
This paper is included in the Proceedings of the
2024 USENIX Annual Technical Conference.

July 10–12, 2024 • Santa Clara, CA, USA
978-1-939133-41-0

Open access to the Proceedings of the
2024 USENIX Annual Technical Conference

is sponsored by

RL-Watchdog: A Fast and Predictable SSD Liveness
Watchdog on Storage Systems

Jin Yong Ha, Seoul National University; Sangjin Lee, Chung-Ang University;
Heon Young Yeom, Seoul National University; Yongseok Son, Chung-Ang University

https://www.usenix.org/conference/atc24/presentation/ha

RL-Watchdog: A Fast and Predictable SSD Liveness Watchdog

on Storage Systems

Jin Yong Ha

Seoul National University

South Korea

Sangjin Lee

Chung-Ang University

South Korea

Heon Young Yeom

Seoul National University

South Korea

Yongseok Son∗

Chung-Ang University

South Korea

Abstract

This paper proposes a reinforcement learning-based watchdog

(RLW) that examines solid-state drive (SSD) liveness or fail-

ures by faults (e.g., controller/power faults and high tempera-

ture) quickly, precisely, and online to minimize application

data loss. To do this, we first provide a lightweight watchdog

(LWW) to actively and lightly examine SSD liveness by issu-

ing a liveness-dedicated command to the SSD. Second, we

introduce a reinforcement learning-based timeout predictor

(RLTP) which predicts the timeout of the dedicated command,

enabling the detection of a failure point regardless of the SSD

model. Finally, we propose fast failure notification (FFN) to

immediately notify the applications of the failure to minimize

their potential data loss. We implement RLW with three tech-

niques in a Linux kernel 6.0.0 and evaluate it in a single SSD

and RAID using realistic power fault injection. The experi-

mental results reveal that RLW reduces the data loss by up to

96.7% compared with the existing scheme, and its accuracy

in predicting failure points reaches up to 99.8%.

1 Introduction

Compared with hard disk drives, solid-state drives (SSDs)

have higher performance, better reliability, and lower power

consumption and thus have been widely adopted in var-

ious storage systems, such as enterprise storage systems,

data centers, and cloud storage [9, 23, 40, 41, 43]. Accord-

ingly, the reliability of SSD and storage systems has become

critical; therefore, various fault tolerance mechanisms have

been adopted, such as replication [28, 73], redundant array

of inexpensive disks (RAID [14, 47]), or transaction process-

ing [44, 62, 63, 68, 69].

Unfortunately, even if these mechanisms can recover writ-

ten data or committed transactions, when a sudden SSD

failure caused by various faults (e.g., SSD controller/power

faults [36, 71], high SSD temperature [45, 59, 67], loose in-

terconnects by vibration [18], and a faulty PCIe slot [33])

occurs, preventing data loss in running applications (i.e., the

∗Corresponding author: Yongseok Son (sysganda@cau.ac.kr).

DL (existing, single) DL (existing, RAID5) DL (RLW, single) DL (RLW, RAID5)

DT (existing, single) DT (existing, RAID5) DT (RLW, single) DT (RLW, RAID5)

Not detected

0

2

4

6

0

50

100

150

Raw device EXT4 F2FS XFS

D
e
te

c
ti

o
n

 t
im

e
 (

s)

D
a

ta
 l

o
ss

 (
G

B
)

28.6, 28.6

Figure 1: Application data loss (DL) and detection time (DT)

upon an SSD failure (i.e., SSD power fault) in the Linux

kernel (the command timeout is 1 second).

host system is alive) is still a challenge [6,7,32,74]. For exam-

ple, in the Linux kernel, when applications perform buffered

writes, they can lose a significant amount of data in the page

cache ranging from tens to hundreds of gigabytes when SSD

cannot be available anymore due to the faults. This is because

file information or metadata associated with the pages (i.e.,

user data) in the page cache can be lost when the SSD failure

occurs. Figure 1 shows that the application can either recog-

nize a failure later (e.g., XFS or F2FS) or fail to recognize the

failure (e.g., EXT4 or raw RAID device) on a single SSD or

RAID configuration. This reveals that the Linux kernel may

not detect SSD failure quickly, even if high-end non-volatile

memory express (NVMe) SSDs are adopted. As a result, this

failure can cause applications to require reproducing data

through an additional time-consuming computation.

Specifically, according to our analysis, we observe three

critical limitations of detecting and handling the SSD failure

in the Linux storage stack as follows.

Loose-deterministic failure check: The current storage

stack passively identifies that the SSD has failed only when

a submitted command (e.g., I/O or admin command) is not

completed within a given command timeout. Thus, failure

detection can be significantly delayed until the command is

submitted without a hard deterministic bound.

Fixed command timeout: The current storage stack em-

ploys a fixed timeout regardless of SSD models. Intuitively,

a fixed small command timeout can decrease data loss, but

USENIX Association 2024 USENIX Annual Technical Conference 1083

Table 1: Categories and comparison with previous SSD failure studies.

Study
Kernel or Data loss HW for realistic ML prediction for Offline or

application mitigation fault injection future failure command timeout online learning

Ahmadian et al. [6, 7], Zheng et al. [71, 72] Application

Tiger [24] Application

Alter et al. [8], Chakraborttii et al. [12, 13]
Application Offline

RUS_Ensemble [19], MVTRF [70]

Our study Kernel Online

cause a false-positive detection, leading to an increased la-

tency. Meanwhile, a large-fixed command may not incur the

false-positive detection, however, can increase data loss. De-

termining and leveraging a “fixed” optimal timeout1 can be

effective temporarily. However, since this fixed value cannot

cover all conditions (i.e., various SSD models and command

types, and fluctuating workload intensity), it may not be con-

sidered a permanent solution.

Delayed failure notification: The current storage stack may

not promptly notify running applications of the SSD failure.

Specifically, the delayed notification is caused by a failure

handling policy of each file system (e.g., some file systems

notify the failure only after they fail to write critical metadata).

Thus, during these behaviors, applications can accumulate

data in the page cache until the failure is notified.

Previously, many studies have been conducted to investi-

gate and predict SSD failures as presented in Table 1. As

listed in the table, most studies detect or predict SSD failures

at the application level, meanwhile, our study handles the SSD

failure in the Linux kernel to detect it more quickly and it is

also application-oblivious. Some studies [6, 7, 71, 72] have

detected SSD failures directly using separate hardware to

generate actual power faults, similar to our study. In contrast,

we focus on mitigating the data loss by quickly detecting

and precisely predicting the SSD failure points. Other stud-

ies [8, 12, 13, 19, 70] have predicted future SSD failures using

log data from a large-scale SSD cluster and offline machine

learning. Meanwhile, we focus on predicting the command

latency by learning the current SSD states at run-time with-

out offline pre-learning cost. Furthermore, we note that our

study aims to detect actual failures that have occurred, mean-

while, other machine learning-based studies concentrate on

predicting potential failures before they happen.

In this paper, we propose a novel reinforcement learning-

based watchdog to monitor SSD liveness or failure called

RL-watchdog (RLW). Our approach incorporates three tech-

niques to quickly, precisely, and online detect SSD failures,

thereby minimizing application data loss against the failures.

Specifically, we first present a light-weighted watchdog (LWW)

to monitor the SSD failures by periodically submitting a light-

weighted liveness-monitoring command (LWLC) to the SSDs.

It enables quick failure detection while minimizing interfer-

ence from other I/O commands. Second, we introduce a rein-

1We define the optimal timeout as the minimum command timeout that

does not incur false-positive detection.

forcement learning-based timeout predictor (RLTP) to predict

the SSD command timeout online, regardless of device type.

It enables the dynamic alteration of the command timeout at

runtime while minimizing false-positive detection. Finally,

we propose fast failure notification (FFN) which enables im-

mediate SSD failure notification to applications to minimize

data loss from upcoming write requests. By leveraging the ab-

straction provided by the virtual file system (VFS) layer and

reusing existing failure code, it does not require application

modification.

We implement RLW with all techniques in a Linux kernel

6.0.0. Then, we evaluate RLW using a single SSD and software

RAID with various file systems including EXT4, XFS, and

F2FS. We run micro/macro benchmarks and a real-world

application (i.e., RocksDB) on two NVMe SSD models. For

more realistic scenarios of SSD failure, we use a power control

board (PCB) [7] that can inject a power fault to the NVMe

SSD, independent of the system power. The experimental

results reveal that RLW reduces the data loss by up to 96.7%

compared with the existing scheme in the Linux kernel, and

its accuracy in predicting the command timeout reaches up to

99.8%.

To the best of our knowledge, this paper is the first study to

identify the issue of the detection scheme of NVMe SSD fail-

ure and introduce an online machine learning-based detector

in the Linux kernel. Furthermore, we offer the source code at

https://github.com/OSopt/RL-Watchdog to aid future

studies in reducing data loss upon SSD failures.

2 Background and Motivation

This paper focuses on NVMe SSDs since they have increas-

ingly been adopted in various storage systems [30, 34, 56,

58, 65, 66]. Despite their popularity and many advantages,

NVMe SSD failure can occur frequently even if the system

is alive [71]. For example, an SSD failure occurs when 1)

the SSD controller has failed due to unrecoverable metadata

loss or hardware damage, 2) the SSD power supply is unsta-

ble, 3) the SSD temperature is excessively high due to high

performance and intensive workloads, or 4) the PCIe slot is

worn-out, causing a disconnection between the kernel and

SSD. We note that, when the system is alive and the SSD

failure occurs, application data loss can be significant. This is

because even if the SSD failure occurs, the application data

can be accumulated continuously in the page cache until the

failure is detected. Furthermore, the pages in the page cache

1084 2024 USENIX Annual Technical Conference USENIX Association

Application

VFS &

Page cache

Device Driver

NVMe SSD

System call

Check NVMe

connection

Detect

failure

Failed

SSD failure

Report failure

Buffered

write

System call

Disconnect

Data accumulate in the page cache

Command timeout

Buffered

write

System call Report failure

Submit I/O

command

U
se

r
K

er
n

el
H

/W

File System
Submit
pages

Write-back condition

is satisfied Catch
failure

Stop

write

Buffered

write

Invoke transaction

Journal or
checkpoint

Report failure

completion
Wait for

Store
pages

Store
pages

Store
pages

Discard
pages

Delayed
report

Buffered

write

System call

Store
pages

Buffered

write

System call

Store
pages

Buffered

write

System call

Store
pages

Buffered

write

System call

Store
pages

Abort

Figure 2: Example of the procedure for detecting NVMe SSD failure in the existing Linux kernel.

cannot be recovered since their corresponding files are lost,

leading to user data loss. Accordingly, the current storage

stack should catch the failure quickly to minimize data loss.

However, according to our analysis, there are three limitations

in the storage stack as follows.

2.1 Loose-deterministic Failure Check

SSD failure is passively checked via an I/O command: In

the current Linux storage stack, the SSD failure can be de-

tected only by checking whether a submitted command is

completed or not within a given command timeout. For exam-

ple, if the NVMe SSD fails to respond to the command within

the specified timeout, the device driver checks the NVMe

connection to determine whether communication with the

NVMe SSD is available [11]. If it is unavailable, the device

driver considers this situation as a failure. Then, it performs

post-processing for the failure by disconnecting the NVMe

connection and discarding the accumulated data in the page

cache.

Unfortunately, this scheme may result in a significant delay

due to a loose-deterministic time bound for checking the fail-

ure. Specifically, there are commonly two cases to submit I/O

commands2, such as the page cache write-back and transac-

tion processing. However, they are performed when a specific

condition is satisfied. For example, flushing the page cache

and transaction processing are performed when fsync() is

called in both cases, the ratio of dirty pages is high, and the

commit/checkpoint interval has elapsed, respectively.

An example of application data loss: Figure 2 illustrates

an example of checking SSD liveness or failure in the Linux

kernel. As shown in the figure, even if an SSD failure occurs

at an early point in time, it may remain undetected unless

a command is issued. When the I/O command is issued via

a satisfied write-back condition, the failure can be detected.

Eventually, the kernel can only detect the SSD failure af-

ter the page cache is flushed (i.e., third buffered write), and

the application data accumulated in the page cache after the

failure will be lost. Consequently, because the command sub-

mission to SSD depends on various behaviors of the storage

2We focus on the case of the write command for briefness and the target.

The failure can be detected using other I/O or admin commands as well.

0

10

20

30

40

0

10

20

30

1ms 4ms 16ms 64ms 256ms 1s 4s 16s 30s

D
et
ec
ti
o
n
ti
m
e
(s
)

D
a
ta
L
o
ss
(G
B
)

Command timeout

Data loss Detection time

Figure 3: Data loss and failure detection time changes upon

SSD failure according to command timeout.

stack, a mechanism for examining SSD liveness with a strict-

deterministic time bound becomes essential to minimize the

data loss.

Measuring data loss according to various command time-

outs: Figure 3 shows data loss and failure detection time upon

an SSD failure according to various command timeout con-

figurations. In the figure, data loss and failure detection time

decrease as command timeout decreases from 30 to 1 second

which is the minimum value provided by the kernel. At the

one-second command timeout, the amount of data loss caused

by the SSD failure is 17.5 GB, and it indicates substantial

data loss due to the slow detection time (i.e., 5.7s). For a more

deep analysis, we configure the command timeouts to smaller

values (e.g., 1 ms) via a small modification. However, data

loss and detection time are still not improved. As explained, it

is because of the loose-deterministic failure check performed

by submitting I/O commands. This means that the detection

of SSD failure is delayed until an I/O command is submitted,

resulting in substantial data loss even with a very small com-

mand timeout. Consequently, the results show that the current

scheme for examining SSD failure is not sufficient to mitigate

data loss and detection time.

2.2 Fixed Command Timeout

Although a command is submitted with a strict-deterministic

time bound for checking SSD failure, determining an opti-

mal command timeout is still a challenge due to a trade-off

between the amount of data loss and the false-positive ef-

fect. Specifically, a command timeout, which is larger than

the actual command latency, can hinder prompt failure de-

tection and result in larger data loss. Meanwhile, when the

USENIX Association 2024 USENIX Annual Technical Conference 1085

40
60

R 99.99% R 99.9% W 99.99% W 99.9% F 99.99% F 99.9%

0

200

400

600

1ms 2ms 4ms 16ms 64ms 1s 30s

T
a

il
 l

a
te

n
cy

 (
m

s)

Command timeout

(a) Samsung 980 (SSD A)

0

20

40

60

1ms 2ms 4ms 16ms 64ms 1s 30sT
a

il
 l

a
te

n
cy

 (
m

s)

Command timeout

(b) Samsung PM9A3 (SSD B)

Figure 4: Tail latency QoS according to the command time-

outs (R: read, W: write, F: fsync).

command timeout is smaller than the actual command latency,

false-positive detection occurs. As its adverse effect, the de-

vice driver issues abort commands as much as the number of

expired commands, which are not completed within the time-

out period, to abort each of them [57], resulting in a latency

overhead.

To demonstrate the adverse effect of false-positive detec-

tion, we measure the latency of three I/O operations (i.e.,

read, write, and fsync) according to various command time-

outs and SSD models as shown in Figure 4. In the case of

SSD A, when the command timeout is smaller (i.e., from

1ms to 16ms), the tail latency of read() and fsync() system

calls increases compared with larger command timeout cases

(i.e., from 64ms to 30s). It is caused by the adverse effect of

false-positive detection. Meanwhile, in the case of SSD B, the

adverse effect occurs when the command timeout is less than

2ms. Furthermore, in both cases, the extent of the adverse

effect can vary depending on the command type. For example,

in the case of SSD B, when the command timeout is 2ms,

the latency of the write operation is stable, meanwhile, read

and fsync operations exhibit much higher latency. The results

demonstrate that the command timeout should be dynamically

determined according to the command type and SSD models

instead of a fixed one.

2.3 Delayed Failure Notification
If a failure is quickly and precisely detected with an optimal

timeout at a lower layer (i.e., device driver), the failure should

be promptly notified to running applications to suspend the

upcoming write operations. However, a failure detected by

the lower layer is not immediately notified to the VFS layer,

including the page cache; thus, the application can continue

to perform its write operations.

For example, in the raw RAID cases, a failure is not notified

because the device file is not removed but the RAID waits for

its rebuild. For the file system cases, as presented in Figure 2,

the XFS and F2FS file systems report a failure only if the

critical metadata I/O has failed. Thus, only after the failure to

write critical metadata (e.g., the journal superblock of XFS

and the checkpoint of F2FS), the file systems can identify the

failure and then stop their operations and notify the VFS layer

of the failure. Specifically, in the case of EXT4, when the

journal superblock write fails, EXT4 identifies the failure and

remounts the device as a read-only mode. However, EXT4

does not transfer the failure to the VFS layer, and the appli-

cation cannot catch the failure as shown in Figure 1. Thus,

to catch the failure earlier in the VFS layer, a mechanism for

fast notification is required.

2.4 Reinforcement Learning

Reinforcement learning (RL) is an algorithm that predicts

the optimal action based on the current state and increases

accuracy by providing negative or positive feedback based on

the action results [25, 54, 61]. The feedback value reflected

in the model is called a reward. A higher or lower reward

value indicates a more or less accurate prediction, respectively.

As a type of RL algorithm, Q-learning is a lightweight and

model-free RL to learn the value of an action in a particular

state [60].

This paper adopts Q-learning to predict the NVMe com-

mand latency online for two specific reasons as follows. First,

to predict the NVMe command latency inside the Linux ker-

nel at runtime, the cost of learning and prediction should be

negligible to minimize interference with the target system

performance. Q-learning is one of the low-cost online predic-

tion methods [26, 27, 50]. Second, in most cases, the internal

conditions and information (e.g., GC) of commodity SSDs

are not open to applications (i.e., a black box). Thus, it is

not easy to design a model to predict the command latency.

Since Q-learning is a model-free learning algorithm, it can

predict the command latency more precisely even if the SSD

is a black box. For these reasons, we adopt Q-learning in our

liveness examination system.

3 Design and Implementation

The goal of RL-watchdog (RLW) is to minimize application

data loss by examining SSD liveness or failure quickly, pre-

cisely, and online. To develop RLW, we have to overcome the

following research challenges.

• RLW should examine SSD liveness actively and strictly

but should be lightweight to not incur much overhead to

application I/O performance.

• RLW should precisely predict the command latency re-

gardless of command types and SSD models without an

offline pre-learning cost.

• RLW should quickly notify the application of a failure

in an application-agnostic manner, regardless of failure

post-processing of other kernel components.

3.1 Overview of RL-Watchdog (RLW)

To minimize application data loss, the key idea of RLW is to

examine SSD liveness by leveraging lightweight and strict

examination, an online learning technique, and a fast fail-

ure notification. Figure 5 shows the overall architecture and

procedure of RLW.

LWW collects the SSD states (e.g., IOPS, in-flight I/Os, and

average I/O size) from the block layer (1) and requests the

1086 2024 USENIX Annual Technical Conference USENIX Association

U
se

r
sp

a
ce

File

system

VFS

&

Page cache

Block

layer

NVMe

driver

SSD

APP

FFN

Common path Failure path

 SSD failure

occurs

 Collect

SSD state

 Pass SSD state

to predict timeout

 Return

 expected

 timeout

RLTP

 Submit LWLC

 -A Return completion

 -B No completion until timeout

 Update Q-table

 C
a
lcu

la
te &

 reflect rew
a
rd

Common or

failure path
 Return I/O error

 Report SSD failure

 Detect failureK
er

n
el

 s
p

a
ce

D
ev

ic
e

Reward

calculator

RL-Watchdog

Q-table

LWW

VFS metadata

(e.g., super_block)

8

1

2

3

4

5

5

6

9

10

7

Figure 5: Overall architecture and procedure of RL-watchdog.

prediction of the command timeout value with states to RLTP

(2). RLTP refers to the Q-table and returns a timeout value

suitable for the given SSD states to LWW (3). Then, LWW

sets the timeout value and issues the light-weighted liveness-

monitoring command (LWLC) to the SSD (4). If the SSD is

alive, LWLC is completed (5 -A), and LWW requests to update

the Q-table to RLTP (6). In RLTP, the reward is calculated

through the difference between the measured LWLC latency

and predicted timeout (7). If LWLC is not completed until the

given timeout has elapsed (5 -B), LWW checks whether an SSD

failure has occurred or not (8). If a failure is detected by LWW,

LWW reports the failure via FFN, specifically the VFS metadata

(e.g., super_block) (9). Then, the application checks the

VFS metadata resulting in the failure notification, and thus,

the application can avoid upcoming writes immediately (10).

3.2 Light-Weighted Watchdog (LWW)

LWW monitors SSD liveness actively and quickly to determine

whether an SSD is alive or not. To do this, LWW employs

per-device watchdog threads (i.e., a one-to-one model) which

periodically transfer LWLCwhich is a special NVMe command

to the SSDs through the device driver. Without a response

within the timeout interval, the driver aborts LWLC and checks

the NVMe connection like the existing Linux kernel. In LWW,

there are two key challenges to minimize the overhead of

periodic monitoring: 1) devising LWLC to be a universal and

lightweight command and 2) determining the optimal interval

between issuing LWLCs to minimize performance interference.

We describe how to handle these challenges as follows.

Light-weighted liveness-monitoring command (LWLC): It

is a challenge that the periodic monitoring technique should

be universal and lightweight. To handle this challenge, a poten-

tial approach defines a new NVMe command and implements

it in the SSD firmware and NVMe device driver. However,

modifying SSD firmware is practically impossible unless the

manufacturer’s assistance, and command processing of the

latest SSDs is based on the hardware [46], making it more

difficult. Furthermore, although the new NVMe command

is defined, it is inapplicable to many commodity SSDs on

existing storage systems. As an alternative approach, we can

utilize an existing NVMe I/O command. However, it shares

the NVMe I/O command queue with the normal I/O com-

mands, resulting in a large interference with the normal I/O

operations.

To handle this issue, we employ an admin command by

using a spare opcode (e.g., 0xFF) that is not defined in the

NVMe specification as an LWLC. This approach offers two

key advantages. First, regardless of the SSD models, it can be

applied to all commodity NVMe SSDs by handling the spare

opcode to examine SSD liveness. Second, it requires minimal

SSD internal resources. For example, when the command

arrives at the SSD, the controller can only check the opcode

and complete the command without any further actions. By

doing so, we devise LWLC to be more universal, lightweight,

and have minimal impact on normal I/O operations.

Heartbeat interval (HBI): As a second challenge, to mini-

mize performance interference by LWW, it is important to set

an interval between issuing LWLCs and understand the rela-

tionship between the interval and command timeout. Thus,

we define the interval as HBI which is the time between the

completion of LWLC and the re-submission of LWLC. An ex-

cessively short HBI increases the frequency of issuing LWLC,

thereby detecting SSD failures early but reducing the normal

I/O performance. Meanwhile, an excessively high HBI de-

creases the frequency of issuing LWLC, thereby less affecting

the normal I/O performance but causing a delayed detection

of SSD failures. Through the experiments, we observe an

optimal HBI of 256 ms with a negative effect of less than

0.42% on performance. The detailed experimental results are

explained in Section 4.7.

Procedure of LWW: Figure 6 and Procedure 1 describe how

LWW works and interacts with RLTP. When LWW starts, it re-

ceives the list of SSDs to be monitored and HBI as param-

eters (line 1). Then, it creates per-device watchdog threads

in an SSD list (1 , lines 2–4). Each watchdog thread starts

monitoring the SSD liveness until LWW is removed or detects

SSD failure (line 7). First, each thread collects the current

state (S) of its target SSD from the block layer (line 8). S con-

sists of the I/O information of in-flight I/Os, IOPS, average

I/O size, etc., which are features used in RLTP to learn and

predict the command timeout (T). Since each thread utilizes

this I/O information which is already collected in the existing

block layer, there is no additional overhead caused by the

collection. Then, each thread transfers the state to RLTP to

get a predicted command timeout (T̂) based on the state (2 ,

line 9). Subsequently, each thread submits LWLC with T̂ to its

corresponding SSD (3 , line 10), waits for LWLC completion,

and stores its actual command latency (TA) (4 , lines 11–12).

If there is no response within T̂ (i.e., the command is ex-

USENIX Association 2024 USENIX Annual Technical Conference 1087

/dev/nvmeN/dev/nvme1/dev/nvme0

Light-Weighted Watchdog (LWW)

Update

Q-table

R
L

T
P

Predict

Timeout

LWLC

...

Per-device watchdog threads

or timeout
Response

SSD list

...

or timeout
Response

or timeout
Response

ThrNThr1

nvme0 nvme1
... nvmeN

Wait

Thr0

Wait Wait

LWLC LWLC

1

3

4

3

4

3

4

5

2

Figure 6: Procedure of LWW (Thr: thread).

Proc. 1 A C-like pseudo-code of SSD liveness examination in LWW

1: function LWW((ssd_list,HBI))
2: for ssd in ssd_list do ⊲ Per-device watchdog thread

3: create_thread(do_watchdog, ssd, HBI)

4: end for

5: end function

6: function DO_WATCHDOG(target_ssd, HBI)

7: while LWW not stopped do

8: S← State of target_ssd from the block layer;

9: (T̂ ,Qptr)← RLT P.Predict(S);
10: Submit LWLC with timeout T̂ ;

11: Wait for completion of LWLC;

12: TA← latency of LWLC;

13: if command is expired then

14: if !is_alive(target_ssd) then

15: Stop the watchdog thread (target_ssd) ⊲ SSD failure

16: end if

17: end if

18: if is_alive(target_ssd) then

19: RLT P.U pdateQtable(prev_Qptr, Qptr, prev_TA, prev_T̂)

20: prev_TA← TA ⊲ Save previous values

21: prev_T̂ ← T̂

22: prev_Qptr← Qptr

23: end if

24: wait(HBI)
25: end while

26: end function

pired) (line 13), the NVMe device driver checks the NVMe

connection (line 14). If a failure is found, the SSD connection

is disconnected, and the watchdog thread of the target SSD

is stopped (line 15). Then, LWW gets a failure code from the

device driver and then reports the failure to FFN. Otherwise,

each thread transfers its corresponding TA and T̂ to RLTP to

update the Q-table (5 , line 19). Then, it updates the pre-

vious latency, predicted timeout, and Q-value (i.e., prev_TA,

prev_T̂ , and prev_Qptr) by the current TA, T̂ , and Qptr, re-

spectively, to use them for the next step (lines 20–22). Finally,

each thread waits for the optimal HBI (line 24) and repeats

the above procedure.

3.3 Reinforcement Learning Timeout Predic-

tor (RLTP)

We propose RLTP to predict a command timeout (i.e., LWLC

timeout) according to the current SSD state at runtime without

an offline pre-learning process. We note that I/O command

Table 2: Correlation coefficient between the LWLC latency and

the features of SSD states (FIO (GC): GC is invoked by FIO,

W: write, R: read).

Features
Video

server

File

server
YCSB

FIO

(GC)
FFSB

In-flight I/Os 0.06 0.13 0.63 0.03 -0.005

IOPS (W) -0.23 -0.06 0.34 -0.01 0.023

Avg. size (W) 0.38 -0.76 0.51 -0.03 0.025

IOPS (R) 0.007 -0.005 -0.11 -0.01 0.001

Avg. size (R) -0.002 0.002 0.04 -0.01 0.001

(e.g., read, write, and flush) latency prediction can be chal-

lenging and time-consuming work because of the complex

internals of modern SSDs [29, 31]. However, instead of com-

mon I/O commands, RLW targets to predict the timeout of

LWLC which induces the SSD controller to simply check the

opcode as described in Section 3.2. Thus, predicting the LWLC

timeout is much easier than that of other commands, as it is

less affected by the SSD’s complex internals. This design

decision supports the viability of employing Q-learning [60]

to predict the LWLC timeout. We match the Q-learning com-

ponents of the action, state, and Q-value to the LWLC latency,

current SSD states, and expected gain, respectively. A detailed

explanation is described below.

Feature selection: To apply Q-learning, we select features for

prediction among the various features of the current SSD state

such as in-flight I/Os, the write/read IOPS, and the average

write/read size. To do this, as shown in Table 2, we measure

the correlation coefficient between the LWLC latency and the

features under various workloads. The features of in-flight I/O,

the write IOPS, and the average write I/O size are correlated

with the LWLC latency. For example, when the number of

in-flight I/O increases or write IOPS increases, since SSD

may process a large number of pending I/O commands or

normal I/O operations, respectively, it leads to an increase

in the LWLC latency. Also, if in-flight I/Os are high and the

write IOPS is low, LWW can infer that GC may be running

inside the SSD [31]. Third, when the average write I/O size

increases, the time of processing one command increases,

resulting in increasing LWLC latency. Finally, we observe that

both the read IOPS and the average read size have almost no

relationship with the LWLC latency. Thus, we exclude them

from the features for learning.

Through the correlation coefficient, we discover an interest-

ing fact that we did not expect. The fact is that the correlation

coefficients which we expect as positive values are observed

as negative values in some workloads. For example, the cor-

relation coefficient in the case of the average write size in

the fileserver is lower than -0.5. This means that the LWLC

latency increases even if the average write size decreases. The

reason for this opposite result to the expectation is from the

SSD power-saving mode [4]. For example, if few I/O requests

occur, the SSD enters a low power mode to prevent power

wastage. Thus, during the low power mode, the frequency

of the controller inside the SSD is lowered, resulting in a

1088 2024 USENIX Annual Technical Conference USENIX Association

Table 3: Range of features to represent SSD state.
In-flight I/Os Write IOPS Avg. write Size LWLC latency

< 13 < Max/256 < 8 KB < 1 ms

>= 13 < Max/16 < 32 KB < 4 ms

>= Max/16 < 128 KB < 16 ms

>= 128 KB >= 16 ms

Table 4: Reward according to the latency prediction results.

Prediction result
False positive

(Underestimated)
Overestimated Correct

Reward value -1 -0.5 1

higher LWLC latency. Even if there can be this unexpected

case, since RLTP continuously updates the values of the Q-

table according to the current SSD state, RLTP can predict the

LWLC timeout.

Design of Q-table and reward: If the values of the selected

features are represented as individual integers, the size of

the Q-table becomes unacceptably large, and learning slows

down, making proper prediction impossible. Thus, we es-

tablish a range for each feature to design a Q-table with an

appropriate size. To do this, we analyze the sensitivity against

various combinations of each feature and its range based on

the representative SSD states and choose them like the previ-

ous study [26] as shown in Table 3. The size of the resulting

Q-table per SSD is 384 bytes when one entry size is 4 bytes.

As a result, memory consumption is negligibly small.

Table 4 lists the determined reward according to the predic-

tion results. As shown in the table, if the predicted timeout is

shorter than the actual timeout (i.e., a false positive occurs),

since it is an incorrect prediction result, the reward has the

lowest value of -1. Meanwhile, if it is not a false positive but

the predicted timeout is too long, we impose the penalty of

-0.5 to give less penalty than the case of a false positive. If

the predicted timeout and the actual one are within the same

range, it is considered a correct prediction, and a value of 1

is used as a reward value. By doing so, we increase the pre-

diction accuracy of the LWLC timeout according to the current

SSD state.

Procedure of RLTP: We describe the procedure of RLTP

in Figure 7 and Procedure 2. The figure presents a watch-

dog thread and table for each SSD (i.e., Thr0:Q0, Thr1:Q1, ...

ThrN :QN). As shown in the procedure, there are the main

operations of Predict() and UpdateQtable() of RLTP.

Predict() receives the SSD states to be used as features

from LWW and predicts an LWLC timeout (1 , line 1). Each SSD

state is converted into its corresponding index to access the

Q-table (line 2). The Q-table constitutes a four-dimensional

array, but for simplicity, we depict it as three-dimensional

except for in-flight I/O. After accessing the Q-table based on

the index of each state, the entry with the highest Q-value for

each latency range is found and transferred to LWW (2 , lines

3–12). In the example in the figure, since the highest Q-value

is 0.2 in the Q-table, thus, index 1 is returned. Additionally,

the found Q-value (Qptr) is also returned for updating the

Reinforcement Learning Timeout Predictor (RLTP)

Return

idx 1L
W

W

Prediction Update

Transfer actual & predicted timeouts

Q-table0

Update

Q-value

...

Q
-ta

b
le

N

Reward

Calculator

Siz
e
id

x

Q
-ta

b
le

1

Lat. idx 0

IOPS idx

Lat. idx 1

Lat. idx 2

Lat. idx 3

Q 0.1 Q

Q Q

Q 0.1 Q

Q 0.1 Q

0.2

ThrN

Thr1

...

Q'

Thr0

Request

idx

1

4

3

5

2

Figure 7: Procedure of RLTP (Thr: thread).

Proc. 2 A C-like pseudo-code of prediction and update in RLTP

1: function PREDICT((iops,size, in f lights))
2: idxo, idxs, idxi← Get_Idx(iops,size, in f lights)
3: for idxt = 0,1, . . .MAX_IOPS_RANGE−1 do

4: Q_value← Q_table[idxo][idxs][idxi][idxt]
5: if max < Q_value then

6: max← Q_value

7: max_idx← idxt

8: end if

9: end for

10: Qptr←&max ⊲ Get the address of the max Q-value for the update

11: T̂ ← Get_T̂ (max_idx)
12: return (T̂ ,Qptr)
13: end function

14: function UPDATEQTABLE((Qptr,next_Qptr, T̂ ,TA))
15: if T̂ == TA then

16: reward← 1 ⊲ No false positive

17: else

18: if T̂ < TA then

19: reward←−1 ⊲ False positive

20: else

21: reward←−0.5 ⊲ No false positive

22: end if

23: end if

24: Q_value←∗(Qptr) ⊲ Get the Q-value from the address

25: next_Q_value←∗(next_Qptr)
26: *(Qptr)← Q_value+α(reward + γ∗next_Q_value−Q_value)
27: end function

Q-table later.

Next, UpdateQtable() updates the Q-values based on the

reward. RLTP uses the actual command latency (TA) and its

predicted command timeout (T̂) to calculate the reward (3 ,

line 14). If the prediction is correct (i,e., TA is the same as

T̂), a high reward of 1 is given (lines 15–16). If TA is larger

than T̂ (i.e., a timeout occurs, but the SSD does not fail), it

is determined as a false positive. This means that the LWLC

timeout was predicted to be too short, and the lowest reward

of -1 is given (lines 18–19), otherwise, -0.5 is given (line 21).

Then, the predicted Q-value (Qptr) and the next predicted

Q-value (next_Qptr) are used to update the Q-value (lines 24–

25). The new Q-value is calculated according to the Bellman

equation [16] (4 , line 26). Finally, the Q-value is updated in

its location in the Q-table (e.g., the figure depicts an example

of updating the Q-value from Q to Q’ at size index 3, IOPS

USENIX Association 2024 USENIX Annual Technical Conference 1089

nvmeY nvmeZnvmeX

VFS

Application

FFN

. . .

vf
s_

w
ri

te
N

o
rm

a
l

I/
O

 p
a
th

Detect

RAID
or

Failure path I/O path Normal Failure

vfs_write invokes failure check

ssd_failed

Super block
. . .

. . .

No

Yes
Notify failure

1

3

LWW

failure
1

2
S

et fla
g

a
s fa

ilu
re

2

Proceed normal I/O routine

Check
failure flag

File system & Block layer

NVMe device driver

3 -A

-B

Figure 8: Procedure of FFN.

index 0, and latency index 0 (5)).

3.4 Fast Failure Notification (FFN)
Even though LWW can quickly detect an SSD failure event, the

data loss can be still large unless the failure event is instantly

notified to the upper layer. To minimize data loss further, we

introduce the FFN mechanism by using the VFS layer to im-

mediately notify applications of the failure detected by LWW.

More specifically, we add a failure flag in an unused area

of the VFS metadata (i.e., super_block) to notify the appli-

cations of the failure. If LWW detects the failure, it sets the

flag to represent the failure. Thus, when starting I/O oper-

ations, the mechanism allows the applications to check the

flag to determine whether the current SSD has failed. It is a

simple but highly compatible and reliable method since the

applications always access the VFS regardless of the file and

storage configurations including the raw device, file system,

single device, or RAID. Thus, this mechanism can quickly

prevent applications from performing further write operations

upon failure. FFN utilizes an existing failure code (i.e., EIO)

to stop the application, requiring no application modification.

However, if an SSD failure needs to be classified separately

in the application, a new failure code should be defined and

reflected in the application.

Procedure of FFN: Figure 8 shows the procedure of

FFN. When an application starts the I/O operation via

vfs_write(), the application checks whether a failure oc-

curs via FFN (1 , 2). If there is no failure, the write operation

of an application is processed normally through the VFS layer

and storage stack (3 -A). Otherwise, as soon as LWW detects

the failure (1), it immediately reports it to FFN by setting the

failure flag (ssd_failed) in the super_block of the VFS

layer (2). Thus, the application can catch the failure of the

current SSD and stop its write operation (3 -B). By doing

this, a failure can be notified to applications immediately after

being detected by LWW.

3.5 Putting It All Together
Figure 9 depicts the timeline of RLW, where LWW periodically

monitors the SSD liveness by submitting LWLC with its pre-

dicted timeout via RLTP. Specifically, in the first case, LWW

receives the predicted timeout (T̂1) from RLTP and submits

LWLC to the SSD. In this case, without failure, LWW completes

LWLC normally within the given predicted timeout. Since there

is no false positive, RLTP updates the Q-table with the reward

of -0.5 (i.e., TA1 < T̂1). In the second case, even if the SSD is

still alive, a command timeout occurs since the actual com-

mand latency (TA2) is longer than the predicted timeout (T̂2)

(i.e., a false positive), the device driver aborts the expired com-

mand and checks the NVMe connection, and RLTP updates

the Q-table with the reward of -1.

In the third case, the SSD failure causes a command time-

out. Thus, LWW detects the failure, notifies it via FFN, and stops

monitoring for the failed SSD. Then, upcoming applications

stop their write operations via FFN. We note that SSD fail-

ure is detected even if no I/O command is submitted to SSD

because RLW can actively examine SSD liveness. The applica-

tion loses only two buffered writes (i.e., the fourth and fifth)

accumulated after SSD failure. The SSD failure is notified

to the application immediately after the application submits

the sixth buffered write, thereby further minimizing data loss.

As a result, in contrast to the existing scheme, as shown in

Figure 2, RLW can examine SSD liveness actively with a pre-

dicted timeout and quickly notify the application of the failure

to minimize the application data loss.

4 Evaluation

We evaluate RLW by answering the following questions:

• How much is RLW effective on various workloads, various

storage configurations, and different SSD models? (§4.1,

§4.2, and §4.3)

• Is RLW effective even for various failure points? (§4.1)

• How much do the periods of fsync() impact the effec-

tiveness of RLW? (§4.1)

• How much does each technique contribute to reducing

data loss? (§4.4)

• How much RLTP predicts the command timeout well

even in complex SSD internal operations (e.g., GC)?

(§4.5)

• How much does false-positive detection impact the per-

formance? (§4.6)

• How much overhead is caused by RLW? (§4.7)

Experimental setup: We use a server machine with In-

tel Xeon E5-2650 CPU (24 cores and 48 threads) with

160 GB DRAM. For storage, we employ two SSD mod-

els: Samsung 980 [2] (SSD A) and Samsung PM9A3 [3]

(SSD B). We use SSD B unless stated otherwise. The write

latency (us) / throughput (KIOPS) of 4 KB is 55.6 / 278 and

14.7 / 352 in SSD A and B, respectively. In addition, we use

three SSDs of each model for all RAID configurations. We

run Ubuntu 20.04.3 LTS with the Linux kernel 6.0.0. Unless

stated otherwise, we set the command timeout to 1 second

which is the shortest configurable timeout provided by kernel.

1090 2024 USENIX Annual Technical Conference USENIX Association

Application

NVMe SSD

LWW

RLTP

W

Send T̂1

PT

Transfer

LWLC

E

Process

command

Update Q-table

(reward = -0.5)

W

Buffered

write

HBI

Device Driver WCC
Submit

LWLC

Return

normally

UQ

TA2 > T̂2

Send T̂2

PT

E

Process

command

WCC
Submit

LWLC

Return

timeout

Cconn
No

failure

CF
False

positive

Update Q-table

(reward = -1)

UQ

W

TA3 > T̂3

Send T̂3

PT

E

Failed

WCC
Submit

LWLC

Return

timeout

Cconn
Detect

failure

CF Stop

VFS & FS

& FFN

Report failure

via FFN

Check

failure

Stop

write

SSD failure

TA1 < T̂1

U
se

r
K

er
n

el
H

/W

Disconnect

UQ

A A

No response

Buffered

write

Check

failure

Store

pages

Buffered

write

Check

failure

Store

pages

Buffered

write

Check

failure

Store

pages

Buffered

write

Check

failure

Store

pages

Buffered

write

Check

failure

Store

pages

Data accumulated in the page cache after SSD failure

Figure 9: Timeline of RLW with three techniques (PT: predict timeout, W: wait HBI, E: examine, A: abort command, WCC: wait

command completion, UQ: update Q-table, Cconn: check NVMe connection, CF : check SSD failure, TA: actual command latency,

T̂ : predicted command timeout).

U.2 to PCIe Adapter

SSD

External Power

Input from PCB

Serial Cable for Power Control

Power Control Board (PCB)

Figure 10: Experimental environment.

For a more comprehensive evaluation, we use 1us as a mini-

mum timeout by slightly modifying the timeout management

code in the block layer. To evaluate RLW on various storage

configurations, we use a raw device and three common file

systems (i.e., EXT4, F2FS, and XFS) under different software

RAID configurations (i.e., RAID 0/1/5).

Injection of an SSD fault: To generate an actual SSD fault,

we use a specially designed power control board (PCB) as de-

picted in Figure 10. The system with PCB controls the power

supply of the SSD independently of the host system power,

and the system can supply or cut off the power through serial

communication. Moreover, we use adapters that convert the

M.2 or U.2 form factor to PCIe, and these adapters support

receiving external power from the PCB instead of a PCIe slot.

Using these devices, we inject a fault to the NVMe SSDs at

a fixed point (i.e., 2s) unless stated otherwise or at various

points to generate the SSD failure. In the RAID evaluation,

we select the number of SSDs to fail according to the RAID

configuration because each RAID configuration has a differ-

ent fault tolerance degree. For example, we inject the faults

of 1, 3, and 2 SSDs for RAID 0, 1, and 5, respectively.

Workload: We use FIO [10] as a micro benchmark,

filebench [55] and FFSB [49] as macro benchmarks, and

RocksDB [1] as a real-world application with two bench-

marks (i.e., DBBench and YCSB [5]). To evaluate the pre-

diction accuracy during a GC procedure, we induce the GC

procedure by performing random write twice as much as the

device size from a clean state via FIO (notated as FIO (GC)).

Since FIO (GC) continues to generate GC operations inside

SSD, we believe that FIO (GC) is the most suitable work-

load to evaluate the prediction accuracy in the worst situation

where SSD internal resources are highly utilized.

Measuring data loss and failure detection time: For FIO,

which supports data verification, we can easily measure the

data loss for all the cases by calculating the difference be-

tween “the amount of written data until an application detects

the failure” and “the amount of verified data after supplying

power again”. However, the data loss on other benchmarks

(e.g., filebench, DBBench, and YCSB) cannot be measured

easily because they do not support data verification. Instead

of adding verification logic to each benchmark which would

be substantial work, we measure each amount written by an

application (until the application detects the failure) in the ex-

isting scheme and RLW, and calculate the difference between

them. The written amount difference is the same as the data

loss difference. To get failure detection time, we measure the

period from the point of failure injection to the point of failure

detection on the application side.

4.1 Micro Benchmark
Data loss on various configurations: Figure 11 indicates

how much RLW reduces the application data loss and the fail-

ure detection time upon SSD failures on various configura-

tions when running random writes via FIO. We use eight

threads using a 20 GB file per thread and a 4 KB request size.

For the raw device depicted in Figure 11a, RLW reduces the

data loss by 72.9%, 96.7%, 96.4%, and 96.3%, on a single

SSD and RAID 0/1/5, respectively. On the aspect of failure

detection time, RLW reduces it by 86.7% compared with the

existing scheme in the case of a single SSD. The red-colored

‘X’ (Not detected) flag indicates that the failure cannot be

notified to the application even if the application terminates

its execution (100 seconds). Therefore, we cannot measure

the failure detection time in these cases of raw RAID configu-

rations. Meanwhile, RLW enables the application to detect the

failure within a similar time to that of the single SSD case,

ranging from 0.73 to 0.76 seconds. These results imply that

RLW successfully reduces data loss regardless of raw device

storage configuration (i.e., a single device or RAID).

Figures 11b, 11c, 11d, and 11e depict the data loss and

USENIX Association 2024 USENIX Annual Technical Conference 1091

Data loss (Existing) Data loss (RLW) Detection time (Existing) Detection time (RLW) Not detected

0

2

4

6

0

40

80

120

Single RAID0 RAID1 RAID5

D
a

ta
 l

o
ss

 (
G

B
)

(a) Raw device

0

1

2

3

4

0

20

40

60

80

EXT4 F2FS XFS

28.6s

(b) Single SSD

0

1

2

3

4

0

20

40

60

80

EXT4 F2FS XFS

28.8s

(c) RAID 0

0

1

2

3

4

0

20

40

60

80

EXT4 F2FS XFS

28.7s

(d) RAID 1

0

1

2

3

4

0

20

40

60

80

EXT4 F2FS XFS

28.6s

D
e
te

c
ti

o
n

 t
im

e
 (

s)

(e) RAID 5

Figure 11: Impact of RLW on data loss and failure detection time in SSD B.

DL (existing) DL (RLW) DT (existing) DT (RLW) Not detected

480

D
et

ec
ti

o
 t

im
e

(s
)

28.6s 28.5s

0

1

2

3

4

0

20

40

60

80

EXT4 F2FS XFS EXT4 F2FS XFS

Single SSD RAID5

D
et

ec
ti

o
n

 t
im

e
(s

)

D
a
ta

 l
o
ss

 (
G

B
)

28.6 28.5

Figure 12: Impact of RLW on data loss and failure detection

time in SSD A (DL: data loss, DT: detection time).

failure detection time on the three file systems under the

single SSD and three RAID configurations using SSD B. RLW

reduces the data loss by up to 82.4% and 75.2% on a single

device and RAID cases, respectively. The failure detection

time is reduced by up to 97.9% and 93.8% on a single device

and RAID cases, respectively. Similar to raw RAID cases, the

existing scheme on EXT4 does not notify the application of

failure. Thus, the failure detection time cannot be measured

in all cases with EXT4. For XFS, the existing scheme exhibits

significantly high levels of data loss and failure detection time

due to a relatively long journal flushing period of XFS (i.e., 30

seconds). Even though the results show that the impact of RLW

depends on various factors, such as storage configuration and

error handling policy of various layers, they demonstrate the

effectiveness of RLW even in various file systems and storage

configurations.

To demonstrate the effectiveness of RLW on various SSDs,

we evaluate SSD A, as illustrated in Figure 12. As depicted

in the figure, improvement degrees by RLW are similar to the

results of SSD B. RLW reduces the data loss by up to 82.5%

and 75% and detects the failure more quickly by up to 97.4%

and 93.7% on a single device and RAID 5 cases, respectively,

compared with the existing scheme. According to the results,

we show that RLW is effective on both SSD models.

Data loss according to various failure points: To evaluate

the impact of RLW on the various failure time points, ranging

from 1 second to 40 seconds, we measure the data loss and

detection time on F2FS with a single device as shown in

Figure 13. In this evaluation, the application performs random

writes to files with periodical file creation and deletion until

the failure is detected. For example, when the failure occurs

at 5 seconds and is detected at 8 seconds, the application

performs the I/O operations for 8 seconds in total.

Overall, after a failure occurs, RLW detects the failure within

time ranges from 0.5 to 2.1 seconds, meanwhile, the existing

scheme detects the failures within time ranges from 2.8 to 7.7

seconds. It shows that RLW is more stable and faster than the

existing scheme. However, data loss increases in RLWwhen the

failure point is moved from 1 to 9 seconds, and this pattern

repeats from 10/22/33 to 21/32/40 seconds. The rationale

behind these results is that, as time elapses, the page cache

becomes almost full. This means that even if a failure point is

identified quickly, the loss of pages that are already stored in

the page cache is inevitable. Also, the detection time in the

existing scheme decreases at the specific time point (e.g., 9,

21, 32, and 40 seconds) since the flushing operations triggered

by the almost full page cache can detect the failure relatively

more quickly. After a file is deleted, the page cache is emptied

and newly accumulated, resulting in the RLW being effective

again. Consequently, RLW reduces the data loss regardless of

failure points even if its effectiveness can be reduced.

Data loss according to various fsync periods: To under-

stand the effect of fsync() periods in RLW on various file

systems with RAID 0, we measure the data loss according to

the periods. In Figure 14, for fsync() at every 128K write

operations, the effectiveness of RLW is low because this short

fsync() period flushes the accumulated pages frequently.

Meanwhile, for 512K and more I/Os, the effectiveness of RLW

significantly increases. These results demonstrate that adopt-

ing an optimal fsync period can be challenging, considering

the trade-off between data loss and performance.

4.2 Macro Benchmark

To evaluate RLW in more realistic workloads, we measure the

reduction of data loss and failure detection time using file-

server and videoserver in filebench and FFSB in F2FS on a

single SSD and RAID 5. Figure 15 illustrates the data loss

difference between the existing scheme and RLW and their

failure detection time. For a single SSD, RLW significantly

reduces the data loss by 300GB, 19GB, and 162GB for file-

server, videoserver, and FFSB, compared with the existing

scheme, respectively. The rationale behind the reduced effec-

tiveness of RLW on videoserver is that this workload has higher

read rates with large sequential reads. Similarly, in RAID 5

configuration, RLW reduces the data loss by 296GB, 31GB,

and 48GB for fileserver, videoserver, and FFSB, compared

with the existing scheme, respectively. The overall impact of

RLW is similar on both single device and RAID 5 cases. This

result demonstrates that RLW can detect failures faster than the

existing scheme, even in more realistic workloads.

1092 2024 USENIX Annual Technical Conference USENIX Association

0

2

4

6

8

10

0

10

20

30

40

5 10 15 20 25 30 35 40

D
et

ec
ti

o
n

 t
im

e
(s

)

D
a
ta

 l
o
ss

 (
G

B
)

SSD failure point (s)

Data loss (existing) Data loss (RLW) Detection time (existing) Detection time (RLW)

Figure 13: Data loss and failure detection time change according to different SSD failure points.

EXT4 (Existing) F2FS (Existing) XFS (Existing)

EXT4 (RLW) F2FS (RLW) XFS (RLW) 0
128K

D
et

ec
ti

o
n

 t
im

e

0

20

40

60

80

128K

D
a

ta
 l

o
ss

 (
G

B
)

0

20

40

60

80

128K 256K 512K 1M 4M No fsync()

D
a

ta
 l

o
ss

 (
G

B
)

I/O per fsync()

Figure 14: Data loss in various fsync() periods on the vari-

ous file systems.

Data loss diff Detection time (existing) Detection time (RLW)

0

40

80

File

server

Video

server

FFSB File

server

Video

server

FFSB

Single SSD RAID 5

D
et

ec
ti

o
n

 t
im

e
(s

)

D
a

ta
 l

o
ss

 (
B

y
te

,
lo

g
-s

ca
le

)

10G

1T

100G

Figure 15: Data loss on macro benchmarks.

4.3 Real-world Application

To evaluate RLW with a real-world application, we employ a

key-value store, RocksDB [1] with two benchmarks including

DBBench and YCSB [5] as shown in Figure 16. We run the

fill-random and update-only/workloadA for DBBench and

YCSB, respectively. In the figure, RLW decreases the I/O loss

by up to 400 thousand operations in both cases of a single SSD

and RAID 5, compared with the existing scheme, respectively.

Especially, the impact of RLW is large on DBbench since the

write ratio is relatively higher at DBBench workload. Also,

RLW reduces the detection time by up to 45.7% and 53.0%

in the case of single SSD and RAID 5 compared with the

existing scheme, respectively. These results demonstrate that

RLW can be effective in real-world applications by minimizing

the key-value data loss.

4.4 Impact of Individual Techniques

Figure 17 presents the reduction of data loss and failure de-

tection time according to individual techniques for various

storage configurations. LWW reduces the data loss and detec-

tion time by up to 57.6% and 84.4%, respectively, compared

with the existing scheme. However, for raw RAID 0 and 5,

Data loss diff Detection time (existing) Detection time (RLW)

010203040506070

0

1

2

3

4

1000

10000

100000

1000000

DBBench Update-only Workloada DBBench Update-only Workloada

Single SSD RAID5

D
et

ec
ti

o
n

 t
im

e
(s

)

O
p

er
a

ti
o

n
 l

o
ss

 (
lo

g
-s

ca
le

)

1K

10K

100K

1M

Figure 16: I/O loss in a real-world application (RocksDB).

DL (Existing) DL (LWW) DL (LWW+FFN) DL (RLW)

DT (Existing) DT (LWW) DT (LWW+FFN) DT (RLW) Not detected

0

2

4

6

0

10

20

30

40

F2FS

(single)

Raw

(RAID0)

F2FS

(RAID0)

Raw

(RAID5)

F2FS

(RAID5)

D
et

ec
ti

o
n

 T
im

e
(s

)

D
a

ta
 l

o
ss

 (
G

B
) 135.2

120.4
136.4

131.2

140

Figure 17: Impact of individual techniques (DL: data loss,

DT: detection time).

LWW does not work well because the RAID layer blocks failure

notifications so that the application cannot recognize any fail-

ure. In both cases, additionally applying FFN on LWW enables

the application to recognize the failure and data loss is sig-

nificantly reduced by up to 87.1%. The effectiveness of FFN

is relatively lower on F2FS than raw RAID cases, however,

data loss is reduced by up to 26.5%. Finally, when the RLTP

is additionally applied, which is denoted as RLW, the results

indicate that RLTP predicts the command timeout with minor

overhead.

4.5 Prediction Accuracy

Figure 18 depicts the prediction accuracy of RLTP and its con-

vergence point for two SSD models. The prediction accuracy

reaches up to 99.8% for the DBBench workload. In most

cases, the accuracy on SSD B is higher and converges faster

than SSD A because the latency of SSD B is more stable

and lower than that of SSD A. Additionally, the accuracy in

most workloads converges within at least 120 seconds except

for fileserver and videoserver on SSD A and B, respectively.

Fileserver includes a relatively higher read I/Os ratio than

other workloads. Thus, this read/write mixture pattern further

USENIX Association 2024 USENIX Annual Technical Conference 1093

FIO (GC) Fileserver Videoserver

FFSB DBBench YCSB

0

0.2

0.4

0.6

0.8

1

0 60 120 180

A
cc
u
ra
cy

Time (s)

(a) Samsung 980 (SSD A)

0

0.2

0.4

0.6

0.8

1

0 60 120 180
Time (s)

(b) Samsung PM9A3 (SSD B)

Figure 18: RLTP accuracy timeline on various workloads.

Tail latency (99.9%) Tail latency (99.99%)

0

200

400

600

1us 256us512us 16ms 32ms 1s RLW

L
a

te
n

cy
 (

m
s)

LWLC timeout (fixed timeout or RLW)

(a) Samsung 980 (SSD A)

0

2

4

6

8

1us 256us512us 16ms 32ms 1s RLW
LWLC timeout (fixed timeout or RLW)

(b) Samusung PM9A3 (SSD B)

Figure 19: Tail latency QoS according to the timeout.

affects the performance of SSD A (due to the less stable la-

tency) than that of SSD B. Meanwhile, videoserver includes

a delay operation that further affects SSD B (with a higher

throughput) compared to SSD A because this delay can omit

more I/Os per unit of time as the throughput is higher.

4.6 Impact of False-Positive Failure Detection

Figure 19 depicts the performance impact of fixed LWLC time-

out and predicted LWLC timeout via RLW on two SSD models

to show the side effect of false positive detection by the fixed

LWLC timeout and the importance of timeout prediction via

RLTP. In the case of SSD A, as expected, the relatively large

timeouts ranging from 32ms to 30s do not affect the tail la-

tency. However, smaller timeouts ranging from 1us to 16ms

increase the tail latency by up to 522% compared with RLW

since the small timeouts incur the false-positive detection.

Meanwhile, in the case of SSD B, the timeouts ranging from

1us to 256us increase the tail latency by up to 235% compared

with RLW. Note that the timeouts incurring the false-positive

detection can be different according to the SSD models (i.e.,

16ms and 256us on SSD A and B, respectively).

On the other hand, RLW does not affect the tail latency on

both SSD models because no false positive occurs while pre-

dicting the timeout at run-time even without a pre-learning

job. Consequently, these results demonstrate that fixed small

timeouts can affect the performance due to the false-positive

detection, meanwhile, RLW less affects the performance by

correctly predicting timeout based on current SSD states.

4.7 Performance Overhead of RLW

Table 5 lists the performance overhead of RLW. Write opera-

tions are performed while RLW submits LWLC with different

HBI on both SSD models. When HBI is 1ms, the throughput

Table 5: Throughput according to different HBI values.

HBI (ms) 1 4 16 64 256 No RLW

SSD A (KIOPS) 184.9 209.1 241.4 268.2 275.9 278.5

SSD B (KIOPS) 346.3 351.9 346.9 350.8 346.7 352.7

Table 6: Computation overhead of RLTP.

I/O No I/O Busy I/O

conditions No RLTP With RLTP No RLTP With RLTP

CPU utilization 0.03% 0.05% 14.06% 14.09%

drops by 33.3% on SSD A. As HBI increases, the throughput

degradation becomes smaller. To minimize the side effects,

we set HBI to 256ms in the evaluation, decreasing the through-

put by only 0.42%. Meanwhile, interestingly, the throughput

of SSD B is not affected by HBI. This means that the over-

head of RLW is negligible on SSD B even if LWLC is submitted

frequently. These results demonstrate that RLW is lightweight

while quickly detecting SSD failure.

Furthermore, to show the computation overhead of RLTP,

we measure the CPU utilization with or without RLTP on two

different I/O conditions as shown in Table 6. RLW employs a

sufficiently large fixed timeout (i.e., 1 second) when RLTP is

not involved, and HBI is set to 1 ms to trigger RLTP frequently.

As shown in the table, the CPU utilization in the case of a

busy I/O condition increases by 14% compared with no I/O

condition. However, the CPU utilization increased by RLTP is

negligible in both cases. This result demonstrates that RLTP

has lightweight computation.

5 Discussion

5.1 Position of RLW

RLW can be effective and collaborate with existing schemes in

diverse SSD-based systems such as distributed and standalone

systems. For example, RLW can enhance the SSD failure man-

agement in a distributed system with a redundancy scheme

by detecting the failure within a replica node quickly which

is an important issue as described in the previous studies

(EAFR [35] and Ho et al. [20]). Furthermore, in a standalone

system (e.g., fileserver and desktop) with a data-intensive

workload [52] similar to our experimental environment, RLW

can be also effective to mitigate the data loss.

5.2 Advantage of Kernel-based Approach

RLW adopts a kernel-based approach to leverage three advan-

tages. First, the kernel-based approach is closer to the SSD

than the application-based one, leading to faster failure detec-

tion. Second, it enables application-agnostic solutions without

requiring application modifications, resulting in the easy uti-

lization of RLW. Lastly, it does not require issuing a system call.

Meanwhile, since an application-based approach requires fre-

quent system calls, it can lead to high overhead. Therefore, we

choose the kernel-based approach to make RLW more efficient.

1094 2024 USENIX Annual Technical Conference USENIX Association

6 Related Work

Detecting and handling SSD failures: To investigate SSD

failures, some studies [6, 7, 71, 72] have adopted a special

device as a PCB that can control the power supplied to the

SSDs, as in our study. Ahmadian et al. [7] analyze the effect of

various I/O patterns on data loss while controlling the power

of a SATA SSD. Ahmadian et al. [6] and Zheng et al. [71,72]

classify various SSD failure types when power faults occur.

Our work is similar to these studies [6, 7, 71, 72] in terms of

analyzing SSD failure with the power control board to inject a

more realistic fault. Meanwhile, we target reducing data loss

at run-time.

Shi et al. [51] discover a bug that causes data loss when

sync() and power faults occur. In addition, Jaffer et al. [22]

evaluate the reliability of an SSD by classifying the data

loss problems. Huang et al. [21] present the concept of a

metastability failure, a point at which a large-scale cluster

cannot be automatically returned to a normal state. In addition,

Lu et al. [37] analyze and classify symptoms from the logs of

storage clusters to the failures of NVMe SSDs.

Narayanan et al. [42] characterize and analyze the failures

of millions of SSDs and the reliability of data centers. Fur-

thermore, Mahdisoltani et al. [39] predict the sector failure

of SSDs and propose use cases to mitigate the performance

drop caused by failure handling. Our study aligns with these

studies [21,22,37,39,42,51] regarding investigating SSD fail-

ure problems. However, we focus on handling SSD failures

instead of the discovery or classification of symptoms caused

by SSD failures.

Kadekodi et al. [24] present Tiger which estimates the fail-

ure rate and dynamically configures RAID stripe by changing

the ratio of parity devices to improve space efficiency and

fault tolerance. Our study aligns with this study [24] in terms

of reducing data loss caused by SSD failure. Even with an

advanced RAID scheme, the data loss problem in the page

cache still remains.

IronFS [48] and EIO [17] treat delayed error propaga-

tion. They inspire our study, meanwhile, RLW targets to notify

applications of SSD failures using the VFS layer quickly.

Chronos [15] and SafeTimer [38] have investigated to detect

errors in distributed systems by heartbeat schemes between

nodes. RLW can collaborate with them. For example, error

detection schemes in distributed systems can propagate an

SSD failure that occurred in a node to a master node more

quickly with the assistance of RLW. Furthermore, the node with

RLW can protect against application data loss from upcoming

requests.

Prediction models in SSDs: Kang et al. [26] propose a GC

scheduler to predict the idle time in an SSD through RL.

Kurniawan et al. [31] build a deep-learning model to learn

latency logs on various workloads and SSD models to predict

I/O latency. Furthermore, LeaFTL [53] is a learning-based

FTL that learns data access patterns via linear regression to

reduce the mapping table size. Our study is inspired by these

studies in terms of predicting latency and pattern in SSD using

a learning model. In contrast, we focus on predicting SSD

failure points and quickly addressing the SSD failure.

SSD failure prediction models: WEFR [64] presents a fail-

ure prediction algorithm regardless of the SSD manufacturer

or model to select failure-related information. Alter et al. [8]

analyze and classify failure cases and propose a failure pre-

diction model through machine learning. Zhang et al. [70]

analyze the characteristics of failed and normal SSDs through

data center operation logs and propose MVTRF to predict

failure types, times, and status. Chakraborttii et al. [12, 13]

present a learning model to classify the failure type via the

log of SSDs and predict their failure. Hao et al. [19] pro-

pose RUS_Ensemble learning to increase the true positive

rate compared with SSD failure prediction models based on

SMART information.

Our study is in line with these studies [8, 12, 13, 19, 64, 70]

in terms of utilizing machine learning techniques to mitigate

the impact of SSD failures. Specifically, they aim to predict

a potential failure that does not occur using offline learn-

ing. Meanwhile, we focus on detecting the failure that has

already occurred to minimize the application data loss via

online learning instead of offline learning. We believe that our

scheme can incorporate these prediction strategies to be more

effective against failures.

7 Conclusion

This paper aims to minimize application data loss in a stor-

age system upon an SSD failure. To this end, we propose

RL-Watchdog (RLW) which examines SSD liveness or failures

quickly, precisely, and online. Specifically, RLW first periodi-

cally monitors failures in a lightweight manner. Second, RLW

predicts the failure point more precisely regardless of the

SSD models without offline pre-learning. Finally, RLW sus-

pends the storage system immediately to prevent further data

loss. We implement RLW in a Linux kernel and evaluate it in

various configurations using a power supply board to inject

a realistic power fault. The evaluation results indicate that

RLW reduces the data loss by up to 96.7%, and its prediction

accuracy reaches 99.8%.

Acknowledgements

The authors thank the anonymous reviewers for all valu-

able comments. This work was supported in part by the

National Research Foundation of Korea (NRF) (No. NRF-

2022R1A4A5034130) and Korea Institute for Advancement

of Technology (KIAT) (No. KIAT-P0012724) grant funded

by the Korea Government (Corresponding Author: Yongseok

Son).

USENIX Association 2024 USENIX Annual Technical Conference 1095

References

[1] Rocksdb, 2024. URL: http://rocksdb.org/.

[2] Samsung 980 SSD, 2024. URL: https://semicond

uctor.samsung.com/consumer-storage/interna

l-ssd/980/.

[3] Samsung PM9A3 SSD, 2024. URL: https://semico

nductor.samsung.com/ssd/datacenter-ssd/pm9

a3/.

[4] Technology power features, 2024. URL: https://nv

mexpress.org/resource/technology-power-fea

tures/.

[5] Yahoo cloud servicing benchmark, 2024. URL: https:

//github.com/brianfrankcooper/YCSB.

[6] Saba Ahmadian, Farhad Taheri, and Hossein Asadi.

Evaluating reliability of ssd-based i/o caches in enter-

prise storage systems. IEEE Transactions on Emerg-

ing Topics in Computing, 9(4):1914–1929, 2021. doi:

10.1109/TETC.2019.2945087.

[7] Saba Ahmadian, Farhad Taheri, Mehrshad Lotfi,

Maryam Karimi, and Hossein Asadi. Investigating

power outage effects on reliability of solid-state

drives. In 2018 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 207–212, 2018.

doi:10.23919/DATE.2018.8342004.

[8] Jacob Alter, Ji Xue, Alma Dimnaku, and Evgenia Smirni.

Ssd failures in the field: Symptoms, causes, and predic-

tion models. In Proceedings of the International Con-

ference for High Performance Computing, Networking,

Storage and Analysis, SC ’19, New York, NY, USA,

2019. Association for Computing Machinery. doi:

10.1145/3295500.3356172.

[9] David G. Andersen and Steven Swanson. Rethinking

flash in the data center. IEEE Micro, 30(4):52–54, jul

2010. doi:10.1109/MM.2010.71.

[10] Jens Axboe. Flexible I/O Tester, 2024. URL: https:

//github.com/axboe/fio.

[11] Keith Busch. Linux nvme driver, 2013. URL: https:

//www.flashmemorysummit.com/English/Collat

erals/Proceedings/2013/20130812_PreConfD_B

usch.pdf.

[12] Chandranil Chakraborttii and Heiner Litz. Explaining

ssd failures using anomaly detection. In Non-Volatile

Memory Workshop, volume 1, page 1, 2020. URL: http:

//nvmw.ucsd.edu/nvmw2021-program/nvmw202

1-data/nvmw2021-paper44-final_version_you

r_extended_abstract.pdf.

[13] Chandranil Chakraborttii and Heiner Litz. Improving

the accuracy, adaptability, and interpretability of ssd

failure prediction models. In Proceedings of the 11th

ACM Symposium on Cloud Computing, SoCC ’20, page

120–133, New York, NY, USA, 2020. Association for

Computing Machinery. doi:10.1145/3419111.3421

300.

[14] Peter M. Chen, Edward K. Lee, Garth A. Gibson,

Randy H. Katz, and David A. Patterson. Raid: High-

performance, reliable secondary storage. ACM Comput.

Surv., 26(2):145–185, jun 1994. doi:10.1145/176979

.176981.

[15] Y. Chen. Chronos: Finding timeout bugs in practical

distributed systems by deep-priority fuzzing with tran-

sient delay. In 2024 IEEE Symposium on Security and

Privacy (SP), pages 112–112, Los Alamitos, CA, USA,

may 2024. IEEE Computer Society. URL: https://do

i.ieeecomputersociety.org/10.1109/SP54263.

2024.00109, doi:10.1109/SP54263.2024.00109.

[16] Jesse Clifton and Eric Laber. Q-learning: Theory and

applications. Annual Review of Statistics and Its Appli-

cation, 7(1):279–301, 2020. arXiv:https://doi.or

g/10.1146/annurev-statistics-031219-041220,

doi:10.1146/annurev-statistics-031219-041

220.

[17] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C.

Arpaci-Dusseau, Remzi H. Arpaci-Dussea, and Ben Li-

blit. Eio: error handling is occasionally correct. In

Proceedings of the 6th USENIX Conference on File and

Storage Technologies, FAST’08, USA, 2008. USENIX

Association.

[18] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,

Casey Golliher, Swaminathan Sundararaman, Xing Lin,

Tim Emami, Weiguang Sheng, Nematollah Bidokhti,

Caitie McCaffrey, Deepthi Srinivasan, Biswaranjan

Panda, Andrew Baptist, Gary Grider, Parks M. Fields,

Kevin Harms, Robert B. Ross, Andree Jacobson, Robert

Ricci, Kirk Webb, Peter Alvaro, H. Birali Runesha,

Mingzhe Hao, and Huaicheng Li. Fail-slow at scale:

Evidence of hardware performance faults in large pro-

duction systems. ACM Trans. Storage, 14(3), oct 2018.

doi:10.1145/3242086.

[19] Wenwen Hao, Ben Niu, Yin Luo, Kangkang Liu, and

Na Liu. Improving accuracy and adaptability of ssd

failure prediction in hyper-scale data centers. SIG-

METRICS Perform. Eval. Rev., 49(4):99–104, jun 2022.

doi:10.1145/3543146.3543169.

[20] J.-W. Ho, M. Wright, and S. K. Das. Fast detection of

replica node attacks in mobile sensor networks using

sequential analysis. In IEEE INFOCOM 2009, pages

1096 2024 USENIX Annual Technical Conference USENIX Association

1773–1781, 2009. doi:10.1109/INFCOM.2009.5062

097.

[21] Lexiang Huang, Matthew Magnusson, Abishek Ban-

galore Muralikrishna, Salman Estyak, Rebecca Isaacs,

Abutalib Aghayev, Timothy Zhu, and Aleksey Chara-

pko. Metastable failures in the wild. In 16th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 22), pages 73–90, Carlsbad, CA, July

2022. USENIX Association. URL: https://www.us

enix.org/conference/osdi22/presentation/hu

ang-lexiang.

[22] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and

Bianca Schroeder. Evaluating file system reliability

on solid state drives. In 2019 USENIX Annual Tech-

nical Conference (USENIX ATC 19), pages 783–798,

Renton, WA, July 2019. USENIX Association. URL:

https://www.usenix.org/conference/atc19/pr

esentation/jaffer.

[23] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xi-

aosong Ma, Junyu Wei, Zhiyue Li, and Weimin Zheng.

Fusionraid: Achieving consistent low latency for com-

modity ssd arrays. In FAST, pages 355–370, 2021. URL:

https://www.usenix.org/system/files/fast21

-jiang.pdf.

[24] Saurabh Kadekodi, Francisco Maturana, Sanjith Athlur,

Arif Merchant, K. V. Rashmi, and Gregory R. Ganger.

Tiger: Disk-Adaptive redundancy without placement re-

strictions. In 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22), pages

413–429, Carlsbad, CA, July 2022. USENIX Associa-

tion. URL: https://www.usenix.org/conference/

osdi22/presentation/kadekodi.

[25] Leslie Pack Kaelbling, Michael L Littman, and An-

drew W Moore. Reinforcement learning: A survey.

Journal of artificial intelligence research, 4:237–285,

1996. doi:10.1613/jair.301.

[26] Wonkyung Kang, Dongkun Shin, and Sungjoo Yoo. Re-

inforcement learning-assisted garbage collection to mit-

igate long-tail latency in ssd. ACM Trans. Embed. Com-

put. Syst., 16(5s), sep 2017. doi:10.1145/3126537.

[27] Wonkyung Kang and Sungjoo Yoo. q -value prediction

for reinforcement learning assisted garbage collection

to reduce long tail latency in ssd. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, 39(10):2240–2253, 2020. doi:10.1109/TC

AD.2019.2962781.

[28] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash

Katebzadeh, Arpit Joshi, Aleksandar Dragojevic, Boris

Grot, and Vijay Nagarajan. Hermes: A fast, fault-

tolerant and linearizable replication protocol. In Pro-

ceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’20, page 201–217,

New York, NY, USA, 2020. Association for Computing

Machinery. doi:10.1145/3373376.3378496.

[29] Joonsung Kim, Pyeongsu Park, Jaehyung Ahn, Jihun

Kim, Jong Kim, and Jangwoo Kim. Ssdcheck: Timely

and accurate prediction of irregular behaviors in black-

box ssds. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 455–

468, 2018. doi:10.1109/MICRO.2018.00044.

[30] Donghun Koo, Jaehwan Lee, Jialin Liu, Eun-Kyu Byun,

Jae-Hyuck Kwak, Glenn K. Lockwood, Soonwook

Hwang, Katie Antypas, Kesheng Wu, and Hyeonsang

Eom. An empirical study of i/o separation for burst

buffers in hpc systems. Journal of Parallel and Dis-

tributed Computing, 148:96–108, 2021. URL: https:

//www.sciencedirect.com/science/article/pi

i/S0743731520303907, doi:10.1016/j.jpdc.202

0.10.007.

[31] Daniar H Kurniawan, Levent Toksoz, Anirudh Badam,

Tim Emami, Sandeep Madireddy, Robert B Ross, Henry

Hoffmann, and Haryadi S Gunawi. Ionet: Towards an

open machine learning training ground for i/o perfor-

mance prediction. Technical Report2021, 2021.

[32] Hyeon Gyu Lee, Juwon Lee, Minwook Kim, Donghwa

Shin, Sungjin Lee, Bryan S. Kim, Eunji Lee, and

Sang Lyul Min. Spartanssd: a reliable ssd under ca-

pacitance constraints. In 2021 IEEE/ACM Interna-

tional Symposium on Low Power Electronics and Design

(ISLPED), pages 1–6, 2021. doi:10.1109/ISLPED52

811.2021.9502476.

[33] Scott Lee, Eriksson Chuang, William Chang, Jerry Syue,

and Cooper Li. Problem of the slot connector model

extraction by de-embedding methodology. In 2020 Inter-

national Symposium on Electromagnetic Compatibility -

EMC EUROPE, pages 1–4, 2020. doi:10.1109/EMCE

UROPE48519.2020.9245687.

[34] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-

hav Gogte, Sriram Govindan, Dan R. K. Ports, Irene

Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and

Anirudh Badam. Leapio: Efficient and portable vir-

tual nvme storage on arm socs. In Proceedings of

the Twenty-Fifth International Conference on Architec-

tural Support for Programming Languages and Oper-

ating Systems, ASPLOS ’20, page 591–605, New York,

NY, USA, 2020. Association for Computing Machinery.

doi:10.1145/3373376.3378531.

USENIX Association 2024 USENIX Annual Technical Conference 1097

[35] Yuhua Lin and Haiying Shen. Eafr: An energy-efficient

adaptive file replication system in data-intensive clusters.

IEEE Transactions on Parallel and Distributed Systems,

28(4):1017–1030, 2017. doi:10.1109/TPDS.2016.

2613989.

[36] Kirill D. Liubavin, Dmitriy A. Furletov, Andrey V.

Novikov, Konstantin S. Kurenkov, Vaagn A. Oganesyan,

and Oleg A. Kalistratov. Design of a fully-autonomous

low-power axi4 firewall for pci-express nvme ssd. In

2022 Conference of Russian Young Researchers in Elec-

trical and Electronic Engineering (ElConRus), pages

166–169, 2022. doi:10.1109/ElConRus54750.2022

.9755734.

[37] Ruiming Lu, Erci Xu, Yiming Zhang, Zhaosheng Zhu,

Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Minglu

Li, and Jiesheng Wu. NVMe SSD failures in the field:

the Fail-Stop and the Fail-Slow. In 2022 USENIX An-

nual Technical Conference (USENIX ATC 22), pages

1005–1020, Carlsbad, CA, July 2022. USENIX Associ-

ation. URL: https://www.usenix.org/conferenc

e/atc22/presentation/lu.

[38] Sixiang Ma and Yang Wang. Accurate timeout detection

despite arbitrary processing delays. In 2018 USENIX

Annual Technical Conference (USENIX ATC 18), pages

467–480, Boston, MA, July 2018. USENIX Association.

URL: https://www.usenix.org/conference/atc1

8/presentation/ma-sixiang.

[39] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca

Schroeder. Proactive error prediction to improve storage

system reliability. In 2017 USENIX Annual Technical

Conference (USENIX ATC 17), pages 391–402, Santa

Clara, CA, July 2017. USENIX Association. URL: ht

tps://www.usenix.org/conference/atc17/tech

nical-sessions/presentation/mahdisoltani.

[40] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and

Bianca Schroeder. A study of ssd reliability in large

scale enterprise storage deployments. In FAST, pages

137–149, 2020. URL: https://www.usenix.org/s

ystem/files/fast20-maneas.pdf.

[41] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and

Bianca Schroeder. Operational characteristics of SSDs

in enterprise storage systems: A Large-Scale field study.

In 20th USENIX Conference on File and Storage Tech-

nologies (FAST 22), pages 165–180, Santa Clara, CA,

February 2022. USENIX Association. URL: https:

//www.usenix.org/conference/fast22/present

ation/maneas.

[42] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash

Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben

Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.

Ssd failures in datacenters: What? when? and why? In

Proceedings of the 9th ACM International on Systems

and Storage Conference, SYSTOR ’16, New York, NY,

USA, 2016. Association for Computing Machinery. do

i:10.1145/2928275.2928278.

[43] Yuanjiang Ni, Ji Jiang, Dejun Jiang, Xiaosong Ma, Jin

Xiong, and Yuangang Wang. S-rac: Ssd friendly caching

for data center workloads. In Proceedings of the 9th

ACM International on Systems and Storage Conference,

SYSTOR ’16, New York, NY, USA, 2016. Association

for Computing Machinery. doi:10.1145/2928275.

2928284.

[44] N K Nivetha and D Vijayakumar. Modeling fuzzy

based replication strategy to improve data availabiity

in cloud datacenter. In 2016 International Confer-

ence on Computing Technologies and Intelligent Data

Engineering (ICCTIDE’16), pages 1–6, 2016. doi:

10.1109/ICCTIDE.2016.7725322.

[45] Gyuyoung Park and Myoungsoo Jung. Automatic-ssd:

Full hardware automation over new memory for high

performance and energy efficient pcie storage cards. In

Proceedings of the 39th International Conference on

Computer-Aided Design, ICCAD ’20, New York, NY,

USA, 2020. Association for Computing Machinery. do

i:10.1145/3400302.3415653.

[46] Gyuyoung Park and Myoungsoo Jung. Automatic-ssd:

Full hardware automation over new memory for high

performance and energy efficient pcie storage cards. In

Proceedings of the 39th International Conference on

Computer-Aided Design, ICCAD ’20, New York, NY,

USA, 2020. Association for Computing Machinery. do

i:10.1145/3400302.3415653.

[47] David A. Patterson, Garth Gibson, and Randy H. Katz.

A case for redundant arrays of inexpensive disks (raid).

In Proceedings of the 1988 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD

’88, page 109–116, New York, NY, USA, 1988. Associ-

ation for Computing Machinery. doi:10.1145/50202.

50214.

[48] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,

Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. Iron file sys-

tems. In Proceedings of the Twentieth ACM Sympo-

sium on Operating Systems Principles, SOSP ’05, page

206–220, New York, NY, USA, 2005. Association for

Computing Machinery. doi:10.1145/1095810.1095

830.

[49] Jose Santos. Flexible file system benchmark, 2024.

URL: https://sourceforge.net/projects/ffs

b/.

1098 2024 USENIX Annual Technical Conference USENIX Association

[50] Julian Schrittwieser, Thomas Hubert, Amol Mandhane,

Mohammadamin Barekatain, Ioannis Antonoglou, and

David Silver. Online and offline reinforcement learn-

ing by planning with a learned model. In M. Ranzato,

A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-

man Vaughan, editors, Advances in Neural Information

Processing Systems, volume 34, pages 27580–27591.

Curran Associates, Inc., 2021. URL: https://procee

dings.neurips.cc/paper_files/paper/2021/fi

le/e8258e5140317ff36c7f8225a3bf9590-Paper

.pdf.

[51] Yiliang Shi, Danny V. Murillo, Simeng Wang, Jinrui

Cao, and Mai Zheng. A command-level study of linux

kernel bugs. In 2017 International Conference on Com-

puting, Networking and Communications (ICNC), pages

798–802, 2017. doi:10.1109/ICCNC.2017.7876233.

[52] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh

Balakrishnan, and Ted Wobber. Extending ssd lifetimes

with disk-based write caches. In Proceedings of the 8th

USENIX Conference on File and Storage Technologies,

FAST’10, page 8, USA, 2010. USENIX Association.

[53] Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan

Vucinic, and Jian Huang. Leaftl: A learning-based flash

translation layer for solid-state drives. In Proceedings

of the 28th ACM International Conference on Architec-

tural Support for Programming Languages and Operat-

ing Systems, Volume 2, ASPLOS 2023, page 442–456,

New York, NY, USA, 2023. Association for Computing

Machinery. doi:10.1145/3575693.3575744.

[54] Richard S Sutton, Andrew G Barto, et al. Introduction

to reinforcement learning, volume 135. MIT press Cam-

bridge, 1998.

[55] Vasily Tarasov, Erez Zadok, and Spencer Shepler.

Filebench: A flexible framework for file system bench-

marking. USENIX; login, 41(1):6–12, 2016. URL:

https://www.usenix.org/system/files/login/

articles/login_spring16_02_tarasov.pdf.

[56] Mahdi Torabzadehkashi, Ali Heydarigorji, Siavash

Rezaei, Hosein Bobarshad, Vladimir Alves, and Nader

Bagherzadeh. Accelerating hpc applications using com-

putational storage devices. In 2019 IEEE 21st Inter-

national Conference on High Performance Computing

and Communications; IEEE 17th International Confer-

ence on Smart City; IEEE 5th International Conference

on Data Science and Systems (HPCC/SmartCity/DSS),

pages 1878–1885, 2019. doi:10.1109/HPCC/Smart

City/DSS.2019.00259.

[57] Linus Torvalds. Linux kernel, 2024. URL: https:

//github.com/torvalds/linux/blob/v6.0/driv

ers/nvme/host/pci.c.

[58] Lluís Vilanova, Lina Maudlej, Shai Bergman, Till

Miemietz, Matthias Hille, Nils Asmussen, Michael

Roitzsch, Hermann Härtig, and Mark Silberstein. Slash-

ing the disaggregation tax in heterogeneous data centers

with fractos. In Proceedings of the Seventeenth Euro-

pean Conference on Computer Systems, EuroSys ’22,

page 352–367, New York, NY, USA, 2022. Association

for Computing Machinery. doi:10.1145/3492321.

3519569.

[59] Yi Wang, Mingxu Zhang, Xuan Yang, and Tao Li. A

thermal-aware physical space reallocation for open-

channel ssd with 3-d flash memory. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, 38(4):617–627, 2019. doi:10.1109/TCAD.2

018.2821442.

[60] Christopher JCH Watkins and Peter Dayan. Q-learning.

Machine learning, 8:279–292, 1992. doi:10.1007/BF

00992698.

[61] Marco A Wiering and Martijn Van Otterlo. Reinforce-

ment learning. Adaptation, learning, and optimization,

12(3):729, 2012.

[62] Chentao Wu and Xubin He. Gsr: A global stripe-based

redistribution approach to accelerate raid-5 scaling. In

2012 41st International Conference on Parallel Process-

ing, pages 460–469, 2012. doi:10.1109/ICPP.2012.

32.

[63] Chentao Wu, Xubin He, Guanying Wu, Shenggang Wan,

Xiaohua Liu, Qiang Cao, and Changsheng Xie. Hdp

code: A horizontal-diagonal parity code to optimize

i/o load balancing in raid-6. In 2011 IEEE/IFIP 41st

International Conference on Dependable Systems &

Networks (DSN), pages 209–220, 2011. doi:10.1109/

DSN.2011.5958220.

[64] Fan Xu, Shujie Han, Patrick P. C. Lee, Yi Liu, Cheng

He, and Jiongzhou Liu. General feature selection for

failure prediction in large-scale ssd deployment. In 2021

51st Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), pages 263–

270, 2021. doi:10.1109/DSN48987.2021.00039.

[65] Ji Zhang, Ke Zhou, Ping Huang, Xubin He, Ming Xie,

Bin Cheng, Yongguang Ji, and Yinhu Wang. Minority

disk failure prediction based on transfer learning in large

data centers of heterogeneous disk systems. IEEE Trans-

actions on Parallel and Distributed Systems, 31(9):2155–

2169, 2020. doi:10.1109/TPDS.2020.2985346.

[66] Jianquan Zhang, Dan Feng, Jianlin Gao, Wei Tong,

Jingning Liu, Yu Hua, Yang Gao, Caihua Fang, Wen

Xia, Feiling Fu, and Yaqing Li. Application-aware and

USENIX Association 2024 USENIX Annual Technical Conference 1099

software-defined ssd scheme for tencent large-scale stor-

age system. In 2016 IEEE 22nd International Confer-

ence on Parallel and Distributed Systems (ICPADS),

pages 482–490, 2016. doi:10.1109/ICPADS.2016.

0071.

[67] Jie Zhang, Mustafa Shihab, and Myoungsoo Jung.

Power, energy, and thermal considerations in SSD-Based

I/O acceleration. In 6th USENIX Workshop on Hot

Topics in Storage and File Systems (HotStorage 14),

Philadelphia, PA, June 2014. USENIX Association.

URL: https://www.usenix.org/conference/hots

torage14/workshop-program/presentation/zh

ang.

[68] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and

Steven Swanson. Mojim: A reliable and highly-available

non-volatile memory system. SIGARCH Comput. Archit.

News, 43(1):3–18, mar 2015. doi:10.1145/2786763.

2694370.

[69] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Mar-

tin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang,

and Kai Chen. Bds: A centralized near-optimal overlay

network for inter-datacenter data replication. In Proceed-

ings of the Thirteenth EuroSys Conference, EuroSys ’18,

New York, NY, USA, 2018. Association for Computing

Machinery. doi:10.1145/3190508.3190519.

[70] Yuqi Zhang, Wenwen Hao, Ben Niu, Kangkang Liu,

Shuyang Wang, Na Liu, Xing He, Yongwong Gwon,

and Chankyu Koh. Multi-view feature-based SSD fail-

ure prediction: What, when, and why. In 21st USENIX

Conference on File and Storage Technologies (FAST

23), pages 409–424, Santa Clara, CA, February 2023.

USENIX Association. URL: https://www.usenix.o

rg/conference/fast23/presentation/zhang.

[71] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillib-

ridge. Understanding the robustness of ssds under power

fault. In Presented as part of the 11th USENIX Confer-

ence on File and Storage Technologies (FAST 13), pages

271–284, 2013. URL: https://www.usenix.org/s

ystem/files/conference/fast13/fast13-final

80.pdf.

[72] Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge,

Bill W. Zhao, and Elizabeth S. Yang. Reliability analysis

of ssds under power fault. ACM Trans. Comput. Syst.,

34(4), nov 2016. doi:10.1145/2992782.

[73] Siyuan Zhou and Shuai Mu. Fault-Tolerant replica-

tion with Pull-Based consensus in MongoDB. In 18th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 21), pages 687–703. USENIX

Association, April 2021. URL: https://www.usenix

.org/conference/nsdi21/presentation/zhou.

[74] You Zhou, Qiulin Wu, Fei Wu, Hong Jiang, Jian Zhou,

and Changsheng Xie. Remap-ssd: Safely and efficiently

exploiting ssd address remapping to eliminate duplicate

writes. In FAST, pages 187–202, 2021. URL: https:

//www.usenix.org/system/files/fast21-zhou.

pdf.

1100 2024 USENIX Annual Technical Conference USENIX Association

