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Abstract
Solid State Drives (SSDs) based on flash technology are

extensively employed as high-performance storage solutions
in supercomputing data centers. However, SSD failures
are frequent in these environments, resulting in significant
performance issues. To ensure the reliability and accessibility
of HPC storage systems, it is crucial to predict failures in
advance, enabling timely preventive measures. Although
many failure prediction methods focus on improving SMART
attributes and system telemetry logs, their predictive efficacy
is constrained due to the limited capacity of these logs to
directly elucidate the root causes of SSD failures at the
device level. In this paper, we revisit the underlying causes
of SSD failures and first utilize the device-level flash wear
characteristics of SSDs as a critical indicator instead of solely
relying on SMRAT data. We propose a novel Aging-Aware
Pseudo Twin Network (APTN) based SSD failure prediction
approach, exploiting both SMART and device-level NAND
flash wear characteristics, to effectively forecast SSD failures.
In practice, we also adapt APTN to the online learning
framework. Our evaluation results demonstrate that APTN
improves the F1-score by 51.2% and TPR by 40.1% on
average compared to the existing schemes. This highlights
the potential of leveraging device-level wear characteristics
in conjunction with SMART attributes for more accurate and
reliable SSD failure prediction.

1 Introduction
In recent years, the growing complexity of scientific
simulations [75] and data-intensive artificial intelligence
applications [8] has led to a greater need for massive and rapid
data access. This has driven high-performance computing
clusters to adopt more advanced storage infrastructures. To
meet this demand, flash-based solid-state drives (SSDs) are
widely used in High-Performance Computing (HPC) systems
as an alternative to hard disk drives (HDDs), resulting in
significant performance improvements in data access [10, 48].
Even major service providers like Alibaba, Huawei, and
Amazon have developed their own in-house SSDs to achieve

top-notch performance. However, the increase in storage
density comes with a trade-off of decreased endurance, and
the prevalence of SSD failures poses a new challenge to
overall HPC reliability [3, 4, 18, 36]. To tackle this challenge,
a range of reactive fault-tolerance and storage redundancy
schemes has been implemented, including Redundant Arrays
of Independent Disks (RAID) [18, 55, 56], High-Availability
(HA) pairs [37], and Replication. Nonetheless, storage failures
lead to transient recovery and repair overheads, impacting the
cost and tail latency of storage systems [11]. Hence, it is
crucial to predict disk failures so that appropriate proactive
actions can be taken in a timely manner [38,85]. For example,
replacing disks that are likely to fail soon before actual disk
failures occur can help prevent data loss and reduce fault-
tolerance overheads [3, 4, 18, 20, 26, 36, 56].

State-of-the-art proactive prediction solutions typically
use Machine Learning (ML) techniques to train models
with historical disk failure data, focusing on Self-Monitoring
Analysis and Reporting Technology (SMART) [1]. However,
these studies primarily focus on conventional hard disk
drives (HDDs) [7, 39, 40, 46, 58, 59, 78, 82, 84, 90, 91, 95].
Nevertheless, these approaches are not entirely applicable to
SSDs [67, 81], due to the distinct architecture and intricate
device characteristics of SSDs [27, 52, 54, 61, 72, 73, 80].
To understand the root causes, researchers inspect specific
error types and device-level errors (such as cell wear-out,
program/read disturb errors, power faults, etc.) within SSDs
through simulated or controlled laboratory environments [9,
21, 45, 51, 73, 94]. Furthermore, several in-depth studies also
analyze the effects of correlated factors on SSD reliability in
real-world production environments, including Google [2],
Facebook [51], Alibaba [27], and NetApp [49].

In order to enhance failure prediction accuracy and achieve
a high True Positive Rate (TPR)1 while maintaining a low
False Positive Rate (FPR)2, certain ML-based methods [2, 31,
41, 47, 61, 93] strive to enhance SSD monitoring and augment
learning features by incorporating additional customized

1The proportion of correctly predicted failed SSDs over all failed SSDs.
2The proportion of healthy SSDs that are falsely predicted as failed SSDs.
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SMART attributes and system telemetry logs. Meanwhile,
others [26, 81] attempt to extract the most relevant SMART
attributes for training their models. Nevertheless, these
solutions face challenges in significantly improving prediction
accuracy for three key reasons: ❶ Neither these SMART
attributes nor system telemetry logs can directly elucidate
the fundamental causes of SSD failures at the device level. ❷
Customized logs vary across different data centers, making
it difficult to reproduce consistent results [81]. ❸ These logs
are reported by system-level maintenance software, which
can experience issues such as data omissions due to software
upgrades or system crashes.

In this paper, we revisit the underlying causes of
SSD failures and first utilize the device-level flash wear
characteristics of SSDs, known as Aging BEC data (explained
in Section 3), as a critical indicator instead of solely relying
on SMRAT data. To effectively integrate the SSD aging
BEC data and SMART attributes, which come from different
temporal and spatial dimensions, to improve the SSD failure
prediction performance, we propose a novel approach called
Aging-Aware Pseudo Twin Network (APTN). This approach
is based on the principle of distance-based anomaly detection.
It can effectively predict SSD failures not only in a short time
but also in a longer time frame.

Our contributions are summarized as follows,
• We collect and analyze a device-level 3D-TLC NAND

flash wear dataset in the field with the in-house
team from collaborated SSD vendors. This dataset is
produced through the SSD aging Bit Error Counts (BEC)
benchmarking procedure, which requires customizing
firmware functions within the SSD controller.

• We develop a novel SSD failure prediction approach
named APTN. This approach adeptly leverages both
SMART attributes and NAND flash wear characteristics
within a high-dimensional space, facilitated by the
pseudo twin network architecture [42]. Additionally, we
apply APTN to the practical realm of online learning
framework [26].

• We conduct a series of experiments that demonstrate
APTN’s proficiency in accurately predicting disk
failures, even in the long leading time. This robust
performance enhancement elevates the reliability of
the SSD storage system. Our proposed APTN shows
an impressive 51.2% improvement in F1-score and a
remarkable 40.1% boost in TPR on average, compared
to existing schemes.

2 Background and Motivation
In this section, we explore commonly used machine learning-
based methods for predicting failures, the main technical
challenges in designing disk failure prediction models,
important factors contributing to SSD failures, and the
limitations of the selected SSD SMART dataset. Finally, we
clarify our underlying motivation.

2.1 Disk Failure Prediction
To enhance the reliability of high-performance distributed
storage systems, numerous proactive disk failure predic-
tion methods have been proposed. Existing approaches
predominantly employ machine learning algorithms to train
prediction models using SMART data, subsequently utilizing
these models to anticipate faulty disks. Common machine
learning algorithms include Linear Regression (LR) [44,
78, 83], Random Forest (RF) [15, 74, 77, 86], Adaptive
Boosting (Support Vector Machine) [90, 91], K-Nearest
Neighbor (KNN) [35, 76], Decision Tree (DT) [82, 86],
and Neural Networks (NN) [35, 74, 76]. These methods
typically necessitate manual feature extraction and selection.
Furthermore, the realm of deep learning methodologies has
also found its application within this domain. Long Short-
Term Memory (LSTM) with under-sampling is introduced
to handle time series-driven SMART data and address
imbalanced dataset issues [65, 69, 70]. Additionally, Transfer
Learning (TL) [7, 66, 79, 90–92], Twin Networks (also
referred to as Siamese Networks) [89], and Online Learning
(OL) [26, 78] are introduced to overcome challenges like
minority drive detection and model aging [7,26]. The machine
learning algorithms used for SSD failure prediction are almost
the same as, or the alternatives of what has been introduced
above, but most of them [2, 31, 41, 47, 61, 93] utilize the
customized SMART attributes and system telemetry logs to
obtain more learning features on various scopes, lacking of
generality for real-world implementation.

2.2 Challenges
Several primary technical challenges arise when designing
disk error prediction models for large-scale HPC storage
clusters: ❶ Weak correlations among SMART attributes and
SSD failures: SMART attributes solely encompass the healthy
state and statistical data of disks. They inadequately indicate
SSD failures comprehensively, as demonstrated in Section 2.4
[2,31,41,73,81]. Notably, some failures lack error information
in SMART attributes, particularly device-level flash errors
that are pivotal for SSD failure analysis (such as NAND
flash wear-and-tear, a dominant factor in SSD reliability [2]).
Gunawi et al. [23] further advocate for vendors to provide
device-level performance statistics to support failure studies.
❷ Dataset imbalance: In operational storage systems, the
number of healthy SSDs significantly outweighs that of
faulty ones. This dataset imbalance skews most machine
learning models toward the majority class (healthy SSDs)
and consequently introduces inaccuracies [31, 39, 89]. ❸
Poor failure detection of minority disk drive models: Within
extensive storage setups, minority disk models may possess
an insufficient sample count for training learning models,
leading to subpar prediction accuracy due to underfitting
issues [7, 89]. ❹ Failure prediction model aging: In real-
world storage systems, SMART logs continually accumulate
from disks over time. When expanding the data center or
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introducing new drive models, solely relying on past SMART
data for training becomes impractical, causing a degradation
in predictive performance over long-term use [26, 78].

2.3 Important Factors of SSD Failures
Contemporary SSDs are semiconductor devices that per-
sistently store data in NAND flash arrays, consisting of
floating gate transistors [11]. Each NAND flash cell can
endure a finite number of Program/Erase (P/E) cycles before
wearing out permanently. An SSD comprises NAND flash
chips, an SSD controller, interfaces, and essential peripherals.
To orchestrate the functionality of these components and
manage the SSD, firmware is embedded in the SSD controller.
Given the internal organization of SSDs as described above,
failures can be classified into two types based on whether
the faulty units are directly accessible by the system: system-
level failures (related to the controller and interfaces) and
device-level failures (related to NAND flash). The SMART
technology is integrated into the disk controller to record disk
conditions and relay information about gradual degradation
and potential defects in disks [1]. However, due to non-
transparent firmware [2], it tends to signal symptoms of
system-level failures rather than device-level ones.

Through the device-level analysis, the literature [2, 27,
49, 51] reveal that Age, Device wear, Flash technology,
Lithography and Capacity are the most important factors
impacting SSDs failures. The wear characteristics of the
flash drive have a substantial impact on SSD reliability and
are crucial for predictive performance [2, 61, 72, 81]. The
study [22] further explains that utilizing burn-in wear data
from NAND flash aids in predicting early failures in SSDs.
Additionally, Meza et al. [51] emphasize that SSDs using the
same flash technology (like SLC, MLC, 3D-TLC, etc.) and
capacity demonstrate similar wear properties throughout their
lifespan, regardless of the specific model.

2.4 SSD SMART Dataset and Limitations
The SSD SMART dataset that we have chosen is collected at
Alibaba data center [27, 81]. It covers a population of nearly
500K SSDs of six drive models, spanning two years from
2018-01-01 to 2019-12-31 [81]. We conduct our analyses
on 3D-TLC SSDs containing two drive models, MC1 and
MC2. We exclude MLC drives since the SSDs from which
we collect device-level NAND flash wear characteristics are
also based on 3D-TLC SSDs, which are mismatched with
MLC-based drives. The overview of the SSD samples we
used is shown in Table 1.

Table 1: Overview of the SMART Dataset for Evaluation
Disk

Model Capacity Flash
Tech.

Litho-
graphy Disk Count # failures

MC1 1920GB 3D-TLC V1 199655 10508
MC2 960GB 3D-TLC V1 23803 1131

This SMART dataset spans 43 SMART attributes in total,
containing SMART logs and trouble tickets. The SMART

logs provide daily records of SSD attribute statistics, while
the trouble tickets capture the drive ID and corresponding
timestamp upon the occurrence of a failure. However,
this dataset encounters issues with missing data, wherein
SMART data is not logged on specific days, due to software
maintenance, upgrades, or system crashes. These omitted data
points may contain crucial anomaly features that significantly
impact prediction outcomes, leading to a bias in prediction
models [27]. To assess the correlations between SMART
attributes and SSD failures, we perform an analysis using the
Spearman Correlation Coefficient rank [6]. The outcomes of
this analysis are depicted in Figure 1, revealing the correlation
coefficients of the top 11 most indicative SMART attributes.
In essence, they suggest that the static values of SMART
attributes alone are inadequate in predicting SSD failures
effectively [31].

Figure 1: Spearman Correlation Coefficient rank analysis of
the SMART attributes.

2.5 Motivation
The above preliminaries show that the device-level flash wear
characteristics mainly determine their failures. However, the
prevailing approaches in most previous studies are obtaining
more learning features by customizing the SMART attributes
or system telemetry logs. These solutions have the following
limitations. ❶ SMART attributes have weak correlations
with SSD failures, SMART and system telemetry logs cannot
explain the failures at the device level. ❷ Customized logs are
diverse, which makes it difficult to reproduce by different data
centers. ❸ In practical implementations, SMART and system
telemetry logs are reported by the system-level maintenance
system, having data missing issues due to software upgrades
or system crash problems.

Motivated by the above studies, we intend to use device-
level flash wear characteristics of SSDs, which dominate SSD
failures, as extended learning features, instead of obtaining
more system-level data (i.e., customized SMART and system
logs). Then we attempt to take advantage of SSD system-level
and device-level features simultaneously, to improve the SSD
failure prediction accuracy.

3 Flash Wear Characteristics Dataset Collec-
tion

With the aforementioned motivation, we proceed to gather
and analyze the device-level flash wear characteristics of
SSDs. Additionally, it’s worth noting that the present
trend of cloud service providers developing in-house SSDs
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Algorithm 1: SSD BEC Aging Algorithm
Data: Blocks grouped into chunks, number of cycles to operate
/* Step 1 */
do

Current_chunk← first chunk of blocks;
do

Erase all the blocks in Current_chunk;
Program Current_chunk with random pattern;
Update Max temp;
Current_chunk← next chunk of blocks;

while not all the blocks programmed;
while not all the cycles finished;
Idle Stage;
/* Step 2 */
Erase all the blocks;
Current_chunk← first chunk of blocks;
do

Program Current_chunk with random pattern;
Update Max temp;
Read Current_chunk;
Calculate Failing bit count per codeword/AU;
Current_chunk← next chunk of blocks;

while not all the blocks finished;

facilitates practical real-world implementations. During
the data collection process, we select in-house SSDs
possessing identical NAND technology, lithography, and
capacity parameters as the MC1 and MC2 drive models in
the SMART dataset. This allows us to acquire the NAND
flash wear characteristics. The architecture of a NAND flash
chip is depicted in Figure 2, encompassing components such
as dies, planes, chunks, blocks, and pages. We employ Bit
Error Counts (BEC)3 as the measure of NAND flash wear
characteristics. The dataset for aging SSD BEC collection
is generated through the SSD grey-box testing process [30].
The operation details are expounded in Algorithm 1. This
collection procedure comprises two steps. ❶ Step 1 involves
preparing the drive for subsequent aging by conducting drive
preconditioning. ❷ Step 2 entails obtaining aging BEC
Bucket Numbers4, and iteratively recording SSD aging BEC
data through various loops.

Die 0
Plane 0

…

…

Chip

…

…

Chunk L

Block 0Block 0

Block MBlock M

Plane H

…

Block 0Block 0

Block MBlock M

Die K
Plane 0

…

…

Block 0Block 0

Block MBlock M

Plane H

…

Block 0Block 0

Block MBlock M

Page 0

Page N

Block 0

…

Chunk 0 Page 1

Figure 2: The structural relationships among chips, dies,
planes, chunks, blocks, and pages in an SSD.

Step 1 performs Erase and Program on SSDs in the
first several loops, aiming at reducing the false bad block
marking to avoid the annealing effects [25] which tend to
cause higher BEC or even lead to false Error-Correcting Code
(ECC) errors [34] in extreme cases. Then it sets the proper
temperature compensation and adjust the voltage threshold
of NAND flash before it is scanned for aging cycling in this

3BEC means bit error counts. In our discussion, it is the number of bit
errors per 4K data frames specifically.

4BEC bucket number of n bits means the number of data frames that
contains n error bits. This bucket number is recorded per die (LUN).

Figure 3: SSD aging BEC data heatmap representation. The
X-axis represents the number of bit errors per data frame. The
Y-axis represents the number of P/E cycles.
step. Step 2 performs Erase, Program, and Read operations.
This step can be divided into the following procedures. ❶
Parameterize the chunk that has been illustrated in Figure 2,
erase all blocks in a chunk, program all blocks in that chunk
starting from page 0, and then move to the next page. Repeat
the above operations until all pages of all blocks in this
chunk are fully programmed. ❷ Progress to the next chunk of
blocks until the entire drive has been erased and programmed.
❸ Repeat the outlined actions as necessary for the desired
number of cycles. If an erase error or a program error occurs,
the corresponding block will be designated as bad. ❹ During
the Read operations, the BEC of each 4K data frame is tallied
as a histogram for each Logical Unit (LUN). For instance, if a
data frame contains no errors, the process increments the BEC
bucket number of 0-bit. Extending this logical progression,
we ultimately obtain the SSD aging BEC histogram.

To facilitate interpreting the aging BEC histogram,
we transfer the histogram to a heatmap by marking the
normalized magnitude of each bucket by color brightness
(values are normalized because of the Non-Disclosure
Agreement). Figure 3 shows a fragment of a heatmap on aging
BEC data upon a chosen die from an SSD. The colorbar’s
definition associates paler colors, such as blue, with smaller
corresponding BEC bucket numbers. while more intense and
vibrant colors, like deep red, represent larger values. It is
worth noting that the spikes at 15, 30 and 45 P/E cycles,
since the early defective blocks that have intrinsic weak LUN
are wearing out in these cycles. This is consistent with the
conclusion in literature [51] and [2].

SSD aging BEC data serves as an important factor that can
efficiently reflect the underlying characteristics of internal
NAND flash wear, due to the strong correlation between BEC
data and ECC. ECC holds significant importance in SSD
data protection, as it manages the correction of raw bit errors
occurring throughout the entire lifespan of the drive. If the
BEC surpasses the hardware ECC threshold (e.g., 254), the
soft-decision [13] will be triggered with a latency penalty. In
cases where BEC exceeds the capacity of the soft-decision
ECC, it can lead to uncorrectable errors and failures [53].
Figure 4 provides an example of the aging distribution of
LUNs within a drive across different P/E cycles (e.g., 0, 800,
1600, 2400, and 3200 cycles). The cumulative percentage of
LUNs is represented by the area under the curve, with the red
vertical line denoted as X = n indicating the point where the
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Figure 4: Percentage of LUNs versus the maximum BEC
among data frames in the LUN for a given drive. The X-axis:
the maximum number of error bits among all data frames in
a LUN. The Y-axis: the percentage of LUNs that has at least
one data frame containing x error bits and no data frame in
this LUN containing more than x error bits.

area is divided in half (i.e., 50% of LUNs contain at least one
data frame with n bit errors). In this figure, it is obvious that
the distribution of the maximum BEC progressively shifts
to the right as P/E cycles increase, indicating that the failure
probability of this drive raises as it undergoes more P/E cycles.

Eventually, we use the SSD aging BEC data as the main
clue to reflect the inherent wear characteristics of SSD NAND
flash memory. Together with the in-house teams of our
partner SSD vendors, we collected BEC data at the smallest
granularity of die from 20,000 3D-TLC flash-based SSDs.

4 Design and Implementation
4.1 Overview

Figure 5: Overall architecture
SSD BEC aging data, obtained through the firmware’s API

interface, serves as a representation of SSD’s internal wear
patterns under different P/E cycles. Unlike SMART data, SSD
BEC aging data is not collected in real time. It is gathered
in an offline environment through wear tests conducted
by the SSD manufacturer’s in-house team at the firmware
level. SMART data, on the other hand, represents real-
time operational statistical information obtained during SSD
runtime. These two datasets exist in disparate dimensions and
cannot be directly combined. However, BEC and SMART
data share a common clue, which is the current P/E cycle.
Therefore, we design a novel failure prediction approach
based on a pseudo-twin network, called Aging-aware Pseudo-
Twin Network (APTN). It maps SSD BEC aging data
and SMART data in a sparse high-dimensional space and

calculates the Euclidean distance, we perform similarity
comparisons to predict whether an SSD is likely to fail. The
overall architecture of this approach is illustrated in Figure 5.
It contains four stages: ❶ SMART logs are collected from
storage servers via log agents and then transmitted to the
inference node (GPU server). Then the GPU server transforms
the SMART logs into a SMART data stream and executes the
SMART/Aging sampling pooling procedure. ❷ Pre-train the
APTN model in the offline model. ❸ The online prediction
of SSD failure is executed, yielding ’failed’ or ’healthy’
outcomes. ❹ APTN is iteratively trained using the online
learning framework, effectively addressing the challenge of
model aging.

4.2 SMART/Aging Sample Pooling
The SMART/Aging module has three parts as follows:

4.2.1 SMART Data Transformation

Our SSD SMART data includes attribute values and ground
truth labels (healthy/failed drive). The data is recorded
daily, and we take consecutive days of SMART data (Ts)
as input to the SMART/Aging sample pooling module,
forming a "SMART time series." Each SMART instance
at day t is represented as It = {It

0, I
t
1, . . . , I

t
(n−1)}, and a

SMART time series starting from day t is given by Dt
s =

{It , It+1, . . . , It+Ts−1}. For a healthy SSD, the SMART time
series moves through a sliding window, theoretically moving
forward each day when data is available consecutively for
more than Ts days. The number of SMART time series that
can be generated for a given disk with T recorded consecutive
days (T ≥ Ts) and a chosen stride s between two adjacent

series is ⌊T −Ts

s
⌋+ 1. To reduce correlation, the stride s

should be no less than the length of the time series (s≥ Ts).
For a failed SSD, we only consider the last Ts consecutive
days of data as SMART time series samples, based on the
gradual deterioration of a failed disk from health to failure.

4.2.2 SSD Aging BEC Data Transformation

The SSD aging BEC data reveals the wear characteristics
of NAND flash memory cells within the SSD. This data, as
elaborated in Section 3, is collected over multiple P/E cycles.
An aging instance with N attributes at P/E cycle P can be
represented as IP = IP

0 , I
P
1 , . . . , I

P
N−1. We denote a sequence

of aging P/E cycles as the collection of BEC data over Ps
consecutive P/E cycles. An aging P/E cycle series starting
from P/E Cycle P is denoted as DP

a = IP, IP+1, . . . , IP+Ps−1.
Notably, all SSD aging BEC data are generated from healthy
SSDs with varying degrees of wear.

4.2.3 SMART/Aging Sample Pair Construction

Ideally, as input pairs for APTN, the SMART time series and
the aging P/E cycle series should originate from the same
SSD and be recorded at approximately the same time to ensure
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perfect temporal correspondence between SMART and aging
data. In practice, however, the SMART time series and the
aging P/E cycle series are derived from distinct sets of SSDs.
The SMART data pool is dynamic, while the aging data pool
remains static. As mentioned in Section 2.3, evolving aging
data are not accessible during SSD usage and are instead
provided by the manufacturer. On the contrary, SMART data
is captured during the operational life of SSDs in data centers.
To promise a fair comparison between different feature values
in machine learning algorithms, we implement the widely-
used min-max feature normalization technique [47, 89] to
normalize (SMART, Aging) sample pairs. We normalize both
the average power-on-hours information in SMART data
and the average P/E Cycles in SSD aging BEC data. The
normalized values are denoted as Ht

n and Pc
n , respectively.

The normalization process is outlined in Equations 1, wherein
Hmin, Hmax, Ht

avg, Pmin, Pmax, and Pc
avg represent the minimum,

maximum, and average power-on hours and P/E cycles in the
SMART time series and aging BEC series, respectively. This
sampling module constructs the valid SMART/Aging pairs,
whose aging series is sorted as the one that has the closest
Pc

n to Ht
n of the given SMART aging series. In this way, the

wear-out status of the two data sources roughly matches in
high dimensions, though the status is not necessarily equal.

Ht
n =

Ht
avg−Hmin

Hmax−Hmin
Pc

n =
Pc

avg−Pmin

Pmax−Pmin
(1)

When given a SMART time series as input to the NN, the
aging P/E cycle series input to the LSTM is determined by
selecting the one with the closest Pc

n value to Ht
n from the

SMART aging series. This approach aligns the wear status
of the two data sources in higher dimensions, although their
states may not be identical. With the recorded SSD aging BEC
data and SMART data, we follow the mechanisms described
above to transform the raw SMART attributes and aging BEC
data into suitable SMART/Aging sample pairs < SL,AL >.
These pairs are then used as inputs for the subsequent APTN-
based learning model. The process of data transformation
is illustrated in Figure 6, where the Aging Samples are
highlighted in red and the SMART Samples are shown in
green. Each element Ap in the Aging Samples corresponds to
the BEC data of a healthy SSD over a fixed number of P/E
cycles Ps (typically set to 30 cycles). Each element S in the
SMART Samples represents <SMART attributes Sp, label l>
for a specific SSD over a fixed duration of days Ts (usually
set to 30 days). Since the focus of SSD failure detection lies
in those with recorded SMART data, we divide the SMART
Samples into separate training and test sets, and employ the
Aging Samples as guidance for predictions during both the
training and testing phases.

4.3 Design of APTN Model
Twin Networks (also called Siamese Network) typically
consist of two identical sub-networks with shared weights,
making them suitable for tasks involving pair matching

SMART attributes
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0

…
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…

TS+2S

…

SMART/Aging 
Sample Pairs
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Figure 6: The instance of SMART/Aging sample pair
construction mechanism implementation.

or identifying similarities between input pairs [50]. This
concept aligns well with our objective of assessing the
resemblance between SSD SMART and aging BEC data
within a high-dimensional space. However, the lengths of
the input vectors for the NN sub-network and the LSTM
sub-network are different, resulting in non-identical sub-
networks. To elaborate, as indicated in Table 2 and Table 3,
we have 11 chosen SMART attributes and 5 fields derived
from 256 BEC for input. Moreover, the physical significance
of the SMART time series and the aging P/E cycle series
are distinct. Therefore, we present our APTN-based failure
prediction approach within a pseudo twin network framework.
In this framework, the two sub-networks non-identical and
the weights are not shared. This methodology directs the
failure prediction by finding if there is a similarity between a
SMART data sample and aging BEC data in a given sample
pair within a high-dimensional space. A specific SMART
sample is deemed healthy if its high-dimensional distance
from the corresponding aging sample falls below a threshold
associated with the SMART sample.

Table 2: Selected SMART attributes
ID SMART Attribute
1 Read Error Rate
9 Power-on Hours

171 Number of Program Errors
172 Number of Erase Errors
173 Wear Leveling Status
174 Unexpected Power Loss
180 Unused Reserved Blocks
183 Number of SATA Errors
187 Number of Uncorrectable Errors
188 Command Timeout
194 Temperature

Table 3: Aging attributes generated from BEC
Symbol Formula Description

N p
(1) ∑

63
i=48 np

i Sum of BEC from 48 to 63 bits
N p
(2) ∑

79
i=64 np

i Sum of BEC from 64 to 79 bits
N p
(3) ∑

95
i=80 np

i Sum of BEC from 80 to 95 bits
N p
(4) ∑

127
i=96 np

i Sum of BEC from 96 to 127 bits
N p
(5) ∑

255
i=128 np

i Sum of BEC from 128 to 255 bits

The network structure of the proposed Aging-Aware
Pseudo Twin Network (APTN) is shown in Figure 7. It
consists of ❶ a sample pairs input layer, ❷ a pseudo twin
network that contains two sub-networks, NN for SMART data
and LSTM for aging BEC data, and ❸ an RF-based adaptive
discriminator.

4.3.1 Sample Pairs Input Layer

This layer extracts the sample pairs from the SMART/Aging
sample pair construction module in the form of < SL,AL >,
where SL represents a SMART time series, and AL corresponds
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Figure 7: Network Structure of APTN-based SSD failure prediction approach

to an aging P/E cycle series (as explained in Section 4.2).

4.3.2 Pseudo Twin Network

Our pseudo twin network consists of two sub-networks: NN
for SMART data, and LSTM for aging data. ❶ NN for
SMART Data: In our investigation of SSD failure prediction
solely relying on SMART data, we examined seven models
discussed in Section 2.1, including NN, RF, LSTM, LR, KNN,
DT, and SVM. After comprehensive analysis, we identified
that NN achieves a well-balanced performance, with metrics
such as precision and AUC score (validated in Section 5.2).
Hence, we select NN as the appropriate sub-network for
SMART data within the APTN architecture. In this design,
a SMART time series is fed into the input layer of the neural
network. The input time series has dimensions of (Ts,n),
which is then flattened by the input layer. Subsequently, the
flattened input of dimensions (n ·Ts,1) is propagated through
3 hidden layers. The output from these layers is then passed
to a fully connected layer, followed by an output layer of
matching dimensions. The neural network’s specifications are
illustrated in Figure 7. ❷ LSTM for Aging Data: LSTM, a
type of Recurrent Neural Network (RNN), excels in retaining
both short-term and long-term states of inputs, making it
particularly suitable for prediction tasks based on sequential
data.Given that SSD aging data is collected continuously
in relation to P/E Cycles, we employ LSTM for failure
prediction utilizing aging data. The LSTM network takes
an aging sample of size (Ts,n′) and passes it along the input
layer. Then this input is directed through 2 hidden layers and
further into a fully connected layers. The output dimensions
of the LSTM network match those of the neural network.
The distance measurement unit within APTN computes the
L2 norm distance between these two outputs. Elaborate
specifications can be observed in Figure 7. Additionally, in
Section 5.2.2, we conduct Exp#2 by substituting the sub-
networks of the pseudo twin network to affirm that the current
combination of sub-networks 1 and 2 within APTN already
yields optimal results.
4.3.3 RF-based Adaptive Discriminator
The distance d between the outputs of the NN and LSTM
is positively correlated with the probability that SL and AL
belong to different health states. The larger d is, the less
similar the two outputs are. Since the aging P/E cycle series
are generated from healthy drives, a substantial distance d

suggests a high likelihood that the target SMART time series
originates from an unhealthy drive. Specifically, when the
distance d exceeds the threshold Dth (i.e., d > Dth), the
prediction result yt will be 1, implying that we predict the
target SMART SSD to be on the verge of failure. To avoid
the limitations of a static threshold, we introduce an RF-
based adaptive discriminator that dynamically adjusts the
threshold associated with each given SMART sample. This
discriminator acts as a safeguard for the predicted outcome.
Without this adaptation, prediction accuracy could fluctuate
when the output distance is close to the preset threshold. To
mitigate this concern, the RF-based adaptive discriminator
tailors the threshold according to the characteristics of the
specific SMART sample. The effectiveness of this approach
is demonstrated in Exp#3 in Section 5.2.3.

4.3.4 Learning Model Hyperparameter Tuning
We used grid searching [88] to tune the hyper-parameters.
Eventually, the network is tuned as below. The NN sub-
network contains 3 hidden layers with sizes of 512×1, 512×
1 and 48× 1, respectively. Following the ReLu activation
function, the output is forwarded to a 64× 1 FC layer and
mapped to a high-dimensional space of 64 dimensions. In
LSTM sub-network, it contains 2 hidden layers, with each
hidden layer having a size of 64×30×11. In the RF-based
discriminator, we utilize entropy as a measure of purity. We
set the maximum tree depth to 100, with each leaf node
containing a minimum of 1 sample. Furthermore, each node
can split at most 3 times, and we employ a total of 150
decision trees in the ensemble. We choose Euclidean distance
metric as the distance measurement. Furthermore, we choose
the contrastive loss function [43] for the learning model
training of this pseudo twin network. For a given sample
pair < SL,AL >, we set the label Y = 1 if the SMART sample
SL comes from a healthy SSD, and Y = 0 if it comes from
an unhealthy one. Let GWS(SL) denote the output of the NN
which represents the SMART data embedding in the high
dimension, where WS is the weight of NN. Similarly, we define
G′WA

(AL) as the output of the LSTM network, where WL is
the weight of the LSTM network. Denote W = {WS,WL}
for simplicity. The distance between the two outputs can be
measured as Equation 2,

DW (SL,AL) =
∥∥GWS (SL)−G′WL

(AL)
∥∥2 (2)

The total contrastive loss [24] is given by Equation 3 and 4,

USENIX Association 2024 USENIX Annual Technical Conference    1107



L(W ) =
m

∑
i=1

L(W,(Y,SL,AL)
i) (3)

L(W,(Y,SL,AL)
i) =

1
2
(1−Y ) · (DW (SL,AL))

2

+
1
2

Y · {max(0,Dth−DW (SL,AL))}2
(4)

where m is the number of sample pairs.

4.4 Learning Process
Algorithm 2: Model Training Algorithm

Input: SMART/Aging samples
Output: {WR, <WS, WL>} updating
/* training RF-based adaptive discriminator */
for each epoch for APTN do

for batch data in the training set do
setSL← a batch of SMART time series;
labels← a batch of labels;
WR← weights in random forests;
RF_train (setSL, labels);
update WR;

/* training pseudo twin network */
for each epoch for APTN do

for batch data in the training set do
setSL← a batch of SMART time series;
labels← a batch of labels;
setAL← /0;
for each SL in setSL do

construct < SL,AL > as a sample pair, where AL is an
aging P/E cycle series;

add AL to setAL;

WS← weights in NN;
WL← weights in LSTM;
distances← train_calc_dist (setSL,setAL);
thresholds← RF_vote (setSL,WR);
yt ← determine_status (distances, thresholds);
WS,WL← backward_prop (labels, predictions);

The procedures of overall APTN-based learning model
training are illustrated in Algorithm 2. The RF-based adaptive
discriminator and the pseudo twin network are trained
separately due to the distinction that RF does not necessitate
backpropagation, whereas the pseudo twin network relies on
it in the training process. During each epoch, the RF-based
adaptive discriminator takes a batch of SMART time series
from the training set and obtains the corresponding labels
that indicate whether the sources are healthy or unhealthy
SSDs. After the RF-based adaptive discriminator has finished
training, its parameters are fixed. Then, the pseudo twin
network is trained. In each epoch, the pseudo twin network
takes a batch of SMART time series from the training set and
the corresponding labels. For each of them in the batch, the
pseudo twin network finds the corresponding aging P/E cycle
series and constructs the sample pairs. The NN and LSTM
then process the corresponding samples. The distance of their
outputs is calculated. For each sample pair, the random forests
vote for whether they consider the SMART data as coming
from a healthy disk (y = 0) or an unhealthy disk (y = 1),
and their results are used to determine the threshold for that

SMART data. After performing predictions and comparing
them with the correct labels, APTN triggers backpropagation
and updates the weights of NN and LSTM.

4.5 Online Learning Adaption
For practical implementation, we adapt APTN to support
online learning, aiming to enhance the applicability of our
failure prediction model in real-world product environments.

2018-03-27
# MC1 failures: 180
# MC2 failures: 1 

2018-06-23
# MC1 failures: 583
# MC2 failures: 30 

2019-01-01
# MC1 failures: 1966
# MC2 failures: 677 

2019-10-01
# MC1 failures: 8164
# MC2 failures: 1013 

Figure 8: The accumulated failure occurrence distribution of
MC1 and MC2 drive models over time

The traditional offline machine learning methods used for
creating SSD failure prediction models assume that the entire
training dataset is accessible and sufficient for building precise
models. However, in real-world scenarios, new SMART data
is generated daily, leading to changes in the underlying
distribution of SMART attributes over time. Moreover, using
offline-trained models without parameter updates for extended
periods can result in significant performance degradation,
known as the "model aging problem" [78]. To demonstrate
this, we examine trouble tickets from the Alibaba SMART
dataset and display the accumulated distribution of failure
occurrences for MC1 and MC2 drive models over time
in Figure 8. It’s important to note that the initial MC2
drive model didn’t fail until 2018-03-27, while the first
MC1 drive model failed on 2018-03-02, with a total of
180 failures recorded on that day. This difference suggests
that if a predictor is trained before 2018-03-27, its ability
to predict MC2 failures might be limited due to the lack
of learning features specific to MC2 failures. Additionally,
the near future of 2018-03-27 poses a challenge related
to the detection of minority samples. By this date, the
number of MC2 failures has only reached 30, which might be
insufficient for effectively training learning models and could
become a performance bottleneck (Exp#4 in Section 5.2.4
confirms this observation). As time progresses, the number
of both MC1 and MC2 failures increases, indicating that the
learning models can extract more valuable features to enhance
predictive performance [17, 26, 62, 78].

Existing solutions tackle the above problem by re-training
and updating the failure prediction models. However, they
do not have the ability to remember what they have learned
from the previous data used to train the predictor, which
lowers the learning efficiency for real-time streaming SMART
data. Therefore, we adapt our proposed APTN into an online
learning framework by realizing the buffering and automatic
online labeling [26,57] mechanisms and applying incremental
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Algorithm 3: APTN with Online Learning
Initialize APTN SSD failure prediction model
buffer bu f ← [];
for t = 1, · · · do

if bu f is full then
Slide one day for bu f

Extract a batch of learning features {< SL,AL >, label}t ;
buffer{< SL,AL >, label}t into bu f ;

Call Algorithm 1 (APTN model training) to train APTN using
bu f ;

if bu f is full then
ỹt ← determine_status (distances, thresholds);

Update weights {WR, <WS, WL>};

online learning [57] with APTN. The algorithm of APTN with
online learning is shown in Algorithm 3. Firstly, initialize
the APTN model and the buffer bu f used for receiving
samples for online labeling. For each day t, if bu f is full,
we extract the learning features {< SL,AL >}t from all SSDs
and buffer {< SL,AL >, label}t into bu f . Finally, if bu f is
full, it indicates that the buffer has enough labeled samples
for training, and thus we use APTN with {< SL,AL >}t to
output the prediction results ỹt and update the weights {WR,
<WS, WL>} .

5 Evaluation
In this section, we present a series of experiments aimed at
evaluating the performance of our APTN model compared to
state-of-the-art approaches.

5.1 Methodology and Testbed
5.1.1 Dataset and Attribute Selection

(i) SSD SMART Attributes: In our experiments, we select
the raw data of the following correlated attributes which
are listed in Table 2, according to the Spearman correlation
coefficient rank of the attributes shown in Figure 1 in
Section 2.4. (ii) SSD aging BEC Dataset: In order to make
this dataset fit the design of APTN. we reshape the SSD
aging BEC data as Table 3 demonstrated. np

i represent the
BEC bucket of i bits at the pth P/E cycle. To evaluate the
performance of our model, we employ 5-fold cross-validation
on both the SMART and Aging datasets, a widely-used
technique [19]. The entire dataset is split into training and
testing sets using an 8:2 ratio [81, 87] for each validation fold.

5.1.2 Experiment Setup
❶ Baselines: As outlined in Section 2.1, we reproduce the
state-of-the-art ML-based SSD failure prediction models,
including RF [93], DT [86], LR [83], SVM [91], KNN [35],
LSTM [65], and NN [74], as the baseline evaluation methods
that exclusively utilize SMART attributes for learning. ❷
Learning Hyperparameters Tuning: To optimize hyper-
parameters, we employ grid searching for hyperparameters
selection [88]. Specifically, we set the number of trees to
100 in RF, while for KNN, we use 5 neighbors with the

Euclidean Distance [5]. L2 regularization [12] is employed
in LR with a regularization parameter set to 1. DT employs
Gini coefficients [14] to gauge split quality. For SVM, we
adopt the Radial Basis Function (RBF) kernel [28] with a
regularization parameter of 1. In the case of LSTM, NN, and
APTN, we set the epoch count to 1000, the initial learning
rate to 0.001, and utilize the Adam optimizer. The pseudo
twin network within APTN employs the contrastive loss and
employs the Euclidean distance metric, whereas LSTM and
NN employ BCE [63] as their loss function.

5.1.3 Performance Metrics

We use the following metrics to report the results in our
experiments which are commonly used for evaluating the
capability of binary classification (i.e., a disk is healthy or
failed) model in machine learning [68].
a) TPR: True Positive Rate, also called recall. It captures
the proportion of correctly predicted failed SSDs (denoted
as Positive instances) over all the failed SSDs. A higher TPR
means a better model.
b) FPR: False Positive Rate. It represents the proportion of
healthy SSDs that are falsely predicted as failed. The lower
the FPR is, the better the model is.
c) F1-score: F-score is a measurement to take both precision
and TPR into consideration to comprehensively assess the
classification model, given by 2×Precision×TPR

Precision+TPR . It is designed
to work well on imbalanced data. There F1-score higher, the
better the prediction performance the model has.
d) AUC: AUC is the area under this ROC Curve. It represents
the measure of separability of different classes [29]. The
higher the AUC, the better performance of the model at
distinguishing failed and healthy SSDs [71].
e) C-MTTDL: C-MTTDL is the economic analysis metric
and evaluate the reliability and availability of the system
based on different methods. C − MT T DL = MT T DL

Cost ≈
MT T F

(1− kµ
µ+γ

)(Ca×FP+Cb×FN)
. Where MTTDL is the Mean Time

To Data Loss. FP (FN) is the number of true healthy (failed)
SSDs that are falsely predicted as failed (healthy). Ca and
Cb represent the associated costs for misclassifications. γ =
1/(lookaheaddays×24hours). µ is the inverse value of Mean
Time To Repair (MTTR) [89].

5.1.4 Simulating Practical Long-Term Availability
For practical purposes, it is preferable to anticipate drive
failures further in advance to enhance drive maintenance and
procure new spare drives efficiently. Therefore, we adopt a
failure prediction sliding window upon the SMART series to
simulate the experiments of practical long-term availability
via predicting SSD failures ahead of time. The size of the
sliding window is L. The prediction is 1 to N days lookahead.
Let S denote the stride. The organization of sliding is shown
in Figure 9. Here, we set L to 30, set N to 5, 7, 15, 30, 45,
60, 90, and 120, respectively, and assess the performance of
predicting N days ahead using the mentioned metrics.
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Figure 9: The sliding window for predicting SSD failures
ahead in time for practical long-term usage.

5.2 Experimental Results
We show the experimental results to comprehensively evaluate
our proposed APTN’s prediction performance of Short-
Term Lookahead Prediction5 and Long-Term Lookahead
Prediction6. Exp#1, Exp#2, and Exp#3 are conducted to
evaluate all learning models in offline mode. All model
training and failure detection tests are based on the complete
dataset that contains all samples of MC1 and MC2 drive
models. Exp#4 is to evaluate the learning models in online
mode, the dataset is in stream data mode. Exp#5 demonstrates
the improvement of storage system reliability via cost-
MTTDL. Exp#6 shows the overhead of these ML-based
methods in practical real-time simulation.

5.2.1 Exp#1 (Effectiveness of proposed APTN)
we compare APTN with the aforementioned state-of-the-art
models respectively. Due to the structural difference, RF, DT,
LR, SVM, KNN, LSTM, NN and SN models can only feed
in SMART attributes as the training/testing data, but APTN is
able to utilize both SMART attributes and NAND flash wear
characteristics (i.e., BEC aging data) as the learning features
to improve the performance.

Figure 10 demonstrates the TPR, FPR, F1-score, and
AUC score results of all models in short-term and long-
term lookahead failure prediction. Figure 10(a) shows that
the TPR of APTN performs best in both short-term and
long-term lookahead prediction. In short-term lookahead
prediction, the average TPR of APTN is higher RF, DT, LR,
SVM, KNN, LSTM, and NN than 40.4%, 27.4%, 78.4%,
78.0%, 54.3%, 30.2% and 20.3% respectively. Moreover, in
long-term lookahead prediction, the average TPR of APTN
exceeds those of RF, DT, LR, SVM, KNN, LSTM and NN
than 45.2%, 33.5%, 81.1%, 80.5%, 59.1%, 26.6% and 31.6%
respectively. Figure 10(b) demonstrates that as the days
lookahead increases, the FPR of all methods increases. APTN
can consistently keep the lowest FPR among state-of-the-art
methods. Specifically, the FPR of APTN remains at 0.094
at minimum and stays relatively low at 0.156 when the days
lookahead reaches 120.

Overall, The TPR and FPR of APTN achieve 90.1%
and 9.4% at best, respectively. APTN improves the F1-
score by 51.2% and TPR by 40.1% on average compared
with the existing schemes. This experiment exhibits that
the APTN achieves the best performance of SSD failure

5Short-Term Lookahead Prediction means operating the failure prediction
in 5, 7, 15, and 30 days ahead.

6Long-Term Lookahead Prediction means operating the failure prediction
in 45, 60, 90, and 120 days ahead.

prediction, solving the SMART limitations and imbalanced
dataset problems for practical drive maintenance in long-term
availability. Moreover, it indicates that APTN has an excellent
model generalization behavior via good AUC scores.

5.2.2 Exp#2 (Discussion of the alternative designs of sub-
networks in the pseudo twin network)

We analyze the prediction behavior of APTN with alternatives
of sub-networks 2.a and 2.b in the structure of APTN (See in
Figure 7 in Section 4.3). We replace these two sub-networks
with different RNN which are proficient to deal with the
prediction task in time series. We name these APTNs with
alternative sub-networks in Table 4 and show the results in
Figure 11. Figure 11(a) and Figure 11(b) show that the TPR
of APTN performs surprisingly best in both short-term and
long-term lookahead prediction, with 13.4% performance
improvement on average. Moreover, the FPR of APTN is
the lowest. Figure 11(c) and Figure 11(d) show the F1-score
and AUC score variations in failure prediction of APTN,
APTN_LL, APTN_GG and APTN_GL models with different
days lookahead. APTN outperforms the other models in both
F1-score and AUC score, achieving performance gains of at
least 6% and 8%, respectively. These results prove that the
design of sub-networks in the pseudo twin network in the
proposed APTN is reasonable and convincing.

Table 4: Sub-network alternatives in APTN structure
Model Name Sub-network 2.a Model Sub-network 2.b Model

APTN NN LSTM
APTN_LL LSTM LSTM
APTN_GG GRU GRU
APTN_GL GRU LSTM

5.2.3 Exp#3 (Effectiveness of adaptive RF-based discrim-
inator)

We demonstrate the importance of the design of an RF-based
adaptive discriminator in APTN (See in Section 4.3.4) by
showing performance degradation without it and showing the
results in Figure 12. We name the APTN without RF-based
adaptive discriminator after APTN_NRF. Figure 12(a) and
Figure 12(b) show that The TPR of APTN performs better in
both short-term and long-term lookahead prediction, with 14%
performance improvement on average, and APTN achieves
lower FPR than APTN_NRF, with 23% deduction on average.
Figure 12(c) and Figure 12(d) show that both the F1-score and
AUC score of APTN are higher than that of APTN_NRF by
4% at least. These results indicate that the RF-based adaptive
discriminator helps APTN performing better.

5.2.4 Exp#4 (Adaptability of APTN for online learning)

We simulate the sequential arrival of training data according
to the timestamps in the SMART dataset. We observe that
all models almost fail to predict the MC2 drive model’s
failure at that time regarding the excessively low F1-score
or high FPR results shown in Figure 13. These above results
prove the hypothesis in Section 4.5. Afterward, we evaluate
the performance of 30 days lookahead failure prediction (a
moderate selection for early warning of disk replacement)
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(a) TPR (b) FPR (c) F1-score (d) AUC Score

Figure 10: Prediction performance among APTN, and baseline SSD failure prediction models based on the complete dataset.

(a) TPR (b) FPR (c) F1-score (d) AUC Score

Figure 11: Prediction performance among APTN, APTN_LL, APTN_GG and APTN_GL based on the complete dataset.

(a) TPR (b) FPR (c) F1-score (d) AUC Score

Figure 12: Prediction performance among APTN, and APTN_NRF based on the complete dataset.

of all learning models with online learning on the test
set approximately once every 3 months from 2018-04-30,
particularly focusing on MC2 drive models. Notably, from
our statistics, the accumulated number of failure samples in
the MC2 drive models increases from 5 to 88 from 5th to
8th month. It indicates that ML models have only trained
on a minority MC2 SSD dataset. Figure 14 demonstrates
that, from 5th to 8th month, the TPR and F1-score of APTN
are higher than other methods by 40% and 30% at least,
respectively. Moreover, the performance of APTN is keeping
leading steadily with each model update. Finally, the TPR
and F1-Score of APTN stably and gradually increase from
0.788 and 0.781 to 0.882 and 0.893, respectively. Overall, we
conclude that APTN with online learning solves the model
aging problem and APTN has the outstanding ability to solve
the minority disk failure detection challenge as well.

5.2.5 Exp#5 (Improvement of Reliability)
We utilize the economic analysis metric C-MTTDL to
quantitatively evaluate the reliability and availability of the
system based on different SSD failure prediction approaches.
Given that MT T R = 10 hours, so that µ = 1/10 hours. The
literature [27] reveals that SSD failures follow an exponential
distribution with the Mean Time Between Failures (MTBF)
(i.e., the number of hours in a year over the overall Annual
Failure Rate (AFR) in Alibaba SSDs failure dataset, i.e., 8760

1.16% ,

equals to 757,759 hours. Ca and Cb are set to 400 and 200
dollars respectively in our evaluation. Table 5 shows that our
proposed APTN improves C-MTTDL approximately from
2.5× to 15×, which significantly improves the reliability of
the storage system at a lower cost.

5.2.6 Exp#6 (Overhead of APTN)
To investigate the overhead of APTN in practical implemen-
tation, we evaluate the time cost of APTN in online learning
mode, which is usually concerned with practical proactive
fault tolerance mechanisms in modern storage systems [89].
The time cost contains training and prediction time. We
evaluate that the training and prediction time cost of APTN is
86.7 seconds and 12.6 seconds, respectively. Therefore, we
conclude that APTN only costs less than 2 minutes on the
daily SMART data of 45K disks, which is acceptable and
supposed to satisfy the performance need in large-scale data
center deployment [26, 89].

Table 5: Average Improvement of C-MTTDL
Method TPR FP FN MTTDL (years) C-MTTDL(hours/dollars)

RF 47.2% 433 6148 154.7 0.96
DT 60.3% 979 4625 198.1 1.31
LR 9.3% 272 10559 94.8 0.37

PAC 9.7% 119 10514 95.1 0.38
KNN 33.3% 703 7759 125.7 0.60
NN 57% 529 4949 186.9 1.36

LSTM 67.3% 428 3801 233.5 2.19
APTN 88% 1133 1438 478.7 5.66
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(a) TPR (b) FPR (c) F1-score (d) AUC Score
Figure 13: Prediction performance of predicting SSD failure of MC2 drive model among offline APTN, RF, DT, LR, SVM, KNN,
LSTM and NN models based on the SMART dataset in the near future of 2018-03-27.

(a) TPR (b) FPR (c) F1-score (d) AUC Score
Figure 14: Performance of 30 days lookahead SSD failure prediction of MC2 drive model among online APTN, RF, DT, LR,
SVM, KNN, LSTM and NN models based on the SMART dataset roughly every 3 months. The x-axis represents the number of
months from 2018-01-01. Each ML model in online mode is denoted by "OL_" added in front of its name. In the legends of this
figure, PCA represents the Principal Component Analysis, which is the online learning alternative of SVM.

6 Related Work
SSD Failure Prediction based on SMART data. Litz [11]
observes that the number of healthy and erroneous disks in
disk sample data is severely unbalanced. Hence, they try to
drop small-class data during training to improve prediction
accuracy. Alter et al. [2] prove that the conventional SMART
attributes, such as write behavior or error incidence, are not
as meaningful, but the age of the drive is important for error
prediction. Further, Xu et al. [81] propose a wear-updating
Ensemble Feature Ranking mechanism to select the SMART
attributes learning features with the wear degree for SSD
failure prediction of different drive models and vendors. In
addition, Hao et al. [31] discover that static values of SMART
attributes hardly indicate SSD failures, so they customize
the SMART attributes and propose LSTM-based ensemble
learning scheme to overcome limitations and improve the
prediction accuracy. Zhang [93] et al. extract static and
sequential features from customized SMART and system
logs and use multi-task Random Forest to get predictive
performance promotion. Different from them, we use the
general SMART attributes but combine them with NAND
flash wear characteristics to improve the robustness and
performance of SSD failure prediction.

NAND Flash Endurance Prediction. Hogan et al. [32,33]
perform a symbolic regression learning method to predict
the maximum number of erases in a flash memory block.
Fitzgerald et al. [16] analyzes the effects such as programming
time and erase time in 2D flash memory, and proposes a
lifetime prediction model to predict the maximum number
of erasures. Moreover, Peleato et al. [64] analyze the
relationships between the Bit Error Rates (BER) and the

number of erasures in 2D flash memory to build a BER
prediction model for flash memory blocks. Furthermore,
Nakamura et al. [60] find that 25% of the programming
interference errors were concentrated in 3.5% of the flash
memory cells, and they achieve the prediction of the weaker
data retention errors based on different strategies. These
studies are focusing on SSD internal errors and attempt to
improve single-SSD performance. However, we pioneer the
use of device-level flash wear characteristics of SSDs as a
set of learning features, together with SMART attributes to
improve the SSD failure prediction performance in the HPC
storage system.

7 Conclusions
In this paper, we collect and analyze the device-level
NAND flash wear characteristics from more than 20k in-
house SSDs. Then we propose a novel APTN-based SSD
failure prediction approach, which significantly improves the
predictive performance of short-term and long-term SSD
failure prediction, giving a long lead time to take actions
before failure occurrence in HPC clusters. Our results show
90.1% TPR and 9.4% FPR. APTN also boosts the F1-score
by 51.2% and TPR by 40.1% on average over other methods.
Besides, Our proposed APTN has the adaptability to online
learning, which is practical for real-world deployment.
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