sNIC multi-tenancy: We show typical multi-tenancy sNIC
problems and define a set of requirements for high-
performance sNICs. These requirements serve as a guide-
line for developing sNICs that can meet the needs of di-
verse workloads and tenant environments (Section 3).

2. OSMOSIS: We introduce OSMOSIS, a lightweight open-
source sNIC resource manager based on fair and work-
conserving scheduling policies. OSMOSIS is a minimal
hardware footprint solution to the problem of fair and effi-
cient resource sharing in multi-tenant sNICs with diverse
application needs (Section 4).

3. Evaluation: We implement OSMOSIS in an open-source
on-path 400Gbit/s sNIC by extending it with schedulers
and a control path prototype (Section 5). We use this
implementation to verify and evaluate OSMOSIS. We
demonstrate how it solves the defined sNIC problems
and handles multi-tenant applications fairly with varying
resource requirements while minimizing tail latency (Sec-
tion 6).

2 Background

From the system’s perspective, we abstract out the sNIC as a
packet processing accelerator between the network fabric and
the host CPU, GPU, or FPGA. Existing sNICs can be classi-
fied broadly into two categories: off-path and on-path [60].

Off-path sNICs add an entire CPU complex to the network
card, often running a full operating system (e.g., Linux). This
design enables a management plane based on receive side
scaling (RSS) to be conveniently implemented [8, 64, 79].
However, they often suffer from lower performance in terms
of latency, bandwidth, and packet processing rates due to their
system design, which closely resembles the CPU-centered
host architecture (e.g., Broadcom Stingray and Nvidia Blue-
field data processing units (DPUs) both feature ARM SoCs
with PCIe and DRAM).

On-path sNICs share packet input buffers with processing
units (PUs) tailored for highly-parallel packet processing (e.g.,
LiquidIO [62], Netronome [71], PsPIN [19], Data Path Accel-
erator (DPA) introduced in Bluefield 3 DPU [17, 72, 73]). On-
path sNICs typically provide programming API for writing
kernels that process traffic on PUs, on per-packet (PsPIN [19])
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Figure 2: Schematic overview of on-path sNIC architectures.
Red arrows indicate the data path and blue arrows correspond
to the control/management path.

and/or per-message granularity (Bluefield-3 FlexIO API [72]).
PUs typically feature three layers of the memory hierarchy,
e.g., L1 single-cycle access scratchpad, L2 memory with ac-
cess latency of 15-50 cycles, and host side memory (either
off-path SoC or host CPU memory). L1 and L2 memories
could be organized as multi-level caches (e.g., LiquidIO) or
be explicitly managed by the user (e.g., PsPIN).

To our knowledge, OSMOSIS is the first solution to achieve
fair resource multiplexing for on-path sNICs in a multi-tenant
context. We selected one of the possible synthesizable open-
source on-path sNIC implementations available in the litera-
ture, namely, PsPIN. PsPIN is open-source, based on energy-
efficient silicon-proven RISC-V cores, and allows users to
write packet processing kernels in C and explicitly manage
sNIC memory [19]. OSMOSIS could have been equivalently
implemented in any other on-path framework [62,71,72]. For
example, we discuss how OSMOSIS can be supported with
BlueField-3 DPA in Section 5.3.

2.1 Challenges of Resource Isolation
We generalize on-path sNIC architecture in Figure 2. Packets
decoded from the sNIC physical layer (e.g., Ethernet MAC)
arrive at the sNIC inbound engine 1 and are initially stored
at the L2 packet buffer organized as a set of per-application
first-in-first-out (FIFO) queues. Next 2 , packets are sched-
uled for processing on available PUs where kernel execution
is initiated 3 . Kernels execute using three resources: PUs,
DMA, and Egress bandwidth. Each application uses these
resources differently (e.g., compute- or IO-bound) depend-
ing on its needs. In general, these resources can be used as
follows:

3 PUs: computing (e.g., hashing the packet header or sum-
ming values in an Allreduce reduction);

4 DMA engine: transferring data to read/write in sNIC
memory (e.g., KVS cache in sNIC L2 memory) or host
memory (e.g., KVS cold storage);

5 Egress engine: sending packet replies (e.g., reply to a
read request with a value from the KVS cache).

Metrics to measure the quality of resource multiplexing
by datacenter tenants, known as Service-Level Objectives
(SLOs), are typically tied to the conventional NIC path dis-
played in Figure 2 by considering tail latency [18] and
throughput [70, 88]. However, these SLOs do not consider
the sNIC data path with its unique resource multiplexing dis-
cussed in Section 3, such PU time, tail latency of DMA over
host interconnect, and buffer space. Existing proposals have
only partially addressed this issue by introducing performance
isolation mechanisms, such as multi-level packet schedul-
ing [28, 60, 91] and static resource allocation [32] of shared
resources (see Section 7). Yet, due to the kernels’ dynamic
and unpredictable nature, static assignments do not solve the
problem. OSMOSIS fills this gap by providing bounded guar-
antees for the sNIC resource availability to tenants using
dynamic resource multiplexing.

3 Multi-Tenant sNICs

Datacenter applications differ in their resource requirements,
thus, leading to different resource multiplexing bottlenecks.
Our quantitative analysis highlights these issues in multi-
tenant setups of existing sNIC stacks [19, 72], yielding sNIC
multi-tenancy requirements. These insights directly led to the
microarchitectural and software choices for OSMOSIS. We
use a 400 Gbit/s link for all experiments (more details on the
setup in Section 6).

Per-packet time budget (PPB): While studies of datacenter
traffic show that only a fraction of the established connections
actively exchange data at any given time [10,84,101], they can
still saturate the link bandwidth. To analyze the implications
of this for sNICs we define per-packet time budget (PPB)
using PU count N, packet size P, and link bandwidth B as
PPB(N,P,B) = N × (P/B). In this case, we model the sNIC
as a M/M/m queue where PPB defines the condition which
needs to be satisfied for the queue to be stable [13]1. To
be more specific, PPB represents how long the sNIC can
process a packet until the next one arrives, assuming a fully
utilized link. If PPB is exceeded, the per-application ingress
queue will eventually fill up during transient traffic bursts
leading to packet drops or falling back to link flow control
(e.g., PFC [107]) and a possible violation of per-VF SLO
policy.

Figure 3 compares service times of IO– and compute-
bound workloads with theoretical PPB assuming that tenant
workloads fit one packet and that the sNIC has only one tenant.
We observe that all workloads with packet size ≤ 64 Bytes
fail to fit in PPB. Compute-bound workloads (i.e., Aggre-
gate, Reduce, Histogram) whose execution time scales lin-
early with packet payload length exceed the PPB for all packet
sizes bottlenecking the PUs. Notably, IO-bound kernels above

11/λ = P/B, m = N, to achieve ρ < 1, 1/µ > N ·P/B, where PPB = 1/µ.
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orities are mapped to two different SR-IOV VFs with equal
shares of Ingress bandwidth. With the round-robin scheduling
of per-flow queues, the Congestor tenant with 2× higher com-
pute cost per packet occupies a proportionally larger number
of cores than the Victim tenant.

256 Bytes (i.e., DMA writes/reads, Egress packet sends) fit
PPB as they avoid PU congestion but are bottlenecked by the
link bandwidth. However, as we will demonstrate, IO-bound
workloads are sensitive to DMA transfer contention on the
host interconnect.

PU contention: While a single tenant can cause pressure
on the ingress queue and contention of PUs, multiple tenants
can lead to unfairness. For example, consider two compute-
bound tenants with different requirements. One of them, the
Congestor, has twice as large compute cost per packet as
the other, the Victim, leading to twice as many cycles on PU
to finish the kernel. During the burst, Congestor and Victim
push packets at the corresponding per-application (per-VF)
queues at the same ingress rate. As Figure 4 shows, using the
conventional round robin (RR) scheduling of per-application
queues across 8 sNIC PUs, the Congestor uses 2× the PUs
used by the Victim.

R1 sNIC manager should fairly allocate compute compo-
nents (e.g., PUs, cryptographic accelerators) while serving
tenants with different compute costs per packet.

Egress and DMA engines contention: Similarly, as the
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Figure 5: Slow-down of various IO operations (e.g., DMA
and sending packets to Egress) initiated by the tenant’s kernel
results in HoL-blocking small requests due to underlying IO
path contention.

compute-bound kernels cause contention on PUs, IO-bound
kernels can lead to contention on the appropriate DMA or
egress engines. IO-bound kernels running on different PUs
can simultaneously initiate IO requests through the same
sNIC engines, e.g., DMA requests from a KVS application.
In case the underlying interconnect (e.g., PCIe or AXI [81]) is
blocking and lacks the support of QoS provisioning, the issue
of multiple concurrent requests may result in Head-of-Line
(HoL) blocking [1].

For example, consider two IO-bound tenants with different
IO requirements. The Victim has constant 64B packets, while
the Congestor increases its packet size from 64B to 4096B.
As Figure 5 shows, the contention on the IO engine leads to
an order of magnitude higher latency of the Victim’s messages
without considerably affecting the Congestor’s flow. This
unfairly increases the latency of one of the tenants by 4-15×.

R2 sNIC manager should fairly allocate DMA and egress
bandwidth (e.g., using AXI and PCIe) between running ker-
nels and be resilient to HoL-blocking.

Memory management: Applications have diverse memory
runtime needs, with dynamic memory allocation causing an
unknown a priori memory consumption. In extreme cases, a
tenant could monopolize all sNIC memory, e.g., L1 packet
buffers, resulting in HoL-blocking for others. Introducing
virtual memory (paging) semantics could lead to substantial
memory access overheads, as each page fault significantly
amplifies memory access latency [40].

R3 sNIC manager should fairly allocate memory using
lightweight allocation strategies defined in the control plane.

Scheduling overhead: Existing software packet processing
data paths [8,25,79] were designed for off-path sNICs or con-
ventional host processing. As recent studies show [47] effec-
tiveness of kernel execution scheduling in terms of achieved
maximum utilization while running on off-path sNICs sup-
ported by OS’s like Linux is driven by the latency of con-
text switching [27, 47]. PU cycles are wasted during context
switching to transition between the kernel states. We bench-
mark context-switching of Linux running on host and off-path
sNIC (Bluefield-2 ARM SoC). We compare these to the state-
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PU Frequency ISA Linux Caladan RTOS

Host Ryzen 7 5700 3.8GHz x86 28576 211 –

BF-2 DPU A72 2.5GHz ARMv8 13250 192 –

PULP cores [6]
(used in PsPIN) 1GHz RISC-V – – 121

Table 1: Average latency of context switching between 2
processes. Measurements shown in PU cycles scaled to 1
GHz (i.e., 1 ns/cycle).

of-the-art Caladan scheduler we ported to the ARM ISA [27].
For reference, we also show the context switching latency
of PULP cores as implemented in PsPIN used to evaluate
OSMOSIS. Notably, we observe that the context switching
latencies we report in Table 1 are higher or of the same or-
der of magnitude as the PPB from the analysis presented in
Figure 3.

R4 Data path performance should not be impacted by over-
heads stemming from software scheduling policies, providing
low-latency scheduling of kernel execution.

Control path priority: If a tenant on the sNIC exceeds com-
pute or time budgets, an immediate response is needed from
the host’s control plane for control traffic, e.g., it needs to be
handled within the error path of the application running on the
host CPU or off-path sNIC cores. However, communication
between sNIC and host uses system interconnect (e.g., PCIe),
typically adding an overhead of 0.5 – 3 usec per read/write re-
quest. Congestion in the interconnect (Figure 5, [1]) can lead
to HoL-blocking of control traffic and unpredictable packet
processing.

R5 sNIC accelerated packet processing should prioritize
control-path traffic.

QoS API: NIC capabilities are exposed to tenants through
a virtualization layer (OS hypervisor) that provides an illu-
sion of full resource ownership. SR-IOV is a standardized
extension for the PCIe interconnect and a conventional way to
implement NIC virtualization. It is utilized in many conven-
tional industry-standard NICs, e.g., ConnectX and BlueField
NICs. In SR-IOV, each NIC physical function (PF) (such
as TX and RX capabilities) is multiplexed between several
virtual functions (VFs). Each VF is exposed to the tenant
through an OS hypervisor as a stand-alone PCIe NIC. To
our knowledge, existing production rNICs and sNICs support
only Ingress and Egress bandwidth allocation on the basis of
VFs and not compute or DMA resources.

R6 sNIC management plane should support conventional
QoS provisioning mechanisms for all types of resources.

Figure 6: Abstract model of OSMOSIS-enabled sNIC. Pack-
ets are mapped by Matching Engine to FMQs and dispatched
for execution by the scheduler.

4 OSMOSIS

We present OSMOSIS in Figure 6. We begin with a high-level
overview of how OSMOSIS manages the three competing
sNIC resources and satisfies the multi-tenancy requirements
outlined in the previous section. We then demonstrate how
this is achieved by dividing the system into two components.
The first is a non-critical, flexible software control plane that
handles management tasks and runs on the host CPU or off-
path sNIC cores. The second is a performance-critical data
plane scheduler designed specifically to support SLO pol-
icy enforcement and integrate within the on-path sNIC SoC.
Within this section, each part is explained in depth.

PUs DMA Egress Memory

Scheduler WLBVT WRR WRR Static

SLO knob
Priority

Kernel cycle limit Priority Priority Allocation size

Fulfilled
requirements R1 R4 R6 R2 R4 R5 R6 R2 R4 R6 R3 R4 R6

Table 2: OSMOSIS resource management principles with all
six fulfilled multi-tenancy requirements.

4.1 High-level Overview

1 Flow execution context creation: To utilize sNIC packet
processing, tenants create a flow execution context (ECTX).
ECTX encapsulates the flow processing state, such as the
SLO policy and the packet processing kernel, a piece of code
compiled for the target PU architecture and describing the
actions for each packet destined for the flow.

2 ECTX initialization: After the tenant provides the basic
elements of an ECTX, OSMOSIS instantiates it. It allocates
a virtualized sNIC interface through the host OS hypervisor
and associates it with a tenant IP address and SLO policy. It
also sets up the IOMMU to allow kernel access to specific
host pages, statically allocates on sNIC memory and loads
the kernel binary into sNIC memory.

3 Matching packets to flow management queue: The
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sNIC matching engine filters packets that require sNIC pro-
cessing. All incoming packets are matched against the three-
tuple (in case of UDP) or five-tuple (in case of TCP) of active
sNIC ECTXs. Once matched, packet descriptors (e.g., pointer
to packets in sNIC memory) are stored at one of the flow
management queues (FMQs). FMQs store all information
regarding an active flow ECTX on the sNIC hardware. FMQs
are organized as FIFO queues of packet descriptors with an ad-
ditional memory state to store running execution information
(e.g., BVT metric).

4 PU scheduling: Once a PU becomes available, OSMO-
SIS schedules the packet at the head of one of the FMQs.
To achieve fair PU allocation, OSMOSIS implements a cen-
tralized, non-preemptive scheduler inspired by the Borrowed
Virtual Time (BVT) policy [22, 47]. BVT aims to allow each
tenant to obtain the same amount of access time to the sched-
uled resource by keeping track of their past usage. OSMOSIS
FMQ scheduler allocates sNIC PUs to FMQs with the small-
est priority-adjusted past PU usage measured in cycles while
maintaining the SLO policy specified by the sNIC adminis-
trator, such as the upper per-FMQ PU cycle limit.

5 Kernel execution and IO management: Upon loading
the packet into local PU memory, the PU can process it us-
ing the relevant kernel. As seen in Section 3, parallel kernel
executions on different PUs can lead to head-of-line block-
ing (HoL-blocking) and uncertain tail latency for DMA to
sNIC/host memory and egress data transfers. For example,
kernels can pipeline large storage reads by overlapping asyn-
chronous DMA reads of packet-sized payloads with egress
packet sending. OSMOSIS mitigates this by fairly arbitrat-
ing IO paths, breaking sizable DMA requests into smaller
transactions, and scheduling them with a near-perfect fairness-
weighted round-robin (WRR) policy. FMQs supply DMA and
egress engines with tenant IO priorities for initiated IO re-
quests. This ensures that each tenant obtains a priority-based
fair bandwidth chunk when moving data within L2 or host
memory using DMA reads/writes.

4.2 Flexible software control plane
OSMOSIS offers a host OS API for sNIC packet processing
management, encompassing ECTX creation and offloading
specific flow handling to the sNIC. Tenant-initiated offloading
involves the creation of a flow ECTX. ECTX facilitates tenant
control using the following components.

SLO policy: The SLO policy sets compute, DMA, and egress
priorities, kernel cycle budget, packet buffer size, and on-sNIC
memory. OSMOSIS offers transparent SLO management via
SLO knobs indicated in Table 2. By default, all tenants’ FMQs
share equal priority. To achieve perfect fairness in such a sce-
nario, all flows should get the same portion of PUs and IO
bandwidth at any time. Increasing the priority of the ECTX
leads to proportionally more resources (PUs, bandwidth) allo-

cated to the ECTX. A per-kernel cycle limit is adjustable for
total or individual kernel execution times and curbs excessive
PU usage. Cycle-limit also prevents users from writing ill-
behaved code (e.g., infinite while(true) loop). We assess
SLO’s impact on resource fairness in Section 6.

Kernel binary: kernel binary cross-compiled by the tenant
is loaded into sNIC memory by the control plane and is later
executed on the flow packets. The kernel binary can compute
and schedule DMA and egress requests according to the tenant
requirements.

A virtualized sNIC device: A virtualized device is allocated
for the tenant, e.g., SR-IOV Virtual Function (VF). OSMOSIS
associates an IP address with the VF and uses it later for
matching, i.e., the VF is 1:1 associated with a single FMQ.
Similarly, FMQ-based management can be exposed through
any other sNIC virtualization interface, e.g., [54], [106].

A matching rule: The matching rule matches packets from
the sNIC inbound stream to the ECTX and manages their
processing within the same FMQ. A matching rule allows
the tenants to open multiple ports on the same virtualized
device. The matching engine can match packets based on
their UDP/TCP header contents. For example, it can match
the IP address and the destination port of the application.

sNIC memory segments: The sNIC memory segments are
allocated statically to each kernel depending on the requested
memory size. The kernels can store the application state in
sNIC local memory, e.g., KVS-cache or packet filter table. An
error is returned if the tenant uses too much memory or the
kernel binary is larger than the SLO policy limits.

Host memory pages: The ECTX specifies which host pages
can be accessed from the specific kernel via DMA. The
DMA engine on the sNIC interfaces the host memory with
an IOMMU, translating host virtual addresses to physical ad-
dresses. The IOMMU also checks whether the sNIC is access-
ing an allowed memory region. The control plane initializes
the IOMMU with appropriate page tables during execution
context creation.

Event queue (EQ): An event queue allows the user applica-
tion to track events like kernel execution errors. When an error
occurs (e.g., illegal memory access or exceeding execution
time), OSMOSIS informs the host via an event in the kernel’s
ECTX EQ. A host OSMOSIS API call from the application
checks this queue for error messages. EQ can be realized as
contiguous sNIC memory mapped to the host virtual address
space, akin to RDMA Verbs API EQ [44]. EQ control path
traffic shares the sNIC DMA data path (e.g., PCIe or CXL)
with regular kernel execution (e.g., DMA initiated within the
kernel) but gets the highest IO priority due to tenants’ imme-
diate action needs.
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4.3 Hardware data plane
OSMOSIS provides low management overhead with a min-
imal hardware footprint. We present two key mechanisms
that help us to achieve this goal: a hardware flow abstrac-
tion (FMQs) and scheduling algorithms suitable for hardware
implementation (WLBVT and DWRR).

Flow management queues (FMQs) generalize a packet flow
similarly to how a hardware thread generalizes a process. If
the tenant needs to offload multiple workloads, each work-
load kernel (binary) must be associated with its own FMQ.
FMQs store matched packet descriptors in a FIFO queue and
monitor the flow processing performance. The scheduler then
uses these measures to allocate compute resources fairly and
enforce per-flow priorities. Processing the FIFO queue trig-
gers kernel executions on sNIC PUs, resembling program
instruction execution flow in traditional OS processes.

FMQs also store part of the ECTX state, such as the match-
ing rule, pointers to the kernel binary, and the SLO policy
definition. The host-side control plane manages and initial-
izes FMQs that appear as MMIO registers in SR-IOV VF
address space. FMQs are highly extensible. For example, the
OSMOSIS priority model is compatible with datacenter Eth-
ernet [43]. In case of congestion on the FMQ FIFO queue,
the packets can be marked with the appropriate Ethernet ECN
congestion flag or can supply the per-FMQ telemetry infor-
mation [2, 3, 26, 44, 58, 107].

1 def pu_limit(ActiveFMQs , fmq):
2 prio_sum = 0
3 for fmq in FMQs:
4 if not fmq.empty:
5 prio_sum += fmq.prio
6 return ceil(len(FMQs) * fmq.prio / prio_sum)
7

8 def update_tput(FMQs): #called at each clock cycle
9 for fmq in FMQs:

10 fmq.total_pu_occup += fmq.cur_pu_occup
11 if not fmq.empty or fmq.cur_pu_occup > 0:
12 fmq.bvt += 1 # update only in active state
13 fmq.tput = fmq.total_pu_occup / fmq.bvt
14

15 def get_fmq_idx(): #called once PU core is free
16 min_tput = MAX_INT
17 for fmq in ActiveFMQs:
18 if fmq.pu_occup < pu_limit(activeFMQs , fmq):
19 if fmq.tput / fmp.prio < min_tput:
20 min_tput = fmq.tput / fmq.prio
21 fmq_idx = fmq.idx
22 return fmq_idx

Listing 1: WLBVT FMQ scheduler procedural pseudocode.

FMQ Scheduler allocates PUs across flows with differ-
ent compute, DMA, and egress costs-per-packet that are not
known a priori. Thus, to achieve fair compute utilization,
the FMQ arbitration policy needs to be invariant to the cost-
per-byte of the packet (see Figure 4). OSMOSIS implements
a hardware scheduler as simple and scalable as the deficit-
weighted round-robin (DWRR) but with a minimal additional

area footprint (see Section 5).
OSMOSIS introduces a greedy Weight Limited Borrowed

Virtual Time (WLBVT) policy, a hybrid of the Weighted Fair
Queuing (WFQ) model of FMQ weights and Borrowed Vir-
tual Time (BVT) scheduler. We adopt the BVT algorithm to
suit sNIC hardware implementation constraints [22, 47] and
present our scheduler in pseudo-code Listing 1. Intuitively,
our scheduler aims to allocate each tenant the same amount
of PU processing time normalized by priority while ensuring
that each tenant is served fairly during PU contention.

An FMQ is in an active state if it contains packet de-
scriptors in the FIFO queue or if its packets are currently
being processed on any PU. Flow throughput is updated
(update_tput) at each sNIC clock cycle only if the corre-
sponding FMQ is active. The scheduler (get_fmq_idx) re-
turns the index of the non-empty FMQ that fits the upper
limit of weighted PU occupation (pu_limit called in line 21)
and has the lowest current throughput normalized by FMQ
priority (lines 22, 23).

The weighted PU occupation’s upper limit guarantees fair
QoS for tenants based on their priority. pu_limit is calcu-
lated with a ceil function to ensure fairness in case of more ac-
tive FMQs than PUs or non-integer division. The lowest prior-
ity normalized throughput equalizes access to oversubscribed
PUs over time, favoring users utilizing fewer resources. Our
approach can also accommodate total virtual time per tenant
(i.e., line 21), which could be useful for billing purposes, thus
expanding policy flexibility.

Kernel execution is a short-lived event as each execution
only processes one packet. In OSMOSIS, we run kernels to
completion [8, 79]. We avoid context-switching for several
reasons. As shown in Table 1, context switching can introduce
significant overhead. It also increases the complexity of the
hardware data path and requires an additional state per each
active kernel.

4.4 Discussion

Unified front-end API: We envision that the internal front-
end OSMOSIS API we use for kernel offloading and specify-
ing SLO policy (Figure 6 and Table 2) can be exposed through
conventional networking APIs. For example, the socket of-
floading (e.g., autonomous NIC offloads [77]) can be mapped
to the FMQ. OSMOSIS can be exposed as an extension to the
ioctl or setsockopt system call API and socket operations
error handling path. For the native RDMA deployments, OS-
MOSIS can be exposed as part of the completion queue and
queue pair configuration space (see Section 5.3) for further
discussion.

Run-to-completion model: If a kernel exceeds a set time
limit (e.g., per-FMQ watchdog timer), it’s terminated with
a hardware interrupt, and the host application receives noti-
fication via the corresponding EQ. In this light, we believe
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that run-to-completion semantics underpins the sNIC pro-
gramming model that, together with OSMOSIS fair priority
adjusted schedulers, ensures predictable packet processing
tail latency and also excludes compute-intensive tasks bet-
ter suited for GPUs or FPGAs. Assuming that the datacenter
operator doesn’t know the details of the tenant’s code to be
executed on the PU, the run-to-completion model also ensures
the prevention of the execution of ill-behaved code (e.g., a
kernel that contains infinite loops).

Virtual memory: In principle, OSMOSIS could give each
flow the illusion of infinite virtual memory using paging. How-
ever, this has two problems. First, translating the page’s virtual
address to a physical address is a combinational logic opera-
tion that will increase the latency of each memory access by at
least one cycle. In PsPIN, the on-path backend of OSMOSIS
that we discuss in Section 5, accesses to the L1 scratchpad
memory require only 1 cycle. Second, when using demand
paging, swapping in and out memory pages (e.g., between
the NIC and the host) also introduces some latency. Because
kernels are not context-switched, the PU would actively wait
for the page to be swapped in, thereby wasting a large part of
the cycle budget.

Congestion management: We assume that OSMOSIS is
deployed within the lossless network (e.g., InfiniBand, Ro-
CEv2), and FMQs never drop packets. By design, OSMOSIS
is compatible with conventional congestion signaling (e.g.,
ECN) and flow control mechanisms (e.g., Ethernet DCB) sup-
ported by existing lossless fabrics. It can also be deployed
with DCQCN [107] and DCTCP [3]. From the transport pro-
tocol perspective, the packet queueing delay within the FMQs
and the corresponding execution of the packet kernel is just an-
other source of latency. For example, the FMQ abstraction de-
ployed with Ethernet can support RED/ECN marking [26,44].
Another mechanism that FMQs can easily support is supply-
ing the P4 INT-MD telemetry information [2] to enable the
HPCC protocol [58].

Encrypted traffic and compute accelerators: The sNIC
handles data movement and may also require accessing the
packet contents. Hence, it should be able to decrypt packets
(e.g., QUIC [103]). sNICs can support either per-PU cryp-
tographic accelerators (e.g., Intel AES-NI [37]) or a shared
accelerator for efficiency (e.g., like in Marvell LiquidIO [62])
exposed via ISA extensions. In the latter case, the accelera-
tor arbitration resembles PUs, making WLBVT scheduling
suitable for compute resource management.

IO security: Host memory is protected against unauthorized
DMA transfers using an IOMMU setup by OSMOSIS when
the host creates the flow context. Similarly, local sNIC mem-
ory accesses need to be protected. This can be achieved, for
example, by a Physical Memory Protection unit (PMP) [99]
as shown in Section 5.1.

5 Implementation

We implement OSMOSIS atop PsPIN [19, 35], an open-
source on-path sNIC 2. We adopt PsPIN as a backend for
performance-critical operations within OSMOSIS by extend-
ing its host-side API to support multiple ECTXs and specify
tenant SLOs using 335 lines of code (LOCs) in C.

We integrated functional blocks of OSMOSIS (i.e., match-
ing engine, WLBVT scheduler, and DMA request fragmen-
tation) written in 1216 LOCs of C++ with cycle-accurate
simulation PsPIN SystemVerilog backend. In addition, we
also implemented these components as synthesizable Sys-
temVerilog IP blocks for hardware cost estimations. These
open-source blocks can serve as a future prototype for ASIC
or FPGA-based implementation of OSMOSIS.

5.1 Implementing OSMOSIS on top of PsPIN

Packet processing units: OSMOSIS PsPIN architecture is
based on scalable silicon-proven RISC-V PULP SoC [19, 55,
83]. The PUs are RI5CY 32-bit cores organized in clusters.
Each PsPIN cluster contains 8 PUs clocked at 1GHz and
coupled with a 1 cycle, multi-banked local scratchpad memory
(referred to as L1). For our experiments, we use the default
configuration of the PsPIN PU cluster with 1 MiB L1 data, and
4 KiB L1 instruction caches. Clusters share a global 4 MiB
L2 packet buffer and a 4 MiB L2 kernel buffer, which can be
used for local data storage.

Portable programming API: OSMOSIS utilizes PsPIN in-
frastructure to offload the packet processing to the PUs. The
user writes a C kernel cross-compiled on the host for the
RISC-V ISA architecture. The kernels are then loaded and
executed on the flow packets according to the sPIN API [35].
PsPIN has a low-latency kernel invocation mechanism (≤ 10
cycles), i.e., each PU executes a loop polling for a function
pointer with the address of the kernel and flow context.

Kernel IO: The PsPIN API enables blocking and non-
blocking IO calls within kernel code. The PsPIN cluster
scratchpad memory is interconnected with the sNIC L2 ker-
nel buffer, host DMA engine buffer, and sNIC egress engine
buffer through the 512-bit AXI DMA link. This setup en-
ables read and write transfers between these buffers, with
PUs accessing other cluster memories and shared L2 kernel
memory in 10 to 30 cycles. This design also transparently sup-
ports sNIC egress packet send: a DMA write from kernel
scratchpad memory to the NIC egress engine buffer. PU core
L1 scratchpad interfaces an Ethernet egress pipeline over the
AXI protocol. PsPIN IO-calls configure a DMA command
with addresses, length, and a completion handle pointer. The
cluster command FIFO queues outstanding IO commands,
and a WRR policy arbitrates per-cluster queues for DMA
engine access.

2https://spclgitlab.ethz.ch/mkhalilov/pspin-osmosis
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Memory management: PsPIN allows specifying the size
of the contiguous L1 and L2 memory regions allocatable
to tenants’ kernels and supports memory isolation using the
Physical Memory Protection (PMP) unit. When the kernel
accesses L1 and L2 memories, the virtual memory addresses
are translated to physical addresses with relocation registers.
The PMP then checks that the addresses are within the valid
segment range. Like the relocation registers, the PMP unit
does not increase the memory access latency [19].

5.2 OSMOSIS Schedulers

FMQ scheduling implementation: FMQ encompasses a
FIFO queue, ECTX (detailed in Section 4), and scheduling
state. The FIFO queue holds packet descriptors, each con-
taining a 32-bit pointer to the packet. The scheduling state
includes a BVT counter tracking tenant resource use and a
priority. We implemented the counter as a 64-bit register to
avoid overflow3. A 16-bit register stores the FMQ priority.
Our SystemVerilog WLBVT implementation with 128 FMQs
synthesizes at 1 GHz, making a scheduling decision in five
cycles. Most latency stems from the weight-limiting requiring
integer division, which is challenging for fast hardware imple-
mentation. We hide this latency using pipelining, overlapping
FMQ arbitration with packet DMA from the L2 packet buffer
to the cluster scratchpad (at least 13 cycles for a 64-byte
packet).

Enhanced DMA engine: To prevent HoL-blocking, OS-
MOSIS applies transfer fragmentation on both the host-
interfacing DMA engine and the egress engine. We imple-
ment two modes of fragmentation: a software fragmenta-
tion implemented within the kernel call for a DMA trans-
fer and a hardware fragmentation within the DMA engine.
The software approach wraps pspin_dma_read/write and
pspin_send_packet with a function, dividing larger re-
quests into smaller chunks. We issue multiple non-blocking
DMA requests of smaller sizes while internally maintaining
the state for each transfer. While this optimization mitigates
HoL-blocking (as shown in Section 6), it also hinders the
throughput of large DMA requests. To minimize this, we ex-
pand the functional model of AXI to enable hardware DMA
fragmentation offloading. This involves managing the state
for multiple outstanding AXI write requests and arbitrating
them with the WRR scheduler.

5.3 Integration with other on-path SmartNICs

OSMOSIS could be applied to the on-path sNIC designs be-
sides PsPIN. The PsPIN datapath architecture and the general-
purpose C programming model share many similarities with

3The 64-bit counter overflow with updates done every cycle at 1 GHz will
happen in 264 ÷10−9s/op ÷60s ÷60m ÷24h ÷365.25d ≈ 584yrs.

the commercially available NVIDIA BlueField data path ac-
celerator (DPA) introduced in Bluefield 3 DPU [17, 72, 73].
Similarly to PsPIN, DPA could be extended with OSMOSIS
to enable kernel execution QoS.

Compute management: DPA invokes user-defined kernels
upon completion of RDMA operations. The hardware me-
chanics of packet scheduling and kernel activation are close in
both architectures. In DPA, after scheduling network comple-
tion queues, the generated completion event activates kernel
execution on the DPA hardware thread. This is equivalent
to the OSMOSIS kernel execution request generated after
scheduling flow management queues (FMQs). Thus, WL-
BVT FMQ scheduling could be 1:1 mapped to DPA-managed
RDMA Completion Queues (CQs) scheduling.

IO management: From the kernel IO perspective, like in
PsPIN, DPA cores interface a dedicated NIC DMA engine for
non-blocking kernel-initiated data movement towards egress
and the host. The BlueField DMA engine can also support
DMA request fragmentation to avoid HoL-blocking. IO op-
erations initiated from DPA cores during kernel execution,
i.e., RDMA Work Requests (WRs), could be assigned with a
desired Service Level (SL) mapped to the underlying RDMA
Virtual Lane (VL), i.e., SL2VL mapping mechanism [44].

Software API: The DPA kernel offloading API (DOCA
FlexIO API [72]) can be extended to support OSMO-
SIS SLO enforcement. Specifically, the CQ and QP at-
tributes can include OSMOSIS-related knobs (e.g., com-
pute/IO priorities, memory size, etc.) passed by the tenant
in flexio_cq_create(..) and flexio_qp_create(..).

6 Evaluation

We study how OSMOSIS allocates sNIC resources under
different traffic conditions and workload requirements. We
investigate the following research questions:

1. How does the area of OSMOSIS-enabled sNIC chip scale
up with the ingress link rates and the number of tenants?

2. What are the overheads of OSMOSIS compared to the
reference PsPIN implementation?

3. What is the maximum load that OSMOSIS can sustain?

4. How fair are OSMOSIS resource allocations?

6.1 Hardware Scaling

We synthesized OSMOSIS and PsPIN SystemVerilog IP
blocks at 1GHz in GlobalFoundries 22nm node process to es-
timate hardware area costs using Synopsys Design Compiler
NXT in topographic mode.
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Figure 7: The cost model of sNIC SoC area synthesized in
22nm GF process, compared to the theoretical per packet
budget (averaged for different packet sizes at 64 – 4096 B
interval) achieved with 400/800/1600 Gbit/s ingress link rates.

sNIC area scaling with compute capacity: PsPIN clusters
utilize a hierarchical SoC-interconnect similar to Manticore
scale-out study [105]. We group four clusters into a quadrant
sharing a local interconnect. Each quadrant connects to L2
memory, allowing all cores to access the shared packet buffer.
Synthesis studies [19, 55] indicate negligible area increases
and timing overheads when adding ports to L2. In Figure 7,
PsPIN demonstrates linear compute capacity scaling relative
to the core area. For instance, 4 PU clusters offer adequate per-
packet budget (PPB) (Section 3) to sustain compute-bound
Reduce workload with up to 512-byte packets.

OSMOSIS Schedulers Scaling: Figure 8 shows the hard-
ware area consumption of OSMOSIS schedulers. We observe
a linear scaling of the FMQ and DMA engine schedulers
with the number of inputs. Assigned with a custom packet
matching rule, one FMQ scheduler input can serve millions of
requests, such as independent IO reads/writes (see Figure 11).
Compared to RR, WLBVT needs 7× more gates, yet with 128
FMQs, WLBVT area consumption takes only 1% of PsPIN
cluster and L2 memory area. With a reasonable hardware
footprint, OSMOSIS enables the hardware scheduling of up
to 128 tenants subscribed to the same SmartNIC.

FPGA prototype scalability: We also integrated the PsPIN
sNIC with the Xilinx UltraScale+ VCU1525 FPGA and
Corundum NIC for our experimental setup [85]. The prelim-
inary experiments with an FPGA-based client-server proto-
type showed that the peak throughput is only around 6 Gbit/s.
This limitation arises because the PsPIN IP is designed for
ASIC production. Due to space and timing constraints, PsPIN
cannot be synthesized on our FPGA at more than 40 MHz
with only 16 cores and 1/4’th of the target 400 Gbit/s de-
sign’s L1/L2 memories. This makes the FPGA-based PsPIN
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Figure 8: WLBVT and WRR exhibit linear area scaling in
the GF 22nm process. Bar captions indicate gate count and
relative area compared to 4 PU clusters with 4 MiB L2.

testbed unsuitable for full-system evaluation. Instead, we use
cycle-accurate simulation for full-scale system evaluation
with packet arrival, scheduling, and processing deadlines ob-
servable in the next-generation sNIC link speeds and SoC
core counts.

6.2 Experimental Methodology

We evaluate OSMOSIS runtime performance using cycle-
accurate Verilator v4.228 SystemVerilog simulator [90]. Our
experimental testbed features two setups: a Reference (base-
line) PsPIN implementation, i.e., a conventional on-path sNIC
without multi-tenant OS, and a PsPIN implementation en-
hanced with OSMOSIS management.

Both setups feature 4 PsPIN clusters of 8 1GHz cores,
achieving 400 Gbit/s ingress/egress bandwidth. L2 and host
memories can be accessed through a 512 Gbit/s AXI link.
We used randomly pre-generated packet traces that fully satu-
rate ingress link bandwidth. Packet arrival sequences follow a
uniform distribution, and packet sizes are sampled from a log-
normal distribution [10, 84, 101]. For fairness measurements,
we use Jain’s fairness metric [39]. It scales between 1 and 1
divided by the number of tenants: a metric of y implies y% fair
treatment, leaving (100−y)% starved. Fair treatment ensures
equal priority-adjusted resource access for each tenant.

A RR scheduler is available in the reference PsPIN imple-
mentation, thus we consider it as a baseline. To our knowledge,
production on-path designs (e.g., BlueField-3 DPA) use static
compute management. We consider a dynamic scheduler over
static allocation for the baseline since work conservancy is an
essential requirement for datacenter energy efficiency. We dis-
cuss how OSMOSIS differs from existing NIC management
solutions in Section 7.
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6.3 Synthetic Benchmarks

We evaluate OSMOSIS on synthetic benchmarks to assess its
overheads in a low-complexity environment.

R1 R5 Fair HPU allocation: We run two applications, one
with a larger compute cost per byte, the Congestor, and the
other with a smaller one, the Victim. Both spin in a for loop to
simulate a compute-bound task. Figure 9 shows how RR over-
allocates PUs to the Congestor, leading to lower fairness,
as shown by Jain’s metric. WLBVT consistently splits all
the resources equally between tenants. When the Victim has
no outstanding packets, WLBVT allows the Congestor to
overtake more PUs. WLBVT enables fair compute resource
allocation within OSMOSIS and does not cause slowdowns
within the benchmarks.

R2 R5 Resolving HoL-blocking: We evaluate the scaling
of throughput of the Congestor and the kernel completion time
of the Victim while conducting only Egress transfers that in-
volve AXI writes. Figure 10 presents how OSMOSIS resolves
HoL-blocking. Depending on the fragmentation method, the
Victim’s kernel completion time can be reduced by an order
of magnitude while preserving a relative slowdown of only
around 2×. The throughput reduction stems from control traf-
fic overhead related to fragmentation, i.e., splitting one large
transfer into smaller N transfers introduces N additional proto-
col handshakes between sender and receiver. When accessing
local sNIC memories (i.e., remote scratchpads and L2), it can
be mitigated through a custom SystemVerilog implementa-
tion of the PsPIN AXI protocol, allowing for parallel transfer
states as proposed in other works [11,46,80]. Addressing this
issue for host-side traffic that crosses AXI bus boundaries
would require a fine-grained QoS protocol for PCIe and CXL
interconnects [1].

We also observed two bottlenecks: ingress and egress. In
the ingress bottleneck, the incoming link bandwidth is the
limit, while in the egress one, the AXI bus congestion causes
slowdowns. While the overheads come from the intercon-
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Figure 10: The impact on the Congestor throughput and the
Victim kernel completion time as a function of the Congestor
size and various fragment sizes. State transition between
ingress and egress bottleneck depicts where the line rate of
the egress path became saturated.

nect, OSMOSIS scheduling does not introduce overheads, as
evident for low Congestor sizes.

6.4 Datacenter Workloads
Additionally, we evaluate a set of real datacenter workloads
supplied with the PsPIN benchmarking package [19]. We
study the Aggregation [74], Reduction [9] and Histogram [7]
benchmarks as examples of compute-bound workloads with
incrementally increasing inter-kernel memory synchroniza-
tion requirements, i.e., from local on-PU computation with
one atomic operation in Aggregation, to random memory ac-
cesses, each with an atomic summation in Histogram.

We also evaluate an IO-bound benchmarking set. Our goal
is to exercise NIC DMA read/write data paths towards the
host memory, the pattern typical for data path offloading of
storage RPCs and TCP segment delivery [65, 68, 77, 87]. In
IO read/write workloads, a target memory location is stored
directly in the packet application header. The multiple clients
make concurrent IO requests to the same storage node, and
we serialize all requests through 1 FMQ that serves either
read or write requests.

In the Filtering benchmark, to lookup the destination DMA
memory address (e.g., KVS-cache location or packet forward-
ing table context address), the kernel needs to compute the
hash of the L7-header used as a lookup table index stored in
sNIC LLC.

Management overheads: To assess the influence of OSMO-
SIS management on applications’ performance, we start by
running them in isolation. Figure 11 displays how OSMOSIS
does not introduce considerable overheads for compute-bound
workloads. These oscillate within ±3% of the baseline PsPIN
implementation and reach the maximum of 310Mpps for the
Aggregation workloads. For IO-bound workloads, OSMO-
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packet size with their raw performance in million packets per
second (Mpps) at the top of the bars. Up to a 3% through-
put increase with OSMOSIS compared to the PsPIN baseline
stems from a kernel completion time variability introduced
by the compute/IO schedulers.

SIS introduces overheads stemming from the fragmentation,
which have been discussed in Section 6.3. This can be re-
solved by extending the AXI bus protocol [46, 80]. While
overheads reach from 23% to 2% and represent the cost of
introducing fair and efficient multi-tenancy, the workloads
still achieve 332Mpps in the IO write case.

Application mixtures: Evaluating applications in isolation
is not representative of real workloads which occur in multi-
tenant datacenters for which OSMOSIS was designed and
where multiple users contend for resources. We consider two
application sets: compute and IO, each resulting in tenant
resource contention.

The compute-bound set comprises the Reduce and His-
togram workloads. Each is introduced as a Victim (64B pack-
ets for Reduce and 64-128 packets for Histogram) and Con-
gestor (4KB packets for Reduce and 3072 – 4096 byte packets
for Histogram). As Figure 12a shows, these workloads sat-
urate the PUs of the sNIC within the first couple thousand
cycles and introduce compute congestion. Using OSMOSIS
WLBVT scheduling, each tenant obtains an average alloca-
tion of 47% fairer than that of the typical RR implementation
as measured using Jain’s metric. Such allocations ensure SLO
fulfillment and result in 39% faster flow completion times
(FCT) because of lower average contention while only sac-
rificing 3% of the Histogram Congestor. OSMOSIS thus
achieves a fair and efficient resource allocation.

The multi-tenancy system must efficiently manage all re-
sources in coordination [30, 31]. We illustrate this scenario
in Figure 12b, where the IO set includes 4 kernels of varying
complexity so that the code executed on the PUs produces var-
ious data movement patterns. The set consists of IO read and
write flows, introduced again as both a Victim and Congestor.
While reads and writes share the NIC ingress, the utilized
DMA paths are opposite to each other.

The write packets have a variable-length packet size (up to

128B and 4KB for Victim and Congestor, correspondingly)
proportional to the payload size. The payload of the read flow
has a fixed size and contains 2 64-bit values (read location in
memory and its size varied for Victim and Congestor). While
each read packet will spend fewer cycles in the NIC ingress,
it will induce up to 2× more data movement work compared
to write, i.e., DMA read from the host memory followed by
sending towards egress. This results in seemingly continuous
distributions for read requests that are processed slower than
bursty writes.

Figure 12b shows that, similarly to the compute case, OS-
MOSIS obtains a consistently fairer allocation than a RR
scheduler (up to 83%) as measured by the average Jain’s fair-
ness metric. We notice that the writes are processed much
faster than the reads. OSMOSIS also manages to reduce FCT
for all tenants by up to 63%. Such large improvement comes
from addressing the HoL-blocking problem, leading to a more
efficient allocation. The IO read Congestor is initially sup-
pressed to let other tenants fairly finish their workloads and
then obtains full exclusive utilization, eliminating contention
and allowing it to regain the lost performance. On the other
hand, the other tenants are fairly allocated and, as Figure 13
shows, they do not suffer from HoL-blocking.

Figure 13 also displays the true cost of the aforementioned
gains. While the overall FCT is reduced for all tenants, the
single kernel completion time shows a different story. The
HoL-blocking is resolved for the Victim tenants, for which
the kernel completion time is reduced more than fivefold.
However, the other Congestor tenants display an up to 8× in-
creased median kernel completion time. While OSMOSIS in-
creases the median per packet processing time, it also achieves
overall FCT gains for the IO set by allocating the resources
fairly, and by parallelizing the packets appropriately.

7 Related Work

In this section, we summarize recent milestones in NIC re-
source management research and provide a qualitative com-
parison of existing solutions with OSMOSIS.

Justitia [106] and PicNIC [54] are rNIC virtualization lay-
ers lacking on-NIC compute management. They function as
software controllers between the NIC and host application,
handling RDMA read/write operations atop the RDMA API.
Lynx [94] focuses on sNIC GPU data movement offloading
but similarly manages traffic at a per-message granularity and
lacks detailed analysis of multi-tenancy issues.

Floem [76], FairNIC [32], and iPipe [60] specifically target
on-path sNICs programmability. All three solutions lack flow
priorities implementation. FairNIC aims for multi-tenant use
cases by statically allocating compute and IO bandwidth to
flows. This approach can potentially cause under-utilization
or unfairness [47, 79, 86]. iPipe [60] proposes to move the
execution of packet processing to the host CPU in case of
congested sNIC resources. We design OSMOSIS for scenar-
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ios where on-path sNIC fully offloads the packet processing,
and the host CPU runs a server-local non-networking path on
the data processed by sNIC, e.g., computation on the results
of in-network reduction or host-local distributed file system
management.

Per-flow priority management is present in PANIC [59] and
Menshen [97]. Both solutions specialize in Reconfigurable
Match Tables (RMT) pipeline architectures, e.g., PANIC is
tailored for FPGA-based sNICs. The applicability scope of
OSMOSIS is different, focusing on programmable on-path
designs such as Bluefield-3 DPA and PsPIN, which explore
a different type of parallelism. In on-path sNICs the packets
of the same flow are processed in parallel with user-defined
C kernels. These kernels run on tens to hundreds of energy-
efficient cores integrated within SoC. To efficiently distribute
packets across a large core count and sustain the line rate, on-
path sNICs are constrained with low-latency hardware packet
schedulers lacking reconfigurability.

To our knowledge, OSMOSIS is the first solution that can

support fair work-conserving SLO-based traffic management
integrated within the on-path sNICs hardware data path.

8 Conclusions

Enabling user-level on-NIC processing in modern multi-
tenant datacenters brings resource multiplexing and hard-
ware/software co-design challenges. OSMOSIS solves sNIC
multi-tenancy by distributing sNIC resources, the egress and
DMA bandwidth, and processing units across flows with dif-
ferent priorities, input bandwidth, and computational require-
ments. To achieve a fair distribution of resources, OSMOSIS
relies on sNIC-specific principles, such as work-conserving
allocation of compute and IO resources. The evaluation shows
that OSMOSIS efficiently redistributes resources, enabling
QoS, performance isolation, and prioritization between vari-
ous mixtures of flows. OSMOSIS improves FCT by up to 60%
and is fairer by up to 83% than typical schedulers. We believe
that OSMOSIS could enable wider adoption of on-path sNICs
in cloud datacenters with low overhead.
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