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Abstract

This paper proposes a reinforcement learning-based watchdog

(RLW) that examines solid-state drive (SSD) liveness or fail-

ures by faults (e.g., controller/power faults and high tempera-

ture) quickly, precisely, and online to minimize application

data loss. To do this, we first provide a lightweight watchdog

(LWW) to actively and lightly examine SSD liveness by issu-

ing a liveness-dedicated command to the SSD. Second, we

introduce a reinforcement learning-based timeout predictor

(RLTP) which predicts the timeout of the dedicated command,

enabling the detection of a failure point regardless of the SSD

model. Finally, we propose fast failure notification (FFN) to

immediately notify the applications of the failure to minimize

their potential data loss. We implement RLW with three tech-

niques in a Linux kernel 6.0.0 and evaluate it in a single SSD

and RAID using realistic power fault injection. The experi-

mental results reveal that RLW reduces the data loss by up to

96.7% compared with the existing scheme, and its accuracy

in predicting failure points reaches up to 99.8%.

1 Introduction

Compared with hard disk drives, solid-state drives (SSDs)

have higher performance, better reliability, and lower power

consumption and thus have been widely adopted in var-

ious storage systems, such as enterprise storage systems,

data centers, and cloud storage [9, 23, 40, 41, 43]. Accord-

ingly, the reliability of SSD and storage systems has become

critical; therefore, various fault tolerance mechanisms have

been adopted, such as replication [28, 73], redundant array

of inexpensive disks (RAID [14, 47]), or transaction process-

ing [44, 62, 63, 68, 69].

Unfortunately, even if these mechanisms can recover writ-

ten data or committed transactions, when a sudden SSD

failure caused by various faults (e.g., SSD controller/power

faults [36, 71], high SSD temperature [45, 59, 67], loose in-

terconnects by vibration [18], and a faulty PCIe slot [33])

occurs, preventing data loss in running applications (i.e., the

∗Corresponding author: Yongseok Son (sysganda@cau.ac.kr).

DL (existing, single) DL (existing, RAID5) DL (RLW, single) DL (RLW, RAID5)

DT (existing, single) DT (existing, RAID5) DT (RLW, single) DT (RLW, RAID5)

Not detected

0

2

4

6

0

50

100

150

Raw device EXT4 F2FS XFS

D
e
te

c
ti

o
n

 t
im

e
 (

s)

D
a

ta
 l

o
ss

 (
G

B
)

28.6, 28.6

Figure 1: Application data loss (DL) and detection time (DT)

upon an SSD failure (i.e., SSD power fault) in the Linux

kernel (the command timeout is 1 second).

host system is alive) is still a challenge [6,7,32,74]. For exam-

ple, in the Linux kernel, when applications perform buffered

writes, they can lose a significant amount of data in the page

cache ranging from tens to hundreds of gigabytes when SSD

cannot be available anymore due to the faults. This is because

file information or metadata associated with the pages (i.e.,

user data) in the page cache can be lost when the SSD failure

occurs. Figure 1 shows that the application can either recog-

nize a failure later (e.g., XFS or F2FS) or fail to recognize the

failure (e.g., EXT4 or raw RAID device) on a single SSD or

RAID configuration. This reveals that the Linux kernel may

not detect SSD failure quickly, even if high-end non-volatile

memory express (NVMe) SSDs are adopted. As a result, this

failure can cause applications to require reproducing data

through an additional time-consuming computation.

Specifically, according to our analysis, we observe three

critical limitations of detecting and handling the SSD failure

in the Linux storage stack as follows.

Loose-deterministic failure check: The current storage

stack passively identifies that the SSD has failed only when

a submitted command (e.g., I/O or admin command) is not

completed within a given command timeout. Thus, failure

detection can be significantly delayed until the command is

submitted without a hard deterministic bound.

Fixed command timeout: The current storage stack em-

ploys a fixed timeout regardless of SSD models. Intuitively,

a fixed small command timeout can decrease data loss, but
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Table 1: Categories and comparison with previous SSD failure studies.

Study
Kernel or Data loss HW for realistic ML prediction for Offline or

application mitigation fault injection future failure command timeout online learning

Ahmadian et al. [6, 7], Zheng et al. [71, 72] Application

Tiger [24] Application

Alter et al. [8], Chakraborttii et al. [12, 13]
Application Offline

RUS_Ensemble [19], MVTRF [70]

Our study Kernel Online

cause a false-positive detection, leading to an increased la-

tency. Meanwhile, a large-fixed command may not incur the

false-positive detection, however, can increase data loss. De-

termining and leveraging a “fixed” optimal timeout1 can be

effective temporarily. However, since this fixed value cannot

cover all conditions (i.e., various SSD models and command

types, and fluctuating workload intensity), it may not be con-

sidered a permanent solution.

Delayed failure notification: The current storage stack may

not promptly notify running applications of the SSD failure.

Specifically, the delayed notification is caused by a failure

handling policy of each file system (e.g., some file systems

notify the failure only after they fail to write critical metadata).

Thus, during these behaviors, applications can accumulate

data in the page cache until the failure is notified.

Previously, many studies have been conducted to investi-

gate and predict SSD failures as presented in Table 1. As

listed in the table, most studies detect or predict SSD failures

at the application level, meanwhile, our study handles the SSD

failure in the Linux kernel to detect it more quickly and it is

also application-oblivious. Some studies [6, 7, 71, 72] have

detected SSD failures directly using separate hardware to

generate actual power faults, similar to our study. In contrast,

we focus on mitigating the data loss by quickly detecting

and precisely predicting the SSD failure points. Other stud-

ies [8, 12, 13, 19, 70] have predicted future SSD failures using

log data from a large-scale SSD cluster and offline machine

learning. Meanwhile, we focus on predicting the command

latency by learning the current SSD states at run-time with-

out offline pre-learning cost. Furthermore, we note that our

study aims to detect actual failures that have occurred, mean-

while, other machine learning-based studies concentrate on

predicting potential failures before they happen.

In this paper, we propose a novel reinforcement learning-

based watchdog to monitor SSD liveness or failure called

RL-watchdog (RLW). Our approach incorporates three tech-

niques to quickly, precisely, and online detect SSD failures,

thereby minimizing application data loss against the failures.

Specifically, we first present a light-weighted watchdog (LWW)

to monitor the SSD failures by periodically submitting a light-

weighted liveness-monitoring command (LWLC) to the SSDs.

It enables quick failure detection while minimizing interfer-

ence from other I/O commands. Second, we introduce a rein-

1We define the optimal timeout as the minimum command timeout that

does not incur false-positive detection.

forcement learning-based timeout predictor (RLTP) to predict

the SSD command timeout online, regardless of device type.

It enables the dynamic alteration of the command timeout at

runtime while minimizing false-positive detection. Finally,

we propose fast failure notification (FFN) which enables im-

mediate SSD failure notification to applications to minimize

data loss from upcoming write requests. By leveraging the ab-

straction provided by the virtual file system (VFS) layer and

reusing existing failure code, it does not require application

modification.

We implement RLW with all techniques in a Linux kernel

6.0.0. Then, we evaluate RLW using a single SSD and software

RAID with various file systems including EXT4, XFS, and

F2FS. We run micro/macro benchmarks and a real-world

application (i.e., RocksDB) on two NVMe SSD models. For

more realistic scenarios of SSD failure, we use a power control

board (PCB) [7] that can inject a power fault to the NVMe

SSD, independent of the system power. The experimental

results reveal that RLW reduces the data loss by up to 96.7%

compared with the existing scheme in the Linux kernel, and

its accuracy in predicting the command timeout reaches up to

99.8%.

To the best of our knowledge, this paper is the first study to

identify the issue of the detection scheme of NVMe SSD fail-

ure and introduce an online machine learning-based detector

in the Linux kernel. Furthermore, we offer the source code at

https://github.com/OSopt/RL-Watchdog to aid future

studies in reducing data loss upon SSD failures.

2 Background and Motivation

This paper focuses on NVMe SSDs since they have increas-

ingly been adopted in various storage systems [30, 34, 56,

58, 65, 66]. Despite their popularity and many advantages,

NVMe SSD failure can occur frequently even if the system

is alive [71]. For example, an SSD failure occurs when 1)

the SSD controller has failed due to unrecoverable metadata

loss or hardware damage, 2) the SSD power supply is unsta-

ble, 3) the SSD temperature is excessively high due to high

performance and intensive workloads, or 4) the PCIe slot is

worn-out, causing a disconnection between the kernel and

SSD. We note that, when the system is alive and the SSD

failure occurs, application data loss can be significant. This is

because even if the SSD failure occurs, the application data

can be accumulated continuously in the page cache until the

failure is detected. Furthermore, the pages in the page cache
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Figure 2: Example of the procedure for detecting NVMe SSD failure in the existing Linux kernel.

cannot be recovered since their corresponding files are lost,

leading to user data loss. Accordingly, the current storage

stack should catch the failure quickly to minimize data loss.

However, according to our analysis, there are three limitations

in the storage stack as follows.

2.1 Loose-deterministic Failure Check

SSD failure is passively checked via an I/O command: In

the current Linux storage stack, the SSD failure can be de-

tected only by checking whether a submitted command is

completed or not within a given command timeout. For exam-

ple, if the NVMe SSD fails to respond to the command within

the specified timeout, the device driver checks the NVMe

connection to determine whether communication with the

NVMe SSD is available [11]. If it is unavailable, the device

driver considers this situation as a failure. Then, it performs

post-processing for the failure by disconnecting the NVMe

connection and discarding the accumulated data in the page

cache.

Unfortunately, this scheme may result in a significant delay

due to a loose-deterministic time bound for checking the fail-

ure. Specifically, there are commonly two cases to submit I/O

commands2, such as the page cache write-back and transac-

tion processing. However, they are performed when a specific

condition is satisfied. For example, flushing the page cache

and transaction processing are performed when fsync() is

called in both cases, the ratio of dirty pages is high, and the

commit/checkpoint interval has elapsed, respectively.

An example of application data loss: Figure 2 illustrates

an example of checking SSD liveness or failure in the Linux

kernel. As shown in the figure, even if an SSD failure occurs

at an early point in time, it may remain undetected unless

a command is issued. When the I/O command is issued via

a satisfied write-back condition, the failure can be detected.

Eventually, the kernel can only detect the SSD failure af-

ter the page cache is flushed (i.e., third buffered write), and

the application data accumulated in the page cache after the

failure will be lost. Consequently, because the command sub-

mission to SSD depends on various behaviors of the storage

2We focus on the case of the write command for briefness and the target.

The failure can be detected using other I/O or admin commands as well.
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Figure 3: Data loss and failure detection time changes upon

SSD failure according to command timeout.

stack, a mechanism for examining SSD liveness with a strict-

deterministic time bound becomes essential to minimize the

data loss.

Measuring data loss according to various command time-

outs: Figure 3 shows data loss and failure detection time upon

an SSD failure according to various command timeout con-

figurations. In the figure, data loss and failure detection time

decrease as command timeout decreases from 30 to 1 second

which is the minimum value provided by the kernel. At the

one-second command timeout, the amount of data loss caused

by the SSD failure is 17.5 GB, and it indicates substantial

data loss due to the slow detection time (i.e., 5.7s). For a more

deep analysis, we configure the command timeouts to smaller

values (e.g., 1 ms) via a small modification. However, data

loss and detection time are still not improved. As explained, it

is because of the loose-deterministic failure check performed

by submitting I/O commands. This means that the detection

of SSD failure is delayed until an I/O command is submitted,

resulting in substantial data loss even with a very small com-

mand timeout. Consequently, the results show that the current

scheme for examining SSD failure is not sufficient to mitigate

data loss and detection time.

2.2 Fixed Command Timeout

Although a command is submitted with a strict-deterministic

time bound for checking SSD failure, determining an opti-

mal command timeout is still a challenge due to a trade-off

between the amount of data loss and the false-positive ef-

fect. Specifically, a command timeout, which is larger than

the actual command latency, can hinder prompt failure de-

tection and result in larger data loss. Meanwhile, when the

USENIX Association 2024 USENIX Annual Technical Conference    1085



40
60

R 99.99% R 99.9% W 99.99% W 99.9% F 99.99% F 99.9%

0

200

400

600

1ms 2ms 4ms 16ms 64ms 1s 30s

T
a

il
 l

a
te

n
cy

 (
m

s)

Command timeout

(a) Samsung 980 (SSD A)

0

20

40

60

1ms 2ms 4ms 16ms 64ms 1s 30sT
a

il
 l

a
te

n
cy

 (
m

s)

Command timeout

(b) Samsung PM9A3 (SSD B)

Figure 4: Tail latency QoS according to the command time-

outs (R: read, W: write, F: fsync).

command timeout is smaller than the actual command latency,

false-positive detection occurs. As its adverse effect, the de-

vice driver issues abort commands as much as the number of

expired commands, which are not completed within the time-

out period, to abort each of them [57], resulting in a latency

overhead.

To demonstrate the adverse effect of false-positive detec-

tion, we measure the latency of three I/O operations (i.e.,

read, write, and fsync) according to various command time-

outs and SSD models as shown in Figure 4. In the case of

SSD A, when the command timeout is smaller (i.e., from

1ms to 16ms), the tail latency of read() and fsync() system

calls increases compared with larger command timeout cases

(i.e., from 64ms to 30s). It is caused by the adverse effect of

false-positive detection. Meanwhile, in the case of SSD B, the

adverse effect occurs when the command timeout is less than

2ms. Furthermore, in both cases, the extent of the adverse

effect can vary depending on the command type. For example,

in the case of SSD B, when the command timeout is 2ms,

the latency of the write operation is stable, meanwhile, read

and fsync operations exhibit much higher latency. The results

demonstrate that the command timeout should be dynamically

determined according to the command type and SSD models

instead of a fixed one.

2.3 Delayed Failure Notification
If a failure is quickly and precisely detected with an optimal

timeout at a lower layer (i.e., device driver), the failure should

be promptly notified to running applications to suspend the

upcoming write operations. However, a failure detected by

the lower layer is not immediately notified to the VFS layer,

including the page cache; thus, the application can continue

to perform its write operations.

For example, in the raw RAID cases, a failure is not notified

because the device file is not removed but the RAID waits for

its rebuild. For the file system cases, as presented in Figure 2,

the XFS and F2FS file systems report a failure only if the

critical metadata I/O has failed. Thus, only after the failure to

write critical metadata (e.g., the journal superblock of XFS

and the checkpoint of F2FS), the file systems can identify the

failure and then stop their operations and notify the VFS layer

of the failure. Specifically, in the case of EXT4, when the

journal superblock write fails, EXT4 identifies the failure and

remounts the device as a read-only mode. However, EXT4

does not transfer the failure to the VFS layer, and the appli-

cation cannot catch the failure as shown in Figure 1. Thus,

to catch the failure earlier in the VFS layer, a mechanism for

fast notification is required.

2.4 Reinforcement Learning

Reinforcement learning (RL) is an algorithm that predicts

the optimal action based on the current state and increases

accuracy by providing negative or positive feedback based on

the action results [25, 54, 61]. The feedback value reflected

in the model is called a reward. A higher or lower reward

value indicates a more or less accurate prediction, respectively.

As a type of RL algorithm, Q-learning is a lightweight and

model-free RL to learn the value of an action in a particular

state [60].

This paper adopts Q-learning to predict the NVMe com-

mand latency online for two specific reasons as follows. First,

to predict the NVMe command latency inside the Linux ker-

nel at runtime, the cost of learning and prediction should be

negligible to minimize interference with the target system

performance. Q-learning is one of the low-cost online predic-

tion methods [26, 27, 50]. Second, in most cases, the internal

conditions and information (e.g., GC) of commodity SSDs

are not open to applications (i.e., a black box). Thus, it is

not easy to design a model to predict the command latency.

Since Q-learning is a model-free learning algorithm, it can

predict the command latency more precisely even if the SSD

is a black box. For these reasons, we adopt Q-learning in our

liveness examination system.

3 Design and Implementation

The goal of RL-watchdog (RLW) is to minimize application

data loss by examining SSD liveness or failure quickly, pre-

cisely, and online. To develop RLW, we have to overcome the

following research challenges.

• RLW should examine SSD liveness actively and strictly

but should be lightweight to not incur much overhead to

application I/O performance.

• RLW should precisely predict the command latency re-

gardless of command types and SSD models without an

offline pre-learning cost.

• RLW should quickly notify the application of a failure

in an application-agnostic manner, regardless of failure

post-processing of other kernel components.

3.1 Overview of RL-Watchdog (RLW)

To minimize application data loss, the key idea of RLW is to

examine SSD liveness by leveraging lightweight and strict

examination, an online learning technique, and a fast fail-

ure notification. Figure 5 shows the overall architecture and

procedure of RLW.

LWW collects the SSD states (e.g., IOPS, in-flight I/Os, and

average I/O size) from the block layer ( 1 ) and requests the
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Figure 5: Overall architecture and procedure of RL-watchdog.

prediction of the command timeout value with states to RLTP

( 2 ). RLTP refers to the Q-table and returns a timeout value

suitable for the given SSD states to LWW ( 3 ). Then, LWW

sets the timeout value and issues the light-weighted liveness-

monitoring command (LWLC) to the SSD ( 4 ). If the SSD is

alive, LWLC is completed ( 5 -A), and LWW requests to update

the Q-table to RLTP ( 6 ). In RLTP, the reward is calculated

through the difference between the measured LWLC latency

and predicted timeout ( 7 ). If LWLC is not completed until the

given timeout has elapsed ( 5 -B), LWW checks whether an SSD

failure has occurred or not ( 8 ). If a failure is detected by LWW,

LWW reports the failure via FFN, specifically the VFS metadata

(e.g., super_block) ( 9 ). Then, the application checks the

VFS metadata resulting in the failure notification, and thus,

the application can avoid upcoming writes immediately ( 10 ).

3.2 Light-Weighted Watchdog (LWW)

LWW monitors SSD liveness actively and quickly to determine

whether an SSD is alive or not. To do this, LWW employs

per-device watchdog threads (i.e., a one-to-one model) which

periodically transfer LWLCwhich is a special NVMe command

to the SSDs through the device driver. Without a response

within the timeout interval, the driver aborts LWLC and checks

the NVMe connection like the existing Linux kernel. In LWW,

there are two key challenges to minimize the overhead of

periodic monitoring: 1) devising LWLC to be a universal and

lightweight command and 2) determining the optimal interval

between issuing LWLCs to minimize performance interference.

We describe how to handle these challenges as follows.

Light-weighted liveness-monitoring command (LWLC): It

is a challenge that the periodic monitoring technique should

be universal and lightweight. To handle this challenge, a poten-

tial approach defines a new NVMe command and implements

it in the SSD firmware and NVMe device driver. However,

modifying SSD firmware is practically impossible unless the

manufacturer’s assistance, and command processing of the

latest SSDs is based on the hardware [46], making it more

difficult. Furthermore, although the new NVMe command

is defined, it is inapplicable to many commodity SSDs on

existing storage systems. As an alternative approach, we can

utilize an existing NVMe I/O command. However, it shares

the NVMe I/O command queue with the normal I/O com-

mands, resulting in a large interference with the normal I/O

operations.

To handle this issue, we employ an admin command by

using a spare opcode (e.g., 0xFF) that is not defined in the

NVMe specification as an LWLC. This approach offers two

key advantages. First, regardless of the SSD models, it can be

applied to all commodity NVMe SSDs by handling the spare

opcode to examine SSD liveness. Second, it requires minimal

SSD internal resources. For example, when the command

arrives at the SSD, the controller can only check the opcode

and complete the command without any further actions. By

doing so, we devise LWLC to be more universal, lightweight,

and have minimal impact on normal I/O operations.

Heartbeat interval (HBI): As a second challenge, to mini-

mize performance interference by LWW, it is important to set

an interval between issuing LWLCs and understand the rela-

tionship between the interval and command timeout. Thus,

we define the interval as HBI which is the time between the

completion of LWLC and the re-submission of LWLC. An ex-

cessively short HBI increases the frequency of issuing LWLC,

thereby detecting SSD failures early but reducing the normal

I/O performance. Meanwhile, an excessively high HBI de-

creases the frequency of issuing LWLC, thereby less affecting

the normal I/O performance but causing a delayed detection

of SSD failures. Through the experiments, we observe an

optimal HBI of 256 ms with a negative effect of less than

0.42% on performance. The detailed experimental results are

explained in Section 4.7.

Procedure of LWW: Figure 6 and Procedure 1 describe how

LWW works and interacts with RLTP. When LWW starts, it re-

ceives the list of SSDs to be monitored and HBI as param-

eters (line 1). Then, it creates per-device watchdog threads

in an SSD list ( 1 , lines 2–4). Each watchdog thread starts

monitoring the SSD liveness until LWW is removed or detects

SSD failure (line 7). First, each thread collects the current

state (S) of its target SSD from the block layer (line 8). S con-

sists of the I/O information of in-flight I/Os, IOPS, average

I/O size, etc., which are features used in RLTP to learn and

predict the command timeout (T ). Since each thread utilizes

this I/O information which is already collected in the existing

block layer, there is no additional overhead caused by the

collection. Then, each thread transfers the state to RLTP to

get a predicted command timeout (T̂ ) based on the state ( 2 ,

line 9). Subsequently, each thread submits LWLC with T̂ to its

corresponding SSD ( 3 , line 10), waits for LWLC completion,

and stores its actual command latency (TA) ( 4 , lines 11–12).

If there is no response within T̂ (i.e., the command is ex-
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Proc. 1 A C-like pseudo-code of SSD liveness examination in LWW

1: function LWW((ssd_list,HBI))
2: for ssd in ssd_list do ⊲ Per-device watchdog thread

3: create_thread(do_watchdog, ssd, HBI)

4: end for

5: end function

6: function DO_WATCHDOG(target_ssd, HBI)

7: while LWW not stopped do

8: S← State of target_ssd from the block layer;

9: (T̂ ,Qptr)← RLT P.Predict(S);
10: Submit LWLC with timeout T̂ ;

11: Wait for completion of LWLC;

12: TA← latency of LWLC;

13: if command is expired then

14: if !is_alive(target_ssd) then

15: Stop the watchdog thread (target_ssd) ⊲ SSD failure

16: end if

17: end if

18: if is_alive(target_ssd) then

19: RLT P.U pdateQtable(prev_Qptr, Qptr, prev_TA, prev_T̂ )

20: prev_TA← TA ⊲ Save previous values

21: prev_T̂ ← T̂

22: prev_Qptr← Qptr

23: end if

24: wait(HBI)
25: end while

26: end function

pired) (line 13), the NVMe device driver checks the NVMe

connection (line 14). If a failure is found, the SSD connection

is disconnected, and the watchdog thread of the target SSD

is stopped (line 15). Then, LWW gets a failure code from the

device driver and then reports the failure to FFN. Otherwise,

each thread transfers its corresponding TA and T̂ to RLTP to

update the Q-table ( 5 , line 19). Then, it updates the pre-

vious latency, predicted timeout, and Q-value (i.e., prev_TA,

prev_T̂ , and prev_Qptr) by the current TA, T̂ , and Qptr, re-

spectively, to use them for the next step (lines 20–22). Finally,

each thread waits for the optimal HBI (line 24) and repeats

the above procedure.

3.3 Reinforcement Learning Timeout Predic-

tor (RLTP)

We propose RLTP to predict a command timeout (i.e., LWLC

timeout) according to the current SSD state at runtime without

an offline pre-learning process. We note that I/O command

Table 2: Correlation coefficient between the LWLC latency and

the features of SSD states (FIO (GC): GC is invoked by FIO,

W: write, R: read).

Features
Video

server

File

server
YCSB

FIO

(GC)
FFSB

In-flight I/Os 0.06 0.13 0.63 0.03 -0.005

IOPS (W) -0.23 -0.06 0.34 -0.01 0.023

Avg. size (W) 0.38 -0.76 0.51 -0.03 0.025

IOPS (R) 0.007 -0.005 -0.11 -0.01 0.001

Avg. size (R) -0.002 0.002 0.04 -0.01 0.001

(e.g., read, write, and flush) latency prediction can be chal-

lenging and time-consuming work because of the complex

internals of modern SSDs [29, 31]. However, instead of com-

mon I/O commands, RLW targets to predict the timeout of

LWLC which induces the SSD controller to simply check the

opcode as described in Section 3.2. Thus, predicting the LWLC

timeout is much easier than that of other commands, as it is

less affected by the SSD’s complex internals. This design

decision supports the viability of employing Q-learning [60]

to predict the LWLC timeout. We match the Q-learning com-

ponents of the action, state, and Q-value to the LWLC latency,

current SSD states, and expected gain, respectively. A detailed

explanation is described below.

Feature selection: To apply Q-learning, we select features for

prediction among the various features of the current SSD state

such as in-flight I/Os, the write/read IOPS, and the average

write/read size. To do this, as shown in Table 2, we measure

the correlation coefficient between the LWLC latency and the

features under various workloads. The features of in-flight I/O,

the write IOPS, and the average write I/O size are correlated

with the LWLC latency. For example, when the number of

in-flight I/O increases or write IOPS increases, since SSD

may process a large number of pending I/O commands or

normal I/O operations, respectively, it leads to an increase

in the LWLC latency. Also, if in-flight I/Os are high and the

write IOPS is low, LWW can infer that GC may be running

inside the SSD [31]. Third, when the average write I/O size

increases, the time of processing one command increases,

resulting in increasing LWLC latency. Finally, we observe that

both the read IOPS and the average read size have almost no

relationship with the LWLC latency. Thus, we exclude them

from the features for learning.

Through the correlation coefficient, we discover an interest-

ing fact that we did not expect. The fact is that the correlation

coefficients which we expect as positive values are observed

as negative values in some workloads. For example, the cor-

relation coefficient in the case of the average write size in

the fileserver is lower than -0.5. This means that the LWLC

latency increases even if the average write size decreases. The

reason for this opposite result to the expectation is from the

SSD power-saving mode [4]. For example, if few I/O requests

occur, the SSD enters a low power mode to prevent power

wastage. Thus, during the low power mode, the frequency

of the controller inside the SSD is lowered, resulting in a
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Table 3: Range of features to represent SSD state.
In-flight I/Os Write IOPS Avg. write Size LWLC latency

< 13 < Max/256 < 8 KB < 1 ms

>= 13 < Max/16 < 32 KB < 4 ms

>= Max/16 < 128 KB < 16 ms

>= 128 KB >= 16 ms

Table 4: Reward according to the latency prediction results.

Prediction result
False positive

(Underestimated)
Overestimated Correct

Reward value -1 -0.5 1

higher LWLC latency. Even if there can be this unexpected

case, since RLTP continuously updates the values of the Q-

table according to the current SSD state, RLTP can predict the

LWLC timeout.

Design of Q-table and reward: If the values of the selected

features are represented as individual integers, the size of

the Q-table becomes unacceptably large, and learning slows

down, making proper prediction impossible. Thus, we es-

tablish a range for each feature to design a Q-table with an

appropriate size. To do this, we analyze the sensitivity against

various combinations of each feature and its range based on

the representative SSD states and choose them like the previ-

ous study [26] as shown in Table 3. The size of the resulting

Q-table per SSD is 384 bytes when one entry size is 4 bytes.

As a result, memory consumption is negligibly small.

Table 4 lists the determined reward according to the predic-

tion results. As shown in the table, if the predicted timeout is

shorter than the actual timeout (i.e., a false positive occurs),

since it is an incorrect prediction result, the reward has the

lowest value of -1. Meanwhile, if it is not a false positive but

the predicted timeout is too long, we impose the penalty of

-0.5 to give less penalty than the case of a false positive. If

the predicted timeout and the actual one are within the same

range, it is considered a correct prediction, and a value of 1

is used as a reward value. By doing so, we increase the pre-

diction accuracy of the LWLC timeout according to the current

SSD state.

Procedure of RLTP: We describe the procedure of RLTP

in Figure 7 and Procedure 2. The figure presents a watch-

dog thread and table for each SSD (i.e., Thr0:Q0, Thr1:Q1, ...

ThrN :QN). As shown in the procedure, there are the main

operations of Predict() and UpdateQtable() of RLTP.

Predict() receives the SSD states to be used as features

from LWW and predicts an LWLC timeout ( 1 , line 1). Each SSD

state is converted into its corresponding index to access the

Q-table (line 2). The Q-table constitutes a four-dimensional

array, but for simplicity, we depict it as three-dimensional

except for in-flight I/O. After accessing the Q-table based on

the index of each state, the entry with the highest Q-value for

each latency range is found and transferred to LWW ( 2 , lines

3–12). In the example in the figure, since the highest Q-value

is 0.2 in the Q-table, thus, index 1 is returned. Additionally,

the found Q-value (Qptr) is also returned for updating the

Reinforcement Learning Timeout Predictor (RLTP)

Return

idx 1L
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Transfer actual & predicted timeouts

Q-table0

Update

Q-value

...

Q
-ta

b
le

N

Reward

Calculator

Siz
e 
id

x

Q
-ta

b
le

1

Lat. idx 0

IOPS idx

Lat. idx 1

Lat. idx 2

Lat. idx 3

Q 0.1 Q

Q Q

Q 0.1 Q

Q 0.1 Q

0.2

ThrN

Thr1

...

Q'

Thr0

Request

idx

1

4

3

5

2

Figure 7: Procedure of RLTP (Thr: thread).

Proc. 2 A C-like pseudo-code of prediction and update in RLTP

1: function PREDICT((iops,size, in f lights))
2: idxo, idxs, idxi← Get_Idx(iops,size, in f lights)
3: for idxt = 0,1, . . .MAX_IOPS_RANGE−1 do

4: Q_value← Q_table[idxo][idxs][idxi][idxt ]
5: if max < Q_value then

6: max← Q_value

7: max_idx← idxt

8: end if

9: end for

10: Qptr←&max ⊲ Get the address of the max Q-value for the update

11: T̂ ← Get_T̂ (max_idx)
12: return (T̂ ,Qptr)
13: end function

14: function UPDATEQTABLE((Qptr,next_Qptr, T̂ ,TA))
15: if T̂ == TA then

16: reward← 1 ⊲ No false positive

17: else

18: if T̂ < TA then

19: reward←−1 ⊲ False positive

20: else

21: reward←−0.5 ⊲ No false positive

22: end if

23: end if

24: Q_value←∗(Qptr) ⊲ Get the Q-value from the address

25: next_Q_value←∗(next_Qptr)
26: *(Qptr)← Q_value+α(reward + γ∗next_Q_value−Q_value)
27: end function

Q-table later.

Next, UpdateQtable() updates the Q-values based on the

reward. RLTP uses the actual command latency (TA) and its

predicted command timeout (T̂ ) to calculate the reward ( 3 ,

line 14). If the prediction is correct (i,e., TA is the same as

T̂ ), a high reward of 1 is given (lines 15–16). If TA is larger

than T̂ (i.e., a timeout occurs, but the SSD does not fail), it

is determined as a false positive. This means that the LWLC

timeout was predicted to be too short, and the lowest reward

of -1 is given (lines 18–19), otherwise, -0.5 is given (line 21).

Then, the predicted Q-value (Qptr) and the next predicted

Q-value (next_Qptr) are used to update the Q-value (lines 24–

25). The new Q-value is calculated according to the Bellman

equation [16] ( 4 , line 26). Finally, the Q-value is updated in

its location in the Q-table (e.g., the figure depicts an example

of updating the Q-value from Q to Q’ at size index 3, IOPS
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Figure 8: Procedure of FFN.

index 0, and latency index 0 ( 5 )).

3.4 Fast Failure Notification (FFN)
Even though LWW can quickly detect an SSD failure event, the

data loss can be still large unless the failure event is instantly

notified to the upper layer. To minimize data loss further, we

introduce the FFN mechanism by using the VFS layer to im-

mediately notify applications of the failure detected by LWW.

More specifically, we add a failure flag in an unused area

of the VFS metadata (i.e., super_block) to notify the appli-

cations of the failure. If LWW detects the failure, it sets the

flag to represent the failure. Thus, when starting I/O oper-

ations, the mechanism allows the applications to check the

flag to determine whether the current SSD has failed. It is a

simple but highly compatible and reliable method since the

applications always access the VFS regardless of the file and

storage configurations including the raw device, file system,

single device, or RAID. Thus, this mechanism can quickly

prevent applications from performing further write operations

upon failure. FFN utilizes an existing failure code (i.e., EIO)

to stop the application, requiring no application modification.

However, if an SSD failure needs to be classified separately

in the application, a new failure code should be defined and

reflected in the application.

Procedure of FFN: Figure 8 shows the procedure of

FFN. When an application starts the I/O operation via

vfs_write(), the application checks whether a failure oc-

curs via FFN ( 1 , 2 ). If there is no failure, the write operation

of an application is processed normally through the VFS layer

and storage stack ( 3 -A). Otherwise, as soon as LWW detects

the failure ( 1 ), it immediately reports it to FFN by setting the

failure flag (ssd_failed) in the super_block of the VFS

layer ( 2 ). Thus, the application can catch the failure of the

current SSD and stop its write operation ( 3 -B). By doing

this, a failure can be notified to applications immediately after

being detected by LWW.

3.5 Putting It All Together
Figure 9 depicts the timeline of RLW, where LWW periodically

monitors the SSD liveness by submitting LWLC with its pre-

dicted timeout via RLTP. Specifically, in the first case, LWW

receives the predicted timeout (T̂1) from RLTP and submits

LWLC to the SSD. In this case, without failure, LWW completes

LWLC normally within the given predicted timeout. Since there

is no false positive, RLTP updates the Q-table with the reward

of -0.5 (i.e., TA1 < T̂1). In the second case, even if the SSD is

still alive, a command timeout occurs since the actual com-

mand latency (TA2) is longer than the predicted timeout (T̂2)

(i.e., a false positive), the device driver aborts the expired com-

mand and checks the NVMe connection, and RLTP updates

the Q-table with the reward of -1.

In the third case, the SSD failure causes a command time-

out. Thus, LWW detects the failure, notifies it via FFN, and stops

monitoring for the failed SSD. Then, upcoming applications

stop their write operations via FFN. We note that SSD fail-

ure is detected even if no I/O command is submitted to SSD

because RLW can actively examine SSD liveness. The applica-

tion loses only two buffered writes (i.e., the fourth and fifth)

accumulated after SSD failure. The SSD failure is notified

to the application immediately after the application submits

the sixth buffered write, thereby further minimizing data loss.

As a result, in contrast to the existing scheme, as shown in

Figure 2, RLW can examine SSD liveness actively with a pre-

dicted timeout and quickly notify the application of the failure

to minimize the application data loss.

4 Evaluation

We evaluate RLW by answering the following questions:

• How much is RLW effective on various workloads, various

storage configurations, and different SSD models? (§4.1,

§4.2, and §4.3)

• Is RLW effective even for various failure points? (§4.1)

• How much do the periods of fsync() impact the effec-

tiveness of RLW? (§4.1)

• How much does each technique contribute to reducing

data loss? (§4.4)

• How much RLTP predicts the command timeout well

even in complex SSD internal operations (e.g., GC)?

(§4.5)

• How much does false-positive detection impact the per-

formance? (§4.6)

• How much overhead is caused by RLW? (§4.7)

Experimental setup: We use a server machine with In-

tel Xeon E5-2650 CPU (24 cores and 48 threads) with

160 GB DRAM. For storage, we employ two SSD mod-

els: Samsung 980 [2] (SSD A) and Samsung PM9A3 [3]

(SSD B). We use SSD B unless stated otherwise. The write

latency (us) / throughput (KIOPS) of 4 KB is 55.6 / 278 and

14.7 / 352 in SSD A and B, respectively. In addition, we use

three SSDs of each model for all RAID configurations. We

run Ubuntu 20.04.3 LTS with the Linux kernel 6.0.0. Unless

stated otherwise, we set the command timeout to 1 second

which is the shortest configurable timeout provided by kernel.
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For a more comprehensive evaluation, we use 1us as a mini-

mum timeout by slightly modifying the timeout management

code in the block layer. To evaluate RLW on various storage

configurations, we use a raw device and three common file

systems (i.e., EXT4, F2FS, and XFS) under different software

RAID configurations (i.e., RAID 0/1/5).

Injection of an SSD fault: To generate an actual SSD fault,

we use a specially designed power control board (PCB) as de-

picted in Figure 10. The system with PCB controls the power

supply of the SSD independently of the host system power,

and the system can supply or cut off the power through serial

communication. Moreover, we use adapters that convert the

M.2 or U.2 form factor to PCIe, and these adapters support

receiving external power from the PCB instead of a PCIe slot.

Using these devices, we inject a fault to the NVMe SSDs at

a fixed point (i.e., 2s) unless stated otherwise or at various

points to generate the SSD failure. In the RAID evaluation,

we select the number of SSDs to fail according to the RAID

configuration because each RAID configuration has a differ-

ent fault tolerance degree. For example, we inject the faults

of 1, 3, and 2 SSDs for RAID 0, 1, and 5, respectively.

Workload: We use FIO [10] as a micro benchmark,

filebench [55] and FFSB [49] as macro benchmarks, and

RocksDB [1] as a real-world application with two bench-

marks (i.e., DBBench and YCSB [5]). To evaluate the pre-

diction accuracy during a GC procedure, we induce the GC

procedure by performing random write twice as much as the

device size from a clean state via FIO (notated as FIO (GC)).

Since FIO (GC) continues to generate GC operations inside

SSD, we believe that FIO (GC) is the most suitable work-

load to evaluate the prediction accuracy in the worst situation

where SSD internal resources are highly utilized.

Measuring data loss and failure detection time: For FIO,

which supports data verification, we can easily measure the

data loss for all the cases by calculating the difference be-

tween “the amount of written data until an application detects

the failure” and “the amount of verified data after supplying

power again”. However, the data loss on other benchmarks

(e.g., filebench, DBBench, and YCSB) cannot be measured

easily because they do not support data verification. Instead

of adding verification logic to each benchmark which would

be substantial work, we measure each amount written by an

application (until the application detects the failure) in the ex-

isting scheme and RLW, and calculate the difference between

them. The written amount difference is the same as the data

loss difference. To get failure detection time, we measure the

period from the point of failure injection to the point of failure

detection on the application side.

4.1 Micro Benchmark
Data loss on various configurations: Figure 11 indicates

how much RLW reduces the application data loss and the fail-

ure detection time upon SSD failures on various configura-

tions when running random writes via FIO. We use eight

threads using a 20 GB file per thread and a 4 KB request size.

For the raw device depicted in Figure 11a, RLW reduces the

data loss by 72.9%, 96.7%, 96.4%, and 96.3%, on a single

SSD and RAID 0/1/5, respectively. On the aspect of failure

detection time, RLW reduces it by 86.7% compared with the

existing scheme in the case of a single SSD. The red-colored

‘X’ (Not detected) flag indicates that the failure cannot be

notified to the application even if the application terminates

its execution (100 seconds). Therefore, we cannot measure

the failure detection time in these cases of raw RAID configu-

rations. Meanwhile, RLW enables the application to detect the

failure within a similar time to that of the single SSD case,

ranging from 0.73 to 0.76 seconds. These results imply that

RLW successfully reduces data loss regardless of raw device

storage configuration (i.e., a single device or RAID).

Figures 11b, 11c, 11d, and 11e depict the data loss and
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time in SSD A (DL: data loss, DT: detection time).

failure detection time on the three file systems under the

single SSD and three RAID configurations using SSD B. RLW

reduces the data loss by up to 82.4% and 75.2% on a single

device and RAID cases, respectively. The failure detection

time is reduced by up to 97.9% and 93.8% on a single device

and RAID cases, respectively. Similar to raw RAID cases, the

existing scheme on EXT4 does not notify the application of

failure. Thus, the failure detection time cannot be measured

in all cases with EXT4. For XFS, the existing scheme exhibits

significantly high levels of data loss and failure detection time

due to a relatively long journal flushing period of XFS (i.e., 30

seconds). Even though the results show that the impact of RLW

depends on various factors, such as storage configuration and

error handling policy of various layers, they demonstrate the

effectiveness of RLW even in various file systems and storage

configurations.

To demonstrate the effectiveness of RLW on various SSDs,

we evaluate SSD A, as illustrated in Figure 12. As depicted

in the figure, improvement degrees by RLW are similar to the

results of SSD B. RLW reduces the data loss by up to 82.5%

and 75% and detects the failure more quickly by up to 97.4%

and 93.7% on a single device and RAID 5 cases, respectively,

compared with the existing scheme. According to the results,

we show that RLW is effective on both SSD models.

Data loss according to various failure points: To evaluate

the impact of RLW on the various failure time points, ranging

from 1 second to 40 seconds, we measure the data loss and

detection time on F2FS with a single device as shown in

Figure 13. In this evaluation, the application performs random

writes to files with periodical file creation and deletion until

the failure is detected. For example, when the failure occurs

at 5 seconds and is detected at 8 seconds, the application

performs the I/O operations for 8 seconds in total.

Overall, after a failure occurs, RLW detects the failure within

time ranges from 0.5 to 2.1 seconds, meanwhile, the existing

scheme detects the failures within time ranges from 2.8 to 7.7

seconds. It shows that RLW is more stable and faster than the

existing scheme. However, data loss increases in RLWwhen the

failure point is moved from 1 to 9 seconds, and this pattern

repeats from 10/22/33 to 21/32/40 seconds. The rationale

behind these results is that, as time elapses, the page cache

becomes almost full. This means that even if a failure point is

identified quickly, the loss of pages that are already stored in

the page cache is inevitable. Also, the detection time in the

existing scheme decreases at the specific time point (e.g., 9,

21, 32, and 40 seconds) since the flushing operations triggered

by the almost full page cache can detect the failure relatively

more quickly. After a file is deleted, the page cache is emptied

and newly accumulated, resulting in the RLW being effective

again. Consequently, RLW reduces the data loss regardless of

failure points even if its effectiveness can be reduced.

Data loss according to various fsync periods: To under-

stand the effect of fsync() periods in RLW on various file

systems with RAID 0, we measure the data loss according to

the periods. In Figure 14, for fsync() at every 128K write

operations, the effectiveness of RLW is low because this short

fsync() period flushes the accumulated pages frequently.

Meanwhile, for 512K and more I/Os, the effectiveness of RLW

significantly increases. These results demonstrate that adopt-

ing an optimal fsync period can be challenging, considering

the trade-off between data loss and performance.

4.2 Macro Benchmark

To evaluate RLW in more realistic workloads, we measure the

reduction of data loss and failure detection time using file-

server and videoserver in filebench and FFSB in F2FS on a

single SSD and RAID 5. Figure 15 illustrates the data loss

difference between the existing scheme and RLW and their

failure detection time. For a single SSD, RLW significantly

reduces the data loss by 300GB, 19GB, and 162GB for file-

server, videoserver, and FFSB, compared with the existing

scheme, respectively. The rationale behind the reduced effec-

tiveness of RLW on videoserver is that this workload has higher

read rates with large sequential reads. Similarly, in RAID 5

configuration, RLW reduces the data loss by 296GB, 31GB,

and 48GB for fileserver, videoserver, and FFSB, compared

with the existing scheme, respectively. The overall impact of

RLW is similar on both single device and RAID 5 cases. This

result demonstrates that RLW can detect failures faster than the

existing scheme, even in more realistic workloads.
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Figure 13: Data loss and failure detection time change according to different SSD failure points.
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Figure 15: Data loss on macro benchmarks.

4.3 Real-world Application

To evaluate RLW with a real-world application, we employ a

key-value store, RocksDB [1] with two benchmarks including

DBBench and YCSB [5] as shown in Figure 16. We run the

fill-random and update-only/workloadA for DBBench and

YCSB, respectively. In the figure, RLW decreases the I/O loss

by up to 400 thousand operations in both cases of a single SSD

and RAID 5, compared with the existing scheme, respectively.

Especially, the impact of RLW is large on DBbench since the

write ratio is relatively higher at DBBench workload. Also,

RLW reduces the detection time by up to 45.7% and 53.0%

in the case of single SSD and RAID 5 compared with the

existing scheme, respectively. These results demonstrate that

RLW can be effective in real-world applications by minimizing

the key-value data loss.

4.4 Impact of Individual Techniques

Figure 17 presents the reduction of data loss and failure de-

tection time according to individual techniques for various

storage configurations. LWW reduces the data loss and detec-

tion time by up to 57.6% and 84.4%, respectively, compared

with the existing scheme. However, for raw RAID 0 and 5,
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DL (Existing) DL (LWW) DL (LWW+FFN) DL (RLW)

DT (Existing) DT (LWW) DT (LWW+FFN) DT (RLW) Not detected

0

2

4

6

0

10

20

30

40

F2FS

(single)

Raw

(RAID0)

F2FS

(RAID0)

Raw

(RAID5)

F2FS

(RAID5)

D
et

ec
ti

o
n

 T
im

e 
(s

)

D
a

ta
 l

o
ss

 (
G

B
) 135.2

120.4
136.4

131.2

140

Figure 17: Impact of individual techniques (DL: data loss,

DT: detection time).

LWW does not work well because the RAID layer blocks failure

notifications so that the application cannot recognize any fail-

ure. In both cases, additionally applying FFN on LWW enables

the application to recognize the failure and data loss is sig-

nificantly reduced by up to 87.1%. The effectiveness of FFN

is relatively lower on F2FS than raw RAID cases, however,

data loss is reduced by up to 26.5%. Finally, when the RLTP

is additionally applied, which is denoted as RLW, the results

indicate that RLTP predicts the command timeout with minor

overhead.

4.5 Prediction Accuracy

Figure 18 depicts the prediction accuracy of RLTP and its con-

vergence point for two SSD models. The prediction accuracy

reaches up to 99.8% for the DBBench workload. In most

cases, the accuracy on SSD B is higher and converges faster

than SSD A because the latency of SSD B is more stable

and lower than that of SSD A. Additionally, the accuracy in

most workloads converges within at least 120 seconds except

for fileserver and videoserver on SSD A and B, respectively.

Fileserver includes a relatively higher read I/Os ratio than

other workloads. Thus, this read/write mixture pattern further

USENIX Association 2024 USENIX Annual Technical Conference    1093



FIO (GC) Fileserver Videoserver

FFSB DBBench YCSB

0

0.2

0.4

0.6

0.8

1

0 60 120 180

A
cc
u
ra
cy

Time (s)

(a) Samsung 980 (SSD A)

0

0.2

0.4

0.6

0.8

1

0 60 120 180
Time (s)

(b) Samsung PM9A3 (SSD B)

Figure 18: RLTP accuracy timeline on various workloads.

Tail latency (99.9%) Tail latency (99.99%)

0

200

400

600

1us 256us512us 16ms 32ms 1s RLW

L
a

te
n

cy
 (

m
s)

LWLC timeout (fixed timeout or RLW)

(a) Samsung 980 (SSD A)

0

2

4

6

8

1us 256us512us 16ms 32ms 1s RLW
LWLC timeout (fixed timeout or RLW)

(b) Samusung PM9A3 (SSD B)
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affects the performance of SSD A (due to the less stable la-

tency) than that of SSD B. Meanwhile, videoserver includes

a delay operation that further affects SSD B (with a higher

throughput) compared to SSD A because this delay can omit

more I/Os per unit of time as the throughput is higher.

4.6 Impact of False-Positive Failure Detection

Figure 19 depicts the performance impact of fixed LWLC time-

out and predicted LWLC timeout via RLW on two SSD models

to show the side effect of false positive detection by the fixed

LWLC timeout and the importance of timeout prediction via

RLTP. In the case of SSD A, as expected, the relatively large

timeouts ranging from 32ms to 30s do not affect the tail la-

tency. However, smaller timeouts ranging from 1us to 16ms

increase the tail latency by up to 522% compared with RLW

since the small timeouts incur the false-positive detection.

Meanwhile, in the case of SSD B, the timeouts ranging from

1us to 256us increase the tail latency by up to 235% compared

with RLW. Note that the timeouts incurring the false-positive

detection can be different according to the SSD models (i.e.,

16ms and 256us on SSD A and B, respectively).

On the other hand, RLW does not affect the tail latency on

both SSD models because no false positive occurs while pre-

dicting the timeout at run-time even without a pre-learning

job. Consequently, these results demonstrate that fixed small

timeouts can affect the performance due to the false-positive

detection, meanwhile, RLW less affects the performance by

correctly predicting timeout based on current SSD states.

4.7 Performance Overhead of RLW

Table 5 lists the performance overhead of RLW. Write opera-

tions are performed while RLW submits LWLC with different

HBI on both SSD models. When HBI is 1ms, the throughput

Table 5: Throughput according to different HBI values.

HBI (ms) 1 4 16 64 256 No RLW

SSD A (KIOPS) 184.9 209.1 241.4 268.2 275.9 278.5

SSD B (KIOPS) 346.3 351.9 346.9 350.8 346.7 352.7

Table 6: Computation overhead of RLTP.

I/O No I/O Busy I/O

conditions No RLTP With RLTP No RLTP With RLTP

CPU utilization 0.03% 0.05% 14.06% 14.09%

drops by 33.3% on SSD A. As HBI increases, the throughput

degradation becomes smaller. To minimize the side effects,

we set HBI to 256ms in the evaluation, decreasing the through-

put by only 0.42%. Meanwhile, interestingly, the throughput

of SSD B is not affected by HBI. This means that the over-

head of RLW is negligible on SSD B even if LWLC is submitted

frequently. These results demonstrate that RLW is lightweight

while quickly detecting SSD failure.

Furthermore, to show the computation overhead of RLTP,

we measure the CPU utilization with or without RLTP on two

different I/O conditions as shown in Table 6. RLW employs a

sufficiently large fixed timeout (i.e., 1 second) when RLTP is

not involved, and HBI is set to 1 ms to trigger RLTP frequently.

As shown in the table, the CPU utilization in the case of a

busy I/O condition increases by 14% compared with no I/O

condition. However, the CPU utilization increased by RLTP is

negligible in both cases. This result demonstrates that RLTP

has lightweight computation.

5 Discussion

5.1 Position of RLW

RLW can be effective and collaborate with existing schemes in

diverse SSD-based systems such as distributed and standalone

systems. For example, RLW can enhance the SSD failure man-

agement in a distributed system with a redundancy scheme

by detecting the failure within a replica node quickly which

is an important issue as described in the previous studies

(EAFR [35] and Ho et al. [20]). Furthermore, in a standalone

system (e.g., fileserver and desktop) with a data-intensive

workload [52] similar to our experimental environment, RLW

can be also effective to mitigate the data loss.

5.2 Advantage of Kernel-based Approach

RLW adopts a kernel-based approach to leverage three advan-

tages. First, the kernel-based approach is closer to the SSD

than the application-based one, leading to faster failure detec-

tion. Second, it enables application-agnostic solutions without

requiring application modifications, resulting in the easy uti-

lization of RLW. Lastly, it does not require issuing a system call.

Meanwhile, since an application-based approach requires fre-

quent system calls, it can lead to high overhead. Therefore, we

choose the kernel-based approach to make RLW more efficient.
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6 Related Work

Detecting and handling SSD failures: To investigate SSD

failures, some studies [6, 7, 71, 72] have adopted a special

device as a PCB that can control the power supplied to the

SSDs, as in our study. Ahmadian et al. [7] analyze the effect of

various I/O patterns on data loss while controlling the power

of a SATA SSD. Ahmadian et al. [6] and Zheng et al. [71,72]

classify various SSD failure types when power faults occur.

Our work is similar to these studies [6, 7, 71, 72] in terms of

analyzing SSD failure with the power control board to inject a

more realistic fault. Meanwhile, we target reducing data loss

at run-time.

Shi et al. [51] discover a bug that causes data loss when

sync() and power faults occur. In addition, Jaffer et al. [22]

evaluate the reliability of an SSD by classifying the data

loss problems. Huang et al. [21] present the concept of a

metastability failure, a point at which a large-scale cluster

cannot be automatically returned to a normal state. In addition,

Lu et al. [37] analyze and classify symptoms from the logs of

storage clusters to the failures of NVMe SSDs.

Narayanan et al. [42] characterize and analyze the failures

of millions of SSDs and the reliability of data centers. Fur-

thermore, Mahdisoltani et al. [39] predict the sector failure

of SSDs and propose use cases to mitigate the performance

drop caused by failure handling. Our study aligns with these

studies [21,22,37,39,42,51] regarding investigating SSD fail-

ure problems. However, we focus on handling SSD failures

instead of the discovery or classification of symptoms caused

by SSD failures.

Kadekodi et al. [24] present Tiger which estimates the fail-

ure rate and dynamically configures RAID stripe by changing

the ratio of parity devices to improve space efficiency and

fault tolerance. Our study aligns with this study [24] in terms

of reducing data loss caused by SSD failure. Even with an

advanced RAID scheme, the data loss problem in the page

cache still remains.

IronFS [48] and EIO [17] treat delayed error propaga-

tion. They inspire our study, meanwhile, RLW targets to notify

applications of SSD failures using the VFS layer quickly.

Chronos [15] and SafeTimer [38] have investigated to detect

errors in distributed systems by heartbeat schemes between

nodes. RLW can collaborate with them. For example, error

detection schemes in distributed systems can propagate an

SSD failure that occurred in a node to a master node more

quickly with the assistance of RLW. Furthermore, the node with

RLW can protect against application data loss from upcoming

requests.

Prediction models in SSDs: Kang et al. [26] propose a GC

scheduler to predict the idle time in an SSD through RL.

Kurniawan et al. [31] build a deep-learning model to learn

latency logs on various workloads and SSD models to predict

I/O latency. Furthermore, LeaFTL [53] is a learning-based

FTL that learns data access patterns via linear regression to

reduce the mapping table size. Our study is inspired by these

studies in terms of predicting latency and pattern in SSD using

a learning model. In contrast, we focus on predicting SSD

failure points and quickly addressing the SSD failure.

SSD failure prediction models: WEFR [64] presents a fail-

ure prediction algorithm regardless of the SSD manufacturer

or model to select failure-related information. Alter et al. [8]

analyze and classify failure cases and propose a failure pre-

diction model through machine learning. Zhang et al. [70]

analyze the characteristics of failed and normal SSDs through

data center operation logs and propose MVTRF to predict

failure types, times, and status. Chakraborttii et al. [12, 13]

present a learning model to classify the failure type via the

log of SSDs and predict their failure. Hao et al. [19] pro-

pose RUS_Ensemble learning to increase the true positive

rate compared with SSD failure prediction models based on

SMART information.

Our study is in line with these studies [8, 12, 13, 19, 64, 70]

in terms of utilizing machine learning techniques to mitigate

the impact of SSD failures. Specifically, they aim to predict

a potential failure that does not occur using offline learn-

ing. Meanwhile, we focus on detecting the failure that has

already occurred to minimize the application data loss via

online learning instead of offline learning. We believe that our

scheme can incorporate these prediction strategies to be more

effective against failures.

7 Conclusion

This paper aims to minimize application data loss in a stor-

age system upon an SSD failure. To this end, we propose

RL-Watchdog (RLW) which examines SSD liveness or failures

quickly, precisely, and online. Specifically, RLW first periodi-

cally monitors failures in a lightweight manner. Second, RLW

predicts the failure point more precisely regardless of the

SSD models without offline pre-learning. Finally, RLW sus-

pends the storage system immediately to prevent further data

loss. We implement RLW in a Linux kernel and evaluate it in

various configurations using a power supply board to inject

a realistic power fault. The evaluation results indicate that

RLW reduces the data loss by up to 96.7%, and its prediction

accuracy reaches 99.8%.
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